aboutsummaryrefslogtreecommitdiffstats
path: root/arch/arm
diff options
context:
space:
mode:
authorOlof Johansson <olof@lixom.net>2013-02-12 18:20:19 -0500
committerOlof Johansson <olof@lixom.net>2013-02-12 18:20:19 -0500
commitb221498e5d276b4ea5a50ba545b75f8cf2c2edf5 (patch)
tree55461b2678d331ce7f06cca728d5668f9ab7a1e1 /arch/arm
parent0582b05366f39ea1024450f18cc801c7f42bbbbb (diff)
parent967f84275ba74eac696f798ce1a780285170b5e7 (diff)
Merge branch 'kvm-arm/timer' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm-platforms into next/virt
From Marc Zyngier, this branch enables virtual GIC and timer for KVM/ARM. * 'kvm-arm/timer' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm-platforms: ARM: KVM: arch_timers: Wire the init code and config option ARM: KVM: arch_timers: Add timer world switch ARM: KVM: arch_timers: Add guest timer core support ARM: KVM: Add VGIC configuration option ARM: KVM: VGIC initialisation code ARM: KVM: VGIC control interface world switch ARM: KVM: VGIC interrupt injection ARM: KVM: vgic: retire queued, disabled interrupts ARM: KVM: VGIC virtual CPU interface management ARM: KVM: VGIC distributor handling ARM: KVM: VGIC accept vcpu and dist base addresses from user space ARM: KVM: Initial VGIC infrastructure code ARM: KVM: Keep track of currently running vcpus KVM: ARM: Introduce KVM_ARM_SET_DEVICE_ADDR ioctl ARM: gic: add __ASSEMBLY__ guard to C definitions ARM: gic: define GICH offsets for VGIC support ARM: gic: add missing distributor defintions
Diffstat (limited to 'arch/arm')
-rw-r--r--arch/arm/include/asm/kvm_arch_timer.h85
-rw-r--r--arch/arm/include/asm/kvm_asm.h3
-rw-r--r--arch/arm/include/asm/kvm_host.h23
-rw-r--r--arch/arm/include/asm/kvm_vgic.h221
-rw-r--r--arch/arm/include/uapi/asm/kvm.h16
-rw-r--r--arch/arm/kernel/asm-offsets.c18
-rw-r--r--arch/arm/kvm/Kconfig16
-rw-r--r--arch/arm/kvm/Makefile2
-rw-r--r--arch/arm/kvm/arch_timer.c271
-rw-r--r--arch/arm/kvm/arm.c178
-rw-r--r--arch/arm/kvm/coproc.c4
-rw-r--r--arch/arm/kvm/interrupts.S6
-rw-r--r--arch/arm/kvm/interrupts_head.S164
-rw-r--r--arch/arm/kvm/mmio.c3
-rw-r--r--arch/arm/kvm/vgic.c1506
15 files changed, 2503 insertions, 13 deletions
diff --git a/arch/arm/include/asm/kvm_arch_timer.h b/arch/arm/include/asm/kvm_arch_timer.h
new file mode 100644
index 000000000000..68cb9e1dfb81
--- /dev/null
+++ b/arch/arm/include/asm/kvm_arch_timer.h
@@ -0,0 +1,85 @@
1/*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19#ifndef __ASM_ARM_KVM_ARCH_TIMER_H
20#define __ASM_ARM_KVM_ARCH_TIMER_H
21
22#include <linux/clocksource.h>
23#include <linux/hrtimer.h>
24#include <linux/workqueue.h>
25
26struct arch_timer_kvm {
27#ifdef CONFIG_KVM_ARM_TIMER
28 /* Is the timer enabled */
29 bool enabled;
30
31 /* Virtual offset */
32 cycle_t cntvoff;
33#endif
34};
35
36struct arch_timer_cpu {
37#ifdef CONFIG_KVM_ARM_TIMER
38 /* Registers: control register, timer value */
39 u32 cntv_ctl; /* Saved/restored */
40 cycle_t cntv_cval; /* Saved/restored */
41
42 /*
43 * Anything that is not used directly from assembly code goes
44 * here.
45 */
46
47 /* Background timer used when the guest is not running */
48 struct hrtimer timer;
49
50 /* Work queued with the above timer expires */
51 struct work_struct expired;
52
53 /* Background timer active */
54 bool armed;
55
56 /* Timer IRQ */
57 const struct kvm_irq_level *irq;
58#endif
59};
60
61#ifdef CONFIG_KVM_ARM_TIMER
62int kvm_timer_hyp_init(void);
63int kvm_timer_init(struct kvm *kvm);
64void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu);
65void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu);
66void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu);
67void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu);
68#else
69static inline int kvm_timer_hyp_init(void)
70{
71 return 0;
72};
73
74static inline int kvm_timer_init(struct kvm *kvm)
75{
76 return 0;
77}
78
79static inline void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu) {}
80static inline void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu) {}
81static inline void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu) {}
82static inline void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu) {}
83#endif
84
85#endif
diff --git a/arch/arm/include/asm/kvm_asm.h b/arch/arm/include/asm/kvm_asm.h
index 5e06e8177784..e4956f4e23e1 100644
--- a/arch/arm/include/asm/kvm_asm.h
+++ b/arch/arm/include/asm/kvm_asm.h
@@ -45,7 +45,8 @@
45#define c13_TID_URW 23 /* Thread ID, User R/W */ 45#define c13_TID_URW 23 /* Thread ID, User R/W */
46#define c13_TID_URO 24 /* Thread ID, User R/O */ 46#define c13_TID_URO 24 /* Thread ID, User R/O */
47#define c13_TID_PRIV 25 /* Thread ID, Privileged */ 47#define c13_TID_PRIV 25 /* Thread ID, Privileged */
48#define NR_CP15_REGS 26 /* Number of regs (incl. invalid) */ 48#define c14_CNTKCTL 26 /* Timer Control Register (PL1) */
49#define NR_CP15_REGS 27 /* Number of regs (incl. invalid) */
49 50
50#define ARM_EXCEPTION_RESET 0 51#define ARM_EXCEPTION_RESET 0
51#define ARM_EXCEPTION_UNDEFINED 1 52#define ARM_EXCEPTION_UNDEFINED 1
diff --git a/arch/arm/include/asm/kvm_host.h b/arch/arm/include/asm/kvm_host.h
index 98b4d1a72923..dfe98866a992 100644
--- a/arch/arm/include/asm/kvm_host.h
+++ b/arch/arm/include/asm/kvm_host.h
@@ -23,6 +23,7 @@
23#include <asm/kvm_asm.h> 23#include <asm/kvm_asm.h>
24#include <asm/kvm_mmio.h> 24#include <asm/kvm_mmio.h>
25#include <asm/fpstate.h> 25#include <asm/fpstate.h>
26#include <asm/kvm_arch_timer.h>
26 27
27#define KVM_MAX_VCPUS CONFIG_KVM_ARM_MAX_VCPUS 28#define KVM_MAX_VCPUS CONFIG_KVM_ARM_MAX_VCPUS
28#define KVM_MEMORY_SLOTS 32 29#define KVM_MEMORY_SLOTS 32
@@ -37,6 +38,8 @@
37#define KVM_NR_PAGE_SIZES 1 38#define KVM_NR_PAGE_SIZES 1
38#define KVM_PAGES_PER_HPAGE(x) (1UL<<31) 39#define KVM_PAGES_PER_HPAGE(x) (1UL<<31)
39 40
41#include <asm/kvm_vgic.h>
42
40struct kvm_vcpu; 43struct kvm_vcpu;
41u32 *kvm_vcpu_reg(struct kvm_vcpu *vcpu, u8 reg_num, u32 mode); 44u32 *kvm_vcpu_reg(struct kvm_vcpu *vcpu, u8 reg_num, u32 mode);
42int kvm_target_cpu(void); 45int kvm_target_cpu(void);
@@ -47,6 +50,9 @@ struct kvm_arch {
47 /* VTTBR value associated with below pgd and vmid */ 50 /* VTTBR value associated with below pgd and vmid */
48 u64 vttbr; 51 u64 vttbr;
49 52
53 /* Timer */
54 struct arch_timer_kvm timer;
55
50 /* 56 /*
51 * Anything that is not used directly from assembly code goes 57 * Anything that is not used directly from assembly code goes
52 * here. 58 * here.
@@ -58,6 +64,9 @@ struct kvm_arch {
58 64
59 /* Stage-2 page table */ 65 /* Stage-2 page table */
60 pgd_t *pgd; 66 pgd_t *pgd;
67
68 /* Interrupt controller */
69 struct vgic_dist vgic;
61}; 70};
62 71
63#define KVM_NR_MEM_OBJS 40 72#define KVM_NR_MEM_OBJS 40
@@ -92,6 +101,10 @@ struct kvm_vcpu_arch {
92 struct vfp_hard_struct vfp_guest; 101 struct vfp_hard_struct vfp_guest;
93 struct vfp_hard_struct *vfp_host; 102 struct vfp_hard_struct *vfp_host;
94 103
104 /* VGIC state */
105 struct vgic_cpu vgic_cpu;
106 struct arch_timer_cpu timer_cpu;
107
95 /* 108 /*
96 * Anything that is not used directly from assembly code goes 109 * Anything that is not used directly from assembly code goes
97 * here. 110 * here.
