aboutsummaryrefslogtreecommitdiffstats
path: root/arch/cris/arch-v32/drivers/axisflashmap.c
diff options
context:
space:
mode:
authorJesper Nilsson <jesper.nilsson@axis.com>2007-11-30 10:01:53 -0500
committerJesper Nilsson <jesper.nilsson@axis.com>2008-02-08 05:06:25 -0500
commit5fc1f3122fda1a15df0e4f83d85f4d2991bf0edd (patch)
tree896fae7f6d43b429a5b1e7eba2a032cdd9e10d70 /arch/cris/arch-v32/drivers/axisflashmap.c
parent201ca54aa039eb1e5143a98311e7ea25afc57ebb (diff)
CRIS v32: Update and improve axisflashmap
- Use default partition table when no partition is found (for initial tests) - Add config ETRAX_AXISFLASHMAP_MTD0WHOLE to allow whole flash as mtd0. - Add config for VCS simulator connection.
Diffstat (limited to 'arch/cris/arch-v32/drivers/axisflashmap.c')
-rw-r--r--arch/cris/arch-v32/drivers/axisflashmap.c488
1 files changed, 345 insertions, 143 deletions
diff --git a/arch/cris/arch-v32/drivers/axisflashmap.c b/arch/cris/arch-v32/drivers/axisflashmap.c
index c5ff95e18269..51e1e85df96d 100644
--- a/arch/cris/arch-v32/drivers/axisflashmap.c
+++ b/arch/cris/arch-v32/drivers/axisflashmap.c
@@ -1,7 +1,7 @@
1/* 1/*
2 * Physical mapping layer for MTD using the Axis partitiontable format 2 * Physical mapping layer for MTD using the Axis partitiontable format
3 * 3 *
4 * Copyright (c) 2001, 2002, 2003 Axis Communications AB 4 * Copyright (c) 2001-2007 Axis Communications AB
5 * 5 *
6 * This file is under the GPL. 6 * This file is under the GPL.
7 * 7 *
@@ -10,9 +10,6 @@
10 * tells us what other partitions to define. If there isn't, we use a default 10 * tells us what other partitions to define. If there isn't, we use a default
11 * partition split defined below. 11 * partition split defined below.
12 * 12 *
13 * Copy of os/lx25/arch/cris/arch-v10/drivers/axisflashmap.c 1.5
14 * with minor changes.
15 *
16 */ 13 */
17 14
18#include <linux/module.h> 15#include <linux/module.h>
@@ -27,7 +24,8 @@
27#include <linux/mtd/mtdram.h> 24#include <linux/mtd/mtdram.h>
28#include <linux/mtd/partitions.h> 25#include <linux/mtd/partitions.h>
29 26
30#include <asm/arch/hwregs/config_defs.h> 27#include <linux/cramfs_fs.h>
28
31#include <asm/axisflashmap.h> 29#include <asm/axisflashmap.h>
32#include <asm/mmu.h> 30#include <asm/mmu.h>
33 31
@@ -37,16 +35,24 @@
37#define FLASH_UNCACHED_ADDR KSEG_E 35#define FLASH_UNCACHED_ADDR KSEG_E
38#define FLASH_CACHED_ADDR KSEG_F 36#define FLASH_CACHED_ADDR KSEG_F
39 37
38#define PAGESIZE (512)
39
40#if CONFIG_ETRAX_FLASH_BUSWIDTH==1 40#if CONFIG_ETRAX_FLASH_BUSWIDTH==1
41#define flash_data __u8 41#define flash_data __u8
42#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2 42#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
43#define flash_data __u16 43#define flash_data __u16
44#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4 44#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
45#define flash_data __u16 45#define flash_data __u32
46#endif 46#endif
47 47
48/* From head.S */ 48/* From head.S */
49extern unsigned long romfs_start, romfs_length, romfs_in_flash; 49extern unsigned long romfs_in_flash; /* 1 when romfs_start, _length in flash */
50extern unsigned long romfs_start, romfs_length;
51extern unsigned long nand_boot; /* 1 when booted from nand flash */
52
53struct partition_name {
54 char name[6];
55};
50 56
51/* The master mtd for the entire flash. */ 57/* The master mtd for the entire flash. */
52struct mtd_info* axisflash_mtd = NULL; 58struct mtd_info* axisflash_mtd = NULL;
