aboutsummaryrefslogtreecommitdiffstats
path: root/arch/blackfin/kernel/cplb-nompu/cplbinit.c
diff options
context:
space:
mode:
authorBernd Schmidt <bernds_cb1@t-online.de>2009-01-07 10:14:38 -0500
committerBryan Wu <cooloney@kernel.org>2009-01-07 10:14:38 -0500
commitdbdf20db537a5369c65330f878ad4905020a8bfa (patch)
treec7fa553755e2d75a6e98d3f32fbe41fab9f72609 /arch/blackfin/kernel/cplb-nompu/cplbinit.c
parent6651ece9e257302ee695ee76e69a4427f7033235 (diff)
Blackfin arch: Faster C implementation of no-MPU CPLB handler
This is a mixture ofcMichael McTernan's patch and the existing cplb-mpu code. We ditch the old cplb-nompu implementation, which is a good example of why a good algorithm in a HLL is preferrable to a bad algorithm written in assembly. Rather than try to construct a table of all posible CPLBs and search it, we just create a (smaller) table of memory regions and their attributes. Some of the data structures are now unified for both the mpu and nompu cases. A lot of needless complexity in cplbinit.c is removed. Further optimizations: * compile cplbmgr.c with a lot of -ffixed-reg options, and omit saving these registers on the stack when entering a CPLB exception. * lose cli/nop/nop/sti sequences for some workarounds - these don't * make sense in an exception context Additional code unification should be possible after this. [Mike Frysinger <vapier.adi@gmail.com>: - convert CPP if statements to C if statements - remove redundant statements - use a do...while loop rather than a for loop to get slightly better optimization and to avoid gcc "may be used uninitialized" warnings ... we know that the [id]cplb_nr_bounds variables will never be 0, so this is OK - the no-mpu code was the last user of MAX_MEM_SIZE and with that rewritten, we can punt it - add some BUG_ON() checks to make sure we dont overflow the small cplb_bounds array - add i/d cplb entries for the bootrom because there is functions/data in there we want to access - we do not need a NULL trailing entry as any time we access the bounds arrays, we use the nr_bounds variable ] Signed-off-by: Michael McTernan <mmcternan@airvana.com> Signed-off-by: Mike Frysinger <vapier.adi@gmail.com> Signed-off-by: Bernd Schmidt <bernds_cb1@t-online.de> Signed-off-by: Bryan Wu <cooloney@kernel.org>
Diffstat (limited to 'arch/blackfin/kernel/cplb-nompu/cplbinit.c')
-rw-r--r--arch/blackfin/kernel/cplb-nompu/cplbinit.c498
1 files changed, 112 insertions, 386 deletions
diff --git a/arch/blackfin/kernel/cplb-nompu/cplbinit.c b/arch/blackfin/kernel/cplb-nompu/cplbinit.c
index 4c010ba50a80..0e28f7595733 100644
--- a/arch/blackfin/kernel/cplb-nompu/cplbinit.c
+++ b/arch/blackfin/kernel/cplb-nompu/cplbinit.c
@@ -29,417 +29,143 @@
29#include <asm/cplbinit.h> 29#include <asm/cplbinit.h>
30#include <asm/mem_map.h> 30#include <asm/mem_map.h>
31 31
32u_long icplb_tables[NR_CPUS][CPLB_TBL_ENTRIES+1]; 32struct cplb_entry icplb_tbl[NR_CPUS][MAX_CPLBS] PDT_ATTR;
33u_long dcplb_tables[NR_CPUS][CPLB_TBL_ENTRIES+1]; 33struct cplb_entry dcplb_tbl[NR_CPUS][MAX_CPLBS] PDT_ATTR;
