aboutsummaryrefslogtreecommitdiffstats
path: root/arch/arm/vfp
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/arm/vfp
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'arch/arm/vfp')
-rw-r--r--arch/arm/vfp/Makefile12
-rw-r--r--arch/arm/vfp/entry.S45
-rw-r--r--arch/arm/vfp/vfp.h344
-rw-r--r--arch/arm/vfp/vfpdouble.c1186
-rw-r--r--arch/arm/vfp/vfphw.S215
-rw-r--r--arch/arm/vfp/vfpinstr.h88
-rw-r--r--arch/arm/vfp/vfpmodule.c288
-rw-r--r--arch/arm/vfp/vfpsingle.c1224
8 files changed, 3402 insertions, 0 deletions
diff --git a/arch/arm/vfp/Makefile b/arch/arm/vfp/Makefile
new file mode 100644
index 000000000000..afabac31dd1d
--- /dev/null
+++ b/arch/arm/vfp/Makefile
@@ -0,0 +1,12 @@
1#
2# linux/arch/arm/vfp/Makefile
3#
4# Copyright (C) 2001 ARM Limited
5#
6
7# EXTRA_CFLAGS := -DDEBUG
8# EXTRA_AFLAGS := -DDEBUG
9
10obj-y += vfp.o
11
12vfp-$(CONFIG_VFP) += entry.o vfpmodule.o vfphw.o vfpsingle.o vfpdouble.o
diff --git a/arch/arm/vfp/entry.S b/arch/arm/vfp/entry.S
new file mode 100644
index 000000000000..e73c8deca592
--- /dev/null
+++ b/arch/arm/vfp/entry.S
@@ -0,0 +1,45 @@
1/*
2 * linux/arch/arm/vfp/entry.S
3 *
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * Basic entry code, called from the kernel's undefined instruction trap.
12 * r0 = faulted instruction
13 * r5 = faulted PC+4
14 * r9 = successful return
15 * r10 = thread_info structure
16 * lr = failure return
17 */
18#include <linux/linkage.h>
19#include <linux/init.h>
20#include <asm/constants.h>
21#include <asm/vfpmacros.h>
22
23 .globl do_vfp
24do_vfp:
25 ldr r4, .LCvfp
26 add r10, r10, #TI_VFPSTATE @ r10 = workspace
27 ldr pc, [r4] @ call VFP entry point
28
29.LCvfp:
30 .word vfp_vector
31
32@ This code is called if the VFP does not exist. It needs to flag the
33@ failure to the VFP initialisation code.
34
35 __INIT
36 .globl vfp_testing_entry
37vfp_testing_entry:
38 ldr r0, VFP_arch_address
39 str r5, [r0] @ known non-zero value
40 mov pc, r9 @ we have handled the fault
41
42VFP_arch_address:
43 .word VFP_arch
44
45 __FINIT
diff --git a/arch/arm/vfp/vfp.h b/arch/arm/vfp/vfp.h
new file mode 100644
index 000000000000..55a02bc994a3
--- /dev/null
+++ b/arch/arm/vfp/vfp.h
@@ -0,0 +1,344 @@
1/*
2 * linux/arch/arm/vfp/vfp.h
3 *
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
13{
14 if (shift) {
15 if (shift < 32)
16 val = val >> shift | ((val << (32 - shift)) != 0);
17 else
18 val = val != 0;
19 }
20 return val;
21}
22
23static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
24{
25 if (shift) {
26 if (shift < 64)
27 val = val >> shift | ((val << (64 - shift)) != 0);
28 else
29 val = val != 0;
30 }
31 return val;
32}
33
34static inline u32 vfp_hi64to32jamming(u64 val)
35{
36 u32 v;
37
38 asm(
39 "cmp %Q1, #1 @ vfp_hi64to32jamming\n\t"
40 "movcc %0, %R1\n\t"
41 "orrcs %0, %R1, #1"
42 : "=r" (v) : "r" (val) : "cc");
43
44 return v;
45}
46
47static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
48{
49 asm( "adds %Q0, %Q2, %Q4\n\t"
50 "adcs %R0, %R2, %R4\n\t"
51 "adcs %Q1, %Q3, %Q5\n\t"
52 "adc %R1, %R3, %R5"
53 : "=r" (nl), "=r" (nh)
54 : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
55 : "cc");
56 *resh = nh;
57 *resl = nl;
58}
59
60static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
61{
62 asm( "subs %Q0, %Q2, %Q4\n\t"
63 "sbcs %R0, %R2, %R4\n\t"
64 "sbcs %Q1, %Q3, %Q5\n\t"
65 "sbc %R1, %R3, %R5\n\t"
66 : "=r" (nl), "=r" (nh)
67 : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
68 : "cc");
69 *resh = nh;
70 *resl = nl;
71}
72
73static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
74{
75 u32 nh, nl, mh, ml;
76 u64 rh, rma, rmb, rl;
77
78 nl = n;
79 ml = m;
80 rl = (u64)nl * ml;
81
82 nh = n >> 32;
83 rma = (u64)nh * ml;
84
85 mh = m >> 32;
86 rmb = (u64)nl * mh;
87 rma += rmb;
88
89 rh = (u64)nh * mh;
90 rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
91
92 rma <<= 32;
93 rl += rma;
94 rh += (rl < rma);
95
96 *resl = rl;
97 *resh = rh;
98}
99
100static inline void shift64left(u64 *resh, u64 *resl, u64 n)
101{
102 *resh = n >> 63;
103 *resl = n << 1;
104}
105
106static inline u64 vfp_hi64multiply64(u64 n, u64 m)
107{
108 u64 rh, rl;
109 mul64to128(&rh, &rl, n, m);
110 return rh | (rl != 0);
111}
112
113static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
114{
115 u64 mh, ml, remh, reml, termh, terml, z;
116
117 if (nh >= m)
118 return ~0ULL;
119 mh = m >> 32;
120 z = (mh << 32 <= nh) ? 0xffffffff00000000ULL : (nh / mh) << 32;
121 mul64to128(&termh, &terml, m, z);
122 sub128(&remh, &reml, nh, nl, termh, terml);
123 ml = m << 32;
124 while ((s64)remh < 0) {
125 z -= 0x100000000ULL;
126 add128(&remh, &reml, remh, reml, mh, ml);
127 }
128 remh = (remh << 32) | (reml >> 32);
129 z |= (mh << 32 <= remh) ? 0xffffffff : remh / mh;
130 return z;
131}
132
133/*
134 * Operations on unpacked elements
135 */
136#define vfp_sign_negate(sign) (sign ^ 0x8000)
137
138/*
139 * Single-precision
140 */
141struct vfp_single {
142 s16 exponent;
143 u16 sign;
144 u32 significand;
145};
146
147extern s32 vfp_get_float(unsigned int reg);
148extern void vfp_put_float(unsigned int reg, s32 val);
149
150/*
151 * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
152 * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
153 * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
154 * which are not propagated to the float upon packing.
155 */
156#define VFP_SINGLE_MANTISSA_BITS (23)
157#define VFP_SINGLE_EXPONENT_BITS (8)
158#define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2)
159#define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1)
160
161/*
162 * The bit in an unpacked float which indicates that it is a quiet NaN
163 */
164#define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
165
166/*
167 * Operations on packed single-precision numbers
168 */
169#define vfp_single_packed_sign(v) ((v) & 0x80000000)
170#define vfp_single_packed_negate(v) ((v) ^ 0x80000000)
171#define vfp_single_packed_abs(v) ((v) & ~0x80000000)
172#define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
173#define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
174
175/*
176 * Unpack a single-precision float. Note that this returns the magnitude
177 * of the single-precision float mantissa with the 1. if necessary,
178 * aligned to bit 30.
179 */
180static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
181{
182 u32 significand;
183
184 s->sign = vfp_single_packed_sign(val) >> 16,
185 s->exponent = vfp_single_packed_exponent(val);
186
187 significand = (u32) val;
188 significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
189 if (s->exponent && s->exponent != 255)
190 significand |= 0x40000000;
191 s->significand = significand;
192}
193
194/*
195 * Re-pack a single-precision float. This assumes that the float is
196 * already normalised such that the MSB is bit 30, _not_ bit 31.
197 */
198static inline s32 vfp_single_pack(struct vfp_single *s)
199{
200 u32 val;
201 val = (s->sign << 16) +
202 (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
203 (s->significand >> VFP_SINGLE_LOW_BITS);
204 return (s32)val;
205}
206
207#define VFP_NUMBER (1<<0)
208#define VFP_ZERO (1<<1)
209#define VFP_DENORMAL (1<<2)
210#define VFP_INFINITY (1<<3)
211#define VFP_NAN (1<<4)
212#define VFP_NAN_SIGNAL (1<<5)
213
214#define VFP_QNAN (VFP_NAN)
215#define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL)
216
217static inline int vfp_single_type(struct vfp_single *s)
218{
219 int type = VFP_NUMBER;
220 if (s->exponent == 255) {
221 if (s->significand == 0)
222 type = VFP_INFINITY;
223 else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
224 type = VFP_QNAN;
225 else
226 type = VFP_SNAN;
227 } else if (s->exponent == 0) {
228 if (s->significand == 0)
229 type |= VFP_ZERO;
230 else
231 type |= VFP_DENORMAL;
232 }
233 return type;
234}
235
236#ifndef DEBUG
237#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
238u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
239#else
240u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
241#endif
242
243/*
244 * Double-precision
245 */
246struct vfp_double {
247 s16 exponent;
248 u16 sign;
249 u64 significand;
250};
251
252/*
253 * VFP_REG_ZERO is a special register number for vfp_get_double
254 * which returns (double)0.0. This is useful for the compare with
255 * zero instructions.
256 */
257#define VFP_REG_ZERO 16
258extern u64 vfp_get_double(unsigned int reg);
259extern void vfp_put_double(unsigned int reg, u64 val);
260
261#define VFP_DOUBLE_MANTISSA_BITS (52)
262#define VFP_DOUBLE_EXPONENT_BITS (11)
263#define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2)
264#define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1)
265
266/*
267 * The bit in an unpacked double which indicates that it is a quiet NaN
268 */
269#define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
270
271/*
272 * Operations on packed single-precision numbers
273 */
274#define vfp_double_packed_sign(v) ((v) & (1ULL << 63))
275#define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63))
276#define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63))
277#define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
278#define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
279
280/*
281 * Unpack a double-precision float. Note that this returns the magnitude
282 * of the double-precision float mantissa with the 1. if necessary,
283 * aligned to bit 62.
284 */
285static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
286{
287 u64 significand;
288
289 s->sign = vfp_double_packed_sign(val) >> 48;
290 s->exponent = vfp_double_packed_exponent(val);
291
292 significand = (u64) val;
293 significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
294 if (s->exponent && s->exponent != 2047)
295 significand |= (1ULL << 62);
296 s->significand = significand;
297}
298
299/*
300 * Re-pack a double-precision float. This assumes that the float is
301 * already normalised such that the MSB is bit 30, _not_ bit 31.
302 */
303static inline s64 vfp_double_pack(struct vfp_double *s)
304{
305 u64 val;
306 val = ((u64)s->sign << 48) +
307 ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
308 (s->significand >> VFP_DOUBLE_LOW_BITS);
309 return (s64)val;
310}
311
312static inline int vfp_double_type(struct vfp_double *s)
313{
314 int type = VFP_NUMBER;
315 if (s->exponent == 2047) {
316 if (s->significand == 0)
317 type = VFP_INFINITY;
318 else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
319 type = VFP_QNAN;
320 else
321 type = VFP_SNAN;
322 } else if (s->exponent == 0) {
323 if (s->significand == 0)
324 type |= VFP_ZERO;
325 else
326 type |= VFP_DENORMAL;
327 }
328 return type;
329}
330
331u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
332
333/*
334 * System registers
335 */
336extern u32 vfp_get_sys(unsigned int reg);
337extern void vfp_put_sys(unsigned int reg, u32 val);
338
339u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
340
341/*
342 * A special flag to tell the normalisation code not to normalise.
343 */
344#define VFP_NAN_FLAG 0x100
diff --git a/arch/arm/vfp/vfpdouble.c b/arch/arm/vfp/vfpdouble.c
new file mode 100644
index 000000000000..fa3053e84db5
--- /dev/null
+++ b/arch/arm/vfp/vfpdouble.c
@@ -0,0 +1,1186 @@
1/*
2 * linux/arch/arm/vfp/vfpdouble.c
3 *
4 * This code is derived in part from John R. Housers softfloat library, which
5 * carries the following notice:
6 *
7 * ===========================================================================
8 * This C source file is part of the SoftFloat IEC/IEEE Floating-point
9 * Arithmetic Package, Release 2.
10 *
11 * Written by John R. Hauser. This work was made possible in part by the
12 * International Computer Science Institute, located at Suite 600, 1947 Center
13 * Street, Berkeley, California 94704. Funding was partially provided by the
14 * National Science Foundation under grant MIP-9311980. The original version
15 * of this code was written as part of a project to build a fixed-point vector
16 * processor in collaboration with the University of California at Berkeley,
17 * overseen by Profs. Nelson Morgan and John Wawrzynek. More information
18 * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
19 * arithmetic/softfloat.html'.
20 *
21 * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
22 * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
23 * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
24 * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
25 * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
26 *
27 * Derivative works are acceptable, even for commercial purposes, so long as
28 * (1) they include prominent notice that the work is derivative, and (2) they
29 * include prominent notice akin to these three paragraphs for those parts of
30 * this code that are retained.