@@ -112,32 +118,20 @@ static struct map_info map_cse1 = {
112 .map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE 118 .map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
113}; 119};
114 120
115/* If no partition-table was found, we use this default-set. */ 121#define MAX_PARTITIONS 7
116#define MAX_PARTITIONS 7 122#ifdef CONFIG_ETRAX_NANDBOOT
117#define NUM_DEFAULT_PARTITIONS 3 123#define NUM_DEFAULT_PARTITIONS 4
124#define DEFAULT_ROOTFS_PARTITION_NO 2
125#define DEFAULT_MEDIA_SIZE 0x2000000 /* 32 megs */
126#else
127#define NUM_DEFAULT_PARTITIONS 3
128#define DEFAULT_ROOTFS_PARTITION_NO (-1)
129#define DEFAULT_MEDIA_SIZE 0x800000 /* 8 megs */
130#endif
118 131
119/* 132#if (MAX_PARTITIONS < NUM_DEFAULT_PARTITIONS)
120 * Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the 133#error MAX_PARTITIONS must be >= than NUM_DEFAULT_PARTITIONS
121 * size of one flash block and "filesystem"-partition needs 5 blocks to be able 134#endif
122 * to use JFFS.
123 */
124static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
125 {
126 .name = "boot firmware",
127 .size = CONFIG_ETRAX_PTABLE_SECTOR,
128 .offset = 0
129 },
130 {
131 .name = "kernel",
132 .size = 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR),
133 .offset = CONFIG_ETRAX_PTABLE_SECTOR
134 },
135 {
136 .name = "filesystem",
137 .size = 5 * CONFIG_ETRAX_PTABLE_SECTOR,
138 .offset = 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR)
139 }
140};
141 135
142/* Initialize the ones normally used. */ 136/* Initialize the ones normally used. */
143static struct mtd_partition axis_partitions[MAX_PARTITIONS] = { 137static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
@@ -178,6 +172,56 @@ static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
178 }, 172 },
179}; 173};
180 174
175
176/* If no partition-table was found, we use this default-set.
177 * Default flash size is 8MB (NOR). CONFIG_ETRAX_PTABLE_SECTOR is most
178 * likely the size of one flash block and "filesystem"-partition needs
179 * to be >=5 blocks to be able to use JFFS.
180 */
181static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
182 {
183 .name = "boot firmware",
184 .size = CONFIG_ETRAX_PTABLE_SECTOR,
185 .offset = 0
186 },
187 {
188 .name = "kernel",
189 .size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
190 .offset = CONFIG_ETRAX_PTABLE_SECTOR
191 },
192#define FILESYSTEM_SECTOR (11 * CONFIG_ETRAX_PTABLE_SECTOR)
193#ifdef CONFIG_ETRAX_NANDBOOT
194 {
195 .name = "rootfs",
196 .size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
197 .offset = FILESYSTEM_SECTOR
198 },
199#undef FILESYSTEM_SECTOR
200#define FILESYSTEM_SECTOR (21 * CONFIG_ETRAX_PTABLE_SECTOR)
201#endif
202 {
203 .name = "rwfs",
204 .size = DEFAULT_MEDIA_SIZE - FILESYSTEM_SECTOR,
205 .offset = FILESYSTEM_SECTOR
206 }
207};
208
209#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
210/* Main flash device */
211static struct mtd_partition main_partition = {
212 .name = "main",
213 .size = 0,
214 .offset = 0
215};
216#endif
217
218/* Auxilliary partition if we find another flash */
219static struct mtd_partition aux_partition = {
220 .name = "aux",
221 .size = 0,
222 .offset = 0
223};
224
181/* 225/*
182 * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash 226 * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
183 * chips in that order (because the amd_flash-driver is faster). 227 * chips in that order (because the amd_flash-driver is faster).
