diff options
author | Bernd Schmidt <bernds_cb1@t-online.de> | 2009-01-07 10:14:38 -0500 |
---|---|---|
committer | Bryan Wu <cooloney@kernel.org> | 2009-01-07 10:14:38 -0500 |
commit | dbdf20db537a5369c65330f878ad4905020a8bfa (patch) | |
tree | c7fa553755e2d75a6e98d3f32fbe41fab9f72609 /arch/blackfin/kernel/cplb-nompu/cplbmgr.S | |
parent | 6651ece9e257302ee695ee76e69a4427f7033235 (diff) |
Blackfin arch: Faster C implementation of no-MPU CPLB handler
This is a mixture ofcMichael McTernan's patch and the existing cplb-mpu code.
We ditch the old cplb-nompu implementation, which is a good example of
why a good algorithm in a HLL is preferrable to a bad algorithm written in
assembly. Rather than try to construct a table of all posible CPLBs and
search it, we just create a (smaller) table of memory regions and
their attributes. Some of the data structures are now unified for both
the mpu and nompu cases. A lot of needless complexity in cplbinit.c is
removed.
Further optimizations:
* compile cplbmgr.c with a lot of -ffixed-reg options, and omit saving
these registers on the stack when entering a CPLB exception.
* lose cli/nop/nop/sti sequences for some workarounds - these don't
* make
sense in an exception context
Additional code unification should be possible after this.
[Mike Frysinger <vapier.adi@gmail.com>:
- convert CPP if statements to C if statements
- remove redundant statements
- use a do...while loop rather than a for loop to get slightly better
optimization and to avoid gcc "may be used uninitialized" warnings ...
we know that the [id]cplb_nr_bounds variables will never be 0, so this
is OK
- the no-mpu code was the last user of MAX_MEM_SIZE and with that rewritten,
we can punt it
- add some BUG_ON() checks to make sure we dont overflow the small
cplb_bounds array
- add i/d cplb entries for the bootrom because there is functions/data in
there we want to access
- we do not need a NULL trailing entry as any time we access the bounds
arrays, we use the nr_bounds variable
]
Signed-off-by: Michael McTernan <mmcternan@airvana.com>
Signed-off-by: Mike Frysinger <vapier.adi@gmail.com>
Signed-off-by: Bernd Schmidt <bernds_cb1@t-online.de>
Signed-off-by: Bryan Wu <cooloney@kernel.org>
Diffstat (limited to 'arch/blackfin/kernel/cplb-nompu/cplbmgr.S')
-rw-r--r-- | arch/blackfin/kernel/cplb-nompu/cplbmgr.S | 648 |
1 files changed, 0 insertions, 648 deletions
diff --git a/arch/blackfin/kernel/cplb-nompu/cplbmgr.S b/arch/blackfin/kernel/cplb-nompu/cplbmgr.S deleted file mode 100644 index f4ca76c72394..000000000000 --- a/arch/blackfin/kernel/cplb-nompu/cplbmgr.S +++ /dev/null | |||
@@ -1,648 +0,0 @@ | |||
1 | /* | ||
2 | * File: arch/blackfin/mach-common/cplbmgtr.S | ||
3 | * Based on: | ||
4 | * Author: LG Soft India | ||
5 | * | ||
6 | * Created: ? | ||
7 | * Description: CPLB replacement routine for CPLB mismatch | ||
8 | * | ||
9 | * Modified: | ||
10 | * Copyright 2004-2006 Analog Devices Inc. | ||
11 | * | ||
12 | * Bugs: Enter bugs at http://blackfin.uclinux.org/ | ||
13 | * | ||
14 | * This program is free software; you can redistribute it and/or modify | ||