34 34
35#ifdef CONFIG_CPLB_SWITCH_TAB_L1 35int first_switched_icplb PDT_ATTR;
36#define PDT_ATTR __attribute__((l1_data)) 36int first_switched_dcplb PDT_ATTR;
37#else
38#define PDT_ATTR
39#endif
40
41u_long ipdt_tables[NR_CPUS][MAX_SWITCH_I_CPLBS+1] PDT_ATTR;
42u_long dpdt_tables[NR_CPUS][MAX_SWITCH_D_CPLBS+1] PDT_ATTR;
43#ifdef CONFIG_CPLB_INFO
44u_long ipdt_swapcount_tables[NR_CPUS][MAX_SWITCH_I_CPLBS] PDT_ATTR;
45u_long dpdt_swapcount_tables[NR_CPUS][MAX_SWITCH_D_CPLBS] PDT_ATTR;
46#endif
47 37
48struct s_cplb { 38struct cplb_boundary dcplb_bounds[9] PDT_ATTR;
49 struct cplb_tab init_i; 39struct cplb_boundary icplb_bounds[7] PDT_ATTR;
50 struct cplb_tab init_d;
51 struct cplb_tab switch_i;
52 struct cplb_tab switch_d;
53};
54 40
55#if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE) 41int icplb_nr_bounds PDT_ATTR;
56static struct cplb_desc cplb_data[] = { 42int dcplb_nr_bounds PDT_ATTR;
57 {
58 .start = 0,
59 .end = SIZE_1K,
60 .psize = SIZE_1K,
61 .attr = INITIAL_T | SWITCH_T | I_CPLB | D_CPLB,
62 .i_conf = SDRAM_OOPS,
63 .d_conf = SDRAM_OOPS,
64#if defined(CONFIG_DEBUG_HUNT_FOR_ZERO)
65 .valid = 1,
66#else
67 .valid = 0,
68#endif
69 .name = "Zero Pointer Guard Page",
70 },
71 {
72 .start = 0, /* dyanmic */
73 .end = 0, /* dynamic */
74 .psize = SIZE_4M,
75 .attr = INITIAL_T | SWITCH_T | I_CPLB,
76 .i_conf = L1_IMEMORY,
77 .d_conf = 0,
78 .valid = 1,
79 .name = "L1 I-Memory",
80 },
81 {
82 .start = 0, /* dynamic */
83 .end = 0, /* dynamic */
84 .psize = SIZE_4M,
85 .attr = INITIAL_T | SWITCH_T | D_CPLB,
86 .i_conf = 0,
87 .d_conf = L1_DMEMORY,
88#if ((L1_DATA_A_LENGTH > 0) || (L1_DATA_B_LENGTH > 0))
89 .valid = 1,
90#else
91 .valid = 0,
92#endif
93 .name = "L1 D-Memory",
94 },
95 {
96 .start = L2_START,
97 .end = L2_START + L2_LENGTH,
98 .psize = SIZE_1M,
99 .attr = L2_ATTR,
100 .i_conf = L2_IMEMORY,
101 .d_conf = L2_DMEMORY,
102 .valid = (L2_LENGTH > 0),
103 .name = "L2 Memory",
104 },
105 {
106 .start = 0,
107 .end = 0, /* dynamic */
108 .psize = 0,
109 .attr = INITIAL_T | SWITCH_T | I_CPLB | D_CPLB,
110 .i_conf = SDRAM_IGENERIC,
111 .d_conf = SDRAM_DGENERIC,
112 .valid = 1,
113 .name = "Kernel Memory",
114 },
115 {
116 .start = 0, /* dynamic */
117 .end = 0, /* dynamic */
118 .psize = 0,
119 .attr = INITIAL_T | SWITCH_T | D_CPLB,
120 .i_conf = SDRAM_IGENERIC,
121 .d_conf = SDRAM_DNON_CHBL,
122 .valid = 1,
123 .name = "uClinux MTD Memory",
124 },
125 {
126 .start = 0, /* dynamic */
127 .end = 0, /* dynamic */
128 .psize = SIZE_1M,
129 .attr = INITIAL_T | SWITCH_T | D_CPLB,
130 .d_conf = SDRAM_DNON_CHBL,
131 .valid = 1,
132 .name = "Uncached DMA Zone",
133 },
134 {
135 .start = 0, /* dynamic */
136 .end = 0, /* dynamic */
137 .psize = 0,
138 .attr = SWITCH_T | D_CPLB,
139 .i_conf = 0, /* dynamic */
140 .d_conf = 0, /* dynamic */
141 .valid = 1,
142 .name = "Reserved Memory",
143 },
144 {
145 .start = ASYNC_BANK0_BASE,
146 .end = ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE,
147 .psize = 0,
148 .attr = SWITCH_T | D_CPLB,
