diff options
author | Haavard Skinnemoen <hskinnemoen@atmel.com> | 2006-09-26 02:32:13 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@g5.osdl.org> | 2006-09-26 11:48:54 -0400 |
commit | 5f97f7f9400de47ae837170bb274e90ad3934386 (patch) | |
tree | 514451e6dc6b46253293a00035d375e77b1c65ed /arch/avr32/kernel/time.c | |
parent | 53e62d3aaa60590d4a69b4e07c29f448b5151047 (diff) |
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'arch/avr32/kernel/time.c')
-rw-r--r-- | arch/avr32/kernel/time.c | 238 |
1 files changed, 238 insertions, 0 deletions
diff --git a/arch/avr32/kernel/time.c b/arch/avr32/kernel/time.c new file mode 100644 index 000000000000..b0e6b5855a38 --- /dev/null +++ b/arch/avr32/kernel/time.c | |||
@@ -0,0 +1,238 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2004-2006 Atmel Corporation | ||
3 | * | ||
4 | * Based on MIPS implementation arch/mips/kernel/time.c | ||
5 | * Copyright 2001 MontaVista Software Inc. | ||
6 | * | ||
7 | * This program is free software; you can redistribute it and/or modify | ||
8 | * it under the terms of the GNU General Public License version 2 as | ||
9 | * published by the Free Software Foundation. | ||
10 | */ | ||
11 | |||
12 | #include <linux/clk.h> | ||
13 | #include <linux/clocksource.h> | ||
14 | #include <linux/time.h> | ||
15 | #include <linux/module.h> | ||
16 | #include <linux/interrupt.h> | ||
17 | #include <linux/irq.h> | ||
18 | #include <linux/kernel_stat.h> | ||
19 | #include <linux/errno.h> | ||
20 | #include <linux/init.h> | ||
21 | #include <linux/profile.h> | ||
22 | #include <linux/sysdev.h> | ||
23 | |||
24 | #include <asm/div64.h> | ||
25 | #include <asm/sysreg.h> | ||
26 | #include <asm/io.h> | ||
27 | #include <asm/sections.h> | ||
28 | |||
29 | static cycle_t read_cycle_count(void) | ||
30 | { | ||
31 | return (cycle_t)sysreg_read(COUNT); | ||
32 | } | ||
33 | |||
34 | static struct clocksource clocksource_avr32 = { | ||
35 | .name = "avr32", | ||
36 | .rating = 350, | ||
37 | .read = read_cycle_count, | ||
38 | .mask = CLOCKSOURCE_MASK(32), | ||
39 | .shift = 16, | ||
40 | .is_continuous = 1, | ||
41 | }; | ||
42 | |||
43 | /* | ||
44 | * By default we provide the null RTC ops | ||
45 | */ | ||
46 | static unsigned long null_rtc_get_time(void) | ||
47 | { | ||
48 | return mktime(2004, 1, 1, 0, 0, 0); | ||
49 | } | ||
50 | |||
51 | static int null_rtc_set_time(unsigned long sec) | ||
52 | { | ||
53 | return 0; | ||
54 | } | ||
55 | |||
56 | static unsigned long (*rtc_get_time)(void) = null_rtc_get_time; | ||
57 | static int (*rtc_set_time)(unsigned long) = null_rtc_set_time; | ||
58 | |||
59 | /* how many counter cycles in a jiffy? */ | ||
60 | static unsigned long cycles_per_jiffy; | ||
61 | |||
62 | /* cycle counter value at the previous timer interrupt */ | ||
63 | static unsigned int timerhi, timerlo; | ||
64 | |||
65 | /* the count value for the next timer interrupt */ | ||
66 | static unsigned int expirelo; | ||
67 | |||
68 | static void avr32_timer_ack(void) | ||
69 | { | ||
70 | unsigned int count; | ||
71 | |||
72 | /* Ack this timer interrupt and set the next one */ | ||
73 | expirelo += cycles_per_jiffy; | ||
74 | if (expirelo == 0) { | ||
75 | printk(KERN_DEBUG "expirelo == 0\n"); | ||
76 | sysreg_write(COMPARE, expirelo + 1); | ||
77 | } else { | ||
78 | sysreg_write(COMPARE, expirelo); | ||
79 | } | ||
80 | |||
81 | /* Check to see if we have missed any timer interrupts */ | ||
82 | count = sysreg_read(COUNT); | ||
83 | if ((count - expirelo) < 0x7fffffff) { | ||
84 | expirelo = count + cycles_per_jiffy; | ||
85 | sysreg_write(COMPARE, expirelo); | ||
86 | } | ||
87 | } | ||
88 | |||
89 | static unsigned int avr32_hpt_read(void) | ||
90 | { | ||
91 | return sysreg_read(COUNT); | ||
92 | } | ||
93 | |||
94 | /* | ||
95 | * Taken from MIPS c0_hpt_timer_init(). | ||
96 | * | ||
97 | * Why is it so complicated, and what is "count"? My assumption is | ||
98 | * that `count' specifies the "reference cycle", i.e. the cycle since | ||
99 | * reset that should mean "zero". The reason COUNT is written twice is | ||
100 | * probably to make sure we don't get any timer interrupts while we | ||
101 | * are messing with the counter. | ||
102 | */ | ||
103 | static void avr32_hpt_init(unsigned int count) | ||
104 | { | ||
105 | count = sysreg_read(COUNT) - count; | ||