15 | * it under the terms of the GNU General Public License as published by | ||
16 | * the Free Software Foundation; either version 2 of the License, or | ||
17 | * (at your option) any later version. | ||
18 | * | ||
19 | * This program is distributed in the hope that it will be useful, | ||
20 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
21 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
22 | * GNU General Public License for more details. | ||
23 | * | ||
24 | * You should have received a copy of the GNU General Public License | ||
25 | * along with this program; if not, see the file COPYING, or write | ||
26 | * to the Free Software Foundation, Inc., | ||
27 | * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | ||
28 | */ | ||
29 | |||
30 | /* Usage: int _cplb_mgr(is_data_miss,int enable_cache) | ||
31 | * is_data_miss==2 => Mark as Dirty, write to the clean data page | ||
32 | * is_data_miss==1 => Replace a data CPLB. | ||
33 | * is_data_miss==0 => Replace an instruction CPLB. | ||
34 | * | ||
35 | * Returns: | ||
36 | * CPLB_RELOADED => Successfully updated CPLB table. | ||
37 | * CPLB_NO_UNLOCKED => All CPLBs are locked, so cannot be evicted. | ||
38 | * This indicates that the CPLBs in the configuration | ||
39 | * tablei are badly configured, as this should never | ||
40 | * occur. | ||
41 | * CPLB_NO_ADDR_MATCH => The address being accessed, that triggered the | ||
42 | * exception, is not covered by any of the CPLBs in | ||
43 | * the configuration table. The application is | ||
44 | * presumably misbehaving. | ||
45 | * CPLB_PROT_VIOL => The address being accessed, that triggered the | ||
46 | * exception, was not a first-write to a clean Write | ||
47 | * Back Data page, and so presumably is a genuine | ||
48 | * violation of the page's protection attributes. | ||
49 | * The application is misbehaving. | ||
50 | */ | ||
51 | |||
52 | #include <linux/linkage.h> | ||
53 | #include <asm/blackfin.h> | ||
54 | #include <asm/cplb.h> | ||
55 | #include <asm/asm-offsets.h> | ||
56 | |||
57 | #ifdef CONFIG_EXCPT_IRQ_SYSC_L1 | ||
58 | .section .l1.text | ||
59 | #else | ||
60 | .text | ||
61 | #endif | ||
62 | |||
63 | .align 2; | ||
64 | ENTRY(_cplb_mgr) | ||
65 | |||
66 | [--SP]=( R7:4,P5:3 ); | ||
67 | |||
68 | CC = R0 == 2; | ||
69 | IF CC JUMP .Ldcplb_write; | ||
70 | |||
71 | CC = R0 == 0; | ||
72 | IF !CC JUMP .Ldcplb_miss_compare; | ||
73 | |||
74 | /* ICPLB Miss Exception. We need to choose one of the | ||
75 | * currently-installed CPLBs, and replace it with one | ||
76 | * from the configuration table. | ||
77 | */ | ||
78 | |||
79 | /* A multi-word instruction can cross a page boundary. This means the | ||
80 | * first part of the instruction can be in a valid page, but the | ||
81 | * second part is not, and hence generates the instruction miss. | ||
82 | * However, the fault address is for the start of the instruction, | ||
83 | * not the part that's in the bad page. Therefore, we have to check | ||
84 | * whether the fault address applies to a page that is already present | ||
85 | * in the table. | ||