31 * ===========================================================================
32 */
33#include <linux/kernel.h>
34#include <linux/bitops.h>
35#include <asm/ptrace.h>
36#include <asm/vfp.h>
37
38#include "vfpinstr.h"
39#include "vfp.h"
40
41static struct vfp_double vfp_double_default_qnan = {
42 .exponent = 2047,
43 .sign = 0,
44 .significand = VFP_DOUBLE_SIGNIFICAND_QNAN,
45};
46
47static void vfp_double_dump(const char *str, struct vfp_double *d)
48{
49 pr_debug("VFP: %s: sign=%d exponent=%d significand=%016llx\n",
50 str, d->sign != 0, d->exponent, d->significand);
51}
52
53static void vfp_double_normalise_denormal(struct vfp_double *vd)
54{
55 int bits = 31 - fls(vd->significand >> 32);
56 if (bits == 31)
57 bits = 62 - fls(vd->significand);
58
59 vfp_double_dump("normalise_denormal: in", vd);
60
61 if (bits) {
62 vd->exponent -= bits - 1;
63 vd->significand <<= bits;
64 }
65
66 vfp_double_dump("normalise_denormal: out", vd);
67}
68
69u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func)
70{
71 u64 significand, incr;
72 int exponent, shift, underflow;
73 u32 rmode;
74
75 vfp_double_dump("pack: in", vd);
76
77 /*
78 * Infinities and NaNs are a special case.
79 */
80 if (vd->exponent == 2047 && (vd->significand == 0 || exceptions))
81 goto pack;
82
83 /*
84 * Special-case zero.
85 */
86 if (vd->significand == 0) {
87 vd->exponent = 0;
88 goto pack;
89 }
90
91 exponent = vd->exponent;
92 significand = vd->significand;
93
94 shift = 32 - fls(significand >> 32);
95 if (shift == 32)
96 shift = 64 - fls(significand);
97 if (shift) {
98 exponent -= shift;
99 significand <<= shift;
100 }
101
102#ifdef DEBUG
103 vd->exponent = exponent;
104 vd->significand = significand;
105 vfp_double_dump("pack: normalised", vd);
106#endif
107
108 /*
109 * Tiny number?
110 */
111 underflow = exponent < 0;
112 if (underflow) {
113 significand = vfp_shiftright64jamming(significand, -exponent);
114 exponent = 0;
115#ifdef DEBUG
116 vd->exponent = exponent;
117 vd->significand = significand;
118 vfp_double_dump("pack: tiny number", vd);
119#endif
120 if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1)))
121 underflow = 0;
122 }
123
124 /*
125 * Select rounding increment.
126 */
127 incr = 0;
128 rmode = fpscr & FPSCR_RMODE_MASK;
129
130 if (rmode == FPSCR_ROUND_NEAREST) {
131 incr = 1ULL << VFP_DOUBLE_LOW_BITS;
132 if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0)
133 incr -= 1;
134 } else if (rmode == FPSCR_ROUND_TOZERO) {
135 incr = 0;
136 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0))
137 incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1;
138
139 pr_debug("VFP: rounding increment = 0x%08llx\n", incr);
140
141 /*
142 * Is our rounding going to overflow?
143 */
144 if ((significand + incr) < significand) {
145 exponent += 1;
146 significand = (significand >> 1) | (significand & 1);
147 incr >>= 1;
148#ifdef DEBUG
149 vd->exponent = exponent;
150 vd->significand = significand;
151 vfp_double_dump("pack: overflow", vd);
152#endif
153 }
154
155 /*
156 * If any of the low bits (which will be shifted out of the
157 * number) are non-zero, the result is inexact.
158 */
159 if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1))
160 exceptions |= FPSCR_IXC;
161
162 /*
163 * Do our rounding.
164 */
165 significand += incr;
166
167 /*
168 * Infinity?
169 */
170 if (exponent >= 2046) {
171 exceptions |= FPSCR_OFC | FPSCR_IXC;
172 if (incr == 0) {
173 vd->exponent = 2045;
174 vd->significand = 0x7fffffffffffffffULL;
175 } else {
176 vd->exponent = 2047; /* infinity */
177 vd->significand = 0;
178 }
179 } else {
180 if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0)
181 exponent = 0;
182 if (exponent || significand > 0x8000000000000000ULL)
183 underflow = 0;
184 if (underflow)
185 exceptions |= FPSCR_UFC;
186 vd->exponent = exponent;
187 vd->significand = significand >> 1;
188 }
189
190 pack:
191 vfp_double_dump("pack: final", vd);
192 {
193 s64 d = vfp_double_pack(vd);
194 pr_debug("VFP: %s: d(d%d)=%016llx exceptions=%08x\n", func,
195 dd, d, exceptions);
196 vfp_put_double(dd, d);
197 }
198 return exceptions & ~VFP_NAN_FLAG;
199}
200
201/*
202 * Propagate the NaN, setting exceptions if it is signalling.
203 * 'n' is always a NaN. 'm' may be a number, NaN or infinity.
204 */
205static u32
206vfp_propagate_nan(struct vfp_double *vdd, struct vfp_double *vdn,
207 struct vfp_double *vdm, u32 fpscr)
208{
209 struct vfp_double *nan;
210 int tn, tm = 0;
211
212 tn = vfp_double_type(vdn);
213
214 if (vdm)
215 tm = vfp_double_type(vdm);
216
217 if (fpscr & FPSCR_DEFAULT_NAN)
218 /*
219 * Default NaN mode - always returns a quiet NaN
220 */
221 nan = &vfp_double_default_qnan;
222 else {
223 /*
224 * Contemporary mode - select the first signalling
225 * NAN, or if neither are signalling, the first
226 * quiet NAN.
227 */
228 if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
229 nan = vdn;
230 else
231 nan = vdm;
232 /*
233 * Make the NaN quiet.
234 */
235 nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
236 }
237
238 *vdd = *nan;
239
240 /*
241 * If one was a signalling NAN, raise invalid operation.
242 */
243 return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
244}
245
246/*
247 * Extended operations
248 */
249static u32 vfp_double_fabs(int dd, int unused, int dm, u32 fpscr)
250{
251 vfp_put_double(dd, vfp_double_packed_abs(vfp_get_double(dm)));
252 return 0;
253}
254
255static u32 vfp_double_fcpy(int dd, int unused, int dm, u32 fpscr)
256{
257 vfp_put_double(dd, vfp_get_double(dm));
258 return 0;
259}
260
261static u32 vfp_double_fneg(int dd, int unused, int dm, u32 fpscr)
262{
263 vfp_put_double(dd, vfp_double_packed_negate(vfp_get_double(dm)));
264 return 0;
265}
266
267static u32 vfp_double_fsqrt(int dd, int unused, int dm, u32 fpscr)
268{
269 struct vfp_double vdm, vdd;
270 int ret, tm;
271
272 vfp_double_unpack(&vdm, vfp_get_double(dm));
273 tm = vfp_double_type(&vdm);
274 if (tm & (VFP_NAN|VFP_INFINITY)) {
275 struct vfp_double *vdp = &vdd;
276
277 if (tm & VFP_NAN)
278 ret = vfp_propagate_nan(vdp, &vdm, NULL, fpscr);
279 else if (vdm.sign == 0) {
280 sqrt_copy:
281 vdp = &vdm;
282 ret = 0;
283 } else {
284 sqrt_invalid:
285 vdp = &vfp_double_default_qnan;
286 ret = FPSCR_IOC;
287 }
288 vfp_put_double(dd, vfp_double_pack(vdp));
289 return ret;
290 }
291
292 /*
293 * sqrt(+/- 0) == +/- 0
294 */
295 if (tm & VFP_ZERO)
296 goto sqrt_copy;
297
298 /*
299 * Normalise a denormalised number
300 */
301 if (tm & VFP_DENORMAL)
302 vfp_double_normalise_denormal(&vdm);
303
304 /*
305 * sqrt(<0) = invalid
306 */
307 if (vdm.sign)
308 goto sqrt_invalid;
309
310 vfp_double_dump("sqrt", &vdm);
311
312 /*
313 * Estimate the square root.
314 */
315 vdd.sign = 0;
316 vdd.exponent = ((vdm.exponent - 1023) >> 1) + 1023;
317 vdd.significand = (u64)vfp_estimate_sqrt_significand(vdm.exponent, vdm.significand >> 32) << 31;
318
319 vfp_double_dump("sqrt estimate1", &vdd);
320
321 vdm.significand >>= 1 + (vdm.exponent & 1);
322 vdd.significand += 2 + vfp_estimate_div128to64(vdm.significand, 0, vdd.significand);
323
324 vfp_double_dump("sqrt estimate2", &vdd);
325
326 /*
327 * And now adjust.
328 */
329 if ((vdd.significand & VFP_DOUBLE_LOW_BITS_MASK) <= 5) {
330 if (vdd.significand < 2) {
331 vdd.significand = ~0ULL;
332 } else {
333 u64 termh, terml, remh, reml;
334 vdm.significand <<= 2;
335 mul64to128(&termh, &terml, vdd.significand, vdd.significand);
336 sub128(&remh, &reml, vdm.significand, 0, termh, terml);
337 while ((s64)remh < 0) {
338 vdd.significand -= 1;
339 shift64left(&termh, &terml, vdd.significand);
340 terml |= 1;
341 add128(&remh, &reml, remh, reml, termh, terml);
342 }
343 vdd.significand |= (remh | reml) != 0;
344 }
345 }
346 vdd.significand = vfp_shiftright64jamming(vdd.significand, 1);
347
348 return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fsqrt");
349}
350
351/*
352 * Equal := ZC
353 * Less than := N
354 * Greater than := C
355 * Unordered := CV
356 */
357static u32 vfp_compare(int dd, int signal_on_qnan, int dm, u32 fpscr)
358{
359 s64 d, m;
360 u32 ret = 0;
361
362 m = vfp_get_double(dm);
363 if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) {
364 ret |= FPSCR_C | FPSCR_V;
365 if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
366 /*
367 * Signalling NaN, or signalling on quiet NaN
368 */
369 ret |= FPSCR_IOC;
370 }
371
372 d = vfp_get_double(dd);
373 if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) {
374 ret |= FPSCR_C | FPSCR_V;
375 if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
376 /*
377 * Signalling NaN, or signalling on quiet NaN
378 */
379 ret |= FPSCR_IOC;
380 }
381
382 if (ret == 0) {
383 if (d == m || vfp_double_packed_abs(d | m) == 0) {
384 /*
385 * equal
386 */
387 ret |= FPSCR_Z | FPSCR_C;
388 } else if (vfp_double_packed_sign(d ^ m)) {
389 /*
390 * different signs
391 */
392 if (vfp_double_packed_sign(d))
393 /*
394 * d is negative, so d < m
395 */
396 ret |= FPSCR_N;
397 else
398 /*
399 * d is positive, so d > m
400 */
401 ret |= FPSCR_C;
402 } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) {
403 /*
404 * d < m
405 */
406 ret |= FPSCR_N;
407 } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) {
408 /*
409 * d > m
410 */
411 ret |= FPSCR_C;
412 }
413 }
414
415 return ret;
416}
417
418static u32 vfp_double_fcmp(int dd, int unused, int dm, u32 fpscr)
419{
420 return vfp_compare(dd, 0, dm, fpscr);
421}
422
423static u32 vfp_double_fcmpe(int dd, int unused, int dm, u32 fpscr)
424{
425 return vfp_compare(dd, 1, dm, fpscr);
426}
427
428static u32 vfp_double_fcmpz(int dd, int unused, int dm, u32 fpscr)
429{
430 return vfp_compare(dd, 0, VFP_REG_ZERO, fpscr);
431}
432
433static u32 vfp_double_fcmpez(int dd, int unused, int dm, u32 fpscr)
434{
435 return vfp_compare(dd, 1, VFP_REG_ZERO, fpscr);
436}
437
438static u32 vfp_double_fcvts(int sd, int unused, int dm, u32 fpscr)
439{
440 struct vfp_double vdm;
441 struct vfp_single vsd;
442 int tm;
443 u32 exceptions = 0;
444
445 vfp_double_unpack(&vdm, vfp_get_double(dm));
446
447 tm = vfp_double_type(&vdm);
448
449 /*
450 * If we have a signalling NaN, signal invalid operation.
