aboutsummaryrefslogtreecommitdiffstats
path: root/arch/avr32/kernel/time.c
diff options
context:
space:
mode:
authorHaavard Skinnemoen <hskinnemoen@atmel.com>2006-09-26 02:32:13 -0400
committerLinus Torvalds <torvalds@g5.osdl.org>2006-09-26 11:48:54 -0400
commit5f97f7f9400de47ae837170bb274e90ad3934386 (patch)
tree514451e6dc6b46253293a00035d375e77b1c65ed /arch/avr32/kernel/time.c
parent53e62d3aaa60590d4a69b4e07c29f448b5151047 (diff)
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'arch/avr32/kernel/time.c')
-rw-r--r--arch/avr32/kernel/time.c238
1 files changed, 238 insertions, 0 deletions
diff --git a/arch/avr32/kernel/time.c b/arch/avr32/kernel/time.c
new file mode 100644
index 000000000000..b0e6b5855a38
--- /dev/null
+++ b/arch/avr32/kernel/time.c
@@ -0,0 +1,238 @@
1/*
2 * Copyright (C) 2004-2006 Atmel Corporation
3 *
4 * Based on MIPS implementation arch/mips/kernel/time.c
5 * Copyright 2001 MontaVista Software Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#include <linux/clk.h>
13#include <linux/clocksource.h>
14#include <linux/time.h>
15#include <linux/module.h>
16#include <linux/interrupt.h>
17#include <linux/irq.h>
18#include <linux/kernel_stat.h>
19#include <linux/errno.h>
20#include <linux/init.h>
21#include <linux/profile.h>
22#include <linux/sysdev.h>
23
24#include <asm/div64.h>
25#include <asm/sysreg.h>
26#include <asm/io.h>
27#include <asm/sections.h>
28
29static cycle_t read_cycle_count(void)
30{
31 return (cycle_t)sysreg_read(COUNT);
32}
33
34static struct clocksource clocksource_avr32 = {
35 .name = "avr32",
36 .rating = 350,
37 .read = read_cycle_count,
38 .mask = CLOCKSOURCE_MASK(32),
39 .shift = 16,
40 .is_continuous = 1,
41};
42
43/*
44 * By default we provide the null RTC ops
45 */
46static unsigned long null_rtc_get_time(void)
47{
48 return mktime(2004, 1, 1, 0, 0, 0);
49}
50
51static int null_rtc_set_time(unsigned long sec)
52{
53 return 0;
54}
55
56static unsigned long (*rtc_get_time)(void) = null_rtc_get_time;
57static int (*rtc_set_time)(unsigned long) = null_rtc_set_time;
58
59/* how many counter cycles in a jiffy? */
60static unsigned long cycles_per_jiffy;
61
62/* cycle counter value at the previous timer interrupt */
63static unsigned int timerhi, timerlo;
64
65/* the count value for the next timer interrupt */
66static unsigned int expirelo;
67
68static void avr32_timer_ack(void)
69{
70 unsigned int count;
71
72 /* Ack this timer interrupt and set the next one */
73 expirelo += cycles_per_jiffy;
74 if (expirelo == 0) {
75 printk(KERN_DEBUG "expirelo == 0\n");
76 sysreg_write(COMPARE, expirelo + 1);
77 } else {
78 sysreg_write(COMPARE, expirelo);
79 }
80
81 /* Check to see if we have missed any timer interrupts */
82 count = sysreg_read(COUNT);
83 if ((count - expirelo) < 0x7fffffff) {
84 expirelo = count + cycles_per_jiffy;
85 sysreg_write(COMPARE, expirelo);
86 }
87}
88
89static unsigned int avr32_hpt_read(void)
90{
91 return sysreg_read(COUNT);
92}
93
94/*
95 * Taken from MIPS c0_hpt_timer_init().
96 *
97 * Why is it so complicated, and what is "count"? My assumption is
98 * that `count' specifies the "reference cycle", i.e. the cycle since
99 * reset that should mean "zero". The reason COUNT is written twice is
100 * probably to make sure we don't get any timer interrupts while we
101 * are messing with the counter.