@@ -158,4 +171,14 @@ static inline int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
158{ 171{
159 return 0; 172 return 0;
160} 173}
174
175struct kvm_vcpu *kvm_arm_get_running_vcpu(void);
176struct kvm_vcpu __percpu **kvm_get_running_vcpus(void);
177
178int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
179unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu);
180struct kvm_one_reg;
181int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *);
182int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *);
183
161#endif /* __ARM_KVM_HOST_H__ */ 184#endif /* __ARM_KVM_HOST_H__ */
diff --git a/arch/arm/include/asm/kvm_vgic.h b/arch/arm/include/asm/kvm_vgic.h
new file mode 100644
index 000000000000..ab97207d9cd3
--- /dev/null
+++ b/arch/arm/include/asm/kvm_vgic.h
@@ -0,0 +1,221 @@
1/*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19#ifndef __ASM_ARM_KVM_VGIC_H
20#define __ASM_ARM_KVM_VGIC_H
21
22#include <linux/kernel.h>
23#include <linux/kvm.h>
24#include <linux/kvm_host.h>
25#include <linux/irqreturn.h>
26#include <linux/spinlock.h>
27#include <linux/types.h>
28#include <linux/irqchip/arm-gic.h>
29
30#define VGIC_NR_IRQS 128
31#define VGIC_NR_SGIS 16
32#define VGIC_NR_PPIS 16
33#define VGIC_NR_PRIVATE_IRQS (VGIC_NR_SGIS + VGIC_NR_PPIS)
34#define VGIC_NR_SHARED_IRQS (VGIC_NR_IRQS - VGIC_NR_PRIVATE_IRQS)
35#define VGIC_MAX_CPUS KVM_MAX_VCPUS
36#define VGIC_MAX_LRS (1 << 6)
37
38/* Sanity checks... */
39#if (VGIC_MAX_CPUS > 8)
40#error Invalid number of CPU interfaces
41#endif
42
43#if (VGIC_NR_IRQS & 31)
44#error "VGIC_NR_IRQS must be a multiple of 32"
45#endif
46
47#if (VGIC_NR_IRQS > 1024)
48#error "VGIC_NR_IRQS must be <= 1024"
49#endif
50
51/*
52 * The GIC distributor registers describing interrupts have two parts:
53 * - 32 per-CPU interrupts (SGI + PPI)
54 * - a bunch of shared interrupts (SPI)
55 */
56struct vgic_bitmap {
57 union {
58 u32 reg[VGIC_NR_PRIVATE_IRQS / 32];
59 DECLARE_BITMAP(reg_ul, VGIC_NR_PRIVATE_IRQS);
60 } percpu[VGIC_MAX_CPUS];
61 union {
62 u32 reg[VGIC_NR_SHARED_IRQS / 32];
63 DECLARE_BITMAP(reg_ul, VGIC_NR_SHARED_IRQS);
64 } shared;
65};
66
67struct vgic_bytemap {
68 u32 percpu[VGIC_MAX_CPUS][VGIC_NR_PRIVATE_IRQS / 4];
69 u32 shared[VGIC_NR_SHARED_IRQS / 4];
70};
71
72struct vgic_dist {
73#ifdef CONFIG_KVM_ARM_VGIC
74 spinlock_t lock;
75 bool ready;
76
77 /* Virtual control interface mapping */
78 void __iomem *vctrl_base;
79
80 /* Distributor and vcpu interface mapping in the guest */
81 phys_addr_t vgic_dist_base;
82 phys_addr_t vgic_cpu_base;
83
84 /* Distributor enabled */
85 u32 enabled;
86
87 /* Interrupt enabled (one bit per IRQ) */
88 struct vgic_bitmap irq_enabled;
89
90 /* Interrupt 'pin' level */
91 struct vgic_bitmap irq_state;
92
93 /* Level-triggered interrupt in progress */
94 struct vgic_bitmap irq_active;
95
96 /* Interrupt priority. Not used yet. */
97 struct vgic_bytemap irq_priority;
98
99 /* Level/edge triggered */
100 struct vgic_bitmap irq_cfg;
101
102 /* Source CPU per SGI and target CPU */
103 u8 irq_sgi_sources[VGIC_MAX_CPUS][VGIC_NR_SGIS];
104
105 /* Target CPU for each IRQ */
106 u8 irq_spi_cpu[VGIC_NR_SHARED_IRQS];
107 struct vgic_bitmap irq_spi_target[VGIC_MAX_CPUS];
108
109 /* Bitmap indicating which CPU has something pending */
110 unsigned long irq_pending_on_cpu;
111#endif
112};
113
114struct vgic_cpu {
115#ifdef CONFIG_KVM_ARM_VGIC
116 /* per IRQ to LR mapping */
117 u8 vgic_irq_lr_map[VGIC_NR_IRQS];
118
119 /* Pending interrupts on this VCPU */
120 DECLARE_BITMAP( pending_percpu, VGIC_NR_PRIVATE_IRQS);
121 DECLARE_BITMAP( pending_shared, VGIC_NR_SHARED_IRQS);
122
123 /* Bitmap of used/free list registers */
124 DECLARE_BITMAP( lr_used, VGIC_MAX_LRS);
125
126 /* Number of list registers on this CPU */
127 int nr_lr;
128
129 /* CPU vif control registers for world switch */
130 u32 vgic_hcr;
131 u32 vgic_vmcr;
132 u32 vgic_misr; /* Saved only */
133 u32 vgic_eisr[2]; /* Saved only */
134 u32 vgic_elrsr[2]; /* Saved only */
135 u32 vgic_apr;
136 u32 vgic_lr[VGIC_MAX_LRS];
137#endif
138};
139
140#define LR_EMPTY 0xff
141
142struct kvm;
143struct kvm_vcpu;
144struct kvm_run;
145struct kvm_exit_mmio;
146
147#ifdef CONFIG_KVM_ARM_VGIC
148int kvm_vgic_set_addr(struct kvm *kvm, unsigned long type, u64 addr);
149int kvm_vgic_hyp_init(void);
150int kvm_vgic_init(struct kvm *kvm);
151int kvm_vgic_create(struct kvm *kvm);
152int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu);
153void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu);
154void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu);
155int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
156 bool level);
157int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu);
158bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
159 struct kvm_exit_mmio *mmio);
160
161#define irqchip_in_kernel(k) (!!((k)->arch.vgic.vctrl_base))
162#define vgic_initialized(k) ((k)->arch.vgic.ready)
163
164#else
165static inline int kvm_vgic_hyp_init(void)
166{
167 return 0;
168}
169
170static inline int kvm_vgic_set_addr(struct kvm *kvm, unsigned long type, u64 addr)
171{
172 return 0;
173}
174
175static inline int kvm_vgic_init(struct kvm *kvm)
176{
177 return 0;
178}
179
180static inline int kvm_vgic_create(struct kvm *kvm)
181{
182 return 0;
183}
184
185static inline int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
186{
187 return 0;
188}
189
190static inline void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) {}
191static inline void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) {}
192
193static inline int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid,
194 unsigned int irq_num, bool level)
195{
196 return 0;
197}
198
199static inline int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
200{
201 return 0;
202}
203
204static inline bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
205 struct kvm_exit_mmio *mmio)
206{
207 return false;
208}
209
210static inline int irqchip_in_kernel(struct kvm *kvm)
211{
212 return 0;
213}
214
215static inline bool vgic_initialized(struct kvm *kvm)
216{
217 return true;
218}
219#endif
220
221#endif
diff --git a/arch/arm/include/uapi/asm/kvm.h b/arch/arm/include/uapi/asm/kvm.h
index 3303ff5adbf3..023bfeb367bf 100644
--- a/arch/arm/include/uapi/asm/kvm.h
+++ b/arch/arm/include/uapi/asm/kvm.h
@@ -65,6 +65,22 @@ struct kvm_regs {
65#define KVM_ARM_TARGET_CORTEX_A15 0 65#define KVM_ARM_TARGET_CORTEX_A15 0
66#define KVM_ARM_NUM_TARGETS 1 66#define KVM_ARM_NUM_TARGETS 1
67 67
68/* KVM_ARM_SET_DEVICE_ADDR ioctl id encoding */
69#define KVM_ARM_DEVICE_TYPE_SHIFT 0
70#define KVM_ARM_DEVICE_TYPE_MASK (0xffff << KVM_ARM_DEVICE_TYPE_SHIFT)
71#define KVM_ARM_DEVICE_ID_SHIFT 16
72#define KVM_ARM_DEVICE_ID_MASK (0xffff << KVM_ARM_DEVICE_ID_SHIFT)
73
74/* Supported device IDs */
75#define KVM_ARM_DEVICE_VGIC_V2 0
76
77/* Supported VGIC address types */
78#define KVM_VGIC_V2_ADDR_TYPE_DIST 0
79#define KVM_VGIC_V2_ADDR_TYPE_CPU 1
80
81#define KVM_VGIC_V2_DIST_SIZE 0x1000
82#define KVM_VGIC_V2_CPU_SIZE 0x2000
83
68#define KVM_ARM_VCPU_POWER_OFF 0 /* CPU is started in OFF state */ 84#define KVM_ARM_VCPU_POWER_OFF 0 /* CPU is started in OFF state */
69 85
70struct kvm_vcpu_init { 86struct kvm_vcpu_init {
diff --git a/arch/arm/kernel/asm-offsets.c b/arch/arm/kernel/asm-offsets.c
index c8b3272dfed1..5ce738b43508 100644
--- a/arch/arm/kernel/asm-offsets.c
+++ b/arch/arm/kernel/asm-offsets.c
@@ -169,6 +169,24 @@ int main(void)
169 DEFINE(VCPU_HxFAR, offsetof(struct kvm_vcpu, arch.hxfar)); 169 DEFINE(VCPU_HxFAR, offsetof(struct kvm_vcpu, arch.hxfar));
170 DEFINE(VCPU_HPFAR, offsetof(struct kvm_vcpu, arch.hpfar)); 170 DEFINE(VCPU_HPFAR, offsetof(struct kvm_vcpu, arch.hpfar));
171 DEFINE(VCPU_HYP_PC, offsetof(struct kvm_vcpu, arch.hyp_pc)); 171 DEFINE(VCPU_HYP_PC, offsetof(struct kvm_vcpu, arch.hyp_pc));
172#ifdef CONFIG_KVM_ARM_VGIC
173 DEFINE(VCPU_VGIC_CPU, offsetof(struct kvm_vcpu, arch.vgic_cpu));
174 DEFINE(VGIC_CPU_HCR, offsetof(struct vgic_cpu, vgic_hcr));
175 DEFINE(VGIC_CPU_VMCR, offsetof(struct vgic_cpu, vgic_vmcr));
176 DEFINE(VGIC_CPU_MISR, offsetof(struct vgic_cpu, vgic_misr));
177 DEFINE(VGIC_CPU_EISR, offsetof(struct vgic_cpu, vgic_eisr));
178 DEFINE(VGIC_CPU_ELRSR, offsetof(struct vgic_cpu, vgic_elrsr));
179 DEFINE(VGIC_CPU_APR, offsetof(struct vgic_cpu, vgic_apr));
180 DEFINE(VGIC_CPU_LR, offsetof(struct vgic_cpu, vgic_lr));
181 DEFINE(VGIC_CPU_NR_LR, offsetof(struct vgic_cpu, nr_lr));
182#ifdef CONFIG_KVM_ARM_TIMER
183 DEFINE(VCPU_TIMER_CNTV_CTL, offsetof(struct kvm_vcpu, arch.timer_cpu.cntv_ctl));
184 DEFINE(VCPU_TIMER_CNTV_CVAL, offsetof(struct kvm_vcpu, arch.timer_cpu.cntv_cval));
185 DEFINE(KVM_TIMER_CNTVOFF, offsetof(struct kvm, arch.timer.cntvoff));
186 DEFINE(KVM_TIMER_ENABLED, offsetof(struct kvm, arch.timer.enabled));
187#endif
188 DEFINE(KVM_VGIC_VCTRL, offsetof(struct kvm, arch.vgic.vctrl_base));
189#endif
172 DEFINE(KVM_VTTBR, offsetof(struct kvm, arch.vttbr)); 190 DEFINE(KVM_VTTBR, offsetof(struct kvm, arch.vttbr));
173#endif 191#endif
174 return 0; 192 return 0;
diff --git a/arch/arm/kvm/Kconfig b/arch/arm/kvm/Kconfig
index 05227cb57a7b..49dd64e579c2 100644
--- a/arch/arm/kvm/Kconfig
+++ b/arch/arm/kvm/Kconfig
@@ -51,6 +51,22 @@ config KVM_ARM_MAX_VCPUS
51 large, so only choose a reasonable number that you expect to 51 large, so only choose a reasonable number that you expect to
52 actually use. 52 actually use.
53 53
54config KVM_ARM_VGIC
55 bool "KVM support for Virtual GIC"