451 */
452 if (tm == VFP_SNAN)
453 exceptions = FPSCR_IOC;
454
455 if (tm & VFP_DENORMAL)
456 vfp_double_normalise_denormal(&vdm);
457
458 vsd.sign = vdm.sign;
459 vsd.significand = vfp_hi64to32jamming(vdm.significand);
460
461 /*
462 * If we have an infinity or a NaN, the exponent must be 255
463 */
464 if (tm & (VFP_INFINITY|VFP_NAN)) {
465 vsd.exponent = 255;
466 if (tm & VFP_NAN)
467 vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
468 goto pack_nan;
469 } else if (tm & VFP_ZERO)
470 vsd.exponent = 0;
471 else
472 vsd.exponent = vdm.exponent - (1023 - 127);
473
474 return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fcvts");
475
476 pack_nan:
477 vfp_put_float(sd, vfp_single_pack(&vsd));
478 return exceptions;
479}
480
481static u32 vfp_double_fuito(int dd, int unused, int dm, u32 fpscr)
482{
483 struct vfp_double vdm;
484 u32 m = vfp_get_float(dm);
485
486 vdm.sign = 0;
487 vdm.exponent = 1023 + 63 - 1;
488 vdm.significand = (u64)m;
489
490 return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fuito");
491}
492
493static u32 vfp_double_fsito(int dd, int unused, int dm, u32 fpscr)
494{
495 struct vfp_double vdm;
496 u32 m = vfp_get_float(dm);
497
498 vdm.sign = (m & 0x80000000) >> 16;
499 vdm.exponent = 1023 + 63 - 1;
500 vdm.significand = vdm.sign ? -m : m;
501
502 return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fsito");
503}
504
505static u32 vfp_double_ftoui(int sd, int unused, int dm, u32 fpscr)
506{
507 struct vfp_double vdm;
508 u32 d, exceptions = 0;
509 int rmode = fpscr & FPSCR_RMODE_MASK;
510 int tm;
511
512 vfp_double_unpack(&vdm, vfp_get_double(dm));
513
514 /*
515 * Do we have a denormalised number?
516 */
517 tm = vfp_double_type(&vdm);
518 if (tm & VFP_DENORMAL)
519 exceptions |= FPSCR_IDC;
520
521 if (tm & VFP_NAN)
522 vdm.sign = 0;
523
524 if (vdm.exponent >= 1023 + 32) {
525 d = vdm.sign ? 0 : 0xffffffff;
526 exceptions = FPSCR_IOC;
527 } else if (vdm.exponent >= 1023 - 1) {
528 int shift = 1023 + 63 - vdm.exponent;
529 u64 rem, incr = 0;
530
531 /*
532 * 2^0 <= m < 2^32-2^8
533 */
534 d = (vdm.significand << 1) >> shift;
535 rem = vdm.significand << (65 - shift);
536
537 if (rmode == FPSCR_ROUND_NEAREST) {
538 incr = 0x8000000000000000ULL;
539 if ((d & 1) == 0)
540 incr -= 1;
541 } else if (rmode == FPSCR_ROUND_TOZERO) {
542 incr = 0;
543 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
544 incr = ~0ULL;
545 }
546
547 if ((rem + incr) < rem) {
548 if (d < 0xffffffff)
549 d += 1;
550 else
551 exceptions |= FPSCR_IOC;
552 }
553
554 if (d && vdm.sign) {
555 d = 0;
556 exceptions |= FPSCR_IOC;
557 } else if (rem)
558 exceptions |= FPSCR_IXC;
559 } else {
560 d = 0;
561 if (vdm.exponent | vdm.significand) {
562 exceptions |= FPSCR_IXC;
563 if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)
564 d = 1;
565 else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) {
566 d = 0;
567 exceptions |= FPSCR_IOC;
568 }
569 }
570 }
571
572 pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
573
574 vfp_put_float(sd, d);
575
576 return exceptions;
577}
578
579static u32 vfp_double_ftouiz(int sd, int unused, int dm, u32 fpscr)
580{
581 return vfp_double_ftoui(sd, unused, dm, FPSCR_ROUND_TOZERO);
582}
583
584static u32 vfp_double_ftosi(int sd, int unused, int dm, u32 fpscr)
585{
586 struct vfp_double vdm;
587 u32 d, exceptions = 0;
588 int rmode = fpscr & FPSCR_RMODE_MASK;
589
590 vfp_double_unpack(&vdm, vfp_get_double(dm));
591 vfp_double_dump("VDM", &vdm);
592
593 /*
594 * Do we have denormalised number?
595 */
596 if (vfp_double_type(&vdm) & VFP_DENORMAL)
597 exceptions |= FPSCR_IDC;
598
599 if (vdm.exponent >= 1023 + 32) {
600 d = 0x7fffffff;
601 if (vdm.sign)
602 d = ~d;
603 exceptions |= FPSCR_IOC;
604 } else if (vdm.exponent >= 1023 - 1) {
605 int shift = 1023 + 63 - vdm.exponent; /* 58 */
606 u64 rem, incr = 0;
607
608 d = (vdm.significand << 1) >> shift;
609 rem = vdm.significand << (65 - shift);
610
611 if (rmode == FPSCR_ROUND_NEAREST) {
612 incr = 0x8000000000000000ULL;
613 if ((d & 1) == 0)
614 incr -= 1;
615 } else if (rmode == FPSCR_ROUND_TOZERO) {
616 incr = 0;
617 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
618 incr = ~0ULL;
619 }
620
621 if ((rem + incr) < rem && d < 0xffffffff)
622 d += 1;
623 if (d > 0x7fffffff + (vdm.sign != 0)) {
624 d = 0x7fffffff + (vdm.sign != 0);
625 exceptions |= FPSCR_IOC;
626 } else if (rem)
627 exceptions |= FPSCR_IXC;
628
629 if (vdm.sign)
630 d = -d;
631 } else {
632 d = 0;
633 if (vdm.exponent | vdm.significand) {
634 exceptions |= FPSCR_IXC;
635 if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)
636 d = 1;
637 else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign)
638 d = -1;
639 }
640 }
641
642 pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
643
644 vfp_put_float(sd, (s32)d);
645
646 return exceptions;
647}
648
649static u32 vfp_double_ftosiz(int dd, int unused, int dm, u32 fpscr)
650{
651 return vfp_double_ftosi(dd, unused, dm, FPSCR_ROUND_TOZERO);
652}
653
654
655static u32 (* const fop_extfns[32])(int dd, int unused, int dm, u32 fpscr) = {
656 [FEXT_TO_IDX(FEXT_FCPY)] = vfp_double_fcpy,
657 [FEXT_TO_IDX(FEXT_FABS)] = vfp_double_fabs,
658 [FEXT_TO_IDX(FEXT_FNEG)] = vfp_double_fneg,
659 [FEXT_TO_IDX(FEXT_FSQRT)] = vfp_double_fsqrt,
660 [FEXT_TO_IDX(FEXT_FCMP)] = vfp_double_fcmp,
661 [FEXT_TO_IDX(FEXT_FCMPE)] = vfp_double_fcmpe,
662 [FEXT_TO_IDX(FEXT_FCMPZ)] = vfp_double_fcmpz,
663 [FEXT_TO_IDX(FEXT_FCMPEZ)] = vfp_double_fcmpez,
664 [FEXT_TO_IDX(FEXT_FCVT)] = vfp_double_fcvts,
665 [FEXT_TO_IDX(FEXT_FUITO)] = vfp_double_fuito,
666 [FEXT_TO_IDX(FEXT_FSITO)] = vfp_double_fsito,
667 [FEXT_TO_IDX(FEXT_FTOUI)] = vfp_double_ftoui,
668 [FEXT_TO_IDX(FEXT_FTOUIZ)] = vfp_double_ftouiz,
669 [FEXT_TO_IDX(FEXT_FTOSI)] = vfp_double_ftosi,
670 [FEXT_TO_IDX(FEXT_FTOSIZ)] = vfp_double_ftosiz,
671};
672
673
674
675
676static u32
677vfp_double_fadd_nonnumber(struct vfp_double *vdd, struct vfp_double *vdn,
678 struct vfp_double *vdm, u32 fpscr)
679{
680 struct vfp_double *vdp;
681 u32 exceptions = 0;
682 int tn, tm;
683
684 tn = vfp_double_type(vdn);
685 tm = vfp_double_type(vdm);
686
687 if (tn & tm & VFP_INFINITY) {
688 /*
689 * Two infinities. Are they different signs?
690 */
691 if (vdn->sign ^ vdm->sign) {
692 /*
693 * different signs -> invalid
694 */
695 exceptions = FPSCR_IOC;
696 vdp = &vfp_double_default_qnan;
697 } else {
698 /*
699 * same signs -> valid
700 */
701 vdp = vdn;
702 }
703 } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
704 /*
705 * One infinity and one number -> infinity
706 */
707 vdp = vdn;
708 } else {
709 /*
710 * 'n' is a NaN of some type
711 */
712 return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
713 }
714 *vdd = *vdp;
715 return exceptions;
716}
717
718static u32
719vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn,
720 struct vfp_double *vdm, u32 fpscr)
721{
722 u32 exp_diff;
723 u64 m_sig;
724
725 if (vdn->significand & (1ULL << 63) ||
726 vdm->significand & (1ULL << 63)) {
727 pr_info("VFP: bad FP values in %s\n", __func__);
728 vfp_double_dump("VDN", vdn);
729 vfp_double_dump("VDM", vdm);
730 }
731
732 /*
733 * Ensure that 'n' is the largest magnitude number. Note that
734 * if 'n' and 'm' have equal exponents, we do not swap them.
735 * This ensures that NaN propagation works correctly.
736 */
737 if (vdn->exponent < vdm->exponent) {
738 struct vfp_double *t = vdn;
739 vdn = vdm;
740 vdm = t;
741 }
742
743 /*
744 * Is 'n' an infinity or a NaN? Note that 'm' may be a number,
745 * infinity or a NaN here.
746 */
747 if (vdn->exponent == 2047)
748 return vfp_double_fadd_nonnumber(vdd, vdn, vdm, fpscr);
749
750 /*
751 * We have two proper numbers, where 'vdn' is the larger magnitude.
752 *
753 * Copy 'n' to 'd' before doing the arithmetic.
754 */
755 *vdd = *vdn;
756
757 /*
758 * Align 'm' with the result.
759 */
760 exp_diff = vdn->exponent - vdm->exponent;
761 m_sig = vfp_shiftright64jamming(vdm->significand, exp_diff);
762
763 /*
764 * If the signs are different, we are really subtracting.
765 */
766 if (vdn->sign ^ vdm->sign) {
767 m_sig = vdn->significand - m_sig;
768 if ((s64)m_sig < 0) {
769 vdd->sign = vfp_sign_negate(vdd->sign);
770 m_sig = -m_sig;
771 }
772 } else {
773 m_sig += vdn->significand;
774 }
775 vdd->significand = m_sig;
776
777 return 0;
778}
779
780static u32
781vfp_double_multiply(struct vfp_double *vdd, struct vfp_double *vdn,
782 struct vfp_double *vdm, u32 fpscr)
783{
784 vfp_double_dump("VDN", vdn);
785 vfp_double_dump("VDM", vdm);
786
787 /*
788 * Ensure that 'n' is the largest magnitude number. Note that
789 * if 'n' and 'm' have equal exponents, we do not swap them.
790 * This ensures that NaN propagation works correctly.
791 */
792 if (vdn->exponent < vdm->exponent) {
793 struct vfp_double *t = vdn;
794 vdn = vdm;
795 vdm = t;
796 pr_debug("VFP: swapping M <-> N\n");
797 }
798
799 vdd->sign = vdn->sign ^ vdm->sign;
800
801 /*
802 * If 'n' is an infinity or NaN, handle it. 'm' may be anything.
803 */
804 if (vdn->exponent == 2047) {
805 if (vdn->significand || (vdm->exponent == 2047 && vdm->significand))
806 return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
807 if ((vdm->exponent | vdm->significand) == 0) {
808 *vdd = vfp_double_default_qnan;
809 return FPSCR_IOC;
810 }
811 vdd->exponent = vdn->exponent;
812 vdd->significand = 0;
813 return 0;
814 }
815
816 /*
817 * If 'm' is zero, the result is always zero. In this case,
818 * 'n' may be zero or a number, but it doesn't matter which.
819 */
820 if ((vdm->exponent | vdm->significand) == 0) {
821 vdd->exponent = 0;
822 vdd->significand = 0;
823 return 0;
824 }
825
826 /*
827 * We add 2 to the destination exponent for the same reason
828 * as the addition case - though this time we have +1 from
829 * each input operand.