106 | expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy; | ||
107 | sysreg_write(COUNT, expirelo - cycles_per_jiffy); | ||
108 | sysreg_write(COMPARE, expirelo); | ||
109 | sysreg_write(COUNT, count); | ||
110 | } | ||
111 | |||
112 | /* | ||
113 | * Scheduler clock - returns current time in nanosec units. | ||
114 | */ | ||
115 | unsigned long long sched_clock(void) | ||
116 | { | ||
117 | /* There must be better ways...? */ | ||
118 | return (unsigned long long)jiffies * (1000000000 / HZ); | ||
119 | } | ||
120 | |||
121 | /* | ||
122 | * local_timer_interrupt() does profiling and process accounting on a | ||
123 | * per-CPU basis. | ||
124 | * | ||
125 | * In UP mode, it is invoked from the (global) timer_interrupt. | ||
126 | */ | ||
127 | static void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) | ||
128 | { | ||
129 | if (current->pid) | ||
130 | profile_tick(CPU_PROFILING, regs); | ||
131 | update_process_times(user_mode(regs)); | ||
132 | } | ||
133 | |||
134 | static irqreturn_t | ||
135 | timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) | ||
136 | { | ||
137 | unsigned int count; | ||
138 | |||
139 | /* ack timer interrupt and try to set next interrupt */ | ||
140 | count = avr32_hpt_read(); | ||
141 | avr32_timer_ack(); | ||
142 | |||
143 | /* Update timerhi/timerlo for intra-jiffy calibration */ | ||
144 | timerhi += count < timerlo; /* Wrap around */ | ||
145 | timerlo = count; | ||
146 | |||
147 | /* | ||
148 | * Call the generic timer interrupt handler | ||
149 | */ | ||
150 | write_seqlock(&xtime_lock); | ||
151 | do_timer(regs); | ||
152 | write_sequnlock(&xtime_lock); | ||
153 | |||
154 | /* | ||
155 | * In UP mode, we call local_timer_interrupt() to do profiling | ||
156 | * and process accounting. | ||
157 | * | ||
158 | * SMP is not supported yet. | ||
159 | */ | ||
160 | local_timer_interrupt(irq, dev_id, regs); | ||
161 | |||
162 | return IRQ_HANDLED; | ||
163 | } | ||
164 | |||
165 | static struct irqaction timer_irqaction = { | ||
166 | .handler = timer_interrupt, | ||
167 | .flags = IRQF_DISABLED, | ||
168 | .name = "timer", | ||
169 | }; | ||
170 | |||
171 | void __init time_init(void) | ||
172 | { | ||
173 | unsigned long mult, shift, count_hz; | ||
174 | int ret; | ||
175 | |||
176 | xtime.tv_sec = rtc_get_time(); | ||
177 | xtime.tv_nsec = 0; | ||
178 | |||
179 | set_normalized_timespec(&wall_to_monotonic, | ||
180 | -xtime.tv_sec, -xtime.tv_nsec); | ||
181 | |||
182 | printk("Before time_init: count=%08lx, compare=%08lx\n", | ||
183 | (unsigned long)sysreg_read(COUNT), | ||
184 | (unsigned long)sysreg_read(COMPARE)); | ||
185 | |||
186 | count_hz = clk_get_rate(boot_cpu_data.clk); | ||
187 | shift = clocksource_avr32.shift; | ||
188 | mult = clocksource_hz2mult(count_hz, shift); | ||
189 | clocksource_avr32.mult = mult; | ||
190 | |||
191 | printk("Cycle counter: mult=%lu, shift=%lu\n", mult, shift); | ||
192 | |||
193 | { | ||
194 | u64 tmp; | ||
195 | |||
196 | tmp = TICK_NSEC; | ||
197 | tmp <<= shift; | ||
198 | tmp += mult / 2; | ||
199 | do_div(tmp, mult); | ||
200 | |||
201 | cycles_per_jiffy = tmp; | ||
202 | } | ||
203 | |||
204 | /* This sets up the high precision timer for the first interrupt. */ | ||
205 | avr32_hpt_init(avr32_hpt_read()); | ||
206 | |||
207 | printk("After time_init: count=%08lx, compare=%08lx\n", | ||
208 | (unsigned long)sysreg_read(COUNT), | ||
209 | (unsigned long)sysreg_read(COMPARE)); | ||
210 | |||
211 | ret = clocksource_register(&clocksource_avr32); | ||
212 | if (ret) | ||
213 | printk(KERN_ERR | ||
214 | "timer: could not register clocksource: %d\n", ret); | ||
215 | |||
216 | ret = setup_irq(0, &timer_irqaction); | ||
217 | if (ret) | ||
218 | printk("timer: could not request IRQ 0: %d\n", ret); | ||
219 | } | ||
220 | |||
221 | static struct sysdev_class timer_class = { | ||
222 | set_kset_name("timer"), | ||
223 | }; | ||
224 | |||
225 | static struct sys_device timer_device = { | ||
226 | .id = 0, | ||
227 | .cls = &timer_class, | ||
228 | }; | ||
229 | |||
230 | static int __init init_timer_sysfs(void) | ||
231 | { | ||
232 | int err = sysdev_class_register(&timer_class); | ||
233 | if (!err) | ||
234 | err = sysdev_register(&timer_device); | ||
235 | return err; | ||
236 | } | ||
237 | |||
238 | device_initcall(init_timer_sysfs); | ||