86 | */ | ||
87 | |||
88 | P4.L = LO(ICPLB_FAULT_ADDR); | ||
89 | P4.H = HI(ICPLB_FAULT_ADDR); | ||
90 | |||
91 | P1 = 16; | ||
92 | P5.L = _page_size_table; | ||
93 | P5.H = _page_size_table; | ||
94 | |||
95 | P0.L = LO(ICPLB_DATA0); | ||
96 | P0.H = HI(ICPLB_DATA0); | ||
97 | R4 = [P4]; /* Get faulting address*/ | ||
98 | R6 = 64; /* Advance past the fault address, which*/ | ||
99 | R6 = R6 + R4; /* we'll use if we find a match*/ | ||
100 | R3 = ((16 << 8) | 2); /* Extract mask, two bits at posn 16 */ | ||
101 | |||
102 | R5 = 0; | ||
103 | .Lisearch: | ||
104 | |||
105 | R1 = [P0-0x100]; /* Address for this CPLB */ | ||
106 | |||
107 | R0 = [P0++]; /* Info for this CPLB*/ | ||
108 | CC = BITTST(R0,0); /* Is the CPLB valid?*/ | ||
109 | IF !CC JUMP .Lnomatch; /* Skip it, if not.*/ | ||
110 | CC = R4 < R1(IU); /* If fault address less than page start*/ | ||
111 | IF CC JUMP .Lnomatch; /* then skip this one.*/ | ||
112 | R2 = EXTRACT(R0,R3.L) (Z); /* Get page size*/ | ||
113 | P1 = R2; | ||
114 | P1 = P5 + (P1<<2); /* index into page-size table*/ | ||
115 | R2 = [P1]; /* Get the page size*/ | ||
116 | R1 = R1 + R2; /* and add to page start, to get page end*/ | ||
117 | CC = R4 < R1(IU); /* and see whether fault addr is in page.*/ | ||
118 | IF !CC R4 = R6; /* If so, advance the address and finish loop.*/ | ||
119 | IF !CC JUMP .Lisearch_done; | ||
120 | .Lnomatch: | ||
121 | /* Go around again*/ | ||
122 | R5 += 1; | ||
123 | CC = BITTST(R5, 4); /* i.e CC = R5 >= 16*/ | ||
124 | IF !CC JUMP .Lisearch; | ||
125 | |||
126 | .Lisearch_done: | ||
127 | I0 = R4; /* Fault address we'll search for*/ | ||
128 | |||
129 | /* set up pointers */ | ||
130 | P0.L = LO(ICPLB_DATA0); | ||
131 | P0.H = HI(ICPLB_DATA0); | ||
132 | |||
133 | /* The replacement procedure for ICPLBs */ | ||
134 | |||
135 | P4.L = LO(IMEM_CONTROL); | ||
136 | P4.H = HI(IMEM_CONTROL); | ||
137 | |||
138 | /* Turn off CPLBs while we work, necessary according to HRM before | ||
139 | * modifying CPLB descriptors | ||
140 | */ | ||
141 | R5 = [P4]; /* Control Register*/ | ||
142 | BITCLR(R5,ENICPLB_P); | ||
143 | CLI R1; | ||
144 | SSYNC; /* SSYNC required before writing to IMEM_CONTROL. */ | ||
145 | .align 8; | ||
146 | [P4] = R5; | ||
147 | SSYNC; | ||
148 | STI R1; | ||
149 | |||
150 | R1 = -1; /* end point comparison */ | ||
151 | R3 = 16; /* counter */ | ||
152 | |||
153 | /* Search through CPLBs for first non-locked entry */ | ||
154 | /* Overwrite it by moving everyone else up by 1 */ | ||
155 | .Licheck_lock: | ||
156 | R0 = [P0++]; | ||
157 | R3 = R3 + R1; | ||
158 | CC = R3 == R1; | ||
159 | IF CC JUMP .Lall_locked; | ||
160 | CC = BITTST(R0, 0); /* an invalid entry is good */ | ||
161 | IF !CC JUMP .Lifound_victim; | ||
162 | CC = BITTST(R0,1); /* but a locked entry isn't */ | ||
163 | IF CC JUMP .Licheck_lock; | ||
164 | |||
165 | .Lifound_victim: | ||
166 | #ifdef CONFIG_CPLB_INFO | ||
167 | R7 = [P0 - 0x104]; | ||
168 | GET_PDA(P2, R2); | ||
169 | P3 = [P2 + PDA_IPDT_SWAPCOUNT]; | ||
170 | P2 = [P2 + PDA_IPDT]; | ||
171 | P3 += -4; | ||
172 | .Licount: | ||