830 */
831 vdd->exponent = vdn->exponent + vdm->exponent - 1023 + 2;
832 vdd->significand = vfp_hi64multiply64(vdn->significand, vdm->significand);
833
834 vfp_double_dump("VDD", vdd);
835 return 0;
836}
837
838#define NEG_MULTIPLY (1 << 0)
839#define NEG_SUBTRACT (1 << 1)
840
841static u32
842vfp_double_multiply_accumulate(int dd, int dn, int dm, u32 fpscr, u32 negate, char *func)
843{
844 struct vfp_double vdd, vdp, vdn, vdm;
845 u32 exceptions;
846
847 vfp_double_unpack(&vdn, vfp_get_double(dn));
848 if (vdn.exponent == 0 && vdn.significand)
849 vfp_double_normalise_denormal(&vdn);
850
851 vfp_double_unpack(&vdm, vfp_get_double(dm));
852 if (vdm.exponent == 0 && vdm.significand)
853 vfp_double_normalise_denormal(&vdm);
854
855 exceptions = vfp_double_multiply(&vdp, &vdn, &vdm, fpscr);
856 if (negate & NEG_MULTIPLY)
857 vdp.sign = vfp_sign_negate(vdp.sign);
858
859 vfp_double_unpack(&vdn, vfp_get_double(dd));
860 if (negate & NEG_SUBTRACT)
861 vdn.sign = vfp_sign_negate(vdn.sign);
862
863 exceptions |= vfp_double_add(&vdd, &vdn, &vdp, fpscr);
864
865 return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, func);
866}
867
868/*
869 * Standard operations
870 */
871
872/*
873 * sd = sd + (sn * sm)
874 */
875static u32 vfp_double_fmac(int dd, int dn, int dm, u32 fpscr)
876{
877 return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, 0, "fmac");
878}
879
880/*
881 * sd = sd - (sn * sm)
882 */
883static u32 vfp_double_fnmac(int dd, int dn, int dm, u32 fpscr)
884{
885 return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_MULTIPLY, "fnmac");
886}
887
888/*
889 * sd = -sd + (sn * sm)
890 */
891static u32 vfp_double_fmsc(int dd, int dn, int dm, u32 fpscr)
892{
893 return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT, "fmsc");
894}
895
896/*
897 * sd = -sd - (sn * sm)
898 */
899static u32 vfp_double_fnmsc(int dd, int dn, int dm, u32 fpscr)
900{
901 return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
902}
903
904/*
905 * sd = sn * sm
906 */
907static u32 vfp_double_fmul(int dd, int dn, int dm, u32 fpscr)
908{
909 struct vfp_double vdd, vdn, vdm;
910 u32 exceptions;
911
912 vfp_double_unpack(&vdn, vfp_get_double(dn));
913 if (vdn.exponent == 0 && vdn.significand)
914 vfp_double_normalise_denormal(&vdn);
915
916 vfp_double_unpack(&vdm, vfp_get_double(dm));
917 if (vdm.exponent == 0 && vdm.significand)
918 vfp_double_normalise_denormal(&vdm);
919
920 exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
921 return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fmul");
922}
923
924/*
925 * sd = -(sn * sm)
926 */
927static u32 vfp_double_fnmul(int dd, int dn, int dm, u32 fpscr)
928{
929 struct vfp_double vdd, vdn, vdm;
930 u32 exceptions;
931
932 vfp_double_unpack(&vdn, vfp_get_double(dn));
933 if (vdn.exponent == 0 && vdn.significand)
934 vfp_double_normalise_denormal(&vdn);
935
936 vfp_double_unpack(&vdm, vfp_get_double(dm));
937 if (vdm.exponent == 0 && vdm.significand)
938 vfp_double_normalise_denormal(&vdm);
939
940 exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
941 vdd.sign = vfp_sign_negate(vdd.sign);
942
943 return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fnmul");
944}
945
946/*
947 * sd = sn + sm
948 */
949static u32 vfp_double_fadd(int dd, int dn, int dm, u32 fpscr)
950{
951 struct vfp_double vdd, vdn, vdm;
952 u32 exceptions;
953
954 vfp_double_unpack(&vdn, vfp_get_double(dn));
955 if (vdn.exponent == 0 && vdn.significand)
956 vfp_double_normalise_denormal(&vdn);
957
958 vfp_double_unpack(&vdm, vfp_get_double(dm));
959 if (vdm.exponent == 0 && vdm.significand)
960 vfp_double_normalise_denormal(&vdm);
961
962 exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);
963
964 return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fadd");
965}
966
967/*
968 * sd = sn - sm
969 */
970static u32 vfp_double_fsub(int dd, int dn, int dm, u32 fpscr)
971{
972 struct vfp_double vdd, vdn, vdm;
973 u32 exceptions;
974
975 vfp_double_unpack(&vdn, vfp_get_double(dn));
976 if (vdn.exponent == 0 && vdn.significand)
977 vfp_double_normalise_denormal(&vdn);
978
979 vfp_double_unpack(&vdm, vfp_get_double(dm));
980 if (vdm.exponent == 0 && vdm.significand)
981 vfp_double_normalise_denormal(&vdm);
982
983 /*
984 * Subtraction is like addition, but with a negated operand.
985 */
986 vdm.sign = vfp_sign_negate(vdm.sign);
987
988 exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);
989
990 return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fsub");
991}
992
993/*
994 * sd = sn / sm
995 */
996static u32 vfp_double_fdiv(int dd, int dn, int dm, u32 fpscr)
997{
998 struct vfp_double vdd, vdn, vdm;
999 u32 exceptions = 0;
1000 int tm, tn;
1001
1002 vfp_double_unpack(&vdn, vfp_get_double(dn));
1003 vfp_double_unpack(&vdm, vfp_get_double(dm));
1004
1005 vdd.sign = vdn.sign ^ vdm.sign;
1006
1007 tn = vfp_double_type(&vdn);
1008 tm = vfp_double_type(&vdm);
1009
1010 /*
1011 * Is n a NAN?
1012 */
1013 if (tn & VFP_NAN)
1014 goto vdn_nan;
1015
1016 /*
1017 * Is m a NAN?
1018 */
1019 if (tm & VFP_NAN)
1020 goto vdm_nan;
1021
1022 /*
1023 * If n and m are infinity, the result is invalid
1024 * If n and m are zero, the result is invalid
1025 */
1026 if (tm & tn & (VFP_INFINITY|VFP_ZERO))
1027 goto invalid;
1028
1029 /*
1030 * If n is infinity, the result is infinity
1031 */
1032 if (tn & VFP_INFINITY)
1033 goto infinity;
1034
1035 /*
1036 * If m is zero, raise div0 exceptions
1037 */
1038 if (tm & VFP_ZERO)
1039 goto divzero;
1040
1041 /*
1042 * If m is infinity, or n is zero, the result is zero
1043 */
1044 if (tm & VFP_INFINITY || tn & VFP_ZERO)
1045 goto zero;
1046
1047 if (tn & VFP_DENORMAL)
1048 vfp_double_normalise_denormal(&vdn);
1049 if (tm & VFP_DENORMAL)
1050 vfp_double_normalise_denormal(&vdm);
1051
1052 /*
1053 * Ok, we have two numbers, we can perform division.
1054 */
1055 vdd.exponent = vdn.exponent - vdm.exponent + 1023 - 1;
1056 vdm.significand <<= 1;
1057 if (vdm.significand <= (2 * vdn.significand)) {
1058 vdn.significand >>= 1;
1059 vdd.exponent++;
1060 }
1061 vdd.significand = vfp_estimate_div128to64(vdn.significand, 0, vdm.significand);
1062 if ((vdd.significand & 0x1ff) <= 2) {
1063 u64 termh, terml, remh, reml;
1064 mul64to128(&termh, &terml, vdm.significand, vdd.significand);
1065 sub128(&remh, &reml, vdn.significand, 0, termh, terml);
1066 while ((s64)remh < 0) {
1067 vdd.significand -= 1;
1068 add128(&remh, &reml, remh, reml, 0, vdm.significand);
1069 }
1070 vdd.significand |= (reml != 0);
1071 }
1072 return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fdiv");
1073
1074 vdn_nan:
1075 exceptions = vfp_propagate_nan(&vdd, &vdn, &vdm, fpscr);
1076 pack:
1077 vfp_put_double(dd, vfp_double_pack(&vdd));
1078 return exceptions;
1079
1080 vdm_nan:
1081 exceptions = vfp_propagate_nan(&vdd, &vdm, &vdn, fpscr);
1082 goto pack;
1083
1084 zero:
1085 vdd.exponent = 0;
1086 vdd.significand = 0;
1087 goto pack;
1088
1089 divzero:
1090 exceptions = FPSCR_DZC;
1091 infinity:
1092 vdd.exponent = 2047;
1093 vdd.significand = 0;
1094 goto pack;
1095
1096 invalid:
1097 vfp_put_double(dd, vfp_double_pack(&vfp_double_default_qnan));
1098 return FPSCR_IOC;
1099}
1100
1101static u32 (* const fop_fns[16])(int dd, int dn, int dm, u32 fpscr) = {
1102 [FOP_TO_IDX(FOP_FMAC)] = vfp_double_fmac,
1103 [FOP_TO_IDX(FOP_FNMAC)] = vfp_double_fnmac,
1104 [FOP_TO_IDX(FOP_FMSC)] = vfp_double_fmsc,
1105 [FOP_TO_IDX(FOP_FNMSC)] = vfp_double_fnmsc,
1106 [FOP_TO_IDX(FOP_FMUL)] = vfp_double_fmul,
1107 [FOP_TO_IDX(FOP_FNMUL)] = vfp_double_fnmul,
1108 [FOP_TO_IDX(FOP_FADD)] = vfp_double_fadd,
1109 [FOP_TO_IDX(FOP_FSUB)] = vfp_double_fsub,
1110 [FOP_TO_IDX(FOP_FDIV)] = vfp_double_fdiv,
1111};
1112
1113#define FREG_BANK(x) ((x) & 0x0c)
1114#define FREG_IDX(x) ((x) & 3)
1115
1116u32 vfp_double_cpdo(u32 inst, u32 fpscr)
1117{
1118 u32 op = inst & FOP_MASK;
1119 u32 exceptions = 0;
1120 unsigned int dd = vfp_get_sd(inst);
1121 unsigned int dn = vfp_get_sn(inst);
1122 unsigned int dm = vfp_get_sm(inst);
1123 unsigned int vecitr, veclen, vecstride;
1124 u32 (*fop)(int, int, s32, u32);
1125
1126 veclen = fpscr & FPSCR_LENGTH_MASK;
1127 vecstride = (1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK)) * 2;
1128
1129 /*
1130 * If destination bank is zero, vector length is always '1'.
1131 * ARM DDI0100F C5.1.3, C5.3.2.
1132 */
1133 if (FREG_BANK(dd) == 0)
1134 veclen = 0;
1135
1136 pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
1137 (veclen >> FPSCR_LENGTH_BIT) + 1);
1138
1139 fop = (op == FOP_EXT) ? fop_extfns[dn] : fop_fns[FOP_TO_IDX(op)];
1140 if (!fop)
1141 goto invalid;
1142
1143 for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
1144 u32 except;
1145
1146 if (op == FOP_EXT)
1147 pr_debug("VFP: itr%d (d%u.%u) = op[%u] (d%u.%u)\n",
1148 vecitr >> FPSCR_LENGTH_BIT,
1149 dd >> 1, dd & 1, dn,
1150 dm >> 1, dm & 1);
1151 else
1152 pr_debug("VFP: itr%d (d%u.%u) = (d%u.%u) op[%u] (d%u.%u)\n",
1153 vecitr >> FPSCR_LENGTH_BIT,
1154 dd >> 1, dd & 1,
1155 dn >> 1, dn & 1,
1156 FOP_TO_IDX(op),
1157 dm >> 1, dm & 1);
1158
1159 except = fop(dd, dn, dm, fpscr);
1160 pr_debug("VFP: itr%d: exceptions=%08x\n",
1161 vecitr >> FPSCR_LENGTH_BIT, except);
1162
1163 exceptions |= except;
1164
1165 /*
1166 * This ensures that comparisons only operate on scalars;
1167 * comparisons always return with one FPSCR status bit set.
1168 */
1169 if (except & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
1170 break;
1171
1172 /*
1173 * CHECK: It appears to be undefined whether we stop when
1174 * we encounter an exception. We continue.
1175 */
1176
1177 dd = FREG_BANK(dd) + ((FREG_IDX(dd) + vecstride) & 6);
1178 dn = FREG_BANK(dn) + ((FREG_IDX(dn) + vecstride) & 6);
1179 if (FREG_BANK(dm) != 0)
1180 dm = FREG_BANK(dm) + ((FREG_IDX(dm) + vecstride) & 6);
1181 }
1182 return exceptions;
1183
1184 invalid:
1185 return ~0;
1186}
diff --git a/arch/arm/vfp/vfphw.S b/arch/arm/vfp/vfphw.S
new file mode 100644
index 000000000000..de4ca1223c58
--- /dev/null
+++ b/arch/arm/vfp/vfphw.S
@@ -0,0 +1,215 @@
1/*
2 * linux/arch/arm/vfp/vfphw.S
3 *
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This code is called from the kernel's undefined instruction trap.
12 * r9 holds the return address for successful handling.
13 * lr holds the return address for unrecognised instructions.
14 * r10 points at the start of the private FP workspace in the thread structure
15 * sp points to a struct pt_regs (as defined in include/asm/proc/ptrace.h)
16 */
17#include <asm/thread_info.h>
18#include <asm/vfpmacros.h>
19#include "../kernel/entry-header.S"
20
21 .macro DBGSTR, str
22#ifdef DEBUG
23 stmfd sp!, {r0-r3, ip, lr}
24 add r0, pc, #4
25 bl printk
26 b 1f
27 .asciz "<7>VFP: \str\n"
28 .balign 4
291: ldmfd sp!, {r0-r3, ip, lr}
30#endif
31 .endm
32
33 .macro DBGSTR1, str, arg
34#ifdef DEBUG
35 stmfd sp!, {r0-r3, ip, lr}
36 mov r1, \arg
37 add r0, pc, #4
38 bl printk
39 b 1f
40 .asciz "<7>VFP: \str\n"
41 .balign 4
421: ldmfd sp!, {r0-r3, ip, lr}
43#endif
44 .endm
45
46 .macro DBGSTR3, str, arg1, arg2, arg3
47#ifdef DEBUG
48 stmfd sp!, {r0-r3, ip, lr}
49 mov r3, \arg3
50 mov r2, \arg2
51 mov r1, \arg1
52 add r0, pc, #4
53 bl printk
54 b 1f
55 .asciz "<7>VFP: \str\n"
56 .balign 4
571: ldmfd sp!, {r0-r3, ip, lr}
58#endif
59 .endm
60
61
62@ VFP hardware support entry point.