102 */
103static void avr32_hpt_init(unsigned int count)
104{
105 count = sysreg_read(COUNT) - count;
106 expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
107 sysreg_write(COUNT, expirelo - cycles_per_jiffy);
108 sysreg_write(COMPARE, expirelo);
109 sysreg_write(COUNT, count);
110}
111
112/*
113 * Scheduler clock - returns current time in nanosec units.
114 */
115unsigned long long sched_clock(void)
116{
117 /* There must be better ways...? */
118 return (unsigned long long)jiffies * (1000000000 / HZ);
119}
120
121/*
122 * local_timer_interrupt() does profiling and process accounting on a
123 * per-CPU basis.
124 *
125 * In UP mode, it is invoked from the (global) timer_interrupt.
126 */
127static void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
128{
129 if (current->pid)
130 profile_tick(CPU_PROFILING, regs);
131 update_process_times(user_mode(regs));
132}
133
134static irqreturn_t
135timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
136{
137 unsigned int count;
138
139 /* ack timer interrupt and try to set next interrupt */
140 count = avr32_hpt_read();
141 avr32_timer_ack();
142
143 /* Update timerhi/timerlo for intra-jiffy calibration */
144 timerhi += count < timerlo; /* Wrap around */
145 timerlo = count;
146
147 /*
148 * Call the generic timer interrupt handler
149 */
150 write_seqlock(&xtime_lock);
151 do_timer(regs);
152 write_sequnlock(&xtime_lock);
153
154 /*
155 * In UP mode, we call local_timer_interrupt() to do profiling
156 * and process accounting.
157 *
158 * SMP is not supported yet.
159 */
160 local_timer_interrupt(irq, dev_id, regs);
161
162 return IRQ_HANDLED;
163}
164
165static struct irqaction timer_irqaction = {
166 .handler = timer_interrupt,
167 .flags = IRQF_DISABLED,
168 .name = "timer",
169};
170
171void __init time_init(void)
172{
173 unsigned long mult, shift, count_hz;
174 int ret;
175
176 xtime.tv_sec = rtc_get_time();
177 xtime.tv_nsec = 0;
178
179 set_normalized_timespec(&wall_to_monotonic,
180 -xtime.tv_sec, -xtime.tv_nsec);
181
182 printk("Before time_init: count=%08lx, compare=%08lx\n",
183 (unsigned long)sysreg_read(COUNT),
184 (unsigned long)sysreg_read(COMPARE));
185
186 count_hz = clk_get_rate(boot_cpu_data.clk);
187 shift = clocksource_avr32.shift;
188 mult = clocksource_hz2mult(count_hz, shift);
189 clocksource_avr32.mult = mult;
190
191 printk("Cycle counter: mult=%lu, shift=%lu\n", mult, shift);
192
193 {
194 u64 tmp;
195
196 tmp = TICK_NSEC;
197 tmp <<= shift;
198 tmp += mult / 2;
199 do_div(tmp, mult);
200
201 cycles_per_jiffy = tmp;
202 }
203
204 /* This sets up the high precision timer for the first interrupt. */
205 avr32_hpt_init(avr32_hpt_read());
206
207 printk("After time_init: count=%08lx, compare=%08lx\n",
208 (unsigned long)sysreg_read(COUNT),
209 (unsigned long)sysreg_read(COMPARE));
210
211 ret = clocksource_register(&clocksource_avr32);
212 if (ret)
213 printk(KERN_ERR
214 "timer: could not register clocksource: %d\n", ret);
215
216 ret = setup_irq(0, &timer_irqaction);
217 if (ret)
218 printk("timer: could not request IRQ 0: %d\n", ret);
219}
220
221static struct sysdev_class timer_class = {
222 set_kset_name("timer"),
223};
224
225static struct sys_device timer_device = {
226 .id = 0,
227 .cls = &timer_class,
228};
229
230static int __init init_timer_sysfs(void)
231{
232 int err = sysdev_class_register(&timer_class);
233 if (!err)
234 err = sysdev_register(&timer_device);
235 return err;
236}
237
238device_initcall(init_timer_sysfs);