173 | R2 = [P2]; /* address from config table */ | ||
174 | P2 += 8; | ||
175 | P3 += 8; | ||
176 | CC = R2==-1; | ||
177 | IF CC JUMP .Licount_done; | ||
178 | CC = R7==R2; | ||
179 | IF !CC JUMP .Licount; | ||
180 | R7 = [P3]; | ||
181 | R7 += 1; | ||
182 | [P3] = R7; | ||
183 | CSYNC; | ||
184 | .Licount_done: | ||
185 | #endif | ||
186 | LC0=R3; | ||
187 | LSETUP(.Lis_move,.Lie_move) LC0; | ||
188 | .Lis_move: | ||
189 | R0 = [P0]; | ||
190 | [P0 - 4] = R0; | ||
191 | R0 = [P0 - 0x100]; | ||
192 | [P0-0x104] = R0; | ||
193 | .Lie_move: | ||
194 | P0+=4; | ||
195 | |||
196 | /* Clear ICPLB_DATA15, in case we don't find a replacement | ||
197 | * otherwise, we would have a duplicate entry, and will crash | ||
198 | */ | ||
199 | R0 = 0; | ||
200 | [P0 - 4] = R0; | ||
201 | |||
202 | /* We've made space in the ICPLB table, so that ICPLB15 | ||
203 | * is now free to be overwritten. Next, we have to determine | ||
204 | * which CPLB we need to install, from the configuration | ||
205 | * table. This is a matter of getting the start-of-page | ||
206 | * addresses and page-lengths from the config table, and | ||
207 | * determining whether the fault address falls within that | ||
208 | * range. | ||
209 | */ | ||
210 | |||
211 | GET_PDA(P3, R0); | ||
212 | P2 = [P3 + PDA_IPDT]; | ||
213 | #ifdef CONFIG_CPLB_INFO | ||
214 | P3 = [P3 + PDA_IPDT_SWAPCOUNT]; | ||
215 | P3 += -8; | ||
216 | #endif | ||
217 | P0.L = _page_size_table; | ||
218 | P0.H = _page_size_table; | ||
219 | |||
220 | /* Retrieve our fault address (which may have been advanced | ||
221 | * because the faulting instruction crossed a page boundary). | ||
222 | */ | ||
223 | |||
224 | R0 = I0; | ||
225 | |||
226 | /* An extraction pattern, to get the page-size bits from | ||
227 | * the CPLB data entry. Bits 16-17, so two bits at posn 16. | ||
228 | */ | ||
229 | |||
230 | R1 = ((16<<8)|2); | ||
231 | .Linext: R4 = [P2++]; /* address from config table */ | ||
232 | R2 = [P2++]; /* data from config table */ | ||
233 | #ifdef CONFIG_CPLB_INFO | ||
234 | P3 += 8; | ||
235 | #endif | ||
236 | |||
237 | CC = R4 == -1; /* End of config table*/ | ||
238 | IF CC JUMP .Lno_page_in_table; | ||
239 | |||
240 | /* See if failed address > start address */ | ||
241 | CC = R4 <= R0(IU); | ||
242 | IF !CC JUMP .Linext; | ||
243 | |||
244 | /* extract page size (17:16)*/ | ||
245 | R3 = EXTRACT(R2, R1.L) (Z); | ||
246 | |||
247 | /* add page size to addr to get range */ | ||
248 | |||
249 | P5 = R3; | ||
250 | P5 = P0 + (P5 << 2); /* scaled, for int access*/ | ||
251 | R3 = [P5]; | ||
252 | R3 = R3 + R4; | ||
253 | |||
254 | /* See if failed address < (start address + page size) */ | ||
255 | CC = R0 < R3(IU); | ||
256 | IF !CC JUMP .Linext; | ||
257 | |||
258 | /* We've found a CPLB in the config table that covers | ||
259 | * the faulting address, so install this CPLB into the | ||
260 | * last entry of the table. | ||
261 | */ | ||
262 | |||
263 | P1.L = LO(ICPLB_DATA15); /* ICPLB_DATA15 */ | ||
264 | P1.H = HI(ICPLB_DATA15); | ||
265 | [P1] = R2; | ||
266 | [P1-0x100] = R4; | ||
267 | #ifdef CONFIG_CPLB_INFO | ||