@@ -191,7 +235,7 @@ static struct mtd_info *probe_cs(struct map_info *map_cs)
191 map_cs->name, map_cs->size, map_cs->map_priv_1); 235 map_cs->name, map_cs->size, map_cs->map_priv_1);
192 236
193#ifdef CONFIG_MTD_CFI 237#ifdef CONFIG_MTD_CFI
194 mtd_cs = do_map_probe("cfi_probe", map_cs); 238 mtd_cs = do_map_probe("cfi_probe", map_cs);
195#endif 239#endif
196#ifdef CONFIG_MTD_JEDECPROBE 240#ifdef CONFIG_MTD_JEDECPROBE
197 if (!mtd_cs) 241 if (!mtd_cs)
@@ -204,7 +248,7 @@ static struct mtd_info *probe_cs(struct map_info *map_cs)
204/* 248/*
205 * Probe each chip select individually for flash chips. If there are chips on 249 * Probe each chip select individually for flash chips. If there are chips on
206 * both cse0 and cse1, the mtd_info structs will be concatenated to one struct 250 * both cse0 and cse1, the mtd_info structs will be concatenated to one struct
207 * so that MTD partitions can cross chip boundaries. 251 * so that MTD partitions can cross chip boundries.
208 * 252 *
209 * The only known restriction to how you can mount your chips is that each 253 * The only known restriction to how you can mount your chips is that each
210 * chip select must hold similar flash chips. But you need external hardware 254 * chip select must hold similar flash chips. But you need external hardware
@@ -216,9 +260,8 @@ static struct mtd_info *flash_probe(void)
216{ 260{
217 struct mtd_info *mtd_cse0; 261 struct mtd_info *mtd_cse0;
218 struct mtd_info *mtd_cse1; 262 struct mtd_info *mtd_cse1;
219 struct mtd_info *mtd_nand = NULL;
220 struct mtd_info *mtd_total; 263 struct mtd_info *mtd_total;
221 struct mtd_info *mtds[3]; 264 struct mtd_info *mtds[2];
222 int count = 0; 265 int count = 0;
223 266
224 if ((mtd_cse0 = probe_cs(&map_cse0)) != NULL) 267 if ((mtd_cse0 = probe_cs(&map_cse0)) != NULL)
@@ -226,12 +269,7 @@ static struct mtd_info *flash_probe(void)
226 if ((mtd_cse1 = probe_cs(&map_cse1)) != NULL) 269 if ((mtd_cse1 = probe_cs(&map_cse1)) != NULL)
227 mtds[count++] = mtd_cse1; 270 mtds[count++] = mtd_cse1;
228 271
229#ifdef CONFIG_ETRAX_NANDFLASH 272 if (!mtd_cse0 && !mtd_cse1) {
230 if ((mtd_nand = crisv32_nand_flash_probe()) != NULL)
231 mtds[count++] = mtd_nand;
232#endif
233
234 if (!mtd_cse0 && !mtd_cse1 && !mtd_nand) {
235 /* No chip found. */ 273 /* No chip found. */
236 return NULL; 274 return NULL;
237 } 275 }
@@ -245,9 +283,7 @@ static struct mtd_info *flash_probe(void)
245 * So we use the MTD concatenation layer instead of further 283 * So we use the MTD concatenation layer instead of further
246 * complicating the probing procedure. 284 * complicating the probing procedure.