149 .d_conf = SDRAM_EBIU,
150 .valid = 1,
151 .name = "Asynchronous Memory Banks",
152 },
153 {
154 .start = BOOT_ROM_START,
155 .end = BOOT_ROM_START + BOOT_ROM_LENGTH,
156 .psize = SIZE_1M,
157 .attr = SWITCH_T | I_CPLB | D_CPLB,
158 .i_conf = SDRAM_IGENERIC,
159 .d_conf = SDRAM_DGENERIC,
160 .valid = 1,
161 .name = "On-Chip BootROM",
162 },
163};
164 43
165static bool __init lock_kernel_check(u32 start, u32 end) 44void __init generate_cplb_tables_cpu(unsigned int cpu)
166{ 45{
167 if (start >= (u32)__init_begin || end <= (u32)_stext) 46 int i_d, i_i;
168 return false; 47 unsigned long addr;
169
170 /* This cplb block overlapped with kernel area. */
171 return true;
172}
173 48
174static void __init 49 struct cplb_entry *d_tbl = dcplb_tbl[cpu];
175fill_cplbtab(struct cplb_tab *table, 50 struct cplb_entry *i_tbl = icplb_tbl[cpu];
176 unsigned long start, unsigned long end,
177 unsigned long block_size, unsigned long cplb_data)
178{
179 int i;
180 51
181 switch (block_size) { 52 printk(KERN_INFO "NOMPU: setting up cplb tables\n");
182 case SIZE_4M:
183 i = 3;
184 break;
185 case SIZE_1M:
186 i = 2;
187 break;
188 case SIZE_4K:
189 i = 1;
190 break;
191 case SIZE_1K:
192 default:
193 i = 0;
194 break;
195 }
196 53
197 cplb_data = (cplb_data & ~(3 << 16)) | (i << 16); 54 i_d = i_i = 0;
198 55
199 while ((start < end) && (table->pos < table->size)) { 56 /* Set up the zero page. */
57 d_tbl[i_d].addr = 0;
58 d_tbl[i_d++].data = SDRAM_OOPS | PAGE_SIZE_1KB;
200 59
201 table->tab[table->pos++] = start; 60 /* Cover kernel memory with 4M pages. */
61 addr = 0;
202 62
203 if (lock_kernel_check(start, start + block_size)) 63 for (; addr < memory_start; addr += 4 * 1024 * 1024) {
204 table->tab[table->pos++] = 64 d_tbl[i_d].addr = addr;
205 cplb_data | CPLB_LOCK | CPLB_DIRTY; 65 d_tbl[i_d++].data = SDRAM_DGENERIC | PAGE_SIZE_4MB;
206 else 66 i_tbl[i_i].addr = addr;
207 table->tab[table->pos++] = cplb_data; 67 i_tbl[i_i++].data = SDRAM_IGENERIC | PAGE_SIZE_4MB;
68 }
208 69
209 start += block_size; 70 /* Cover L1 memory. One 4M area for code and data each is enough. */
71 if (L1_DATA_A_LENGTH || L1_DATA_B_LENGTH) {
72 d_tbl[i_d].addr = L1_DATA_A_START;
73 d_tbl[i_d++].data = L1_DMEMORY | PAGE_SIZE_4MB;
210 } 74 }
211} 75 i_tbl[i_i].addr = L1_CODE_START;
76 i_tbl[i_i++].data = L1_IMEMORY | PAGE_SIZE_4MB;
212 77
213static void __init close_cplbtab(struct cplb_tab *table) 78 first_switched_dcplb = i_d;
214{ 79 first_switched_icplb = i_i;
215 while (table->pos < table->size)
216 table->tab[table->pos++] = 0;
217}
218 80
219/* helper function */ 81 BUG_ON(first_switched_dcplb > MAX_CPLBS);
220static void __init 82 BUG_ON(first_switched_icplb > MAX_CPLBS);
221__fill_code_cplbtab(struct cplb_tab *t, int i, u32 a_start, u32 a_end)
222{
223 if (cplb_data[i].psize) {
224 fill_cplbtab(t,
225 cplb_data[i].start,
226 cplb_data[i].end,
227 cplb_data[i].psize,
228 cplb_data[i].i_conf);
229 } else {
230#if defined(CONFIG_BFIN_ICACHE)
231 if (ANOMALY_05000263 && i == SDRAM_KERN) {
232 fill_cplbtab(t,
233 cplb_data[i].start,