268 | R3 = [P3]; | ||
269 | R3 += 1; | ||
270 | [P3] = R3; | ||
271 | #endif | ||
272 | |||
273 | /* P4 points to IMEM_CONTROL, and R5 contains its old | ||
274 | * value, after we disabled ICPLBS. Re-enable them. | ||
275 | */ | ||
276 | |||
277 | BITSET(R5,ENICPLB_P); | ||
278 | CLI R2; | ||
279 | SSYNC; /* SSYNC required before writing to IMEM_CONTROL. */ | ||
280 | .align 8; | ||
281 | [P4] = R5; | ||
282 | SSYNC; | ||
283 | STI R2; | ||
284 | |||
285 | ( R7:4,P5:3 ) = [SP++]; | ||
286 | R0 = CPLB_RELOADED; | ||
287 | RTS; | ||
288 | |||
289 | /* FAILED CASES*/ | ||
290 | .Lno_page_in_table: | ||
291 | R0 = CPLB_NO_ADDR_MATCH; | ||
292 | JUMP .Lfail_ret; | ||
293 | |||
294 | .Lall_locked: | ||
295 | R0 = CPLB_NO_UNLOCKED; | ||
296 | JUMP .Lfail_ret; | ||
297 | |||
298 | .Lprot_violation: | ||
299 | R0 = CPLB_PROT_VIOL; | ||
300 | |||
301 | .Lfail_ret: | ||
302 | /* Make sure we turn protection/cache back on, even in the failing case */ | ||
303 | BITSET(R5,ENICPLB_P); | ||
304 | CLI R2; | ||
305 | SSYNC; /* SSYNC required before writing to IMEM_CONTROL. */ | ||
306 | .align 8; | ||
307 | [P4] = R5; | ||
308 | SSYNC; | ||
309 | STI R2; | ||
310 | |||
311 | ( R7:4,P5:3 ) = [SP++]; | ||
312 | RTS; | ||
313 | |||
314 | .Ldcplb_write: | ||
315 | |||
316 | /* if a DCPLB is marked as write-back (CPLB_WT==0), and | ||
317 | * it is clean (CPLB_DIRTY==0), then a write to the | ||
318 | * CPLB's page triggers a protection violation. We have to | ||
319 | * mark the CPLB as dirty, to indicate that there are | ||
320 | * pending writes associated with the CPLB. | ||
321 | */ | ||
322 | |||
323 | P4.L = LO(DCPLB_STATUS); | ||
324 | P4.H = HI(DCPLB_STATUS); | ||
325 | P3.L = LO(DCPLB_DATA0); | ||
326 | P3.H = HI(DCPLB_DATA0); | ||
327 | R5 = [P4]; | ||
328 | |||
329 | /* A protection violation can be caused by more than just writes | ||
330 | * to a clean WB page, so we have to ensure that: | ||
331 | * - It's a write | ||
332 | * - to a clean WB page | ||
333 | * - and is allowed in the mode the access occurred. | ||
334 | */ | ||
335 | |||
336 | CC = BITTST(R5, 16); /* ensure it was a write*/ | ||
337 | IF !CC JUMP .Lprot_violation; | ||
338 | |||
339 | /* to check the rest, we have to retrieve the DCPLB.*/ | ||
340 | |||
341 | /* The low half of DCPLB_STATUS is a bit mask*/ | ||
342 | |||
343 | R2 = R5.L (Z); /* indicating which CPLB triggered the event.*/ | ||
344 | R3 = 30; /* so we can use this to determine the offset*/ | ||
345 | R2.L = SIGNBITS R2; | ||
346 | R2 = R2.L (Z); /* into the DCPLB table.*/ | ||
347 | R3 = R3 - R2; | ||
348 | P4 = R3; | ||
349 | P3 = P3 + (P4<<2); | ||
350 | R3 = [P3]; /* Retrieve the CPLB*/ | ||
351 | |||
352 | /* Now we can check whether it's a clean WB page*/ | ||
353 | |||
354 | CC = BITTST(R3, 14); /* 0==WB, 1==WT*/ | ||
355 | IF CC JUMP .Lprot_violation; | ||
356 | CC = BITTST(R3, 7); /* 0 == clean, 1 == dirty*/ | ||
357 | IF CC JUMP .Lprot_violation; | ||
358 | |||
359 | /* Check whether the write is allowed in the mode that was active.*/ | ||
360 | |||
361 | R2 = 1<<3; /* checking write in user mode*/ | ||