63@
64@ r0 = faulted instruction
65@ r2 = faulted PC+4
66@ r9 = successful return
67@ r10 = vfp_state union
68@ lr = failure return
69
70 .globl vfp_support_entry
71vfp_support_entry:
72 DBGSTR3 "instr %08x pc %08x state %p", r0, r2, r10
73
74 VFPFMRX r1, FPEXC @ Is the VFP enabled?
75 DBGSTR1 "fpexc %08x", r1
76 tst r1, #FPEXC_ENABLE
77 bne look_for_VFP_exceptions @ VFP is already enabled
78
79 DBGSTR1 "enable %x", r10
80 ldr r3, last_VFP_context_address
81 orr r1, r1, #FPEXC_ENABLE @ user FPEXC has the enable bit set
82 ldr r4, [r3] @ last_VFP_context pointer
83 bic r5, r1, #FPEXC_EXCEPTION @ make sure exceptions are disabled
84 cmp r4, r10
85 beq check_for_exception @ we are returning to the same
86 @ process, so the registers are
87 @ still there. In this case, we do
88 @ not want to drop a pending exception.
89
90 VFPFMXR FPEXC, r5 @ enable VFP, disable any pending
91 @ exceptions, so we can get at the
92 @ rest of it
93
94 @ Save out the current registers to the old thread state
95
96 DBGSTR1 "save old state %p", r4
97 cmp r4, #0
98 beq no_old_VFP_process
99 VFPFMRX r5, FPSCR @ current status
100 VFPFMRX r6, FPINST @ FPINST (always there, rev0 onwards)
101 tst r1, #FPEXC_FPV2 @ is there an FPINST2 to read?
102 VFPFMRX r8, FPINST2, NE @ FPINST2 if needed - avoids reading
103 @ nonexistant reg on rev0
104 VFPFSTMIA r4 @ save the working registers
105 add r4, r4, #8*16+4
106 stmia r4, {r1, r5, r6, r8} @ save FPEXC, FPSCR, FPINST, FPINST2
107 @ and point r4 at the word at the
108 @ start of the register dump
109
110no_old_VFP_process:
111 DBGSTR1 "load state %p", r10
112 str r10, [r3] @ update the last_VFP_context pointer
113 @ Load the saved state back into the VFP
114 add r4, r10, #8*16+4
115 ldmia r4, {r1, r5, r6, r8} @ load FPEXC, FPSCR, FPINST, FPINST2
116 VFPFLDMIA r10 @ reload the working registers while
117 @ FPEXC is in a safe state
118 tst r1, #FPEXC_FPV2 @ is there an FPINST2 to write?
119 VFPFMXR FPINST2, r8, NE @ FPINST2 if needed - avoids writing
120 @ nonexistant reg on rev0
121 VFPFMXR FPINST, r6
122 VFPFMXR FPSCR, r5 @ restore status
123
124check_for_exception:
125 tst r1, #FPEXC_EXCEPTION
126 bne process_exception @ might as well handle the pending
127 @ exception before retrying branch
128 @ out before setting an FPEXC that
129 @ stops us reading stuff
130 VFPFMXR FPEXC, r1 @ restore FPEXC last
131 sub r2, r2, #4
132 str r2, [sp, #S_PC] @ retry the instruction
133 mov pc, r9 @ we think we have handled things
134
135
136look_for_VFP_exceptions:
137 tst r1, #FPEXC_EXCEPTION
138 bne process_exception
139 VFPFMRX r5, FPSCR
140 tst r5, #FPSCR_IXE @ IXE doesn't set FPEXC_EXCEPTION !
141 bne process_exception
142
143 @ Fall into hand on to next handler - appropriate coproc instr
144 @ not recognised by VFP
145
146 DBGSTR "not VFP"
147 mov pc, lr
148
149process_exception:
150 DBGSTR "bounce"
151 sub r2, r2, #4
152 str r2, [sp, #S_PC] @ retry the instruction on exit from
153 @ the imprecise exception handling in
154 @ the support code
155 mov r2, sp @ nothing stacked - regdump is at TOS
156 mov lr, r9 @ setup for a return to the user code.
157
158 @ Now call the C code to package up the bounce to the support code
159 @ r0 holds the trigger instruction
160 @ r1 holds the FPEXC value
161 @ r2 pointer to register dump
162 b VFP9_bounce @ we have handled this - the support
163 @ code will raise an exception if
164 @ required. If not, the user code will
165 @ retry the faulted instruction
166
167last_VFP_context_address:
168 .word last_VFP_context
169
170 .globl vfp_get_float
171vfp_get_float:
172 add pc, pc, r0, lsl #3
173 mov r0, r0
174 .irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
175 mrc p10, 0, r0, c\dr, c0, 0 @ fmrs r0, s0
176 mov pc, lr
177 mrc p10, 0, r0, c\dr, c0, 4 @ fmrs r0, s1
178 mov pc, lr
179 .endr
180
181 .globl vfp_put_float
182vfp_put_float:
183 add pc, pc, r0, lsl #3
184 mov r0, r0
185 .irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
186 mcr p10, 0, r1, c\dr, c0, 0 @ fmsr r0, s0
187 mov pc, lr
188 mcr p10, 0, r1, c\dr, c0, 4 @ fmsr r0, s1
189 mov pc, lr
190 .endr
191
192 .globl vfp_get_double
193vfp_get_double:
194 mov r0, r0, lsr #1
195 add pc, pc, r0, lsl #3
196 mov r0, r0
197 .irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
198 mrrc p10, 1, r0, r1, c\dr @ fmrrd r0, r1, d\dr
199 mov pc, lr
200 .endr
201
202 @ virtual register 16 for compare with zero
203 mov r0, #0
204 mov r1, #0
205 mov pc, lr
206
207 .globl vfp_put_double
208vfp_put_double:
209 mov r0, r0, lsr #1
210 add pc, pc, r0, lsl #3
211 mov r0, r0
212 .irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
213 mcrr p10, 1, r1, r2, c\dr @ fmrrd r1, r2, d\dr
214 mov pc, lr
215 .endr
diff --git a/arch/arm/vfp/vfpinstr.h b/arch/arm/vfp/vfpinstr.h
new file mode 100644
index 000000000000..6c819aeae006
--- /dev/null
+++ b/arch/arm/vfp/vfpinstr.h
@@ -0,0 +1,88 @@
1/*
2 * linux/arch/arm/vfp/vfpinstr.h
3 *
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * VFP instruction masks.
12 */
13#define INST_CPRTDO(inst) (((inst) & 0x0f000000) == 0x0e000000)
14#define INST_CPRT(inst) ((inst) & (1 << 4))
15#define INST_CPRT_L(inst) ((inst) & (1 << 20))
16#define INST_CPRT_Rd(inst) (((inst) & (15 << 12)) >> 12)
17#define INST_CPRT_OP(inst) (((inst) >> 21) & 7)
18#define INST_CPNUM(inst) ((inst) & 0xf00)
19#define CPNUM(cp) ((cp) << 8)
20
21#define FOP_MASK (0x00b00040)
22#define FOP_FMAC (0x00000000)
23#define FOP_FNMAC (0x00000040)
24#define FOP_FMSC (0x00100000)
25#define FOP_FNMSC (0x00100040)
26#define FOP_FMUL (0x00200000)
27#define FOP_FNMUL (0x00200040)
28#define FOP_FADD (0x00300000)
29#define FOP_FSUB (0x00300040)
30#define FOP_FDIV (0x00800000)
31#define FOP_EXT (0x00b00040)
32
33#define FOP_TO_IDX(inst) ((inst & 0x00b00000) >> 20 | (inst & (1 << 6)) >> 4)
34
35#define FEXT_MASK (0x000f0080)
36#define FEXT_FCPY (0x00000000)
37#define FEXT_FABS (0x00000080)
38#define FEXT_FNEG (0x00010000)
39#define FEXT_FSQRT (0x00010080)
40#define FEXT_FCMP (0x00040000)
41#define FEXT_FCMPE (0x00040080)
42#define FEXT_FCMPZ (0x00050000)
43#define FEXT_FCMPEZ (0x00050080)
44#define FEXT_FCVT (0x00070080)
45#define FEXT_FUITO (0x00080000)
46#define FEXT_FSITO (0x00080080)
47#define FEXT_FTOUI (0x000c0000)
48#define FEXT_FTOUIZ (0x000c0080)
49#define FEXT_FTOSI (0x000d0000)
50#define FEXT_FTOSIZ (0x000d0080)
51
52#define FEXT_TO_IDX(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7)
53
54#define vfp_get_sd(inst) ((inst & 0x0000f000) >> 11 | (inst & (1 << 22)) >> 22)
55#define vfp_get_dd(inst) ((inst & 0x0000f000) >> 12)
56#define vfp_get_sm(inst) ((inst & 0x0000000f) << 1 | (inst & (1 << 5)) >> 5)
57#define vfp_get_dm(inst) ((inst & 0x0000000f))
58#define vfp_get_sn(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7)
59#define vfp_get_dn(inst) ((inst & 0x000f0000) >> 16)
60
61#define vfp_single(inst) (((inst) & 0x0000f00) == 0xa00)
62
63#define FPSCR_N (1 << 31)
64#define FPSCR_Z (1 << 30)
65#define FPSCR_C (1 << 29)
66#define FPSCR_V (1 << 28)
67
68/*
69 * Since we aren't building with -mfpu=vfp, we need to code
70 * these instructions using their MRC/MCR equivalents.
71 */
72#define vfpreg(_vfp_) #_vfp_
73
74#define fmrx(_vfp_) ({ \
75 u32 __v; \
76 asm("mrc%? p10, 7, %0, " vfpreg(_vfp_) ", cr0, 0 @ fmrx %0, " #_vfp_ \
77 : "=r" (__v)); \
78 __v; \
79 })
80
81#define fmxr(_vfp_,_var_) \
82 asm("mcr%? p10, 7, %0, " vfpreg(_vfp_) ", cr0, 0 @ fmxr " #_vfp_ ", %0" \
83 : : "r" (_var_))
84
85u32 vfp_single_cpdo(u32 inst, u32 fpscr);
86u32 vfp_single_cprt(u32 inst, u32 fpscr, struct pt_regs *regs);
87
88u32 vfp_double_cpdo(u32 inst, u32 fpscr);
diff --git a/arch/arm/vfp/vfpmodule.c b/arch/arm/vfp/vfpmodule.c
new file mode 100644
index 000000000000..3aeedd2afc70
--- /dev/null
+++ b/arch/arm/vfp/vfpmodule.c
@@ -0,0 +1,288 @@
1/*
2 * linux/arch/arm/vfp/vfpmodule.c
3 *
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/config.h>
13#include <linux/types.h>
14#include <linux/kernel.h>
15#include <linux/signal.h>
16#include <linux/sched.h>
17#include <linux/init.h>
18#include <asm/vfp.h>
19
20#include "vfpinstr.h"
21#include "vfp.h"
22
23/*
24 * Our undef handlers (in entry.S)
25 */
26void vfp_testing_entry(void);
27void vfp_support_entry(void);
28
29void (*vfp_vector)(void) = vfp_testing_entry;
30union vfp_state *last_VFP_context;
31
32/*
33 * Dual-use variable.
34 * Used in startup: set to non-zero if VFP checks fail
35 * After startup, holds VFP architecture
36 */
37unsigned int VFP_arch;
38
39/*
40 * Per-thread VFP initialisation.
41 */
42void vfp_flush_thread(union vfp_state *vfp)
43{
44 memset(vfp, 0, sizeof(union vfp_state));
45
46 vfp->hard.fpexc = FPEXC_ENABLE;
47 vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
48
49 /*
50 * Disable VFP to ensure we initialise it first.
51 */
52 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_ENABLE);
53
54 /*
55 * Ensure we don't try to overwrite our newly initialised
56 * state information on the first fault.
57 */
58 if (last_VFP_context == vfp)
59 last_VFP_context = NULL;
60}
61
62/*
63 * Per-thread VFP cleanup.
64 */
65void vfp_release_thread(union vfp_state *vfp)
66{
67 if (last_VFP_context == vfp)
68 last_VFP_context = NULL;
69}
70
71/*
72 * Raise a SIGFPE for the current process.
73 * sicode describes the signal being raised.
74 */
75void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
76{
77 siginfo_t info;
78
79 memset(&info, 0, sizeof(info));
80
81 info.si_signo = SIGFPE;
82 info.si_code = sicode;
83 info.si_addr = (void *)(instruction_pointer(regs) - 4);
84
85 /*
86 * This is the same as NWFPE, because it's not clear what
87 * this is used for
88 */
89 current->thread.error_code = 0;
90 current->thread.trap_no = 6;
91
92 force_sig_info(SIGFPE, &info, current);
93}
94
95static void vfp_panic(char *reason)
96{
97 int i;
98
99 printk(KERN_ERR "VFP: Error: %s\n", reason);
100 printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
101 fmrx(FPEXC), fmrx(FPSCR), fmrx(FPINST));
102 for (i = 0; i < 32; i += 2)
103 printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
104 i, vfp_get_float(i), i+1, vfp_get_float(i+1));
105}
106
107/*
108 * Process bitmask of exception conditions.
109 */
110static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
111{
112 int si_code = 0;
113
114 pr_debug("VFP: raising exceptions %08x\n", exceptions);
115
116 if (exceptions == (u32)-1) {
117 vfp_panic("unhandled bounce");
118 vfp_raise_sigfpe(0, regs);
119 return;
120 }
121
122 /*
123 * If any of the status flags are set, update the FPSCR.