56 depends on KVM_ARM_HOST && OF
57 select HAVE_KVM_IRQCHIP
58 default y
59 ---help---
60 Adds support for a hardware assisted, in-kernel GIC emulation.
61
62config KVM_ARM_TIMER
63 bool "KVM support for Architected Timers"
64 depends on KVM_ARM_VGIC && ARM_ARCH_TIMER
65 select HAVE_KVM_IRQCHIP
66 default y
67 ---help---
68 Adds support for the Architected Timers in virtual machines
69
54source drivers/virtio/Kconfig 70source drivers/virtio/Kconfig
55 71
56endif # VIRTUALIZATION 72endif # VIRTUALIZATION
diff --git a/arch/arm/kvm/Makefile b/arch/arm/kvm/Makefile
index ea27987bd07f..fc96ce6f2357 100644
--- a/arch/arm/kvm/Makefile
+++ b/arch/arm/kvm/Makefile
@@ -19,3 +19,5 @@ kvm-arm-y = $(addprefix ../../../virt/kvm/, kvm_main.o coalesced_mmio.o)
19obj-y += kvm-arm.o init.o interrupts.o 19obj-y += kvm-arm.o init.o interrupts.o
20obj-y += arm.o guest.o mmu.o emulate.o reset.o 20obj-y += arm.o guest.o mmu.o emulate.o reset.o
21obj-y += coproc.o coproc_a15.o mmio.o psci.o 21obj-y += coproc.o coproc_a15.o mmio.o psci.o
22obj-$(CONFIG_KVM_ARM_VGIC) += vgic.o
23obj-$(CONFIG_KVM_ARM_TIMER) += arch_timer.o
diff --git a/arch/arm/kvm/arch_timer.c b/arch/arm/kvm/arch_timer.c
new file mode 100644
index 000000000000..6ac938d46297
--- /dev/null
+++ b/arch/arm/kvm/arch_timer.c
@@ -0,0 +1,271 @@
1/*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19#include <linux/cpu.h>
20#include <linux/of_irq.h>
21#include <linux/kvm.h>
22#include <linux/kvm_host.h>
23#include <linux/interrupt.h>
24
25#include <asm/arch_timer.h>
26
27#include <asm/kvm_vgic.h>
28#include <asm/kvm_arch_timer.h>
29
30static struct timecounter *timecounter;
31static struct workqueue_struct *wqueue;
32static struct kvm_irq_level timer_irq = {
33 .level = 1,
34};
35
36static cycle_t kvm_phys_timer_read(void)
37{
38 return timecounter->cc->read(timecounter->cc);
39}
40
41static bool timer_is_armed(struct arch_timer_cpu *timer)
42{
43 return timer->armed;
44}
45
46/* timer_arm: as in "arm the timer", not as in ARM the company */
47static void timer_arm(struct arch_timer_cpu *timer, u64 ns)
48{
49 timer->armed = true;
50 hrtimer_start(&timer->timer, ktime_add_ns(ktime_get(), ns),
51 HRTIMER_MODE_ABS);
52}
53
54static void timer_disarm(struct arch_timer_cpu *timer)
55{
56 if (timer_is_armed(timer)) {
57 hrtimer_cancel(&timer->timer);
58 cancel_work_sync(&timer->expired);
59 timer->armed = false;
60 }
61}
62
63static void kvm_timer_inject_irq(struct kvm_vcpu *vcpu)
64{
65 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
66
67 timer->cntv_ctl |= 1 << 1; /* Mask the interrupt in the guest */
68 kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
69 vcpu->arch.timer_cpu.irq->irq,
70 vcpu->arch.timer_cpu.irq->level);
71}
72
73static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
74{
75 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
76
77 /*
78 * We disable the timer in the world switch and let it be
79 * handled by kvm_timer_sync_hwstate(). Getting a timer
80 * interrupt at this point is a sure sign of some major
81 * breakage.
82 */
83 pr_warn("Unexpected interrupt %d on vcpu %p\n", irq, vcpu);
84 return IRQ_HANDLED;
85}
86
87static void kvm_timer_inject_irq_work(struct work_struct *work)
88{
89 struct kvm_vcpu *vcpu;
90
91 vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
92 vcpu->arch.timer_cpu.armed = false;
93 kvm_timer_inject_irq(vcpu);
94}
95
96static enum hrtimer_restart kvm_timer_expire(struct hrtimer *hrt)
97{
98 struct arch_timer_cpu *timer;
99 timer = container_of(hrt, struct arch_timer_cpu, timer);
100 queue_work(wqueue, &timer->expired);
101 return HRTIMER_NORESTART;
102}
103
104/**
105 * kvm_timer_flush_hwstate - prepare to move the virt timer to the cpu
106 * @vcpu: The vcpu pointer
107 *
108 * Disarm any pending soft timers, since the world-switch code will write the
109 * virtual timer state back to the physical CPU.
110 */
111void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
112{
113 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
114
115 /*
116 * We're about to run this vcpu again, so there is no need to
117 * keep the background timer running, as we're about to
118 * populate the CPU timer again.
119 */
120 timer_disarm(timer);
121}
122
123/**
124 * kvm_timer_sync_hwstate - sync timer state from cpu
125 * @vcpu: The vcpu pointer
126 *
127 * Check if the virtual timer was armed and either schedule a corresponding
128 * soft timer or inject directly if already expired.
129 */
130void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
131{
132 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
133 cycle_t cval, now;
134 u64 ns;
135
136 /* Check if the timer is enabled and unmasked first */
137 if ((timer->cntv_ctl & 3) != 1)
138 return;
139
140 cval = timer->cntv_cval;
141 now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
142
143 BUG_ON(timer_is_armed(timer));
144
145 if (cval <= now) {
146 /*
147 * Timer has already expired while we were not
148 * looking. Inject the interrupt and carry on.
149 */
150 kvm_timer_inject_irq(vcpu);
151 return;
152 }
153
154 ns = cyclecounter_cyc2ns(timecounter->cc, cval - now);
155 timer_arm(timer, ns);
156}
157
158void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
159{
160 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
161
162 INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
163 hrtimer_init(&timer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
164 timer->timer.function = kvm_timer_expire;
165 timer->irq = &timer_irq;
166}
167
168static void kvm_timer_init_interrupt(void *info)
169{
170 enable_percpu_irq(timer_irq.irq, 0);
171}
172
173
174static int kvm_timer_cpu_notify(struct notifier_block *self,
175 unsigned long action, void *cpu)
176{
177 switch (action) {
178 case CPU_STARTING:
179 case CPU_STARTING_FROZEN:
180 kvm_timer_init_interrupt(NULL);
181 break;
182 case CPU_DYING:
183 case CPU_DYING_FROZEN:
184 disable_percpu_irq(timer_irq.irq);
185 break;
186 }
187
188 return NOTIFY_OK;
189}
190
191static struct notifier_block kvm_timer_cpu_nb = {
192 .notifier_call = kvm_timer_cpu_notify,
193};
194
195static const struct of_device_id arch_timer_of_match[] = {
196 { .compatible = "arm,armv7-timer", },
197 {},
198};
199
200int kvm_timer_hyp_init(void)
201{
202 struct device_node *np;
203 unsigned int ppi;
204 int err;
205
206 timecounter = arch_timer_get_timecounter();
207 if (!timecounter)
208 return -ENODEV;
209
210 np = of_find_matching_node(NULL, arch_timer_of_match);
211 if (!np) {
212 kvm_err("kvm_arch_timer: can't find DT node\n");
213 return -ENODEV;
214 }
215
216 ppi = irq_of_parse_and_map(np, 2);
217 if (!ppi) {
218 kvm_err("kvm_arch_timer: no virtual timer interrupt\n");
219 err = -EINVAL;
220 goto out;
221 }
222
223 err = request_percpu_irq(ppi, kvm_arch_timer_handler,
224 "kvm guest timer", kvm_get_running_vcpus());
225 if (err) {
226 kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
227 ppi, err);
228 goto out;
229 }
230
231 timer_irq.irq = ppi;
232
233 err = register_cpu_notifier(&kvm_timer_cpu_nb);
234 if (err) {
235 kvm_err("Cannot register timer CPU notifier\n");
236 goto out_free;
237 }
238
239 wqueue = create_singlethread_workqueue("kvm_arch_timer");
240 if (!wqueue) {
241 err = -ENOMEM;
242 goto out_free;
243 }
244
245 kvm_info("%s IRQ%d\n", np->name, ppi);
246 on_each_cpu(kvm_timer_init_interrupt, NULL, 1);
247
248 goto out;
249out_free:
250 free_percpu_irq(ppi, kvm_get_running_vcpus());
251out:
252 of_node_put(np);
253 return err;
254}
255
256void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
257{
258 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
259
260 timer_disarm(timer);
261}
262
263int kvm_timer_init(struct kvm *kvm)
264{
265 if (timecounter && wqueue) {
266 kvm->arch.timer.cntvoff = kvm_phys_timer_read();
267 kvm->arch.timer.enabled = 1;
268 }
269
270 return 0;
271}
diff --git a/arch/arm/kvm/arm.c b/arch/arm/kvm/arm.c
index 2d30e3afdaf9..9ada5549216d 100644
--- a/arch/arm/kvm/arm.c
+++ b/arch/arm/kvm/arm.c
@@ -54,11 +54,40 @@ static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54static struct vfp_hard_struct __percpu *kvm_host_vfp_state; 54static struct vfp_hard_struct __percpu *kvm_host_vfp_state;
55static unsigned long hyp_default_vectors; 55static unsigned long hyp_default_vectors;
56 56
57/* Per-CPU variable containing the currently running vcpu. */
58static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
57/* The VMID used in the VTTBR */ 60/* The VMID used in the VTTBR */
58static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); 61static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
59static u8 kvm_next_vmid; 62static u8 kvm_next_vmid;
60static DEFINE_SPINLOCK(kvm_vmid_lock); 63static DEFINE_SPINLOCK(kvm_vmid_lock);
61 64
65static bool vgic_present;
66
67static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
68{
69 BUG_ON(preemptible());
70 __get_cpu_var(kvm_arm_running_vcpu) = vcpu;
71}
72
73/**
74 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
75 * Must be called from non-preemptible context
76 */
77struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
78{
79 BUG_ON(preemptible());
80 return __get_cpu_var(kvm_arm_running_vcpu);
81}
82
83/**
84 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
85 */
86struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
87{
88 return &kvm_arm_running_vcpu;
89}
90
62int kvm_arch_hardware_enable(void *garbage) 91int kvm_arch_hardware_enable(void *garbage)
63{ 92{
64 return 0; 93 return 0;
@@ -157,6 +186,9 @@ int kvm_dev_ioctl_check_extension(long ext)
157{ 186{
158 int r; 187 int r;
159 switch (ext) { 188 switch (ext) {
189 case KVM_CAP_IRQCHIP:
190 r = vgic_present;
191 break;
160 case KVM_CAP_USER_MEMORY: 192 case KVM_CAP_USER_MEMORY:
161 case KVM_CAP_SYNC_MMU: 193 case KVM_CAP_SYNC_MMU:
162 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 194 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
@@ -167,6 +199,8 @@ int kvm_dev_ioctl_check_extension(long ext)
167 case KVM_CAP_COALESCED_MMIO: 199 case KVM_CAP_COALESCED_MMIO:
168 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 200 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
169 break; 201 break;
202 case KVM_CAP_ARM_SET_DEVICE_ADDR:
203 r = 1;
170 case KVM_CAP_NR_VCPUS: 204 case KVM_CAP_NR_VCPUS:
171 r = num_online_cpus(); 205 r = num_online_cpus();
172 break; 206 break;
@@ -255,6 +289,7 @@ int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
255void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 289void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
256{ 290{
257 kvm_mmu_free_memory_caches(vcpu); 291 kvm_mmu_free_memory_caches(vcpu);
292 kvm_timer_vcpu_terminate(vcpu);
258 kmem_cache_free(kvm_vcpu_cache, vcpu); 293 kmem_cache_free(kvm_vcpu_cache, vcpu);
259} 294}
260 295
@@ -286,8 +321,19 @@ int __attribute_const__ kvm_target_cpu(void)
286 321
287int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 322int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
288{ 323{
324 int ret;
325
289 /* Force users to call KVM_ARM_VCPU_INIT */ 326 /* Force users to call KVM_ARM_VCPU_INIT */
290 vcpu->arch.target = -1; 327 vcpu->arch.target = -1;
328
329 /* Set up VGIC */
330 ret = kvm_vgic_vcpu_init(vcpu);
331 if (ret)
332 return ret;
333
334 /* Set up the timer */
335 kvm_timer_vcpu_init(vcpu);
336
291 return 0; 337 return 0;
292} 338}
293 339
@@ -308,10 +354,13 @@ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
308 */ 354 */
309 if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush)) 355 if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
310 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */ 356 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
357
358 kvm_arm_set_running_vcpu(vcpu);
311} 359}
312 360
313void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 361void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
314{ 362{
363 kvm_arm_set_running_vcpu(NULL);
315} 364}
316 365
317int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 366int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
@@ -342,7 +391,7 @@ int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
342 */ 391 */
343int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 392int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
344{ 393{
345 return !!v->arch.irq_lines; 394 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
346} 395}
347 396
348/* Just ensure a guest exit from a particular CPU */ 397/* Just ensure a guest exit from a particular CPU */
@@ -597,6 +646,17 @@ static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
597 vcpu->arch.has_run_once = true; 646 vcpu->arch.has_run_once = true;
598 647
599 /* 648 /*
649 * Initialize the VGIC before running a vcpu the first time on
650 * this VM.