362 | CC = BITTST(R5, 17); /* 0==was user, 1==was super*/ | ||
363 | R5 = CC; | ||
364 | R2 <<= R5; /* if was super, check write in super mode*/ | ||
365 | R2 = R3 & R2; | ||
366 | CC = R2 == 0; | ||
367 | IF CC JUMP .Lprot_violation; | ||
368 | |||
369 | /* It's a genuine write-to-clean-page.*/ | ||
370 | |||
371 | BITSET(R3, 7); /* mark as dirty*/ | ||
372 | [P3] = R3; /* and write back.*/ | ||
373 | NOP; | ||
374 | CSYNC; | ||
375 | ( R7:4,P5:3 ) = [SP++]; | ||
376 | R0 = CPLB_RELOADED; | ||
377 | RTS; | ||
378 | |||
379 | .Ldcplb_miss_compare: | ||
380 | |||
381 | /* Data CPLB Miss event. We need to choose a CPLB to | ||
382 | * evict, and then locate a new CPLB to install from the | ||
383 | * config table, that covers the faulting address. | ||
384 | */ | ||
385 | |||
386 | P1.L = LO(DCPLB_DATA15); | ||
387 | P1.H = HI(DCPLB_DATA15); | ||
388 | |||
389 | P4.L = LO(DCPLB_FAULT_ADDR); | ||
390 | P4.H = HI(DCPLB_FAULT_ADDR); | ||
391 | R4 = [P4]; | ||
392 | I0 = R4; | ||
393 | |||
394 | /* The replacement procedure for DCPLBs*/ | ||
395 | |||
396 | R6 = R1; /* Save for later*/ | ||
397 | |||
398 | /* Turn off CPLBs while we work.*/ | ||
399 | P4.L = LO(DMEM_CONTROL); | ||
400 | P4.H = HI(DMEM_CONTROL); | ||
401 | R5 = [P4]; | ||
402 | BITCLR(R5,ENDCPLB_P); | ||
403 | CLI R0; | ||
404 | SSYNC; /* SSYNC required before writing to DMEM_CONTROL. */ | ||
405 | .align 8; | ||
406 | [P4] = R5; | ||
407 | SSYNC; | ||
408 | STI R0; | ||
409 | |||
410 | /* Start looking for a CPLB to evict. Our order of preference | ||
411 | * is: invalid CPLBs, clean CPLBs, dirty CPLBs. Locked CPLBs | ||
412 | * are no good. | ||
413 | */ | ||
414 | |||
415 | I1.L = LO(DCPLB_DATA0); | ||
416 | I1.H = HI(DCPLB_DATA0); | ||
417 | P1 = 2; | ||
418 | P2 = 16; | ||
419 | I2.L = _dcplb_preference; | ||
420 | I2.H = _dcplb_preference; | ||
421 | LSETUP(.Lsdsearch1, .Ledsearch1) LC0 = P1; | ||
422 | .Lsdsearch1: | ||
423 | R0 = [I2++]; /* Get the bits we're interested in*/ | ||
424 | P0 = I1; /* Go back to start of table*/ | ||
425 | LSETUP (.Lsdsearch2, .Ledsearch2) LC1 = P2; | ||
426 | .Lsdsearch2: | ||
427 | R1 = [P0++]; /* Fetch each installed CPLB in turn*/ | ||
428 | R2 = R1 & R0; /* and test for interesting bits.*/ | ||
429 | CC = R2 == 0; /* If none are set, it'll do.*/ | ||
430 | IF !CC JUMP .Lskip_stack_check; | ||
431 | |||
432 | R2 = [P0 - 0x104]; /* R2 - PageStart */ | ||
433 | P3.L = _page_size_table; /* retrieve end address */ | ||
434 | P3.H = _page_size_table; /* retrieve end address */ | ||
435 | R3 = 0x1002; /* 16th - position, 2 bits -length */ | ||
436 | #if ANOMALY_05000209 | ||
437 | nop; /* Anomaly 05000209 */ | ||
438 | #endif | ||
439 | R7 = EXTRACT(R1,R3.l); | ||
440 | R7 = R7 << 2; /* Page size index offset */ | ||
441 | P5 = R7; | ||
442 | P3 = P3 + P5; | ||
443 | R7 = [P3]; /* page size in bytes */ | ||
444 | |||
445 | R7 = R2 + R7; /* R7 - PageEnd */ | ||
446 | R4 = SP; /* Test SP is in range */ | ||
447 | |||
448 | CC = R7 < R4; /* if PageEnd < SP */ | ||
449 | IF CC JUMP .Ldfound_victim; | ||
450 | R3 = 0x284; /* stack length from start of trap till | ||