247 */ 285 */
248 mtd_total = mtd_concat_create(mtds, 286 mtd_total = mtd_concat_create(mtds, count, "cse0+cse1");
249 count,
250 "cse0+cse1+nand");
251#else 287#else
252 printk(KERN_ERR "%s and %s: Cannot concatenate due to kernel " 288 printk(KERN_ERR "%s and %s: Cannot concatenate due to kernel "
253 "(mis)configuration!\n", map_cse0.name, map_cse1.name); 289 "(mis)configuration!\n", map_cse0.name, map_cse1.name);
@@ -255,61 +291,162 @@ static struct mtd_info *flash_probe(void)
255#endif 291#endif
256 if (!mtd_total) { 292 if (!mtd_total) {
257 printk(KERN_ERR "%s and %s: Concatenation failed!\n", 293 printk(KERN_ERR "%s and %s: Concatenation failed!\n",
258 map_cse0.name, map_cse1.name); 294 map_cse0.name, map_cse1.name);
259 295
260 /* The best we can do now is to only use what we found 296 /* The best we can do now is to only use what we found
261 * at cse0. 297 * at cse0. */
262 */
263 mtd_total = mtd_cse0; 298 mtd_total = mtd_cse0;
264 map_destroy(mtd_cse1); 299 map_destroy(mtd_cse1);
265 } 300 }
266 } else { 301 } else
267 mtd_total = mtd_cse0? mtd_cse0 : mtd_cse1 ? mtd_cse1 : mtd_nand; 302 mtd_total = mtd_cse0 ? mtd_cse0 : mtd_cse1;
268
269 }
270 303
271 return mtd_total; 304 return mtd_total;
272} 305}
273 306
274extern unsigned long crisv32_nand_boot;
275extern unsigned long crisv32_nand_cramfs_offset;
276
277/* 307/*
278 * Probe the flash chip(s) and, if it succeeds, read the partition-table 308 * Probe the flash chip(s) and, if it succeeds, read the partition-table
279 * and register the partitions with MTD. 309 * and register the partitions with MTD.
280 */ 310 */
281static int __init init_axis_flash(void) 311static int __init init_axis_flash(void)
282{ 312{
283 struct mtd_info *mymtd; 313 struct mtd_info *main_mtd;
314 struct mtd_info *aux_mtd = NULL;
284 int err = 0; 315 int err = 0;
285 int pidx = 0; 316 int pidx = 0;
286 struct partitiontable_head *ptable_head = NULL; 317 struct partitiontable_head *ptable_head = NULL;
287 struct partitiontable_entry *ptable; 318 struct partitiontable_entry *ptable;
288 int use_default_ptable = 1; /* Until proven otherwise. */ 319 int ptable_ok = 0;
289 const char *pmsg = KERN_INFO " /dev/flash%d at 0x%08x, size 0x%08x\n"; 320 static char page[PAGESIZE];
290 static char page[512];
291 size_t len; 321 size_t len;
322 int ram_rootfs_partition = -1; /* -1 => no RAM rootfs partition */
323 int part;
324
325 /* We need a root fs. If it resides in RAM, we need to use an
326 * MTDRAM device, so it must be enabled in the kernel config,
327 * but its size must be configured as 0 so as not to conflict
328 * with our usage.
329 */
330#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
331 if (!romfs_in_flash && !nand_boot) {
332 printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
333 "device; configure CONFIG_MTD_MTDRAM with size = 0!\n");
334 panic("This kernel cannot boot from RAM!\n");
335 }
336#endif
337
338#ifndef CONFIG_ETRAX_VCS_SIM
339 main_mtd = flash_probe();
340 if (main_mtd)
341 printk(KERN_INFO "%s: 0x%08x bytes of NOR flash memory.\n",
342 main_mtd->name, main_mtd->size);
343
344#ifdef CONFIG_ETRAX_NANDFLASH
345 aux_mtd = crisv32_nand_flash_probe();
346 if (aux_mtd)
347 printk(KERN_INFO "%s: 0x%08x bytes of NAND flash memory.\n",
348 aux_mtd->name, aux_mtd->size);
349
350#ifdef CONFIG_ETRAX_NANDBOOT
351 {
352 struct mtd_info *tmp_mtd;
292 353
293#ifndef CONFIG_ETRAXFS_SIM 354 printk(KERN_INFO "axisflashmap: Set to boot from NAND flash, "
294 mymtd = flash_probe(); 355 "making NAND flash primary device.\n");
295 mymtd->read(mymtd, CONFIG_ETRAX_PTABLE_SECTOR, 512, &len, page); 356 tmp_mtd = main_mtd;
296 ptable_head = (struct partitiontable_head *)(page + PARTITION_TABLE_OFFSET); 357 main_mtd = aux_mtd;
358 aux_mtd = tmp_mtd;
359 }
360#endif /* CONFIG_ETRAX_NANDBOOT */
361#endif /* CONFIG_ETRAX_NANDFLASH */
297 362
298 if (!mymtd) { 363 if (!main_mtd && !aux_mtd) {
299 /* There's no reason to use this module if no flash chip can 364 /* There's no reason to use this module if no flash chip can
300 * be identified. Make sure that's understood. 365 * be identified. Make sure that's understood.