651 */
652 if (irqchip_in_kernel(vcpu->kvm) &&
653 unlikely(!vgic_initialized(vcpu->kvm))) {
654 int ret = kvm_vgic_init(vcpu->kvm);
655 if (ret)
656 return ret;
657 }
658
659 /*
600 * Handle the "start in power-off" case by calling into the 660 * Handle the "start in power-off" case by calling into the
601 * PSCI code. 661 * PSCI code.
602 */ 662 */
@@ -661,6 +721,9 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
661 if (vcpu->arch.pause) 721 if (vcpu->arch.pause)
662 vcpu_pause(vcpu); 722 vcpu_pause(vcpu);
663 723
724 kvm_vgic_flush_hwstate(vcpu);
725 kvm_timer_flush_hwstate(vcpu);
726
664 local_irq_disable(); 727 local_irq_disable();
665 728
666 /* 729 /*
@@ -673,6 +736,8 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
673 736
674 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) { 737 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
675 local_irq_enable(); 738 local_irq_enable();
739 kvm_timer_sync_hwstate(vcpu);
740 kvm_vgic_sync_hwstate(vcpu);
676 continue; 741 continue;
677 } 742 }
678 743
@@ -705,6 +770,9 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
705 * Back from guest 770 * Back from guest
706 *************************************************************/ 771 *************************************************************/
707 772
773 kvm_timer_sync_hwstate(vcpu);
774 kvm_vgic_sync_hwstate(vcpu);
775
708 ret = handle_exit(vcpu, run, ret); 776 ret = handle_exit(vcpu, run, ret);
709 } 777 }
710 778
@@ -760,20 +828,49 @@ int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level)
760 828
761 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); 829 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
762 830
763 if (irq_type != KVM_ARM_IRQ_TYPE_CPU) 831 switch (irq_type) {
764 return -EINVAL; 832 case KVM_ARM_IRQ_TYPE_CPU:
833 if (irqchip_in_kernel(kvm))
834 return -ENXIO;
765 835
766 if (vcpu_idx >= nrcpus) 836 if (vcpu_idx >= nrcpus)
767 return -EINVAL; 837 return -EINVAL;
768 838
769 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 839 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
770 if (!vcpu) 840 if (!vcpu)
771 return -EINVAL; 841 return -EINVAL;
772 842
773 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 843 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
774 return -EINVAL; 844 return -EINVAL;
845
846 return vcpu_interrupt_line(vcpu, irq_num, level);
847 case KVM_ARM_IRQ_TYPE_PPI:
848 if (!irqchip_in_kernel(kvm))
849 return -ENXIO;
775 850
776 return vcpu_interrupt_line(vcpu, irq_num, level); 851 if (vcpu_idx >= nrcpus)
852 return -EINVAL;
853
854 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
855 if (!vcpu)
856 return -EINVAL;
857
858 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
859 return -EINVAL;
860
861 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
862 case KVM_ARM_IRQ_TYPE_SPI:
863 if (!irqchip_in_kernel(kvm))
864 return -ENXIO;
865
866 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
867 irq_num > KVM_ARM_IRQ_GIC_MAX)
868 return -EINVAL;
869
870 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
871 }
872
873 return -EINVAL;
777} 874}
778 875
779long kvm_arch_vcpu_ioctl(struct file *filp, 876long kvm_arch_vcpu_ioctl(struct file *filp,
@@ -827,10 +924,49 @@ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
827 return -EINVAL; 924 return -EINVAL;
828} 925}
829 926
927static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
928 struct kvm_arm_device_addr *dev_addr)
929{
930 unsigned long dev_id, type;
931
932 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
933 KVM_ARM_DEVICE_ID_SHIFT;
934 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
935 KVM_ARM_DEVICE_TYPE_SHIFT;
936
937 switch (dev_id) {
938 case KVM_ARM_DEVICE_VGIC_V2:
939 if (!vgic_present)
940 return -ENXIO;
941 return kvm_vgic_set_addr(kvm, type, dev_addr->addr);
942 default:
943 return -ENODEV;
944 }
945}
946
830long kvm_arch_vm_ioctl(struct file *filp, 947long kvm_arch_vm_ioctl(struct file *filp,
831 unsigned int ioctl, unsigned long arg) 948 unsigned int ioctl, unsigned long arg)
832{ 949{
833 return -EINVAL; 950 struct kvm *kvm = filp->private_data;
951 void __user *argp = (void __user *)arg;
952
953 switch (ioctl) {
954 case KVM_CREATE_IRQCHIP: {
955 if (vgic_present)
956 return kvm_vgic_create(kvm);
957 else
958 return -ENXIO;
959 }
960 case KVM_ARM_SET_DEVICE_ADDR: {
961 struct kvm_arm_device_addr dev_addr;
962
963 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
964 return -EFAULT;
965 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
966 }
967 default:
968 return -EINVAL;
969 }
834} 970}
835 971
836static void cpu_init_hyp_mode(void *vector) 972static void cpu_init_hyp_mode(void *vector)
@@ -960,6 +1096,24 @@ static int init_hyp_mode(void)
960 } 1096 }
961 } 1097 }
962 1098
1099 /*
1100 * Init HYP view of VGIC
1101 */
1102 err = kvm_vgic_hyp_init();
1103 if (err)
1104 goto out_free_vfp;
1105
1106#ifdef CONFIG_KVM_ARM_VGIC
1107 vgic_present = true;
1108#endif
1109
1110 /*
1111 * Init HYP architected timer support
1112 */
1113 err = kvm_timer_hyp_init();
1114 if (err)
1115 goto out_free_mappings;
1116
963 kvm_info("Hyp mode initialized successfully\n"); 1117 kvm_info("Hyp mode initialized successfully\n");
964 return 0; 1118 return 0;
965out_free_vfp: 1119out_free_vfp:
diff --git a/arch/arm/kvm/coproc.c b/arch/arm/kvm/coproc.c
index d782638c7ec0..4ea9a982269c 100644
--- a/arch/arm/kvm/coproc.c
+++ b/arch/arm/kvm/coproc.c
@@ -222,6 +222,10 @@ static const struct coproc_reg cp15_regs[] = {
222 NULL, reset_unknown, c13_TID_URO }, 222 NULL, reset_unknown, c13_TID_URO },
223 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32, 223 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
224 NULL, reset_unknown, c13_TID_PRIV }, 224 NULL, reset_unknown, c13_TID_PRIV },
225
226 /* CNTKCTL: swapped by interrupt.S. */
227 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
228 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
225}; 229};
226 230
227/* Target specific emulation tables */ 231/* Target specific emulation tables */
diff --git a/arch/arm/kvm/interrupts.S b/arch/arm/kvm/interrupts.S
index c5400d2e97ca..8ca87ab0919d 100644
--- a/arch/arm/kvm/interrupts.S
+++ b/arch/arm/kvm/interrupts.S
@@ -94,6 +94,9 @@ ENTRY(__kvm_vcpu_run)
94 94
95 save_host_regs 95 save_host_regs
96 96
97 restore_vgic_state
98 restore_timer_state
99
97 @ Store hardware CP15 state and load guest state 100 @ Store hardware CP15 state and load guest state
98 read_cp15_state store_to_vcpu = 0 101 read_cp15_state store_to_vcpu = 0
99 write_cp15_state read_from_vcpu = 1 102 write_cp15_state read_from_vcpu = 1
@@ -187,6 +190,9 @@ after_vfp_restore:
187 read_cp15_state store_to_vcpu = 1 190 read_cp15_state store_to_vcpu = 1
188 write_cp15_state read_from_vcpu = 0 191 write_cp15_state read_from_vcpu = 0
189 192
193 save_timer_state
194 save_vgic_state
195
190 restore_host_regs 196 restore_host_regs
191 clrex @ Clear exclusive monitor 197 clrex @ Clear exclusive monitor
192 mov r0, r1 @ Return the return code 198 mov r0, r1 @ Return the return code
diff --git a/arch/arm/kvm/interrupts_head.S b/arch/arm/kvm/interrupts_head.S
index 6a95d341e9c5..3c8f2f0b4c5e 100644
--- a/arch/arm/kvm/interrupts_head.S
+++ b/arch/arm/kvm/interrupts_head.S
@@ -1,3 +1,5 @@
1#include <linux/irqchip/arm-gic.h>
2
1#define VCPU_USR_REG(_reg_nr) (VCPU_USR_REGS + (_reg_nr * 4)) 3#define VCPU_USR_REG(_reg_nr) (VCPU_USR_REGS + (_reg_nr * 4))
2#define VCPU_USR_SP (VCPU_USR_REG(13)) 4#define VCPU_USR_SP (VCPU_USR_REG(13))
3#define VCPU_USR_LR (VCPU_USR_REG(14)) 5#define VCPU_USR_LR (VCPU_USR_REG(14))
@@ -298,6 +300,14 @@ vcpu .req r0 @ vcpu pointer always in r0
298 str r11, [vcpu, #CP15_OFFSET(c6_IFAR)] 300 str r11, [vcpu, #CP15_OFFSET(c6_IFAR)]
299 str r12, [vcpu, #CP15_OFFSET(c12_VBAR)] 301 str r12, [vcpu, #CP15_OFFSET(c12_VBAR)]
300 .endif 302 .endif
303
304 mrc p15, 0, r2, c14, c1, 0 @ CNTKCTL
305
306 .if \store_to_vcpu == 0
307 push {r2}
308 .else
309 str r2, [vcpu, #CP15_OFFSET(c14_CNTKCTL)]
310 .endif
301.endm 311.endm
302 312
303/* 313/*
@@ -309,6 +319,14 @@ vcpu .req r0 @ vcpu pointer always in r0
309 */ 319 */
310.macro write_cp15_state read_from_vcpu 320.macro write_cp15_state read_from_vcpu
311 .if \read_from_vcpu == 0 321 .if \read_from_vcpu == 0
322 pop {r2}
323 .else
324 ldr r2, [vcpu, #CP15_OFFSET(c14_CNTKCTL)]
325 .endif
326
327 mcr p15, 0, r2, c14, c1, 0 @ CNTKCTL
328
329 .if \read_from_vcpu == 0
312 pop {r2-r12} 330 pop {r2-r12}
313 .else 331 .else
314 ldr r2, [vcpu, #CP15_OFFSET(c13_CID)] 332 ldr r2, [vcpu, #CP15_OFFSET(c13_CID)]
@@ -369,6 +387,49 @@ vcpu .req r0 @ vcpu pointer always in r0
369 * Assumes vcpu pointer in vcpu reg 387 * Assumes vcpu pointer in vcpu reg
370 */ 388 */
371.macro save_vgic_state 389.macro save_vgic_state
390#ifdef CONFIG_KVM_ARM_VGIC
391 /* Get VGIC VCTRL base into r2 */
392 ldr r2, [vcpu, #VCPU_KVM]
393 ldr r2, [r2, #KVM_VGIC_VCTRL]
394 cmp r2, #0
395 beq 2f
396
397 /* Compute the address of struct vgic_cpu */
398 add r11, vcpu, #VCPU_VGIC_CPU
399
400 /* Save all interesting registers */
401 ldr r3, [r2, #GICH_HCR]
402 ldr r4, [r2, #GICH_VMCR]
403 ldr r5, [r2, #GICH_MISR]
404 ldr r6, [r2, #GICH_EISR0]
405 ldr r7, [r2, #GICH_EISR1]
406 ldr r8, [r2, #GICH_ELRSR0]
407 ldr r9, [r2, #GICH_ELRSR1]
408 ldr r10, [r2, #GICH_APR]
409
410 str r3, [r11, #VGIC_CPU_HCR]
411 str r4, [r11, #VGIC_CPU_VMCR]
412 str r5, [r11, #VGIC_CPU_MISR]
413 str r6, [r11, #VGIC_CPU_EISR]
414 str r7, [r11, #(VGIC_CPU_EISR + 4)]
415 str r8, [r11, #VGIC_CPU_ELRSR]
416 str r9, [r11, #(VGIC_CPU_ELRSR + 4)]
417 str r10, [r11, #VGIC_CPU_APR]
418
419 /* Clear GICH_HCR */
420 mov r5, #0
421 str r5, [r2, #GICH_HCR]
422
423 /* Save list registers */
424 add r2, r2, #GICH_LR0
425 add r3, r11, #VGIC_CPU_LR
426 ldr r4, [r11, #VGIC_CPU_NR_LR]
4271: ldr r6, [r2], #4
428 str r6, [r3], #4
429 subs r4, r4, #1
430 bne 1b
4312:
432#endif
372.endm 433.endm
373 434
374/* 435/*
@@ -377,6 +438,109 @@ vcpu .req r0 @ vcpu pointer always in r0
377 * Assumes vcpu pointer in vcpu reg 438 * Assumes vcpu pointer in vcpu reg
378 */ 439 */
379.macro restore_vgic_state 440.macro restore_vgic_state
441#ifdef CONFIG_KVM_ARM_VGIC
442 /* Get VGIC VCTRL base into r2 */
443 ldr r2, [vcpu, #VCPU_KVM]
444 ldr r2, [r2, #KVM_VGIC_VCTRL]
445 cmp r2, #0
446 beq 2f
447
448 /* Compute the address of struct vgic_cpu */
449 add r11, vcpu, #VCPU_VGIC_CPU
450
451 /* We only restore a minimal set of registers */
452 ldr r3, [r11, #VGIC_CPU_HCR]
453 ldr r4, [r11, #VGIC_CPU_VMCR]
454 ldr r8, [r11, #VGIC_CPU_APR]
455
456 str r3, [r2, #GICH_HCR]
457 str r4, [r2, #GICH_VMCR]
458 str r8, [r2, #GICH_APR]
459
460 /* Restore list registers */
461 add r2, r2, #GICH_LR0
462 add r3, r11, #VGIC_CPU_LR
463 ldr r4, [r11, #VGIC_CPU_NR_LR]
4641: ldr r6, [r3], #4
465 str r6, [r2], #4
466 subs r4, r4, #1
467 bne 1b
4682:
469#endif
470.endm
471
472#define CNTHCTL_PL1PCTEN (1 << 0)
473#define CNTHCTL_PL1PCEN (1 << 1)
474
475/*
476 * Save the timer state onto the VCPU and allow physical timer/counter access
477 * for the host.