234 cplb_data[i].end,
235 SIZE_4M,
236 cplb_data[i].i_conf);
237 } else
238#endif
239 {
240 fill_cplbtab(t,
241 cplb_data[i].start,
242 a_start,
243 SIZE_1M,
244 cplb_data[i].i_conf);
245 fill_cplbtab(t,
246 a_start,
247 a_end,
248 SIZE_4M,
249 cplb_data[i].i_conf);
250 fill_cplbtab(t, a_end,
251 cplb_data[i].end,
252 SIZE_1M,
253 cplb_data[i].i_conf);
254 }
255 }
256}
257 83
258static void __init 84 while (i_d < MAX_CPLBS)
259__fill_data_cplbtab(struct cplb_tab *t, int i, u32 a_start, u32 a_end) 85 d_tbl[i_d++].data = 0;
260{ 86 while (i_i < MAX_CPLBS)
261 if (cplb_data[i].psize) { 87 i_tbl[i_i++].data = 0;
262 fill_cplbtab(t,
263 cplb_data[i].start,
264 cplb_data[i].end,
265 cplb_data[i].psize,
266 cplb_data[i].d_conf);
267 } else {
268 fill_cplbtab(t,
269 cplb_data[i].start,
270 a_start, SIZE_1M,
271 cplb_data[i].d_conf);
272 fill_cplbtab(t, a_start,
273 a_end, SIZE_4M,
274 cplb_data[i].d_conf);
275 fill_cplbtab(t, a_end,
276 cplb_data[i].end,
277 SIZE_1M,
278 cplb_data[i].d_conf);
279 }
280} 88}
281 89
282void __init generate_cplb_tables_cpu(unsigned int cpu) 90void __init generate_cplb_tables_all(void)
283{ 91{
92 int i_d, i_i;
284 93
285 u16 i, j, process; 94 i_d = 0;
286 u32 a_start, a_end, as, ae, as_1m; 95 /* Normal RAM, including MTD FS. */
287
288 struct cplb_tab *t_i = NULL;
289 struct cplb_tab *t_d = NULL;
290 struct s_cplb cplb;
291
292 printk(KERN_INFO "NOMPU: setting up cplb tables for global access\n");
293
294 cplb.init_i.size = CPLB_TBL_ENTRIES;
295 cplb.init_d.size = CPLB_TBL_ENTRIES;
296 cplb.switch_i.size = MAX_SWITCH_I_CPLBS;
297 cplb.switch_d.size = MAX_SWITCH_D_CPLBS;
298
299 cplb.init_i.pos = 0;
300 cplb.init_d.pos = 0;
301 cplb.switch_i.pos = 0;
302 cplb.switch_d.pos = 0;
303
304 cplb.init_i.tab = icplb_tables[cpu];
305 cplb.init_d.tab = dcplb_tables[cpu];
306 cplb.switch_i.tab = ipdt_tables[cpu];
307 cplb.switch_d.tab = dpdt_tables[cpu];
308
309 cplb_data[L1I_MEM].start = get_l1_code_start_cpu(cpu);
310 cplb_data[L1I_MEM].end = cplb_data[L1I_MEM].start + L1_CODE_LENGTH;
311 cplb_data[L1D_MEM].start = get_l1_data_a_start_cpu(cpu);
312 cplb_data[L1D_MEM].end = get_l1_data_b_start_cpu(cpu) + L1_DATA_B_LENGTH;
313 cplb_data[SDRAM_KERN].end = memory_end;
314
315#ifdef CONFIG_MTD_UCLINUX 96#ifdef CONFIG_MTD_UCLINUX
316 cplb_data[SDRAM_RAM_MTD].start = memory_mtd_start; 97 dcplb_bounds[i_d].eaddr = memory_mtd_start + mtd_size;
317 cplb_data[SDRAM_RAM_MTD].end = memory_mtd_start + mtd_size;
318 cplb_data[SDRAM_RAM_MTD].valid = mtd_size > 0;
319# if defined(CONFIG_ROMFS_FS)
320 cplb_data[SDRAM_RAM_MTD].attr |= I_CPLB;
321
322 /*
323 * The ROMFS_FS size is often not multiple of 1MB.
324 * This can cause multiple CPLB sets covering the same memory area.
325 * This will then cause multiple CPLB hit exceptions.
326 * Workaround: We ensure a contiguous memory area by extending the kernel
327 * memory section over the mtd section.
328 * For ROMFS_FS memory must be covered with ICPLBs anyways.
329 * So there is no difference between kernel and mtd memory setup.