301 */ 366 */
302 printk(KERN_INFO "axisflashmap: Found no flash chip.\n"); 367 printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
303 } else {
304 printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n",
305 mymtd->name, mymtd->size);
306 axisflash_mtd = mymtd;
307 } 368 }
308 369
309 if (mymtd) { 370#if 0 /* Dump flash memory so we can see what is going on */
310 mymtd->owner = THIS_MODULE; 371 if (main_mtd) {
372 int sectoraddr, i;
373 for (sectoraddr = 0; sectoraddr < 2*65536+4096;
374 sectoraddr += PAGESIZE) {
375 main_mtd->read(main_mtd, sectoraddr, PAGESIZE, &len,
376 page);
377 printk(KERN_INFO
378 "Sector at %d (length %d):\n",
379 sectoraddr, len);
380 for (i = 0; i < PAGESIZE; i += 16) {
381 printk(KERN_INFO
382 "%02x %02x %02x %02x "
383 "%02x %02x %02x %02x "
384 "%02x %02x %02x %02x "
385 "%02x %02x %02x %02x\n",
386 page[i] & 255, page[i+1] & 255,
387 page[i+2] & 255, page[i+3] & 255,
388 page[i+4] & 255, page[i+5] & 255,
389 page[i+6] & 255, page[i+7] & 255,
390 page[i+8] & 255, page[i+9] & 255,
391 page[i+10] & 255, page[i+11] & 255,
392 page[i+12] & 255, page[i+13] & 255,
393 page[i+14] & 255, page[i+15] & 255);
394 }
395 }
396 }
397#endif
398
399 if (main_mtd) {
400 main_mtd->owner = THIS_MODULE;
401 axisflash_mtd = main_mtd;
402
403 loff_t ptable_sector = CONFIG_ETRAX_PTABLE_SECTOR;
404
405 /* First partition (rescue) is always set to the default. */
406 pidx++;
407#ifdef CONFIG_ETRAX_NANDBOOT
408 /* We know where the partition table should be located,
409 * it will be in first good block after that.
410 */
411 int blockstat;
412 do {
413 blockstat = main_mtd->block_isbad(main_mtd,
414 ptable_sector);
415 if (blockstat < 0)
416 ptable_sector = 0; /* read error */
417 else if (blockstat)
418 ptable_sector += main_mtd->erasesize;
419 } while (blockstat && ptable_sector);
420#endif
421 if (ptable_sector) {
422 main_mtd->read(main_mtd, ptable_sector, PAGESIZE,
423 &len, page);
424 ptable_head = &((struct partitiontable *) page)->head;
425 }
426
427#if 0 /* Dump partition table so we can see what is going on */
428 printk(KERN_INFO
429 "axisflashmap: flash read %d bytes at 0x%08x, data: "
430 "%02x %02x %02x %02x %02x %02x %02x %02x\n",
431 len, CONFIG_ETRAX_PTABLE_SECTOR,
432 page[0] & 255, page[1] & 255,
433 page[2] & 255, page[3] & 255,
434 page[4] & 255, page[5] & 255,
435 page[6] & 255, page[7] & 255);
436 printk(KERN_INFO
437 "axisflashmap: partition table offset %d, data: "
438 "%02x %02x %02x %02x %02x %02x %02x %02x\n",
439 PARTITION_TABLE_OFFSET,
440 page[PARTITION_TABLE_OFFSET+0] & 255,
441 page[PARTITION_TABLE_OFFSET+1] & 255,
442 page[PARTITION_TABLE_OFFSET+2] & 255,
443 page[PARTITION_TABLE_OFFSET+3] & 255,
444 page[PARTITION_TABLE_OFFSET+4] & 255,
445 page[PARTITION_TABLE_OFFSET+5] & 255,
446 page[PARTITION_TABLE_OFFSET+6] & 255,
447 page[PARTITION_TABLE_OFFSET+7] & 255);
448#endif
311 } 449 }
312 pidx++; /* First partition is always set to the default. */
313 450
314 if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC) 451 if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
315 && (ptable_head->size < 452 && (ptable_head->size <
@@ -322,7 +459,6 @@ static int __init init_axis_flash(void)
322 /* Looks like a start, sane length and end of a 459 /* Looks like a start, sane length and end of a
323 * partition table, lets check csum etc. 460 * partition table, lets check csum etc.