478 *
479 * Assumes vcpu pointer in vcpu reg
480 * Clobbers r2-r5
481 */
482.macro save_timer_state
483#ifdef CONFIG_KVM_ARM_TIMER
484 ldr r4, [vcpu, #VCPU_KVM]
485 ldr r2, [r4, #KVM_TIMER_ENABLED]
486 cmp r2, #0
487 beq 1f
488
489 mrc p15, 0, r2, c14, c3, 1 @ CNTV_CTL
490 str r2, [vcpu, #VCPU_TIMER_CNTV_CTL]
491 bic r2, #1 @ Clear ENABLE
492 mcr p15, 0, r2, c14, c3, 1 @ CNTV_CTL
493 isb
494
495 mrrc p15, 3, r2, r3, c14 @ CNTV_CVAL
496 ldr r4, =VCPU_TIMER_CNTV_CVAL
497 add r5, vcpu, r4
498 strd r2, r3, [r5]
499
5001:
501#endif
502 @ Allow physical timer/counter access for the host
503 mrc p15, 4, r2, c14, c1, 0 @ CNTHCTL
504 orr r2, r2, #(CNTHCTL_PL1PCEN | CNTHCTL_PL1PCTEN)
505 mcr p15, 4, r2, c14, c1, 0 @ CNTHCTL
506.endm
507
508/*
509 * Load the timer state from the VCPU and deny physical timer/counter access
510 * for the host.
511 *
512 * Assumes vcpu pointer in vcpu reg
513 * Clobbers r2-r5
514 */
515.macro restore_timer_state
516 @ Disallow physical timer access for the guest
517 @ Physical counter access is allowed
518 mrc p15, 4, r2, c14, c1, 0 @ CNTHCTL
519 orr r2, r2, #CNTHCTL_PL1PCTEN
520 bic r2, r2, #CNTHCTL_PL1PCEN
521 mcr p15, 4, r2, c14, c1, 0 @ CNTHCTL
522
523#ifdef CONFIG_KVM_ARM_TIMER
524 ldr r4, [vcpu, #VCPU_KVM]
525 ldr r2, [r4, #KVM_TIMER_ENABLED]
526 cmp r2, #0
527 beq 1f
528
529 ldr r2, [r4, #KVM_TIMER_CNTVOFF]
530 ldr r3, [r4, #(KVM_TIMER_CNTVOFF + 4)]
531 mcrr p15, 4, r2, r3, c14 @ CNTVOFF
532
533 ldr r4, =VCPU_TIMER_CNTV_CVAL
534 add r5, vcpu, r4
535 ldrd r2, r3, [r5]
536 mcrr p15, 3, r2, r3, c14 @ CNTV_CVAL
537 isb
538
539 ldr r2, [vcpu, #VCPU_TIMER_CNTV_CTL]
540 and r2, r2, #3
541 mcr p15, 0, r2, c14, c3, 1 @ CNTV_CTL
5421:
543#endif
380.endm 544.endm
381 545
382.equ vmentry, 0 546.equ vmentry, 0
diff --git a/arch/arm/kvm/mmio.c b/arch/arm/kvm/mmio.c
index 0144baf82904..98a870ff1a5c 100644
--- a/arch/arm/kvm/mmio.c
+++ b/arch/arm/kvm/mmio.c
@@ -148,6 +148,9 @@ int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run,
148 if (mmio.is_write) 148 if (mmio.is_write)
149 memcpy(mmio.data, vcpu_reg(vcpu, rt), mmio.len); 149 memcpy(mmio.data, vcpu_reg(vcpu, rt), mmio.len);
150 150
151 if (vgic_handle_mmio(vcpu, run, &mmio))
152 return 1;
153
151 kvm_prepare_mmio(run, &mmio); 154 kvm_prepare_mmio(run, &mmio);
152 return 0; 155 return 0;
153} 156}
diff --git a/arch/arm/kvm/vgic.c b/arch/arm/kvm/vgic.c
new file mode 100644
index 000000000000..c9a17316e9fe
--- /dev/null
+++ b/arch/arm/kvm/vgic.c
@@ -0,0 +1,1506 @@
1/*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19#include <linux/cpu.h>
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_irq.h>
27
28#include <linux/irqchip/arm-gic.h>
29
30#include <asm/kvm_emulate.h>
31#include <asm/kvm_arm.h>
32#include <asm/kvm_mmu.h>
33
34/*
35 * How the whole thing works (courtesy of Christoffer Dall):
36 *
37 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
38 * something is pending
39 * - VGIC pending interrupts are stored on the vgic.irq_state vgic
40 * bitmap (this bitmap is updated by both user land ioctls and guest
41 * mmio ops, and other in-kernel peripherals such as the
42 * arch. timers) and indicate the 'wire' state.
43 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
44 * recalculated
45 * - To calculate the oracle, we need info for each cpu from
46 * compute_pending_for_cpu, which considers:
47 * - PPI: dist->irq_state & dist->irq_enable
48 * - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target
49 * - irq_spi_target is a 'formatted' version of the GICD_ICFGR
50 * registers, stored on each vcpu. We only keep one bit of
51 * information per interrupt, making sure that only one vcpu can
52 * accept the interrupt.
53 * - The same is true when injecting an interrupt, except that we only
54 * consider a single interrupt at a time. The irq_spi_cpu array
55 * contains the target CPU for each SPI.
56 *
57 * The handling of level interrupts adds some extra complexity. We
58 * need to track when the interrupt has been EOIed, so we can sample
59 * the 'line' again. This is achieved as such:
60 *
61 * - When a level interrupt is moved onto a vcpu, the corresponding
62 * bit in irq_active is set. As long as this bit is set, the line
63 * will be ignored for further interrupts. The interrupt is injected
64 * into the vcpu with the GICH_LR_EOI bit set (generate a
65 * maintenance interrupt on EOI).
66 * - When the interrupt is EOIed, the maintenance interrupt fires,
67 * and clears the corresponding bit in irq_active. This allow the
68 * interrupt line to be sampled again.
69 */
70
71#define VGIC_ADDR_UNDEF (-1)
72#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
73
74/* Physical address of vgic virtual cpu interface */
75static phys_addr_t vgic_vcpu_base;
76
77/* Virtual control interface base address */
78static void __iomem *vgic_vctrl_base;
79
80static struct device_node *vgic_node;
81
82#define ACCESS_READ_VALUE (1 << 0)
83#define ACCESS_READ_RAZ (0 << 0)
84#define ACCESS_READ_MASK(x) ((x) & (1 << 0))
85#define ACCESS_WRITE_IGNORED (0 << 1)
86#define ACCESS_WRITE_SETBIT (1 << 1)
87#define ACCESS_WRITE_CLEARBIT (2 << 1)
88#define ACCESS_WRITE_VALUE (3 << 1)
89#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
90
91static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
92static void vgic_update_state(struct kvm *kvm);
93static void vgic_kick_vcpus(struct kvm *kvm);
94static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
95static u32 vgic_nr_lr;
96
97static unsigned int vgic_maint_irq;
98
99static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
100 int cpuid, u32 offset)
101{
102 offset >>= 2;
103 if (!offset)
104 return x->percpu[cpuid].reg;
105 else
106 return x->shared.reg + offset - 1;
107}
108
109static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
110 int cpuid, int irq)
111{
112 if (irq < VGIC_NR_PRIVATE_IRQS)
113 return test_bit(irq, x->percpu[cpuid].reg_ul);
114
115 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
116}
117
118static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
119 int irq, int val)
120{
121 unsigned long *reg;
122
123 if (irq < VGIC_NR_PRIVATE_IRQS) {
124 reg = x->percpu[cpuid].reg_ul;
125 } else {
126 reg = x->shared.reg_ul;
127 irq -= VGIC_NR_PRIVATE_IRQS;
128 }
129
130 if (val)
131 set_bit(irq, reg);
132 else
133 clear_bit(irq, reg);
134}
135
136static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
137{
138 if (unlikely(cpuid >= VGIC_MAX_CPUS))
139 return NULL;
140 return x->percpu[cpuid].reg_ul;
141}
142
143static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
144{
145 return x->shared.reg_ul;
146}
147
148static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
149{
150 offset >>= 2;
151 BUG_ON(offset > (VGIC_NR_IRQS / 4));
152 if (offset < 4)
153 return x->percpu[cpuid] + offset;
154 else
155 return x->shared + offset - 8;
156}
157
158#define VGIC_CFG_LEVEL 0
159#define VGIC_CFG_EDGE 1
160
161static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
162{
163 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
164 int irq_val;
165
166 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
167 return irq_val == VGIC_CFG_EDGE;
168}
169
170static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
171{
172 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
173
174 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
175}
176
177static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
178{
179 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
180
181 return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
182}
183
184static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
185{
186 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
187
188 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
189}
190
191static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
192{
193 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
194
195 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
196}
197
198static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
199{
200 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
201
202 return vgic_bitmap_get_irq_val(&dist->irq_state, vcpu->vcpu_id, irq);
203}
204
205static void vgic_dist_irq_set(struct kvm_vcpu *vcpu, int irq)
206{
207 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
208
209 vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 1);
210}
211
212static void vgic_dist_irq_clear(struct kvm_vcpu *vcpu, int irq)
213{
214 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
215
216 vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 0);
217}
218
219static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
220{
221 if (irq < VGIC_NR_PRIVATE_IRQS)
222 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
223 else
224 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
225 vcpu->arch.vgic_cpu.pending_shared);
226}
227
228static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
229{
230 if (irq < VGIC_NR_PRIVATE_IRQS)
231 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
232 else
233 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
234 vcpu->arch.vgic_cpu.pending_shared);
235}
236
237static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
238{
239 return *((u32 *)mmio->data) & mask;
240}
241
242static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
243{
244 *((u32 *)mmio->data) = value & mask;
245}
246
247/**
248 * vgic_reg_access - access vgic register
249 * @mmio: pointer to the data describing the mmio access
250 * @reg: pointer to the virtual backing of vgic distributor data
251 * @offset: least significant 2 bits used for word offset
252 * @mode: ACCESS_ mode (see defines above)
253 *
254 * Helper to make vgic register access easier using one of the access
255 * modes defined for vgic register access
256 * (read,raz,write-ignored,setbit,clearbit,write)
257 */
258static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
259 phys_addr_t offset, int mode)
260{
261 int word_offset = (offset & 3) * 8;
262 u32 mask = (1UL << (mmio->len * 8)) - 1;
263 u32 regval;
264
265 /*
266 * Any alignment fault should have been delivered to the guest
267 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
268 */
269
270 if (reg) {
271 regval = *reg;
272 } else {
273 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
274 regval = 0;
275 }
276
277 if (mmio->is_write) {
278 u32 data = mmio_data_read(mmio, mask) << word_offset;
279 switch (ACCESS_WRITE_MASK(mode)) {
280 case ACCESS_WRITE_IGNORED:
281 return;
282
283 case ACCESS_WRITE_SETBIT:
284 regval |= data;