330 */
331
332 cplb_data[SDRAM_KERN].end = memory_mtd_start + mtd_size;;
333 cplb_data[SDRAM_RAM_MTD].valid = 0;
334
335# endif
336#else 98#else
337 cplb_data[SDRAM_RAM_MTD].valid = 0; 99 dcplb_bounds[i_d].eaddr = memory_end;
338#endif 100#endif
101 dcplb_bounds[i_d++].data = SDRAM_DGENERIC;
102 /* DMA uncached region. */
103 if (DMA_UNCACHED_REGION) {
104 dcplb_bounds[i_d].eaddr = _ramend;
105 dcplb_bounds[i_d++].data = SDRAM_DNON_CHBL;
106 }
107 if (_ramend != physical_mem_end) {
108 /* Reserved memory. */
109 dcplb_bounds[i_d].eaddr = physical_mem_end;
110 dcplb_bounds[i_d++].data = (reserved_mem_dcache_on ?
111 SDRAM_DGENERIC : SDRAM_DNON_CHBL);
112 }
113 /* Addressing hole up to the async bank. */
114 dcplb_bounds[i_d].eaddr = ASYNC_BANK0_BASE;
115 dcplb_bounds[i_d++].data = 0;
116 /* ASYNC banks. */
117 dcplb_bounds[i_d].eaddr = ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE;
118 dcplb_bounds[i_d++].data = SDRAM_EBIU;
119 /* Addressing hole up to BootROM. */
120 dcplb_bounds[i_d].eaddr = BOOT_ROM_START;
121 dcplb_bounds[i_d++].data = 0;
122 /* BootROM -- largest one should be less than 1 meg. */
123 dcplb_bounds[i_d].eaddr = BOOT_ROM_START + (1 * 1024 * 1024);
124 dcplb_bounds[i_d++].data = SDRAM_DGENERIC;
125 if (L2_LENGTH) {
126 /* Addressing hole up to L2 SRAM. */
127 dcplb_bounds[i_d].eaddr = L2_START;
128 dcplb_bounds[i_d++].data = 0;
129 /* L2 SRAM. */
130 dcplb_bounds[i_d].eaddr = L2_START + L2_LENGTH;
131 dcplb_bounds[i_d++].data = L2_DMEMORY;
132 }
133 dcplb_nr_bounds = i_d;
134 BUG_ON(dcplb_nr_bounds > ARRAY_SIZE(dcplb_bounds));
339 135
340 cplb_data[SDRAM_DMAZ].start = _ramend - DMA_UNCACHED_REGION; 136 i_i = 0;
341 cplb_data[SDRAM_DMAZ].end = _ramend; 137 /* Normal RAM, including MTD FS. */
342
343 cplb_data[RES_MEM].start = _ramend;
344 cplb_data[RES_MEM].end = physical_mem_end;
345
346 if (reserved_mem_dcache_on)
347 cplb_data[RES_MEM].d_conf = SDRAM_DGENERIC;
348 else
349 cplb_data[RES_MEM].d_conf = SDRAM_DNON_CHBL;
350
351 if (reserved_mem_icache_on)
352 cplb_data[RES_MEM].i_conf = SDRAM_IGENERIC;
353 else
354 cplb_data[RES_MEM].i_conf = SDRAM_INON_CHBL;
355
356 for (i = ZERO_P; i < ARRAY_SIZE(cplb_data); ++i) {
357 if (!cplb_data[i].valid)
358 continue;
359
360 as_1m = cplb_data[i].start % SIZE_1M;
361
362 /* We need to make sure all sections are properly 1M aligned
363 * However between Kernel Memory and the Kernel mtd section, depending on the
364 * rootfs size, there can be overlapping memory areas.