451 | * the point. | ||
452 | * 20 stack locations for future modifications | ||
453 | */ | ||
454 | R4 = R4 + R3; | ||
455 | CC = R4 < R2; /* if SP + stacklen < PageStart */ | ||
456 | IF CC JUMP .Ldfound_victim; | ||
457 | .Lskip_stack_check: | ||
458 | |||
459 | .Ledsearch2: NOP; | ||
460 | .Ledsearch1: NOP; | ||
461 | |||
462 | /* If we got here, we didn't find a DCPLB we considered | ||
463 | * replacable, which means all of them were locked. | ||
464 | */ | ||
465 | |||
466 | JUMP .Lall_locked; | ||
467 | .Ldfound_victim: | ||
468 | |||
469 | #ifdef CONFIG_CPLB_INFO | ||
470 | R7 = [P0 - 0x104]; | ||
471 | GET_PDA(P2, R2); | ||
472 | P3 = [P2 + PDA_DPDT_SWAPCOUNT]; | ||
473 | P2 = [P2 + PDA_DPDT]; | ||
474 | P3 += -4; | ||
475 | .Ldicount: | ||
476 | R2 = [P2]; | ||
477 | P2 += 8; | ||
478 | P3 += 8; | ||
479 | CC = R2==-1; | ||
480 | IF CC JUMP .Ldicount_done; | ||
481 | CC = R7==R2; | ||
482 | IF !CC JUMP .Ldicount; | ||
483 | R7 = [P3]; | ||
484 | R7 += 1; | ||
485 | [P3] = R7; | ||
486 | .Ldicount_done: | ||
487 | #endif | ||
488 | |||
489 | /* Clean down the hardware loops*/ | ||
490 | R2 = 0; | ||
491 | LC1 = R2; | ||
492 | LC0 = R2; | ||
493 | |||
494 | /* There's a suitable victim in [P0-4] (because we've | ||
495 | * advanced already). | ||
496 | */ | ||
497 | |||
498 | .LDdoverwrite: | ||
499 | |||
500 | /* [P0-4] is a suitable victim CPLB, so we want to | ||
501 | * overwrite it by moving all the following CPLBs | ||
502 | * one space closer to the start. | ||
503 | */ | ||
504 | |||
505 | R1.L = LO(DCPLB_DATA16); /* DCPLB_DATA15 + 4 */ | ||
506 | R1.H = HI(DCPLB_DATA16); | ||
507 | R0 = P0; | ||
508 | |||
509 | /* If the victim happens to be in DCPLB15, | ||
510 | * we don't need to move anything. | ||
511 | */ | ||
512 | |||
513 | CC = R1 == R0; | ||
514 | IF CC JUMP .Lde_moved; | ||
515 | R1 = R1 - R0; | ||
516 | R1 >>= 2; | ||
517 | P1 = R1; | ||
518 | LSETUP(.Lds_move, .Lde_move) LC0=P1; | ||
519 | .Lds_move: | ||
520 | R0 = [P0++]; /* move data */ | ||
521 | [P0 - 8] = R0; | ||
522 | R0 = [P0-0x104] /* move address */ | ||
523 | .Lde_move: | ||
524 | [P0-0x108] = R0; | ||
525 | |||
526 | .Lde_moved: | ||
527 | NOP; | ||
528 | |||
529 | /* Clear DCPLB_DATA15, in case we don't find a replacement | ||
530 | * otherwise, we would have a duplicate entry, and will crash | ||
531 | */ | ||
532 | R0 = 0; | ||
533 | [P0 - 0x4] = R0; | ||
534 | |||
535 | /* We've now made space in DCPLB15 for the new CPLB to be | ||
536 | * installed. The next stage is to locate a CPLB in the | ||
537 | * config table that covers the faulting address. | ||
538 | */ | ||
539 | |||
540 | R0 = I0; /* Our faulting address */ | ||
541 | |||
542 | GET_PDA(P3, R1); | ||
543 | P2 = [P3 + PDA_DPDT]; | ||
544 | #ifdef CONFIG_CPLB_INFO | ||
545 | P3 = [P3 + PDA_DPDT_SWAPCOUNT]; | ||
546 | P3 += -8; | ||
547 | #endif | ||
548 | |||
549 | P1.L = _page_size_table; | ||
550 | P1.H = _page_size_table; | ||
551 | |||
552 | /* An extraction pattern, to retrieve bits 17:16.*/ | ||
553 | |||
554 | R1 = (16<<8)|2; | ||
555 | .Ldnext: R4 = [P2++]; /* address */ | ||