324 */ 461 */
325 int ptable_ok = 0;
326 struct partitiontable_entry *max_addr = 462 struct partitiontable_entry *max_addr =
327 (struct partitiontable_entry *) 463 (struct partitiontable_entry *)
328 ((unsigned long)ptable_head + sizeof(*ptable_head) + 464 ((unsigned long)ptable_head + sizeof(*ptable_head) +
@@ -346,104 +482,170 @@ static int __init init_axis_flash(void)
346 ptable_ok = (csum == ptable_head->checksum); 482 ptable_ok = (csum == ptable_head->checksum);
347 483
348 /* Read the entries and use/show the info. */ 484 /* Read the entries and use/show the info. */
349 printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n", 485 printk(KERN_INFO "axisflashmap: "
486 "Found a%s partition table at 0x%p-0x%p.\n",
350 (ptable_ok ? " valid" : "n invalid"), ptable_head, 487 (ptable_ok ? " valid" : "n invalid"), ptable_head,
351 max_addr); 488 max_addr);
352 489
353 /* We have found a working bootblock. Now read the 490 /* We have found a working bootblock. Now read the
354 * partition table. Scan the table. It ends when 491 * partition table. Scan the table. It ends with 0xffffffff.
355 * there is 0xffffffff, that is, empty flash.
356 */ 492 */
357 while (ptable_ok 493 while (ptable_ok
358 && ptable->offset != 0xffffffff 494 && ptable->offset != PARTITIONTABLE_END_MARKER
359 && ptable < max_addr 495 && ptable < max_addr
360 && pidx < MAX_PARTITIONS) { 496 && pidx < MAX_PARTITIONS - 1) {
361 497
362 axis_partitions[pidx].offset = offset + ptable->offset + (crisv32_nand_boot ? 16384 : 0); 498 axis_partitions[pidx].offset = offset + ptable->offset;
363 axis_partitions[pidx].size = ptable->size; 499#ifdef CONFIG_ETRAX_NANDFLASH
364 500 if (main_mtd->type == MTD_NANDFLASH) {
365 printk(pmsg, pidx, axis_partitions[pidx].offset, 501 axis_partitions[pidx].size =
366 axis_partitions[pidx].size); 502 (((ptable+1)->offset ==
503 PARTITIONTABLE_END_MARKER) ?
504 main_mtd->size :
505 ((ptable+1)->offset + offset)) -
506 (ptable->offset + offset);
507
508 } else
509#endif /* CONFIG_ETRAX_NANDFLASH */
510 axis_partitions[pidx].size = ptable->size;
511#ifdef CONFIG_ETRAX_NANDBOOT
512 /* Save partition number of jffs2 ro partition.
513 * Needed if RAM booting or root file system in RAM.