285 break;
286
287 case ACCESS_WRITE_CLEARBIT:
288 regval &= ~data;
289 break;
290
291 case ACCESS_WRITE_VALUE:
292 regval = (regval & ~(mask << word_offset)) | data;
293 break;
294 }
295 *reg = regval;
296 } else {
297 switch (ACCESS_READ_MASK(mode)) {
298 case ACCESS_READ_RAZ:
299 regval = 0;
300 /* fall through */
301
302 case ACCESS_READ_VALUE:
303 mmio_data_write(mmio, mask, regval >> word_offset);
304 }
305 }
306}
307
308static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
309 struct kvm_exit_mmio *mmio, phys_addr_t offset)
310{
311 u32 reg;
312 u32 word_offset = offset & 3;
313
314 switch (offset & ~3) {
315 case 0: /* CTLR */
316 reg = vcpu->kvm->arch.vgic.enabled;
317 vgic_reg_access(mmio, &reg, word_offset,
318 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
319 if (mmio->is_write) {
320 vcpu->kvm->arch.vgic.enabled = reg & 1;
321 vgic_update_state(vcpu->kvm);
322 return true;
323 }
324 break;
325
326 case 4: /* TYPER */
327 reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
328 reg |= (VGIC_NR_IRQS >> 5) - 1;
329 vgic_reg_access(mmio, &reg, word_offset,
330 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
331 break;
332
333 case 8: /* IIDR */
334 reg = 0x4B00043B;
335 vgic_reg_access(mmio, &reg, word_offset,
336 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
337 break;
338 }
339
340 return false;
341}
342
343static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
344 struct kvm_exit_mmio *mmio, phys_addr_t offset)
345{
346 vgic_reg_access(mmio, NULL, offset,
347 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
348 return false;
349}
350
351static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
352 struct kvm_exit_mmio *mmio,
353 phys_addr_t offset)
354{
355 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
356 vcpu->vcpu_id, offset);
357 vgic_reg_access(mmio, reg, offset,
358 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
359 if (mmio->is_write) {
360 vgic_update_state(vcpu->kvm);
361 return true;
362 }
363
364 return false;
365}
366
367static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
368 struct kvm_exit_mmio *mmio,
369 phys_addr_t offset)
370{
371 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
372 vcpu->vcpu_id, offset);
373 vgic_reg_access(mmio, reg, offset,
374 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
375 if (mmio->is_write) {
376 if (offset < 4) /* Force SGI enabled */
377 *reg |= 0xffff;
378 vgic_retire_disabled_irqs(vcpu);
379 vgic_update_state(vcpu->kvm);
380 return true;
381 }
382
383 return false;
384}
385
386static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
387 struct kvm_exit_mmio *mmio,
388 phys_addr_t offset)
389{
390 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
391 vcpu->vcpu_id, offset);
392 vgic_reg_access(mmio, reg, offset,
393 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
394 if (mmio->is_write) {
395 vgic_update_state(vcpu->kvm);
396 return true;
397 }
398
399 return false;
400}
401
402static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
403 struct kvm_exit_mmio *mmio,
404 phys_addr_t offset)
405{
406 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
407 vcpu->vcpu_id, offset);
408 vgic_reg_access(mmio, reg, offset,
409 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
410 if (mmio->is_write) {
411 vgic_update_state(vcpu->kvm);
412 return true;
413 }
414
415 return false;
416}
417
418static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
419 struct kvm_exit_mmio *mmio,
420 phys_addr_t offset)
421{
422 u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
423 vcpu->vcpu_id, offset);
424 vgic_reg_access(mmio, reg, offset,
425 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
426 return false;
427}
428
429#define GICD_ITARGETSR_SIZE 32
430#define GICD_CPUTARGETS_BITS 8
431#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
432static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
433{
434 struct vgic_dist *dist = &kvm->arch.vgic;
435 struct kvm_vcpu *vcpu;
436 int i, c;
437 unsigned long *bmap;
438 u32 val = 0;
439
440 irq -= VGIC_NR_PRIVATE_IRQS;
441
442 kvm_for_each_vcpu(c, vcpu, kvm) {
443 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
444 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
445 if (test_bit(irq + i, bmap))
446 val |= 1 << (c + i * 8);
447 }
448
449 return val;
450}
451
452static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
453{
454 struct vgic_dist *dist = &kvm->arch.vgic;
455 struct kvm_vcpu *vcpu;
456 int i, c;
457 unsigned long *bmap;
458 u32 target;
459
460 irq -= VGIC_NR_PRIVATE_IRQS;
461
462 /*
463 * Pick the LSB in each byte. This ensures we target exactly
464 * one vcpu per IRQ. If the byte is null, assume we target
465 * CPU0.
466 */
467 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
468 int shift = i * GICD_CPUTARGETS_BITS;
469 target = ffs((val >> shift) & 0xffU);
470 target = target ? (target - 1) : 0;
471 dist->irq_spi_cpu[irq + i] = target;
472 kvm_for_each_vcpu(c, vcpu, kvm) {
473 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
474 if (c == target)
475 set_bit(irq + i, bmap);
476 else
477 clear_bit(irq + i, bmap);
478 }
479 }
480}
481
482static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
483 struct kvm_exit_mmio *mmio,
484 phys_addr_t offset)
485{
486 u32 reg;
487
488 /* We treat the banked interrupts targets as read-only */
489 if (offset < 32) {
490 u32 roreg = 1 << vcpu->vcpu_id;
491 roreg |= roreg << 8;
492 roreg |= roreg << 16;
493
494 vgic_reg_access(mmio, &roreg, offset,
495 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
496 return false;
497 }
498
499 reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
500 vgic_reg_access(mmio, &reg, offset,
501 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
502 if (mmio->is_write) {
503 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
504 vgic_update_state(vcpu->kvm);
505 return true;
506 }
507
508 return false;
509}
510
511static u32 vgic_cfg_expand(u16 val)
512{
513 u32 res = 0;
514 int i;
515
516 /*
517 * Turn a 16bit value like abcd...mnop into a 32bit word
518 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
519 */
520 for (i = 0; i < 16; i++)
521 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
522
523 return res;
524}
525
526static u16 vgic_cfg_compress(u32 val)
527{
528 u16 res = 0;
529 int i;
530
531 /*
532 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
533 * abcd...mnop which is what we really care about.
534 */
535 for (i = 0; i < 16; i++)
536 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
537
538 return res;
539}
540
541/*
542 * The distributor uses 2 bits per IRQ for the CFG register, but the
543 * LSB is always 0. As such, we only keep the upper bit, and use the
544 * two above functions to compress/expand the bits
545 */
546static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
547 struct kvm_exit_mmio *mmio, phys_addr_t offset)
548{
549 u32 val;
550 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
551 vcpu->vcpu_id, offset >> 1);
552 if (offset & 2)
553 val = *reg >> 16;
554 else
555 val = *reg & 0xffff;
556
557 val = vgic_cfg_expand(val);
558 vgic_reg_access(mmio, &val, offset,
559 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
560 if (mmio->is_write) {
561 if (offset < 4) {
562 *reg = ~0U; /* Force PPIs/SGIs to 1 */
563 return false;
564 }
565
566 val = vgic_cfg_compress(val);
567 if (offset & 2) {
568 *reg &= 0xffff;
569 *reg |= val << 16;
570 } else {
571 *reg &= 0xffff << 16;
572 *reg |= val;
573 }
574 }
575
576 return false;
577}
578
579static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
580 struct kvm_exit_mmio *mmio, phys_addr_t offset)
581{
582 u32 reg;
583 vgic_reg_access(mmio, &reg, offset,
584 ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
585 if (mmio->is_write) {
586 vgic_dispatch_sgi(vcpu, reg);
587 vgic_update_state(vcpu->kvm);
588 return true;
589 }
590
591 return false;
592}
593
594/*
595 * I would have liked to use the kvm_bus_io_*() API instead, but it
596 * cannot cope with banked registers (only the VM pointer is passed
597 * around, and we need the vcpu). One of these days, someone please
598 * fix it!
599 */
600struct mmio_range {
601 phys_addr_t base;
602 unsigned long len;
603 bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
604 phys_addr_t offset);
605};
606
607static const struct mmio_range vgic_ranges[] = {
608 {
609 .base = GIC_DIST_CTRL,
610 .len = 12,
611 .handle_mmio = handle_mmio_misc,
612 },
613 {
614 .base = GIC_DIST_IGROUP,
615 .len = VGIC_NR_IRQS / 8,
616 .handle_mmio = handle_mmio_raz_wi,
617 },
618 {
619 .base = GIC_DIST_ENABLE_SET,
620 .len = VGIC_NR_IRQS / 8,
621 .handle_mmio = handle_mmio_set_enable_reg,
622 },
623 {
624 .base = GIC_DIST_ENABLE_CLEAR,
625 .len = VGIC_NR_IRQS / 8,
626 .handle_mmio = handle_mmio_clear_enable_reg,
627 },
628 {
629 .base = GIC_DIST_PENDING_SET,
630 .len = VGIC_NR_IRQS / 8,
631 .handle_mmio = handle_mmio_set_pending_reg,
632 },
633 {
634 .base = GIC_DIST_PENDING_CLEAR,
635 .len = VGIC_NR_IRQS / 8,
636 .handle_mmio = handle_mmio_clear_pending_reg,
637 },
638 {
639 .base = GIC_DIST_ACTIVE_SET,
640 .len = VGIC_NR_IRQS / 8,
641 .handle_mmio = handle_mmio_raz_wi,
642 },
643 {
644 .base = GIC_DIST_ACTIVE_CLEAR,
645 .len = VGIC_NR_IRQS / 8,
646 .handle_mmio = handle_mmio_raz_wi,
647 },
648 {
649 .base = GIC_DIST_PRI,
650 .len = VGIC_NR_IRQS,
651 .handle_mmio = handle_mmio_priority_reg,
652 },
653 {
654 .base = GIC_DIST_TARGET,
655 .len = VGIC_NR_IRQS,
656 .handle_mmio = handle_mmio_target_reg,
657 },
658 {
659 .base = GIC_DIST_CONFIG,
660 .len = VGIC_NR_IRQS / 4,
661 .handle_mmio = handle_mmio_cfg_reg,
662 },
663 {
664 .base = GIC_DIST_SOFTINT,
665 .len = 4,
666 .handle_mmio = handle_mmio_sgi_reg,
667 },
668 {}
669};
670
671static const
672struct mmio_range *find_matching_range(const struct mmio_range *ranges,
673 struct kvm_exit_mmio *mmio,
674 phys_addr_t base)
675{
676 const struct mmio_range *r = ranges;
677 phys_addr_t addr = mmio->phys_addr - base;
678
679 while (r->len) {
680 if (addr >= r->base &&
681 (addr + mmio->len) <= (r->base + r->len))
682 return r;
683 r++;
684 }
685
686 return NULL;
687}
688
689/**
690 * vgic_handle_mmio - handle an in-kernel MMIO access
691 * @vcpu: pointer to the vcpu performing the access
692 * @run: pointer to the kvm_run structure
693 * @mmio: pointer to the data describing the access
694 *
695 * returns true if the MMIO access has been performed in kernel space,
696 * and false if it needs to be emulated in user space.