124 * Comparison instructions always return at least one of
125 * these flags set.
126 */
127 if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
128 fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
129
130 fpscr |= exceptions;
131
132 fmxr(FPSCR, fpscr);
133
134#define RAISE(stat,en,sig) \
135 if (exceptions & stat && fpscr & en) \
136 si_code = sig;
137
138 /*
139 * These are arranged in priority order, least to highest.
140 */
141 RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
142 RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
143 RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
144 RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
145
146 if (si_code)
147 vfp_raise_sigfpe(si_code, regs);
148}
149
150/*
151 * Emulate a VFP instruction.
152 */
153static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
154{
155 u32 exceptions = (u32)-1;
156
157 pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
158
159 if (INST_CPRTDO(inst)) {
160 if (!INST_CPRT(inst)) {
161 /*
162 * CPDO
163 */
164 if (vfp_single(inst)) {
165 exceptions = vfp_single_cpdo(inst, fpscr);
166 } else {
167 exceptions = vfp_double_cpdo(inst, fpscr);
168 }
169 } else {
170 /*
171 * A CPRT instruction can not appear in FPINST2, nor
172 * can it cause an exception. Therefore, we do not
173 * have to emulate it.
174 */
175 }
176 } else {
177 /*
178 * A CPDT instruction can not appear in FPINST2, nor can
179 * it cause an exception. Therefore, we do not have to
180 * emulate it.
181 */
182 }
183 return exceptions;
184}
185
186/*
187 * Package up a bounce condition.
188 */
189void VFP9_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
190{
191 u32 fpscr, orig_fpscr, exceptions, inst;
192
193 pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
194
195 /*
196 * Enable access to the VFP so we can handle the bounce.
197 */
198 fmxr(FPEXC, fpexc & ~(FPEXC_EXCEPTION|FPEXC_INV|FPEXC_UFC|FPEXC_IOC));
199
200 orig_fpscr = fpscr = fmrx(FPSCR);
201
202 /*
203 * If we are running with inexact exceptions enabled, we need to
204 * emulate the trigger instruction. Note that as we're emulating
205 * the trigger instruction, we need to increment PC.
206 */
207 if (fpscr & FPSCR_IXE) {
208 regs->ARM_pc += 4;
209 goto emulate;
210 }
211
212 barrier();
213
214 /*
215 * Modify fpscr to indicate the number of iterations remaining
216 */
217 if (fpexc & FPEXC_EXCEPTION) {
218 u32 len;
219
220 len = fpexc + (1 << FPEXC_LENGTH_BIT);
221
222 fpscr &= ~FPSCR_LENGTH_MASK;
223 fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
224 }
225
226 /*
227 * Handle the first FP instruction. We used to take note of the
228 * FPEXC bounce reason, but this appears to be unreliable.
229 * Emulate the bounced instruction instead.
230 */
231 inst = fmrx(FPINST);
232 exceptions = vfp_emulate_instruction(inst, fpscr, regs);
233 if (exceptions)
234 vfp_raise_exceptions(exceptions, inst, orig_fpscr, regs);
235
236 /*
237 * If there isn't a second FP instruction, exit now.
238 */
239 if (!(fpexc & FPEXC_FPV2))
240 return;
241
242 /*
243 * The barrier() here prevents fpinst2 being read
244 * before the condition above.
245 */
246 barrier();
247 trigger = fmrx(FPINST2);
248 fpscr = fmrx(FPSCR);
249
250 emulate:
251 exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
252 if (exceptions)
253 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
254}
255
256/*
257 * VFP support code initialisation.
258 */
259static int __init vfp_init(void)
260{
261 unsigned int vfpsid;
262
263 /*
264 * First check that there is a VFP that we can use.
265 * The handler is already setup to just log calls, so
266 * we just need to read the VFPSID register.
267 */
268 vfpsid = fmrx(FPSID);
269
270 printk(KERN_INFO "VFP support v0.3: ");
271 if (VFP_arch) {
272 printk("not present\n");
273 } else if (vfpsid & FPSID_NODOUBLE) {
274 printk("no double precision support\n");
275 } else {
276 VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */
277 printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
278 (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
279 (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
280 (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
281 (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
282 (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
283 vfp_vector = vfp_support_entry;
284 }
285 return 0;
286}
287
288late_initcall(vfp_init);
diff --git a/arch/arm/vfp/vfpsingle.c b/arch/arm/vfp/vfpsingle.c
new file mode 100644
index 000000000000..6849fe35cb2e
--- /dev/null
+++ b/arch/arm/vfp/vfpsingle.c
@@ -0,0 +1,1224 @@
1/*
2 * linux/arch/arm/vfp/vfpsingle.c
3 *
4 * This code is derived in part from John R. Housers softfloat library, which
5 * carries the following notice:
6 *
7 * ===========================================================================
8 * This C source file is part of the SoftFloat IEC/IEEE Floating-point
9 * Arithmetic Package, Release 2.
10 *
11 * Written by John R. Hauser. This work was made possible in part by the
12 * International Computer Science Institute, located at Suite 600, 1947 Center
13 * Street, Berkeley, California 94704. Funding was partially provided by the
14 * National Science Foundation under grant MIP-9311980. The original version
15 * of this code was written as part of a project to build a fixed-point vector
16 * processor in collaboration with the University of California at Berkeley,
17 * overseen by Profs. Nelson Morgan and John Wawrzynek. More information
18 * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
19 * arithmetic/softfloat.html'.
20 *
21 * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
22 * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
23 * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
24 * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
25 * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
26 *
27 * Derivative works are acceptable, even for commercial purposes, so long as
28 * (1) they include prominent notice that the work is derivative, and (2) they
29 * include prominent notice akin to these three paragraphs for those parts of
30 * this code that are retained.
31 * ===========================================================================
32 */
33#include <linux/kernel.h>
34#include <linux/bitops.h>
35#include <asm/ptrace.h>
36#include <asm/vfp.h>
37
38#include "vfpinstr.h"
39#include "vfp.h"
40
41static struct vfp_single vfp_single_default_qnan = {
42 .exponent = 255,
43 .sign = 0,
44 .significand = VFP_SINGLE_SIGNIFICAND_QNAN,
45};
46
47static void vfp_single_dump(const char *str, struct vfp_single *s)
48{
49 pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n",
50 str, s->sign != 0, s->exponent, s->significand);
51}
52
53static void vfp_single_normalise_denormal(struct vfp_single *vs)
54{
55 int bits = 31 - fls(vs->significand);
56
57 vfp_single_dump("normalise_denormal: in", vs);
58
59 if (bits) {
60 vs->exponent -= bits - 1;
61 vs->significand <<= bits;
62 }
63
64 vfp_single_dump("normalise_denormal: out", vs);
65}
66
67#ifndef DEBUG
68#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
69u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions)
70#else
71u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func)
72#endif
73{
74 u32 significand, incr, rmode;
75 int exponent, shift, underflow;
76
77 vfp_single_dump("pack: in", vs);
78
79 /*
80 * Infinities and NaNs are a special case.
81 */
82 if (vs->exponent == 255 && (vs->significand == 0 || exceptions))
83 goto pack;
84
85 /*
86 * Special-case zero.
87 */
88 if (vs->significand == 0) {
89 vs->exponent = 0;
90 goto pack;
91 }
92
93 exponent = vs->exponent;
94 significand = vs->significand;
95
96 /*
97 * Normalise first. Note that we shift the significand up to
98 * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least
99 * significant bit.
100 */
101 shift = 32 - fls(significand);
102 if (shift < 32 && shift) {
103 exponent -= shift;
104 significand <<= shift;
105 }
106
107#ifdef DEBUG
108 vs->exponent = exponent;
109 vs->significand = significand;
110 vfp_single_dump("pack: normalised", vs);
111#endif
112
113 /*
114 * Tiny number?
115 */
116 underflow = exponent < 0;
117 if (underflow) {
118 significand = vfp_shiftright32jamming(significand, -exponent);
119 exponent = 0;
120#ifdef DEBUG
121 vs->exponent = exponent;
122 vs->significand = significand;
123 vfp_single_dump("pack: tiny number", vs);
124#endif
125 if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)))
126 underflow = 0;
127 }
128
129 /*
130 * Select rounding increment.
131 */
132 incr = 0;
133 rmode = fpscr & FPSCR_RMODE_MASK;
134
135 if (rmode == FPSCR_ROUND_NEAREST) {
136 incr = 1 << VFP_SINGLE_LOW_BITS;
137 if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0)
138 incr -= 1;
139 } else if (rmode == FPSCR_ROUND_TOZERO) {
140 incr = 0;
141 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0))
142 incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1;
143
144 pr_debug("VFP: rounding increment = 0x%08x\n", incr);
145
146 /*
147 * Is our rounding going to overflow?
148 */
149 if ((significand + incr) < significand) {
150 exponent += 1;
151 significand = (significand >> 1) | (significand & 1);
152 incr >>= 1;
153#ifdef DEBUG
154 vs->exponent = exponent;
155 vs->significand = significand;
156 vfp_single_dump("pack: overflow", vs);
157#endif
158 }
159
160 /*
161 * If any of the low bits (which will be shifted out of the
162 * number) are non-zero, the result is inexact.
163 */
164 if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))
165 exceptions |= FPSCR_IXC;
166
167 /*
168 * Do our rounding.
169 */
170 significand += incr;
171
172 /*
173 * Infinity?
174 */
175 if (exponent >= 254) {
176 exceptions |= FPSCR_OFC | FPSCR_IXC;
177 if (incr == 0) {
178 vs->exponent = 253;
179 vs->significand = 0x7fffffff;
180 } else {
181 vs->exponent = 255; /* infinity */
182 vs->significand = 0;
183 }
184 } else {
185 if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0)
186 exponent = 0;
187 if (exponent || significand > 0x80000000)
188 underflow = 0;
189 if (underflow)
190 exceptions |= FPSCR_UFC;
191 vs->exponent = exponent;
192 vs->significand = significand >> 1;
193 }
194
195 pack:
196 vfp_single_dump("pack: final", vs);
197 {
198 s32 d = vfp_single_pack(vs);
199 pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func,
200 sd, d, exceptions);
201 vfp_put_float(sd, d);
202 }
203
204 return exceptions & ~VFP_NAN_FLAG;
205}
206
207/*
208 * Propagate the NaN, setting exceptions if it is signalling.
209 * 'n' is always a NaN. 'm' may be a number, NaN or infinity.
210 */
211static u32
212vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn,
213 struct vfp_single *vsm, u32 fpscr)
214{
215 struct vfp_single *nan;
216 int tn, tm = 0;
217
218 tn = vfp_single_type(vsn);
219
220 if (vsm)
221 tm = vfp_single_type(vsm);
222
223 if (fpscr & FPSCR_DEFAULT_NAN)
224 /*
225 * Default NaN mode - always returns a quiet NaN
226 */
227 nan = &vfp_single_default_qnan;
228 else {
229 /*
230 * Contemporary mode - select the first signalling
231 * NAN, or if neither are signalling, the first
232 * quiet NAN.
233 */
234 if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
235 nan = vsn;
236 else
237 nan = vsm;
238 /*
239 * Make the NaN quiet.
240 */
241 nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
242 }
243
244 *vsd = *nan;
245
246 /*
247 * If one was a signalling NAN, raise invalid operation.
248 */
249 return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
250}
251
252
253/*
254 * Extended operations
255 */
256static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr)
257{
258 vfp_put_float(sd, vfp_single_packed_abs(m));
259 return 0;
260}
261
262static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr)
263{
264 vfp_put_float(sd, m);
265 return 0;
266}
267
268static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr)
269{
270 vfp_put_float(sd, vfp_single_packed_negate(m));
271 return 0;
272}
273
274static const u16 sqrt_oddadjust[] = {
275 0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0,
276 0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67
277};
278
279static const u16 sqrt_evenadjust[] = {
280 0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e,
281 0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002
282};
283
284u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand)
285{
286 int index;
287 u32 z, a;
288
289 if ((significand & 0xc0000000) != 0x40000000) {
290 printk(KERN_WARNING "VFP: estimate_sqrt: invalid significand\n");
291 }
292
293 a = significand << 1;
294 index = (a >> 27) & 15;
295 if (exponent & 1) {
296 z = 0x4000 + (a >> 17) - sqrt_oddadjust[index];
297 z = ((a / z) << 14) + (z << 15);
298 a >>= 1;
299 } else {
300 z = 0x8000 + (a >> 17) - sqrt_evenadjust[index];
301 z = a / z + z;
302 z = (z >= 0x20000) ? 0xffff8000 : (z << 15);
303 if (z <= a)
304 return (s32)a >> 1;
305 }
306 return (u32)(((u64)a << 31) / z) + (z >> 1);
307}
308
309static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr)
310{
311 struct vfp_single vsm, vsd;
312 int ret, tm;
313
314 vfp_single_unpack(&vsm, m);
315 tm = vfp_single_type(&vsm);
316 if (tm & (VFP_NAN|VFP_INFINITY)) {
317 struct vfp_single *vsp = &vsd;
318
319 if (tm & VFP_NAN)
320 ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr);
321 else if (vsm.sign == 0) {
322 sqrt_copy:
323 vsp = &vsm;
324 ret = 0;
325 } else {
326 sqrt_invalid:
327 vsp = &vfp_single_default_qnan;
328 ret = FPSCR_IOC;
329 }
330 vfp_put_float(sd, vfp_single_pack(vsp));
331 return ret;
332 }
333
334 /*
335 * sqrt(+/- 0) == +/- 0
336 */
337 if (tm & VFP_ZERO)
338 goto sqrt_copy;
339
340 /*
341 * Normalise a denormalised number
342 */
343 if (tm & VFP_DENORMAL)
344 vfp_single_normalise_denormal(&vsm);
345
346 /*
347 * sqrt(<0) = invalid
348 */
349 if (vsm.sign)
350 goto sqrt_invalid;
351
352 vfp_single_dump("sqrt", &vsm);
353
354 /*
355 * Estimate the square root.