556 | R2 = [P2++]; /* data */ | ||
557 | #ifdef CONFIG_CPLB_INFO | ||
558 | P3 += 8; | ||
559 | #endif | ||
560 | |||
561 | CC = R4 == -1; | ||
562 | IF CC JUMP .Lno_page_in_table; | ||
563 | |||
564 | /* See if failed address > start address */ | ||
565 | CC = R4 <= R0(IU); | ||
566 | IF !CC JUMP .Ldnext; | ||
567 | |||
568 | /* extract page size (17:16)*/ | ||
569 | R3 = EXTRACT(R2, R1.L) (Z); | ||
570 | |||
571 | /* add page size to addr to get range */ | ||
572 | |||
573 | P5 = R3; | ||
574 | P5 = P1 + (P5 << 2); | ||
575 | R3 = [P5]; | ||
576 | R3 = R3 + R4; | ||
577 | |||
578 | /* See if failed address < (start address + page size) */ | ||
579 | CC = R0 < R3(IU); | ||
580 | IF !CC JUMP .Ldnext; | ||
581 | |||
582 | /* We've found the CPLB that should be installed, so | ||
583 | * write it into CPLB15, masking off any caching bits | ||
584 | * if necessary. | ||
585 | */ | ||
586 | |||
587 | P1.L = LO(DCPLB_DATA15); | ||
588 | P1.H = HI(DCPLB_DATA15); | ||
589 | |||
590 | /* If the DCPLB has cache bits set, but caching hasn't | ||
591 | * been enabled, then we want to mask off the cache-in-L1 | ||
592 | * bit before installing. Moreover, if caching is off, we | ||
593 | * also want to ensure that the DCPLB has WT mode set, rather | ||
594 | * than WB, since WB pages still trigger first-write exceptions | ||
595 | * even when not caching is off, and the page isn't marked as | ||
596 | * cachable. Finally, we could mark the page as clean, not dirty, | ||
597 | * but we choose to leave that decision to the user; if the user | ||
598 | * chooses to have a CPLB pre-defined as dirty, then they always | ||
599 | * pay the cost of flushing during eviction, but don't pay the | ||
600 | * cost of first-write exceptions to mark the page as dirty. | ||
601 | */ | ||
602 | |||
603 | #ifdef CONFIG_BFIN_WT | ||
604 | BITSET(R6, 14); /* Set WT*/ | ||
605 | #endif | ||
606 | |||
607 | [P1] = R2; | ||
608 | [P1-0x100] = R4; | ||
609 | #ifdef CONFIG_CPLB_INFO | ||
610 | R3 = [P3]; | ||
611 | R3 += 1; | ||
612 | [P3] = R3; | ||
613 | #endif | ||
614 | |||
615 | /* We've installed the CPLB, so re-enable CPLBs. P4 | ||
616 | * points to DMEM_CONTROL, and R5 is the value we | ||
617 | * last wrote to it, when we were disabling CPLBs. | ||
618 | */ | ||
619 | |||
620 | BITSET(R5,ENDCPLB_P); | ||
621 | CLI R2; | ||
622 | .align 8; | ||
623 | [P4] = R5; | ||
624 | SSYNC; | ||
625 | STI R2; | ||
626 | |||
627 | ( R7:4,P5:3 ) = [SP++]; | ||
628 | R0 = CPLB_RELOADED; | ||
629 | RTS; | ||
630 | ENDPROC(_cplb_mgr) | ||
631 | |||
632 | #ifdef CONFIG_CPLB_SWITCH_TAB_L1 | ||
633 | .section .l1.data | ||
634 | #else | ||
635 | .data | ||
636 | #endif | ||
637 | |||
638 | ENTRY(_page_size_table) | ||
639 | .byte4 0x00000400; /* 1K */ | ||
640 | .byte4 0x00001000; /* 4K */ | ||
641 | .byte4 0x00100000; /* 1M */ | ||
642 | .byte4 0x00400000; /* 4M */ | ||
643 | END(_page_size_table) | ||
644 | |||
645 | ENTRY(_dcplb_preference) | ||
646 | .byte4 0x00000001; /* valid bit */ | ||
647 | .byte4 0x00000002; /* lock bit */ | ||
648 | END(_dcplb_preference) | ||