514 */
515 if (!nand_boot &&
516 ram_rootfs_partition < 0 && /* not already set */
517 ptable->type == PARTITION_TYPE_JFFS2 &&
518 (ptable->flags & PARTITION_FLAGS_READONLY_MASK) ==
519 PARTITION_FLAGS_READONLY)
520 ram_rootfs_partition = pidx;
521#endif /* CONFIG_ETRAX_NANDBOOT */
367 pidx++; 522 pidx++;
368 ptable++; 523 ptable++;
369 } 524 }
370 use_default_ptable = !ptable_ok;
371 } 525 }
372 526
373 if (romfs_in_flash) { 527 /* Decide whether to use default partition table. */
374 /* Add an overlapping device for the root partition (romfs). */ 528 /* Only use default table if we actually have a device (main_mtd) */
375 529
376 axis_partitions[pidx].name = "romfs"; 530 struct mtd_partition *partition = &axis_partitions[0];
377 if (crisv32_nand_boot) { 531 if (main_mtd && !ptable_ok) {
378 char* data = kmalloc(1024, GFP_KERNEL); 532 memcpy(axis_partitions, axis_default_partitions,
379 int len; 533 sizeof(axis_default_partitions));
380 int offset = crisv32_nand_cramfs_offset & ~(1024-1); 534 pidx = NUM_DEFAULT_PARTITIONS;
381 char* tmp; 535 ram_rootfs_partition = DEFAULT_ROOTFS_PARTITION_NO;
382 536 }
383 mymtd->read(mymtd, offset, 1024, &len, data);
384 tmp = &data[crisv32_nand_cramfs_offset % 512];
385 axis_partitions[pidx].size = *(unsigned*)(tmp + 4);
386 axis_partitions[pidx].offset = crisv32_nand_cramfs_offset;
387 kfree(data);
388 } else {
389 axis_partitions[pidx].size = romfs_length;
390 axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
391 }
392 537
538 /* Add artificial partitions for rootfs if necessary */
539 if (romfs_in_flash) {
540 /* rootfs is in directly accessible flash memory = NOR flash.
541 Add an overlapping device for the rootfs partition. */
542 printk(KERN_INFO "axisflashmap: Adding partition for "
543 "overlapping root file system image\n");
544 axis_partitions[pidx].size = romfs_length;
545 axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
546 axis_partitions[pidx].name = "romfs";
393 axis_partitions[pidx].mask_flags |= MTD_WRITEABLE; 547 axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
394 548 ram_rootfs_partition = -1;
395 printk(KERN_INFO
396 " Adding readonly flash partition for romfs image:\n");
397 printk(pmsg, pidx, axis_partitions[pidx].offset,
398 axis_partitions[pidx].size);
399 pidx++; 549 pidx++;
400 } 550 } else if (romfs_length && !nand_boot) {
401 551 /* romfs exists in memory, but not in flash, so must be in RAM.
402 if (mymtd) { 552 * Configure an MTDRAM partition. */
403 if (use_default_ptable) { 553 if (ram_rootfs_partition < 0) {
404 printk(KERN_INFO " Using default partition table.\n"); 554 /* None set yet, put it at the end */
405 err = add_mtd_partitions(mymtd, axis_default_partitions, 555 ram_rootfs_partition = pidx;
406 NUM_DEFAULT_PARTITIONS); 556 pidx++;
407 } else {
408 err = add_mtd_partitions(mymtd, axis_partitions, pidx);
409 } 557 }
558 printk(KERN_INFO "axisflashmap: Adding partition for "
559 "root file system image in RAM\n");
560 axis_partitions[ram_rootfs_partition].size = romfs_length;
561 axis_partitions[ram_rootfs_partition].offset = romfs_start;
562 axis_partitions[ram_rootfs_partition].name = "romfs";
563 axis_partitions[ram_rootfs_partition].mask_flags |=
564 MTD_WRITEABLE;
565 }
410 566
411 if (err) { 567#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
412 panic("axisflashmap could not add MTD partitions!\n"); 568 if (main_mtd) {
413 } 569 main_partition.size = main_mtd->size;
570 err = add_mtd_partitions(main_mtd, &main_partition, 1);
571 if (err)
572 panic("axisflashmap: Could not initialize "
573 "partition for whole main mtd device!\n");
414 } 574 }
415/* CONFIG_EXTRAXFS_SIM */
416#endif 575#endif
417 576
418 if (!romfs_in_flash) { 577 /* Now, register all partitions with mtd.