697 */
698bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
699 struct kvm_exit_mmio *mmio)
700{
701 const struct mmio_range *range;
702 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
703 unsigned long base = dist->vgic_dist_base;
704 bool updated_state;
705 unsigned long offset;
706
707 if (!irqchip_in_kernel(vcpu->kvm) ||
708 mmio->phys_addr < base ||
709 (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
710 return false;
711
712 /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
713 if (mmio->len > 4) {
714 kvm_inject_dabt(vcpu, mmio->phys_addr);
715 return true;
716 }
717
718 range = find_matching_range(vgic_ranges, mmio, base);
719 if (unlikely(!range || !range->handle_mmio)) {
720 pr_warn("Unhandled access %d %08llx %d\n",
721 mmio->is_write, mmio->phys_addr, mmio->len);
722 return false;
723 }
724
725 spin_lock(&vcpu->kvm->arch.vgic.lock);
726 offset = mmio->phys_addr - range->base - base;
727 updated_state = range->handle_mmio(vcpu, mmio, offset);
728 spin_unlock(&vcpu->kvm->arch.vgic.lock);
729 kvm_prepare_mmio(run, mmio);
730 kvm_handle_mmio_return(vcpu, run);
731
732 if (updated_state)
733 vgic_kick_vcpus(vcpu->kvm);
734
735 return true;
736}
737
738static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
739{
740 struct kvm *kvm = vcpu->kvm;
741 struct vgic_dist *dist = &kvm->arch.vgic;
742 int nrcpus = atomic_read(&kvm->online_vcpus);
743 u8 target_cpus;
744 int sgi, mode, c, vcpu_id;
745
746 vcpu_id = vcpu->vcpu_id;
747
748 sgi = reg & 0xf;
749 target_cpus = (reg >> 16) & 0xff;
750 mode = (reg >> 24) & 3;
751
752 switch (mode) {
753 case 0:
754 if (!target_cpus)
755 return;
756
757 case 1:
758 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
759 break;
760
761 case 2:
762 target_cpus = 1 << vcpu_id;
763 break;
764 }
765
766 kvm_for_each_vcpu(c, vcpu, kvm) {
767 if (target_cpus & 1) {
768 /* Flag the SGI as pending */
769 vgic_dist_irq_set(vcpu, sgi);
770 dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
771 kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
772 }
773
774 target_cpus >>= 1;
775 }
776}
777
778static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
779{
780 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
781 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
782 unsigned long pending_private, pending_shared;
783 int vcpu_id;
784
785 vcpu_id = vcpu->vcpu_id;
786 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
787 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
788
789 pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id);
790 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
791 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
792
793 pending = vgic_bitmap_get_shared_map(&dist->irq_state);
794 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
795 bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
796 bitmap_and(pend_shared, pend_shared,
797 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
798 VGIC_NR_SHARED_IRQS);
799
800 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
801 pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
802 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
803 pending_shared < VGIC_NR_SHARED_IRQS);
804}
805
806/*
807 * Update the interrupt state and determine which CPUs have pending
808 * interrupts. Must be called with distributor lock held.
809 */
810static void vgic_update_state(struct kvm *kvm)
811{
812 struct vgic_dist *dist = &kvm->arch.vgic;
813 struct kvm_vcpu *vcpu;
814 int c;
815
816 if (!dist->enabled) {
817 set_bit(0, &dist->irq_pending_on_cpu);
818 return;
819 }
820
821 kvm_for_each_vcpu(c, vcpu, kvm) {
822 if (compute_pending_for_cpu(vcpu)) {
823 pr_debug("CPU%d has pending interrupts\n", c);
824 set_bit(c, &dist->irq_pending_on_cpu);
825 }
826 }
827}
828
829#define LR_CPUID(lr) \
830 (((lr) & GICH_LR_PHYSID_CPUID) >> GICH_LR_PHYSID_CPUID_SHIFT)
831#define MK_LR_PEND(src, irq) \
832 (GICH_LR_PENDING_BIT | ((src) << GICH_LR_PHYSID_CPUID_SHIFT) | (irq))
833
834/*
835 * An interrupt may have been disabled after being made pending on the
836 * CPU interface (the classic case is a timer running while we're
837 * rebooting the guest - the interrupt would kick as soon as the CPU
838 * interface gets enabled, with deadly consequences).
839 *
840 * The solution is to examine already active LRs, and check the
841 * interrupt is still enabled. If not, just retire it.
842 */
843static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
844{
845 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
846 int lr;
847
848 for_each_set_bit(lr, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
849 int irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
850
851 if (!vgic_irq_is_enabled(vcpu, irq)) {
852 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
853 clear_bit(lr, vgic_cpu->lr_used);
854 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_STATE;
855 if (vgic_irq_is_active(vcpu, irq))
856 vgic_irq_clear_active(vcpu, irq);
857 }
858 }
859}
860
861/*
862 * Queue an interrupt to a CPU virtual interface. Return true on success,
863 * or false if it wasn't possible to queue it.
864 */
865static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
866{
867 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
868 int lr;
869
870 /* Sanitize the input... */
871 BUG_ON(sgi_source_id & ~7);
872 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
873 BUG_ON(irq >= VGIC_NR_IRQS);
874
875 kvm_debug("Queue IRQ%d\n", irq);
876
877 lr = vgic_cpu->vgic_irq_lr_map[irq];
878
879 /* Do we have an active interrupt for the same CPUID? */
880 if (lr != LR_EMPTY &&
881 (LR_CPUID(vgic_cpu->vgic_lr[lr]) == sgi_source_id)) {
882 kvm_debug("LR%d piggyback for IRQ%d %x\n",
883 lr, irq, vgic_cpu->vgic_lr[lr]);
884 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
885 vgic_cpu->vgic_lr[lr] |= GICH_LR_PENDING_BIT;
886
887 goto out;
888 }
889
890 /* Try to use another LR for this interrupt */
891 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
892 vgic_cpu->nr_lr);
893 if (lr >= vgic_cpu->nr_lr)
894 return false;
895
896 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
897 vgic_cpu->vgic_lr[lr] = MK_LR_PEND(sgi_source_id, irq);
898 vgic_cpu->vgic_irq_lr_map[irq] = lr;
899 set_bit(lr, vgic_cpu->lr_used);
900
901out:
902 if (!vgic_irq_is_edge(vcpu, irq))
903 vgic_cpu->vgic_lr[lr] |= GICH_LR_EOI;
904
905 return true;
906}
907
908static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
909{
910 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
911 unsigned long sources;
912 int vcpu_id = vcpu->vcpu_id;
913 int c;
914
915 sources = dist->irq_sgi_sources[vcpu_id][irq];
916
917 for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
918 if (vgic_queue_irq(vcpu, c, irq))
919 clear_bit(c, &sources);
920 }
921
922 dist->irq_sgi_sources[vcpu_id][irq] = sources;
923
924 /*
925 * If the sources bitmap has been cleared it means that we
926 * could queue all the SGIs onto link registers (see the
927 * clear_bit above), and therefore we are done with them in
928 * our emulated gic and can get rid of them.
929 */
930 if (!sources) {
931 vgic_dist_irq_clear(vcpu, irq);
932 vgic_cpu_irq_clear(vcpu, irq);
933 return true;
934 }
935
936 return false;
937}
938
939static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
940{
941 if (vgic_irq_is_active(vcpu, irq))
942 return true; /* level interrupt, already queued */
943
944 if (vgic_queue_irq(vcpu, 0, irq)) {
945 if (vgic_irq_is_edge(vcpu, irq)) {
946 vgic_dist_irq_clear(vcpu, irq);
947 vgic_cpu_irq_clear(vcpu, irq);
948 } else {
949 vgic_irq_set_active(vcpu, irq);
950 }
951
952 return true;
953 }
954
955 return false;
956}
957
958/*
959 * Fill the list registers with pending interrupts before running the
960 * guest.
961 */
962static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
963{
964 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
965 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
966 int i, vcpu_id;
967 int overflow = 0;
968
969 vcpu_id = vcpu->vcpu_id;
970
971 /*
972 * We may not have any pending interrupt, or the interrupts
973 * may have been serviced from another vcpu. In all cases,
974 * move along.
975 */
976 if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
977 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
978 goto epilog;
979 }
980
981 /* SGIs */
982 for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
983 if (!vgic_queue_sgi(vcpu, i))
984 overflow = 1;
985 }
986
987 /* PPIs */
988 for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
989 if (!vgic_queue_hwirq(vcpu, i))
990 overflow = 1;
991 }
992
993 /* SPIs */
994 for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
995 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
996 overflow = 1;
997 }
998
999epilog:
1000 if (overflow) {
1001 vgic_cpu->vgic_hcr |= GICH_HCR_UIE;
1002 } else {
1003 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
1004 /*
1005 * We're about to run this VCPU, and we've consumed
1006 * everything the distributor had in store for
1007 * us. Claim we don't have anything pending. We'll
1008 * adjust that if needed while exiting.
1009 */
1010 clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
1011 }
1012}
1013
1014static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1015{
1016 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1017 bool level_pending = false;
1018
1019 kvm_debug("MISR = %08x\n", vgic_cpu->vgic_misr);
1020
1021 /*
1022 * We do not need to take the distributor lock here, since the only
1023 * action we perform is clearing the irq_active_bit for an EOIed
1024 * level interrupt. There is a potential race with
1025 * the queuing of an interrupt in __kvm_vgic_flush_hwstate(), where we
1026 * check if the interrupt is already active. Two possibilities:
1027 *
1028 * - The queuing is occurring on the same vcpu: cannot happen,
1029 * as we're already in the context of this vcpu, and
1030 * executing the handler
1031 * - The interrupt has been migrated to another vcpu, and we
1032 * ignore this interrupt for this run. Big deal. It is still
1033 * pending though, and will get considered when this vcpu
1034 * exits.
1035 */
1036 if (vgic_cpu->vgic_misr & GICH_MISR_EOI) {
1037 /*
1038 * Some level interrupts have been EOIed. Clear their
1039 * active bit.
1040 */
1041 int lr, irq;
1042
1043 for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_eisr,
1044 vgic_cpu->nr_lr) {
1045 irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1046
1047 vgic_irq_clear_active(vcpu, irq);
1048 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_EOI;
1049
1050 /* Any additional pending interrupt? */
1051 if (vgic_dist_irq_is_pending(vcpu, irq)) {
1052 vgic_cpu_irq_set(vcpu, irq);
1053 level_pending = true;
1054 } else {
1055 vgic_cpu_irq_clear(vcpu, irq);
1056 }
1057 }
1058 }
1059
1060 if (vgic_cpu->vgic_misr & GICH_MISR_U)
1061 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
1062
1063 return level_pending;
1064}
1065
1066/*
1067 * Sync back the VGIC state after a guest run. We do not really touch
1068 * the distributor here (the irq_pending_on_cpu bit is safe to set),
1069 * so there is no need for taking its lock.