365 */
366
367 if (as_1m && i != L1I_MEM && i != L1D_MEM) {
368#ifdef CONFIG_MTD_UCLINUX 138#ifdef CONFIG_MTD_UCLINUX
369 if (i == SDRAM_RAM_MTD) { 139 icplb_bounds[i_i].eaddr = memory_mtd_start + mtd_size;
370 if ((cplb_data[SDRAM_KERN].end + 1) > cplb_data[SDRAM_RAM_MTD].start) 140#else
371 cplb_data[SDRAM_RAM_MTD].start = (cplb_data[i].start & (-2*SIZE_1M)) + SIZE_1M; 141 icplb_bounds[i_i].eaddr = memory_end;
372 else
373 cplb_data[SDRAM_RAM_MTD].start = (cplb_data[i].start & (-2*SIZE_1M));
374 } else
375#endif 142#endif
376 printk(KERN_WARNING "Unaligned Start of %s at 0x%X\n", 143 icplb_bounds[i_i++].data = SDRAM_IGENERIC;
377 cplb_data[i].name, cplb_data[i].start); 144 /* DMA uncached region. */
378 } 145 if (DMA_UNCACHED_REGION) {
379 146 icplb_bounds[i_i].eaddr = _ramend;
380 as = cplb_data[i].start % SIZE_4M; 147 icplb_bounds[i_i++].data = 0;
381 ae = cplb_data[i].end % SIZE_4M;
382
383 if (as)
384 a_start = cplb_data[i].start + (SIZE_4M - (as));
385 else
386 a_start = cplb_data[i].start;
387
388 a_end = cplb_data[i].end - ae;
389
390 for (j = INITIAL_T; j <= SWITCH_T; j++) {
391
392 switch (j) {
393 case INITIAL_T:
394 if (cplb_data[i].attr & INITIAL_T) {
395 t_i = &cplb.init_i;
396 t_d = &cplb.init_d;
397 process = 1;
398 } else
399 process = 0;
400 break;
401 case SWITCH_T:
402 if (cplb_data[i].attr & SWITCH_T) {
403 t_i = &cplb.switch_i;
404 t_d = &cplb.switch_d;
405 process = 1;
406 } else
407 process = 0;
408 break;
409 default:
410 process = 0;
411 break;
412 }
413
414 if (!process)
415 continue;
416 if (cplb_data[i].attr & I_CPLB)
417 __fill_code_cplbtab(t_i, i, a_start, a_end);
418
419 if (cplb_data[i].attr & D_CPLB)
420 __fill_data_cplbtab(t_d, i, a_start, a_end);
421 }
422 } 148 }
423 149 if (_ramend != physical_mem_end) {
424 /* make sure we locked the kernel start */ 150 /* Reserved memory. */
425 BUG_ON(cplb.init_i.pos < 2 + cplb_data[ZERO_P].valid); 151 icplb_bounds[i_i].eaddr = physical_mem_end;
426 BUG_ON(cplb.init_d.pos < 1 + cplb_data[ZERO_P].valid + cplb_data[L1D_MEM].valid); 152 icplb_bounds[i_i++].data = (reserved_mem_icache_on ?
427 153 SDRAM_IGENERIC : SDRAM_INON_CHBL);
428 /* make sure we didnt overflow the table */ 154 }
429 BUG_ON(cplb.init_i.size < cplb.init_i.pos); 155 /* Addressing hole up to BootROM. */
430 BUG_ON(cplb.init_d.size < cplb.init_d.pos); 156 icplb_bounds[i_i].eaddr = BOOT_ROM_START;
431 BUG_ON(cplb.switch_i.size < cplb.switch_i.pos); 157 icplb_bounds[i_i++].data = 0;
432 BUG_ON(cplb.switch_d.size < cplb.switch_d.pos); 158 /* BootROM -- largest one should be less than 1 meg. */
433 159 icplb_bounds[i_i].eaddr = BOOT_ROM_START + (1 * 1024 * 1024);
434 /* close tables */ 160 icplb_bounds[i_i++].data = SDRAM_IGENERIC;
435 close_cplbtab(&cplb.init_i); 161 if (L2_LENGTH) {
436 close_cplbtab(&cplb.init_d); 162 /* Addressing hole up to L2 SRAM, including the async bank. */
437 163 icplb_bounds[i_i].eaddr = L2_START;
438 cplb.init_i.tab[cplb.init_i.pos] = -1; 164 icplb_bounds[i_i++].data = 0;
439 cplb.init_d.tab[cplb.init_d.pos] = -1; 165 /* L2 SRAM. */
440 cplb.switch_i.tab[cplb.switch_i.pos] = -1; 166 icplb_bounds[i_i].eaddr = L2_START + L2_LENGTH;
441 cplb.switch_d.tab[cplb.switch_d.pos] = -1; 167 icplb_bounds[i_i++].data = L2_IMEMORY;
442 168 }
169 icplb_nr_bounds = i_i;
170 BUG_ON(icplb_nr_bounds > ARRAY_SIZE(icplb_bounds));
443} 171}
444
445#endif