diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/arm/vfp/vfpsingle.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/arm/vfp/vfpsingle.c')
-rw-r--r-- | arch/arm/vfp/vfpsingle.c | 1224 |
1 files changed, 1224 insertions, 0 deletions
diff --git a/arch/arm/vfp/vfpsingle.c b/arch/arm/vfp/vfpsingle.c new file mode 100644 index 000000000000..6849fe35cb2e --- /dev/null +++ b/arch/arm/vfp/vfpsingle.c | |||
@@ -0,0 +1,1224 @@ | |||
1 | /* | ||
2 | * linux/arch/arm/vfp/vfpsingle.c | ||
3 | * | ||
4 | * This code is derived in part from John R. Housers softfloat library, which | ||
5 | * carries the following notice: | ||
6 | * | ||
7 | * =========================================================================== | ||
8 | * This C source file is part of the SoftFloat IEC/IEEE Floating-point | ||
9 | * Arithmetic Package, Release 2. | ||
10 | * | ||
11 | * Written by John R. Hauser. This work was made possible in part by the | ||
12 | * International Computer Science Institute, located at Suite 600, 1947 Center | ||
13 | * Street, Berkeley, California 94704. Funding was partially provided by the | ||
14 | * National Science Foundation under grant MIP-9311980. The original version | ||
15 | * of this code was written as part of a project to build a fixed-point vector | ||
16 | * processor in collaboration with the University of California at Berkeley, | ||
17 | * overseen by Profs. Nelson Morgan and John Wawrzynek. More information | ||
18 | * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ | ||
19 | * arithmetic/softfloat.html'. | ||
20 | * | ||
21 | * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort | ||
22 | * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | ||
23 | * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | ||
24 | * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | ||
25 | * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | ||
26 | * | ||
27 | * Derivative works are acceptable, even for commercial purposes, so long as | ||
28 | * (1) they include prominent notice that the work is derivative, and (2) they | ||
29 | * include prominent notice akin to these three paragraphs for those parts of | ||
30 | * this code that are retained. | ||
31 | * =========================================================================== | ||
32 | */ | ||
33 | #include <linux/kernel.h> | ||
34 | #include <linux/bitops.h> | ||
35 | #include <asm/ptrace.h> | ||
36 | #include <asm/vfp.h> | ||
37 | |||
38 | #include "vfpinstr.h" | ||
39 | #include "vfp.h" | ||
40 | |||
41 | static struct vfp_single vfp_single_default_qnan = { | ||
42 | .exponent = 255, | ||
43 | .sign = 0, | ||
44 | .significand = VFP_SINGLE_SIGNIFICAND_QNAN, | ||
45 | }; | ||
46 | |||
47 | static void vfp_single_dump(const char *str, struct vfp_single *s) | ||
48 | { | ||
49 | pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n", | ||
50 | str, s->sign != 0, s->exponent, s->significand); | ||
51 | } | ||
52 | |||
53 | static void vfp_single_normalise_denormal(struct vfp_single *vs) | ||
54 | { | ||
55 | int bits = 31 - fls(vs->significand); | ||
56 | |||
57 | vfp_single_dump("normalise_denormal: in", vs); | ||
58 | |||
59 | if (bits) { | ||
60 | vs->exponent -= bits - 1; | ||
61 | vs->significand <<= bits; | ||
62 | } | ||
63 | |||
64 | vfp_single_dump("normalise_denormal: out", vs); | ||
65 | } | ||
66 | |||
67 | #ifndef DEBUG | ||
68 | #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except) | ||
69 | u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions) | ||