1070 */
1071static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1072{
1073 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1074 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1075 int lr, pending;
1076 bool level_pending;
1077
1078 level_pending = vgic_process_maintenance(vcpu);
1079
1080 /* Clear mappings for empty LRs */
1081 for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr,
1082 vgic_cpu->nr_lr) {
1083 int irq;
1084
1085 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1086 continue;
1087
1088 irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1089
1090 BUG_ON(irq >= VGIC_NR_IRQS);
1091 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1092 }
1093
1094 /* Check if we still have something up our sleeve... */
1095 pending = find_first_zero_bit((unsigned long *)vgic_cpu->vgic_elrsr,
1096 vgic_cpu->nr_lr);
1097 if (level_pending || pending < vgic_cpu->nr_lr)
1098 set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1099}
1100
1101void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1102{
1103 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1104
1105 if (!irqchip_in_kernel(vcpu->kvm))
1106 return;
1107
1108 spin_lock(&dist->lock);
1109 __kvm_vgic_flush_hwstate(vcpu);
1110 spin_unlock(&dist->lock);
1111}
1112
1113void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1114{
1115 if (!irqchip_in_kernel(vcpu->kvm))
1116 return;
1117
1118 __kvm_vgic_sync_hwstate(vcpu);
1119}
1120
1121int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1122{
1123 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1124
1125 if (!irqchip_in_kernel(vcpu->kvm))
1126 return 0;
1127
1128 return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1129}
1130
1131static void vgic_kick_vcpus(struct kvm *kvm)
1132{
1133 struct kvm_vcpu *vcpu;
1134 int c;
1135
1136 /*
1137 * We've injected an interrupt, time to find out who deserves
1138 * a good kick...
1139 */
1140 kvm_for_each_vcpu(c, vcpu, kvm) {
1141 if (kvm_vgic_vcpu_pending_irq(vcpu))
1142 kvm_vcpu_kick(vcpu);
1143 }
1144}
1145
1146static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1147{
1148 int is_edge = vgic_irq_is_edge(vcpu, irq);
1149 int state = vgic_dist_irq_is_pending(vcpu, irq);
1150
1151 /*
1152 * Only inject an interrupt if:
1153 * - edge triggered and we have a rising edge
1154 * - level triggered and we change level
1155 */
1156 if (is_edge)
1157 return level > state;
1158 else
1159 return level != state;
1160}
1161
1162static bool vgic_update_irq_state(struct kvm *kvm, int cpuid,
1163 unsigned int irq_num, bool level)
1164{
1165 struct vgic_dist *dist = &kvm->arch.vgic;
1166 struct kvm_vcpu *vcpu;
1167 int is_edge, is_level;
1168 int enabled;
1169 bool ret = true;
1170
1171 spin_lock(&dist->lock);
1172
1173 vcpu = kvm_get_vcpu(kvm, cpuid);
1174 is_edge = vgic_irq_is_edge(vcpu, irq_num);
1175 is_level = !is_edge;
1176
1177 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1178 ret = false;
1179 goto out;
1180 }
1181
1182 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1183 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1184 vcpu = kvm_get_vcpu(kvm, cpuid);
1185 }
1186
1187 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1188
1189 if (level)
1190 vgic_dist_irq_set(vcpu, irq_num);
1191 else
1192 vgic_dist_irq_clear(vcpu, irq_num);
1193
1194 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1195
1196 if (!enabled) {
1197 ret = false;
1198 goto out;
1199 }
1200
1201 if (is_level && vgic_irq_is_active(vcpu, irq_num)) {
1202 /*
1203 * Level interrupt in progress, will be picked up
1204 * when EOId.
1205 */
1206 ret = false;
1207 goto out;
1208 }
1209
1210 if (level) {
1211 vgic_cpu_irq_set(vcpu, irq_num);
1212 set_bit(cpuid, &dist->irq_pending_on_cpu);
1213 }
1214
1215out:
1216 spin_unlock(&dist->lock);
1217
1218 return ret;
1219}
1220
1221/**
1222 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1223 * @kvm: The VM structure pointer
1224 * @cpuid: The CPU for PPIs
1225 * @irq_num: The IRQ number that is assigned to the device
1226 * @level: Edge-triggered: true: to trigger the interrupt
1227 * false: to ignore the call
1228 * Level-sensitive true: activates an interrupt
1229 * false: deactivates an interrupt
1230 *
1231 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1232 * level-sensitive interrupts. You can think of the level parameter as 1
1233 * being HIGH and 0 being LOW and all devices being active-HIGH.
1234 */
1235int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1236 bool level)
1237{
1238 if (vgic_update_irq_state(kvm, cpuid, irq_num, level))
1239 vgic_kick_vcpus(kvm);
1240
1241 return 0;
1242}
1243
1244static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1245{
1246 /*
1247 * We cannot rely on the vgic maintenance interrupt to be
1248 * delivered synchronously. This means we can only use it to
1249 * exit the VM, and we perform the handling of EOIed
1250 * interrupts on the exit path (see vgic_process_maintenance).
1251 */
1252 return IRQ_HANDLED;
1253}
1254
1255int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1256{
1257 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1258 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1259 int i;
1260
1261 if (!irqchip_in_kernel(vcpu->kvm))
1262 return 0;
1263
1264 if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
1265 return -EBUSY;
1266
1267 for (i = 0; i < VGIC_NR_IRQS; i++) {
1268 if (i < VGIC_NR_PPIS)
1269 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1270 vcpu->vcpu_id, i, 1);
1271 if (i < VGIC_NR_PRIVATE_IRQS)
1272 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1273 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1274
1275 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1276 }
1277
1278 /*
1279 * By forcing VMCR to zero, the GIC will restore the binary
1280 * points to their reset values. Anything else resets to zero
1281 * anyway.
1282 */
1283 vgic_cpu->vgic_vmcr = 0;
1284
1285 vgic_cpu->nr_lr = vgic_nr_lr;
1286 vgic_cpu->vgic_hcr = GICH_HCR_EN; /* Get the show on the road... */
1287
1288 return 0;
1289}
1290
1291static void vgic_init_maintenance_interrupt(void *info)
1292{
1293 enable_percpu_irq(vgic_maint_irq, 0);
1294}
1295
1296static int vgic_cpu_notify(struct notifier_block *self,
1297 unsigned long action, void *cpu)
1298{
1299 switch (action) {
1300 case CPU_STARTING:
1301 case CPU_STARTING_FROZEN:
1302 vgic_init_maintenance_interrupt(NULL);
1303 break;
1304 case CPU_DYING:
1305 case CPU_DYING_FROZEN:
1306 disable_percpu_irq(vgic_maint_irq);
1307 break;
1308 }
1309
1310 return NOTIFY_OK;
1311}
1312
1313static struct notifier_block vgic_cpu_nb = {
1314 .notifier_call = vgic_cpu_notify,
1315};
1316
1317int kvm_vgic_hyp_init(void)
1318{
1319 int ret;
1320 struct resource vctrl_res;
1321 struct resource vcpu_res;
1322
1323 vgic_node = of_find_compatible_node(NULL, NULL, "arm,cortex-a15-gic");
1324 if (!vgic_node) {
1325 kvm_err("error: no compatible vgic node in DT\n");
1326 return -ENODEV;
1327 }
1328
1329 vgic_maint_irq = irq_of_parse_and_map(vgic_node, 0);
1330 if (!vgic_maint_irq) {
1331 kvm_err("error getting vgic maintenance irq from DT\n");
1332 ret = -ENXIO;
1333 goto out;
1334 }
1335
1336 ret = request_percpu_irq(vgic_maint_irq, vgic_maintenance_handler,
1337 "vgic", kvm_get_running_vcpus());
1338 if (ret) {
1339 kvm_err("Cannot register interrupt %d\n", vgic_maint_irq);
1340 goto out;
1341 }
1342
1343 ret = register_cpu_notifier(&vgic_cpu_nb);
1344 if (ret) {
1345 kvm_err("Cannot register vgic CPU notifier\n");
1346 goto out_free_irq;
1347 }
1348
1349 ret = of_address_to_resource(vgic_node, 2, &vctrl_res);
1350 if (ret) {
1351 kvm_err("Cannot obtain VCTRL resource\n");
1352 goto out_free_irq;
1353 }
1354
1355 vgic_vctrl_base = of_iomap(vgic_node, 2);
1356 if (!vgic_vctrl_base) {
1357 kvm_err("Cannot ioremap VCTRL\n");
1358 ret = -ENOMEM;
1359 goto out_free_irq;
1360 }
1361
1362 vgic_nr_lr = readl_relaxed(vgic_vctrl_base + GICH_VTR);
1363 vgic_nr_lr = (vgic_nr_lr & 0x3f) + 1;
1364
1365 ret = create_hyp_io_mappings(vgic_vctrl_base,
1366 vgic_vctrl_base + resource_size(&vctrl_res),
1367 vctrl_res.start);
1368 if (ret) {
1369 kvm_err("Cannot map VCTRL into hyp\n");
1370 goto out_unmap;
1371 }
1372
1373 kvm_info("%s@%llx IRQ%d\n", vgic_node->name,
1374 vctrl_res.start, vgic_maint_irq);
1375 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
1376
1377 if (of_address_to_resource(vgic_node, 3, &vcpu_res)) {
1378 kvm_err("Cannot obtain VCPU resource\n");
1379 ret = -ENXIO;
1380 goto out_unmap;
1381 }
1382 vgic_vcpu_base = vcpu_res.start;
1383
1384 goto out;
1385
1386out_unmap:
1387 iounmap(vgic_vctrl_base);
1388out_free_irq:
1389 free_percpu_irq(vgic_maint_irq, kvm_get_running_vcpus());
1390out:
1391 of_node_put(vgic_node);
1392 return ret;
1393}
1394
1395int kvm_vgic_init(struct kvm *kvm)
1396{
1397 int ret = 0, i;
1398
1399 mutex_lock(&kvm->lock);
1400
1401 if (vgic_initialized(kvm))
1402 goto out;
1403
1404 if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1405 IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1406 kvm_err("Need to set vgic cpu and dist addresses first\n");
1407 ret = -ENXIO;
1408 goto out;
1409 }
1410
1411 ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1412 vgic_vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1413 if (ret) {
1414 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1415 goto out;
1416 }
1417
1418 for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
1419 vgic_set_target_reg(kvm, 0, i);
1420
1421 kvm_timer_init(kvm);
1422 kvm->arch.vgic.ready = true;
1423out:
1424 mutex_unlock(&kvm->lock);
1425 return ret;
1426}
1427
1428int kvm_vgic_create(struct kvm *kvm)
1429{
1430 int ret = 0;
1431
1432 mutex_lock(&kvm->lock);
1433
1434 if (atomic_read(&kvm->online_vcpus) || kvm->arch.vgic.vctrl_base) {
1435 ret = -EEXIST;
1436 goto out;
1437 }
1438
1439 spin_lock_init(&kvm->arch.vgic.lock);
1440 kvm->arch.vgic.vctrl_base = vgic_vctrl_base;
1441 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1442 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1443
1444out:
1445 mutex_unlock(&kvm->lock);
1446 return ret;
1447}
1448
1449static bool vgic_ioaddr_overlap(struct kvm *kvm)
1450{
1451 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1452 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1453
1454 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1455 return 0;
1456 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1457 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1458 return -EBUSY;
1459 return 0;
1460}
1461
1462static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1463 phys_addr_t addr, phys_addr_t size)
1464{
1465 int ret;
1466
1467 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1468 return -EEXIST;
1469 if (addr + size < addr)
1470 return -EINVAL;
1471
1472 ret = vgic_ioaddr_overlap(kvm);
1473 if (ret)
1474 return ret;
1475 *ioaddr = addr;
1476 return ret;
1477}
1478
1479int kvm_vgic_set_addr(struct kvm *kvm, unsigned long type, u64 addr)
1480{
1481 int r = 0;
1482 struct vgic_dist *vgic = &kvm->arch.vgic;
1483
1484 if (addr & ~KVM_PHYS_MASK)
1485 return -E2BIG;
1486
1487 if (addr & ~PAGE_MASK)
1488 return -EINVAL;
1489
1490 mutex_lock(&kvm->lock);
1491 switch (type) {
1492 case KVM_VGIC_V2_ADDR_TYPE_DIST:
1493 r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
1494 addr, KVM_VGIC_V2_DIST_SIZE);
1495 break;
1496 case KVM_VGIC_V2_ADDR_TYPE_CPU:
1497 r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
1498 addr, KVM_VGIC_V2_CPU_SIZE);
1499 break;
1500 default:
1501 r = -ENODEV;
1502 }
1503
1504 mutex_unlock(&kvm->lock);
1505 return r;
1506}