419 /* Create an RAM device for the root partition (romfs). */ 578 * We do this one at a time so we can slip in an MTDRAM device
579 * in the proper place if required. */
580
581 for (part = 0; part < pidx; part++) {
582 if (part == ram_rootfs_partition) {
583 /* add MTDRAM partition here */
584 struct mtd_info *mtd_ram;
585
586 mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
587 if (!mtd_ram)
588 panic("axisflashmap: Couldn't allocate memory "
589 "for mtd_info!\n");
590 printk(KERN_INFO "axisflashmap: Adding RAM partition "
591 "for rootfs image.\n");
592 err = mtdram_init_device(mtd_ram,
593 (void *)partition[part].offset,
594 partition[part].size,
595 partition[part].name);
596 if (err)
597 panic("axisflashmap: Could not initialize "
598 "MTD RAM device!\n");
599 /* JFFS2 likes to have an erasesize. Keep potential
600 * JFFS2 rootfs happy by providing one. Since image
601 * was most likely created for main mtd, use that
602 * erasesize, if available. Otherwise, make a guess. */
603 mtd_ram->erasesize = (main_mtd ? main_mtd->erasesize :
604 CONFIG_ETRAX_PTABLE_SECTOR);
605 } else {
606 err = add_mtd_partitions(main_mtd, &partition[part], 1);
607 if (err)
608 panic("axisflashmap: Could not add mtd "
609 "partition %d\n", part);
610 }
611 }
612#endif /* CONFIG_EXTRAX_VCS_SIM */
613
614#ifdef CONFIG_ETRAX_VCS_SIM
615 /* For simulator, always use a RAM partition.
616 * The rootfs will be found after the kernel in RAM,
617 * with romfs_start and romfs_end indicating location and size.
618 */
619 struct mtd_info *mtd_ram;
620
621 mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
622 if (!mtd_ram) {
623 panic("axisflashmap: Couldn't allocate memory for "
624 "mtd_info!\n");
625 }
420 626
421#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0) 627 printk(KERN_INFO "axisflashmap: Adding RAM partition for romfs, "
422 /* No use trying to boot this kernel from RAM. Panic! */ 628 "at %u, size %u\n",
423 printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM " 629 (unsigned) romfs_start, (unsigned) romfs_length);
424 "device due to kernel (mis)configuration!\n");
425 panic("This kernel cannot boot from RAM!\n");
426#else
427 struct mtd_info *mtd_ram;
428 630
429 mtd_ram = kmalloc(sizeof(struct mtd_info), 631 err = mtdram_init_device(mtd_ram, (void *)romfs_start,
430 GFP_KERNEL); 632 romfs_length, "romfs");
431 if (!mtd_ram) { 633 if (err) {
432 panic("axisflashmap couldn't allocate memory for " 634 panic("axisflashmap: Could not initialize MTD RAM "
433 "mtd_info!\n"); 635 "device!\n");
434 } 636 }
637#endif /* CONFIG_EXTRAX_VCS_SIM */
435 638
436 printk(KERN_INFO " Adding RAM partition for romfs image:\n"); 639#ifndef CONFIG_ETRAX_VCS_SIM
437 printk(pmsg, pidx, romfs_start, romfs_length); 640 if (aux_mtd) {
641 aux_partition.size = aux_mtd->size;
642 err = add_mtd_partitions(aux_mtd, &aux_partition, 1);
643 if (err)
644 panic("axisflashmap: Could not initialize "
645 "aux mtd device!\n");
438 646
439 err = mtdram_init_device(mtd_ram, (void*)romfs_start,
440 romfs_length, "romfs");
441 if (err) {
442 panic("axisflashmap could not initialize MTD RAM "
443 "device!\n");
444 }
445#endif
446 } 647 }
648#endif /* CONFIG_EXTRAX_VCS_SIM */
447 649
448 return err; 650 return err;
449} 651}