356 */
357 vsd.sign = 0;
358 vsd.exponent = ((vsm.exponent - 127) >> 1) + 127;
359 vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2;
360
361 vfp_single_dump("sqrt estimate", &vsd);
362
363 /*
364 * And now adjust.
365 */
366 if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) {
367 if (vsd.significand < 2) {
368 vsd.significand = 0xffffffff;
369 } else {
370 u64 term;
371 s64 rem;
372 vsm.significand <<= !(vsm.exponent & 1);
373 term = (u64)vsd.significand * vsd.significand;
374 rem = ((u64)vsm.significand << 32) - term;
375
376 pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem);
377
378 while (rem < 0) {
379 vsd.significand -= 1;
380 rem += ((u64)vsd.significand << 1) | 1;
381 }
382 vsd.significand |= rem != 0;
383 }
384 }
385 vsd.significand = vfp_shiftright32jamming(vsd.significand, 1);
386
387 return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt");
388}
389
390/*
391 * Equal := ZC
392 * Less than := N
393 * Greater than := C
394 * Unordered := CV
395 */
396static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr)
397{
398 s32 d;
399 u32 ret = 0;
400
401 d = vfp_get_float(sd);
402 if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) {
403 ret |= FPSCR_C | FPSCR_V;
404 if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
405 /*
406 * Signalling NaN, or signalling on quiet NaN
407 */
408 ret |= FPSCR_IOC;
409 }
410
411 if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) {
412 ret |= FPSCR_C | FPSCR_V;
413 if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
414 /*
415 * Signalling NaN, or signalling on quiet NaN
416 */
417 ret |= FPSCR_IOC;
418 }
419
420 if (ret == 0) {
421 if (d == m || vfp_single_packed_abs(d | m) == 0) {
422 /*
423 * equal
424 */
425 ret |= FPSCR_Z | FPSCR_C;
426 } else if (vfp_single_packed_sign(d ^ m)) {
427 /*
428 * different signs
429 */
430 if (vfp_single_packed_sign(d))
431 /*
432 * d is negative, so d < m
433 */
434 ret |= FPSCR_N;
435 else
436 /*
437 * d is positive, so d > m
438 */
439 ret |= FPSCR_C;
440 } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
441 /*
442 * d < m
443 */
444 ret |= FPSCR_N;
445 } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
446 /*
447 * d > m
448 */
449 ret |= FPSCR_C;
450 }
451 }
452 return ret;
453}
454
455static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr)
456{
457 return vfp_compare(sd, 0, m, fpscr);
458}
459
460static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr)
461{
462 return vfp_compare(sd, 1, m, fpscr);
463}
464
465static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr)
466{
467 return vfp_compare(sd, 0, 0, fpscr);
468}
469
470static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr)
471{
472 return vfp_compare(sd, 1, 0, fpscr);
473}
474
475static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr)
476{
477 struct vfp_single vsm;
478 struct vfp_double vdd;
479 int tm;
480 u32 exceptions = 0;
481
482 vfp_single_unpack(&vsm, m);
483
484 tm = vfp_single_type(&vsm);
485
486 /*
487 * If we have a signalling NaN, signal invalid operation.
488 */
489 if (tm == VFP_SNAN)
490 exceptions = FPSCR_IOC;
491
492 if (tm & VFP_DENORMAL)
493 vfp_single_normalise_denormal(&vsm);
494
495 vdd.sign = vsm.sign;
496 vdd.significand = (u64)vsm.significand << 32;
497
498 /*
499 * If we have an infinity or NaN, the exponent must be 2047.
500 */
501 if (tm & (VFP_INFINITY|VFP_NAN)) {
502 vdd.exponent = 2047;
503 if (tm & VFP_NAN)
504 vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
505 goto pack_nan;
506 } else if (tm & VFP_ZERO)
507 vdd.exponent = 0;
508 else
509 vdd.exponent = vsm.exponent + (1023 - 127);
510
511 /*
512 * Technically, if bit 0 of dd is set, this is an invalid
513 * instruction. However, we ignore this for efficiency.
514 */
515 return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd");
516
517 pack_nan:
518 vfp_put_double(dd, vfp_double_pack(&vdd));
519 return exceptions;
520}
521
522static u32 vfp_single_fuito(int sd, int unused, s32 m, u32 fpscr)
523{
524 struct vfp_single vs;
525
526 vs.sign = 0;
527 vs.exponent = 127 + 31 - 1;
528 vs.significand = (u32)m;
529
530 return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fuito");
531}
532
533static u32 vfp_single_fsito(int sd, int unused, s32 m, u32 fpscr)
534{
535 struct vfp_single vs;
536
537 vs.sign = (m & 0x80000000) >> 16;
538 vs.exponent = 127 + 31 - 1;
539 vs.significand = vs.sign ? -m : m;
540
541 return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fsito");
542}
543
544static u32 vfp_single_ftoui(int sd, int unused, s32 m, u32 fpscr)
545{
546 struct vfp_single vsm;
547 u32 d, exceptions = 0;
548 int rmode = fpscr & FPSCR_RMODE_MASK;
549 int tm;
550
551 vfp_single_unpack(&vsm, m);
552 vfp_single_dump("VSM", &vsm);
553
554 /*
555 * Do we have a denormalised number?
556 */
557 tm = vfp_single_type(&vsm);
558 if (tm & VFP_DENORMAL)
559 exceptions |= FPSCR_IDC;
560
561 if (tm & VFP_NAN)
562 vsm.sign = 0;
563
564 if (vsm.exponent >= 127 + 32) {
565 d = vsm.sign ? 0 : 0xffffffff;
566 exceptions = FPSCR_IOC;
567 } else if (vsm.exponent >= 127 - 1) {
568 int shift = 127 + 31 - vsm.exponent;
569 u32 rem, incr = 0;
570
571 /*
572 * 2^0 <= m < 2^32-2^8
573 */
574 d = (vsm.significand << 1) >> shift;
575 rem = vsm.significand << (33 - shift);
576
577 if (rmode == FPSCR_ROUND_NEAREST) {
578 incr = 0x80000000;
579 if ((d & 1) == 0)
580 incr -= 1;
581 } else if (rmode == FPSCR_ROUND_TOZERO) {
582 incr = 0;
583 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
584 incr = ~0;
585 }
586
587 if ((rem + incr) < rem) {
588 if (d < 0xffffffff)
589 d += 1;
590 else
591 exceptions |= FPSCR_IOC;
592 }
593
594 if (d && vsm.sign) {
595 d = 0;
596 exceptions |= FPSCR_IOC;
597 } else if (rem)
598 exceptions |= FPSCR_IXC;
599 } else {
600 d = 0;
601 if (vsm.exponent | vsm.significand) {
602 exceptions |= FPSCR_IXC;
603 if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
604 d = 1;
605 else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) {
606 d = 0;
607 exceptions |= FPSCR_IOC;
608 }
609 }
610 }
611
612 pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
613
614 vfp_put_float(sd, d);
615
616 return exceptions;
617}
618
619static u32 vfp_single_ftouiz(int sd, int unused, s32 m, u32 fpscr)
620{
621 return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO);
622}
623
624static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr)
625{
626 struct vfp_single vsm;
627 u32 d, exceptions = 0;
628 int rmode = fpscr & FPSCR_RMODE_MASK;
629
630 vfp_single_unpack(&vsm, m);
631 vfp_single_dump("VSM", &vsm);
632
633 /*
634 * Do we have a denormalised number?
635 */
636 if (vfp_single_type(&vsm) & VFP_DENORMAL)
637 exceptions |= FPSCR_IDC;
638
639 if (vsm.exponent >= 127 + 32) {
640 /*
641 * m >= 2^31-2^7: invalid
642 */
643 d = 0x7fffffff;
644 if (vsm.sign)
645 d = ~d;
646 exceptions |= FPSCR_IOC;
647 } else if (vsm.exponent >= 127 - 1) {
648 int shift = 127 + 31 - vsm.exponent;
649 u32 rem, incr = 0;
650
651 /* 2^0 <= m <= 2^31-2^7 */
652 d = (vsm.significand << 1) >> shift;
653 rem = vsm.significand << (33 - shift);
654
655 if (rmode == FPSCR_ROUND_NEAREST) {
656 incr = 0x80000000;
657 if ((d & 1) == 0)
658 incr -= 1;
659 } else if (rmode == FPSCR_ROUND_TOZERO) {
660 incr = 0;
661 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
662 incr = ~0;
663 }
664
665 if ((rem + incr) < rem && d < 0xffffffff)
666 d += 1;
667 if (d > 0x7fffffff + (vsm.sign != 0)) {
668 d = 0x7fffffff + (vsm.sign != 0);
669 exceptions |= FPSCR_IOC;
670 } else if (rem)
671 exceptions |= FPSCR_IXC;
672
673 if (vsm.sign)
674 d = -d;
675 } else {
676 d = 0;
677 if (vsm.exponent | vsm.significand) {
678 exceptions |= FPSCR_IXC;
679 if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
680 d = 1;
681 else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign)
682 d = -1;
683 }
684 }
685
686 pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
687
688 vfp_put_float(sd, (s32)d);
689
690 return exceptions;
691}
692
693static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr)
694{
695 return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO);
696}
697
698static u32 (* const fop_extfns[32])(int sd, int unused, s32 m, u32 fpscr) = {
699 [FEXT_TO_IDX(FEXT_FCPY)] = vfp_single_fcpy,
700 [FEXT_TO_IDX(FEXT_FABS)] = vfp_single_fabs,
701 [FEXT_TO_IDX(FEXT_FNEG)] = vfp_single_fneg,
702 [FEXT_TO_IDX(FEXT_FSQRT)] = vfp_single_fsqrt,
703 [FEXT_TO_IDX(FEXT_FCMP)] = vfp_single_fcmp,
704 [FEXT_TO_IDX(FEXT_FCMPE)] = vfp_single_fcmpe,
705 [FEXT_TO_IDX(FEXT_FCMPZ)] = vfp_single_fcmpz,
706 [FEXT_TO_IDX(FEXT_FCMPEZ)] = vfp_single_fcmpez,
707 [FEXT_TO_IDX(FEXT_FCVT)] = vfp_single_fcvtd,
708 [FEXT_TO_IDX(FEXT_FUITO)] = vfp_single_fuito,
709 [FEXT_TO_IDX(FEXT_FSITO)] = vfp_single_fsito,
710 [FEXT_TO_IDX(FEXT_FTOUI)] = vfp_single_ftoui,
711 [FEXT_TO_IDX(FEXT_FTOUIZ)] = vfp_single_ftouiz,
712 [FEXT_TO_IDX(FEXT_FTOSI)] = vfp_single_ftosi,
713 [FEXT_TO_IDX(FEXT_FTOSIZ)] = vfp_single_ftosiz,
714};
715
716
717
718
719
720static u32
721vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn,
722 struct vfp_single *vsm, u32 fpscr)
723{
724 struct vfp_single *vsp;
725 u32 exceptions = 0;
726 int tn, tm;
727
728 tn = vfp_single_type(vsn);
729 tm = vfp_single_type(vsm);
730
731 if (tn & tm & VFP_INFINITY) {
732 /*
733 * Two infinities. Are they different signs?
734 */
735 if (vsn->sign ^ vsm->sign) {
736 /*
737 * different signs -> invalid
738 */
739 exceptions = FPSCR_IOC;
740 vsp = &vfp_single_default_qnan;
741 } else {
742 /*
743 * same signs -> valid
744 */
745 vsp = vsn;
746 }
747 } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
748 /*
749 * One infinity and one number -> infinity
750 */
751 vsp = vsn;
752 } else {
753 /*
754 * 'n' is a NaN of some type
755 */
756 return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
757 }
758 *vsd = *vsp;
759 return exceptions;
760}
761
762static u32
763vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn,
764 struct vfp_single *vsm, u32 fpscr)
765{
766 u32 exp_diff, m_sig;
767
768 if (vsn->significand & 0x80000000 ||
769 vsm->significand & 0x80000000) {
770 pr_info("VFP: bad FP values in %s\n", __func__);
771 vfp_single_dump("VSN", vsn);
772 vfp_single_dump("VSM", vsm);
773 }
774
775 /*
776 * Ensure that 'n' is the largest magnitude number. Note that
777 * if 'n' and 'm' have equal exponents, we do not swap them.
778 * This ensures that NaN propagation works correctly.
779 */
780 if (vsn->exponent < vsm->exponent) {
781 struct vfp_single *t = vsn;
782 vsn = vsm;
783 vsm = t;
784 }
785
786 /*
787 * Is 'n' an infinity or a NaN? Note that 'm' may be a number,
788 * infinity or a NaN here.