70 | #else | ||
71 | u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func) | ||
72 | #endif | ||
73 | { | ||
74 | u32 significand, incr, rmode; | ||
75 | int exponent, shift, underflow; | ||
76 | |||
77 | vfp_single_dump("pack: in", vs); | ||
78 | |||
79 | /* | ||
80 | * Infinities and NaNs are a special case. | ||
81 | */ | ||
82 | if (vs->exponent == 255 && (vs->significand == 0 || exceptions)) | ||
83 | goto pack; | ||
84 | |||
85 | /* | ||
86 | * Special-case zero. | ||
87 | */ | ||
88 | if (vs->significand == 0) { | ||
89 | vs->exponent = 0; | ||
90 | goto pack; | ||
91 | } | ||
92 | |||
93 | exponent = vs->exponent; | ||
94 | significand = vs->significand; | ||
95 | |||
96 | /* | ||
97 | * Normalise first. Note that we shift the significand up to | ||
98 | * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least | ||
99 | * significant bit. | ||
100 | */ | ||
101 | shift = 32 - fls(significand); | ||
102 | if (shift < 32 && shift) { | ||
103 | exponent -= shift; | ||
104 | significand <<= shift; | ||
105 | } | ||
106 | |||
107 | #ifdef DEBUG | ||
108 | vs->exponent = exponent; | ||
109 | vs->significand = significand; | ||
110 | vfp_single_dump("pack: normalised", vs); | ||
111 | #endif | ||
112 | |||
113 | /* | ||
114 | * Tiny number? | ||
115 | */ | ||
116 | underflow = exponent < 0; | ||
117 | if (underflow) { | ||
118 | significand = vfp_shiftright32jamming(significand, -exponent); | ||
119 | exponent = 0; | ||
120 | #ifdef DEBUG | ||
121 | vs->exponent = exponent; | ||
122 | vs->significand = significand; | ||
123 | vfp_single_dump("pack: tiny number", vs); | ||
124 | #endif | ||
125 | if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))) | ||
126 | underflow = 0; | ||
127 | } | ||
128 | |||
129 | /* | ||
130 | * Select rounding increment. | ||
131 | */ | ||
132 | incr = 0; | ||
133 | rmode = fpscr & FPSCR_RMODE_MASK; | ||
134 | |||
135 | if (rmode == FPSCR_ROUND_NEAREST) { | ||
136 | incr = 1 << VFP_SINGLE_LOW_BITS; | ||
137 | if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0) | ||
138 | incr -= 1; | ||
139 | } else if (rmode == FPSCR_ROUND_TOZERO) { | ||
140 | incr = 0; | ||
141 | } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0)) | ||
142 | incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1; | ||
143 | |||
144 | pr_debug("VFP: rounding increment = 0x%08x\n", incr); | ||
145 | |||
146 | /* | ||
147 | * Is our rounding going to overflow? | ||
148 | */ | ||
149 | if ((significand + incr) < significand) { | ||
150 | exponent += 1; | ||
151 | significand = (significand >> 1) | (significand & 1); | ||
152 | incr >>= 1; | ||
153 | #ifdef DEBUG | ||
154 | vs->exponent = exponent; | ||
155 | vs->significand = significand; | ||
156 | vfp_single_dump("pack: overflow", vs); | ||
157 | #endif | ||
158 | } | ||
159 | |||
160 | /* | ||
161 | * If any of the low bits (which will be shifted out of the | ||
162 | * number) are non-zero, the result is inexact. | ||
163 | */ | ||
164 | if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)) | ||
165 | exceptions |= FPSCR_IXC; | ||
166 | |||
167 | /* | ||
168 | * Do our rounding. | ||
169 | */ | ||
170 | significand += incr; | ||
171 | |||
172 | /* | ||
173 | * Infinity? | ||
174 | */ | ||
175 | if (exponent >= 254) { | ||
176 | exceptions |= FPSCR_OFC | FPSCR_IXC; | ||
177 | if (incr == 0) { | ||
178 | vs->exponent = 253; | ||
179 | vs->significand = 0x7fffffff; | ||
180 | } else { | ||
181 | vs->exponent = 255; /* infinity */ | ||
182 | vs->significand = 0; | ||
183 | } | ||