789 */
790 if (vsn->exponent == 255)
791 return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr);
792
793 /*
794 * We have two proper numbers, where 'vsn' is the larger magnitude.
795 *
796 * Copy 'n' to 'd' before doing the arithmetic.
797 */
798 *vsd = *vsn;
799
800 /*
801 * Align both numbers.
802 */
803 exp_diff = vsn->exponent - vsm->exponent;
804 m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff);
805
806 /*
807 * If the signs are different, we are really subtracting.
808 */
809 if (vsn->sign ^ vsm->sign) {
810 m_sig = vsn->significand - m_sig;
811 if ((s32)m_sig < 0) {
812 vsd->sign = vfp_sign_negate(vsd->sign);
813 m_sig = -m_sig;
814 } else if (m_sig == 0) {
815 vsd->sign = (fpscr & FPSCR_RMODE_MASK) ==
816 FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
817 }
818 } else {
819 m_sig = vsn->significand + m_sig;
820 }
821 vsd->significand = m_sig;
822
823 return 0;
824}
825
826static u32
827vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr)
828{
829 vfp_single_dump("VSN", vsn);
830 vfp_single_dump("VSM", vsm);
831
832 /*
833 * Ensure that 'n' is the largest magnitude number. Note that
834 * if 'n' and 'm' have equal exponents, we do not swap them.
835 * This ensures that NaN propagation works correctly.
836 */
837 if (vsn->exponent < vsm->exponent) {
838 struct vfp_single *t = vsn;
839 vsn = vsm;
840 vsm = t;
841 pr_debug("VFP: swapping M <-> N\n");
842 }
843
844 vsd->sign = vsn->sign ^ vsm->sign;
845
846 /*
847 * If 'n' is an infinity or NaN, handle it. 'm' may be anything.
848 */
849 if (vsn->exponent == 255) {
850 if (vsn->significand || (vsm->exponent == 255 && vsm->significand))
851 return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
852 if ((vsm->exponent | vsm->significand) == 0) {
853 *vsd = vfp_single_default_qnan;
854 return FPSCR_IOC;
855 }
856 vsd->exponent = vsn->exponent;
857 vsd->significand = 0;
858 return 0;
859 }
860
861 /*
862 * If 'm' is zero, the result is always zero. In this case,
863 * 'n' may be zero or a number, but it doesn't matter which.
864 */
865 if ((vsm->exponent | vsm->significand) == 0) {
866 vsd->exponent = 0;
867 vsd->significand = 0;
868 return 0;
869 }
870
871 /*
872 * We add 2 to the destination exponent for the same reason as
873 * the addition case - though this time we have +1 from each
874 * input operand.
875 */
876 vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2;
877 vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand);
878
879 vfp_single_dump("VSD", vsd);
880 return 0;
881}
882
883#define NEG_MULTIPLY (1 << 0)
884#define NEG_SUBTRACT (1 << 1)
885
886static u32
887vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func)
888{
889 struct vfp_single vsd, vsp, vsn, vsm;
890 u32 exceptions;
891 s32 v;
892
893 v = vfp_get_float(sn);
894 pr_debug("VFP: s%u = %08x\n", sn, v);
895 vfp_single_unpack(&vsn, v);
896 if (vsn.exponent == 0 && vsn.significand)
897 vfp_single_normalise_denormal(&vsn);
898
899 vfp_single_unpack(&vsm, m);
900 if (vsm.exponent == 0 && vsm.significand)
901 vfp_single_normalise_denormal(&vsm);
902
903 exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr);
904 if (negate & NEG_MULTIPLY)
905 vsp.sign = vfp_sign_negate(vsp.sign);
906
907 v = vfp_get_float(sd);
908 pr_debug("VFP: s%u = %08x\n", sd, v);
909 vfp_single_unpack(&vsn, v);
910 if (negate & NEG_SUBTRACT)
911 vsn.sign = vfp_sign_negate(vsn.sign);
912
913 exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr);
914
915 return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func);
916}
917
918/*
919 * Standard operations
920 */
921
922/*
923 * sd = sd + (sn * sm)
924 */
925static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr)
926{
927 return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac");
928}
929
930/*
931 * sd = sd - (sn * sm)
932 */
933static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr)
934{
935 return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac");
936}
937
938/*
939 * sd = -sd + (sn * sm)
940 */
941static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr)
942{
943 return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc");
944}
945
946/*
947 * sd = -sd - (sn * sm)
948 */
949static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr)
950{
951 return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
952}
953
954/*
955 * sd = sn * sm
956 */
957static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr)
958{
959 struct vfp_single vsd, vsn, vsm;
960 u32 exceptions;
961 s32 n = vfp_get_float(sn);
962
963 pr_debug("VFP: s%u = %08x\n", sn, n);
964
965 vfp_single_unpack(&vsn, n);
966 if (vsn.exponent == 0 && vsn.significand)
967 vfp_single_normalise_denormal(&vsn);
968
969 vfp_single_unpack(&vsm, m);
970 if (vsm.exponent == 0 && vsm.significand)
971 vfp_single_normalise_denormal(&vsm);
972
973 exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
974 return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul");
975}
976
977/*
978 * sd = -(sn * sm)
979 */
980static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr)
981{
982 struct vfp_single vsd, vsn, vsm;
983 u32 exceptions;
984 s32 n = vfp_get_float(sn);
985
986 pr_debug("VFP: s%u = %08x\n", sn, n);
987
988 vfp_single_unpack(&vsn, n);
989 if (vsn.exponent == 0 && vsn.significand)
990 vfp_single_normalise_denormal(&vsn);
991
992 vfp_single_unpack(&vsm, m);
993 if (vsm.exponent == 0 && vsm.significand)
994 vfp_single_normalise_denormal(&vsm);
995
996 exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
997 vsd.sign = vfp_sign_negate(vsd.sign);
998 return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul");
999}
1000
1001/*
1002 * sd = sn + sm
1003 */
1004static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr)
1005{
1006 struct vfp_single vsd, vsn, vsm;
1007 u32 exceptions;
1008 s32 n = vfp_get_float(sn);
1009
1010 pr_debug("VFP: s%u = %08x\n", sn, n);
1011
1012 /*
1013 * Unpack and normalise denormals.
1014 */
1015 vfp_single_unpack(&vsn, n);
1016 if (vsn.exponent == 0 && vsn.significand)
1017 vfp_single_normalise_denormal(&vsn);
1018
1019 vfp_single_unpack(&vsm, m);
1020 if (vsm.exponent == 0 && vsm.significand)
1021 vfp_single_normalise_denormal(&vsm);
1022
1023 exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr);
1024
1025 return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd");
1026}
1027
1028/*
1029 * sd = sn - sm
1030 */
1031static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr)
1032{
1033 /*
1034 * Subtraction is addition with one sign inverted.
1035 */
1036 return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr);
1037}
1038
1039/*
1040 * sd = sn / sm
1041 */
1042static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr)
1043{
1044 struct vfp_single vsd, vsn, vsm;
1045 u32 exceptions = 0;
1046 s32 n = vfp_get_float(sn);
1047 int tm, tn;
1048
1049 pr_debug("VFP: s%u = %08x\n", sn, n);
1050
1051 vfp_single_unpack(&vsn, n);
1052 vfp_single_unpack(&vsm, m);
1053
1054 vsd.sign = vsn.sign ^ vsm.sign;
1055
1056 tn = vfp_single_type(&vsn);
1057 tm = vfp_single_type(&vsm);
1058
1059 /*
1060 * Is n a NAN?
1061 */
1062 if (tn & VFP_NAN)
1063 goto vsn_nan;
1064
1065 /*
1066 * Is m a NAN?
1067 */
1068 if (tm & VFP_NAN)
1069 goto vsm_nan;
1070
1071 /*
1072 * If n and m are infinity, the result is invalid
1073 * If n and m are zero, the result is invalid
1074 */
1075 if (tm & tn & (VFP_INFINITY|VFP_ZERO))
1076 goto invalid;
1077
1078 /*
1079 * If n is infinity, the result is infinity
1080 */
1081 if (tn & VFP_INFINITY)
1082 goto infinity;
1083
1084 /*
1085 * If m is zero, raise div0 exception
1086 */
1087 if (tm & VFP_ZERO)
1088 goto divzero;
1089
1090 /*
1091 * If m is infinity, or n is zero, the result is zero
1092 */
1093 if (tm & VFP_INFINITY || tn & VFP_ZERO)
1094 goto zero;
1095
1096 if (tn & VFP_DENORMAL)
1097 vfp_single_normalise_denormal(&vsn);
1098 if (tm & VFP_DENORMAL)
1099 vfp_single_normalise_denormal(&vsm);
1100
1101 /*
1102 * Ok, we have two numbers, we can perform division.
1103 */
1104 vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1;
1105 vsm.significand <<= 1;
1106 if (vsm.significand <= (2 * vsn.significand)) {
1107 vsn.significand >>= 1;
1108 vsd.exponent++;
1109 }
1110 vsd.significand = ((u64)vsn.significand << 32) / vsm.significand;
1111 if ((vsd.significand & 0x3f) == 0)
1112 vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32);
1113
1114 return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv");
1115
1116 vsn_nan:
1117 exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr);
1118 pack:
1119 vfp_put_float(sd, vfp_single_pack(&vsd));
1120 return exceptions;
1121
1122 vsm_nan:
1123 exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr);
1124 goto pack;
1125
1126 zero:
1127 vsd.exponent = 0;
1128 vsd.significand = 0;
1129 goto pack;
1130
1131 divzero:
1132 exceptions = FPSCR_DZC;
1133 infinity:
1134 vsd.exponent = 255;
1135 vsd.significand = 0;
1136 goto pack;
1137
1138 invalid:
1139 vfp_put_float(sd, vfp_single_pack(&vfp_single_default_qnan));
1140 return FPSCR_IOC;
1141}
1142
1143static u32 (* const fop_fns[16])(int sd, int sn, s32 m, u32 fpscr) = {
1144 [FOP_TO_IDX(FOP_FMAC)] = vfp_single_fmac,
1145 [FOP_TO_IDX(FOP_FNMAC)] = vfp_single_fnmac,
1146 [FOP_TO_IDX(FOP_FMSC)] = vfp_single_fmsc,
1147 [FOP_TO_IDX(FOP_FNMSC)] = vfp_single_fnmsc,
1148 [FOP_TO_IDX(FOP_FMUL)] = vfp_single_fmul,
1149 [FOP_TO_IDX(FOP_FNMUL)] = vfp_single_fnmul,
1150 [FOP_TO_IDX(FOP_FADD)] = vfp_single_fadd,
1151 [FOP_TO_IDX(FOP_FSUB)] = vfp_single_fsub,
1152 [FOP_TO_IDX(FOP_FDIV)] = vfp_single_fdiv,
1153};
1154
1155#define FREG_BANK(x) ((x) & 0x18)
1156#define FREG_IDX(x) ((x) & 7)
1157
1158u32 vfp_single_cpdo(u32 inst, u32 fpscr)
1159{
1160 u32 op = inst & FOP_MASK;
1161 u32 exceptions = 0;
1162 unsigned int sd = vfp_get_sd(inst);
1163 unsigned int sn = vfp_get_sn(inst);
1164 unsigned int sm = vfp_get_sm(inst);
1165 unsigned int vecitr, veclen, vecstride;
1166 u32 (*fop)(int, int, s32, u32);
1167
1168 veclen = fpscr & FPSCR_LENGTH_MASK;
1169 vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK);
1170
1171 /*
1172 * If destination bank is zero, vector length is always '1'.
1173 * ARM DDI0100F C5.1.3, C5.3.2.
1174 */
1175 if (FREG_BANK(sd) == 0)
1176 veclen = 0;
1177
1178 pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
1179 (veclen >> FPSCR_LENGTH_BIT) + 1);
1180
1181 fop = (op == FOP_EXT) ? fop_extfns[sn] : fop_fns[FOP_TO_IDX(op)];
1182 if (!fop)
1183 goto invalid;
1184
1185 for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
1186 s32 m = vfp_get_float(sm);
1187 u32 except;
1188
1189 if (op == FOP_EXT)
1190 pr_debug("VFP: itr%d (s%u) = op[%u] (s%u=%08x)\n",
1191 vecitr >> FPSCR_LENGTH_BIT, sd, sn, sm, m);
1192 else
1193 pr_debug("VFP: itr%d (s%u) = (s%u) op[%u] (s%u=%08x)\n",
1194 vecitr >> FPSCR_LENGTH_BIT, sd, sn,
1195 FOP_TO_IDX(op), sm, m);
1196
1197 except = fop(sd, sn, m, fpscr);
1198 pr_debug("VFP: itr%d: exceptions=%08x\n",
1199 vecitr >> FPSCR_LENGTH_BIT, except);
1200
1201 exceptions |= except;
1202
1203 /*
1204 * This ensures that comparisons only operate on scalars;
1205 * comparisons always return with one FPSCR status bit set.
1206 */
1207 if (except & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
1208 break;
1209
1210 /*
1211 * CHECK: It appears to be undefined whether we stop when
1212 * we encounter an exception. We continue.
1213 */
1214
1215 sd = FREG_BANK(sd) + ((FREG_IDX(sd) + vecstride) & 7);
1216 sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7);
1217 if (FREG_BANK(sm) != 0)
1218 sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7);
1219 }
1220 return exceptions;
1221
1222 invalid:
1223 return (u32)-1;
1224}