184 | } else { | ||
185 | if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0) | ||
186 | exponent = 0; | ||
187 | if (exponent || significand > 0x80000000) | ||
188 | underflow = 0; | ||
189 | if (underflow) | ||
190 | exceptions |= FPSCR_UFC; | ||
191 | vs->exponent = exponent; | ||
192 | vs->significand = significand >> 1; | ||
193 | } | ||
194 | |||
195 | pack: | ||
196 | vfp_single_dump("pack: final", vs); | ||
197 | { | ||
198 | s32 d = vfp_single_pack(vs); | ||
199 | pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func, | ||
200 | sd, d, exceptions); | ||
201 | vfp_put_float(sd, d); | ||
202 | } | ||
203 | |||
204 | return exceptions & ~VFP_NAN_FLAG; | ||
205 | } | ||
206 | |||
207 | /* | ||
208 | * Propagate the NaN, setting exceptions if it is signalling. | ||
209 | * 'n' is always a NaN. 'm' may be a number, NaN or infinity. | ||
210 | */ | ||
211 | static u32 | ||
212 | vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn, | ||
213 | struct vfp_single *vsm, u32 fpscr) | ||
214 | { | ||
215 | struct vfp_single *nan; | ||
216 | int tn, tm = 0; | ||
217 | |||
218 | tn = vfp_single_type(vsn); | ||
219 | |||
220 | if (vsm) | ||
221 | tm = vfp_single_type(vsm); | ||
222 | |||
223 | if (fpscr & FPSCR_DEFAULT_NAN) | ||
224 | /* | ||
225 | * Default NaN mode - always returns a quiet NaN | ||
226 | */ | ||
227 | nan = &vfp_single_default_qnan; | ||
228 | else { | ||
229 | /* | ||
230 | * Contemporary mode - select the first signalling | ||
231 | * NAN, or if neither are signalling, the first | ||
232 | * quiet NAN. | ||
233 | */ | ||
234 | if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN)) | ||
235 | nan = vsn; | ||
236 | else | ||
237 | nan = vsm; | ||
238 | /* | ||
239 | * Make the NaN quiet. | ||
240 | */ | ||
241 | nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN; | ||
242 | } | ||
243 | |||
244 | *vsd = *nan; | ||
245 | |||
246 | /* | ||
247 | * If one was a signalling NAN, raise invalid operation. | ||
248 | */ | ||
249 | return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG; | ||
250 | } | ||
251 | |||
252 | |||
253 | /* | ||
254 | * Extended operations | ||
255 | */ | ||
256 | static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr) | ||
257 | { | ||
258 | vfp_put_float(sd, vfp_single_packed_abs(m)); | ||
259 | return 0; | ||
260 | } | ||
261 | |||
262 | static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr) | ||
263 | { | ||
264 | vfp_put_float(sd, m); | ||
265 | return 0; | ||
266 | } | ||
267 | |||
268 | static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr) | ||
269 | { | ||
270 | vfp_put_float(sd, vfp_single_packed_negate(m)); | ||
271 | return 0; | ||
272 | } | ||
273 | |||
274 | static const u16 sqrt_oddadjust[] = { | ||
275 | 0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0, | ||
276 | 0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67 | ||
277 | }; | ||
278 | |||
279 | static const u16 sqrt_evenadjust[] = { | ||
280 | 0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e, | ||
281 | 0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002 | ||
282 | }; | ||
283 | |||
284 | u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand) | ||
285 | { | ||
286 | int index; | ||
287 | u32 z, a; | ||
288 | |||
289 | if ((significand & 0xc0000000) != 0x40000000) { | ||
290 | printk(KERN_WARNING "VFP: estimate_sqrt: invalid significand\n"); | ||
291 | } | ||
292 | |||
293 | a = significand << 1; | ||
294 | index = (a >> 27) & 15; | ||
295 | if (exponent & 1) { | ||
296 | z = 0x4000 + (a >> 17) - sqrt_oddadjust[index]; | ||
297 | z = ((a / z) << 14) + (z << 15); | ||
298 | a >>= 1; | ||
299 | } else { | ||
300 | z = 0x8000 + (a >> 17) - sqrt_evenadjust[index]; | ||
301 | z = a / z + z; | ||
302 | z = (z >= 0x20000) ? 0xffff8000 : (z << 15); | ||
303 | if (z <= a) | ||
304 | return (s32)a >> 1; | ||
305 | } | ||
306 | return (u32)(((u64)a << 31) / z) + (z >> 1); | ||
307 | } | ||
308 | |||
309 | static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr) | ||
310 | { | ||
311 | struct vfp_single vsm, vsd; | ||
312 | int ret, tm; | ||
313 | |||
314 | vfp_single_unpack(&vsm, m); | ||
315 | tm = vfp_single_type(&vsm); | ||
316 | if (tm & (VFP_NAN|VFP_INFINITY)) { | ||
317 | struct vfp_single *vsp = &vsd; | ||
318 | |||
319 | if (tm & VFP_NAN) | ||
320 | ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr); | ||
321 | else if (vsm.sign == 0) { | ||
322 | sqrt_copy: | ||
323 | vsp = &vsm; | ||
324 | ret = 0; | ||
325 | } else { | ||
326 | sqrt_invalid: | ||
327 | vsp = &vfp_single_default_qnan; | ||
328 | ret = FPSCR_IOC; | ||
329 | } | ||
330 | vfp_put_float(sd, vfp_single_pack(vsp)); | ||
331 | return ret; | ||
332 | } | ||
333 | |||
334 | /* | ||
335 | * sqrt(+/- 0) == +/- 0 | ||
336 | */ | ||
337 | if (tm & VFP_ZERO) | ||
338 | goto sqrt_copy; | ||
339 | |||
340 | /* | ||
341 | * Normalise a denormalised number | ||
342 | */ | ||
343 | if (tm & VFP_DENORMAL) | ||
344 | vfp_single_normalise_denormal(&vsm); | ||
345 | |||
346 | /* | ||
347 | * sqrt(<0) = invalid | ||
348 | */ | ||
349 | if (vsm.sign) | ||
350 | goto sqrt_invalid; | ||
351 | |||
352 | vfp_single_dump("sqrt", &vsm); | ||
353 | |||
354 | /* | ||
355 | * Estimate the square root. | ||
356 | */ | ||
357 | vsd.sign = 0; | ||
358 | vsd.exponent = ((vsm.exponent - 127) >> 1) + 127; | ||
359 | vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2; | ||
360 | |||
361 | vfp_single_dump("sqrt estimate", &vsd); | ||
362 | |||
363 | /* | ||
364 | * And now adjust. | ||
365 | */ | ||
366 | if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) { | ||
367 | if (vsd.significand < 2) { | ||
368 | vsd.significand = 0xffffffff; | ||
369 | } else { | ||
370 | u64 term; | ||
371 | s64 rem; | ||
372 | vsm.significand <<= !(vsm.exponent & 1); | ||
373 | term = (u64)vsd.significand * vsd.significand; | ||
374 | rem = ((u64)vsm.significand << 32) - term; | ||
375 | |||
376 | pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem); | ||
377 | |||
378 | while (rem < 0) { | ||
379 | vsd.significand -= 1; | ||
380 | rem += ((u64)vsd.significand << 1) | 1; | ||
381 | } | ||
382 | vsd.significand |= rem != 0; | ||
383 | } | ||
384 | } | ||
385 | vsd.significand = vfp_shiftright32jamming(vsd.significand, 1); | ||
386 | |||
387 | return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt"); | ||
388 | } | ||
389 | |||
390 | /* | ||
391 | * Equal := ZC | ||
392 | * Less than := N | ||
393 | * Greater than := C | ||
394 | * Unordered := CV | ||
395 | */ | ||
396 | static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr) | ||
397 | { | ||
398 | s32 d; | ||
399 | u32 ret = 0; | ||
400 | |||
401 | d = vfp_get_float(sd); | ||
402 | if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) { | ||
403 | ret |= FPSCR_C | FPSCR_V; | ||
404 | if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) | ||
405 | /* | ||
406 | * Signalling NaN, or signalling on quiet NaN | ||
407 | */ | ||
408 | ret |= FPSCR_IOC; | ||
409 | } | ||
410 | |||
411 | if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) { | ||
412 | ret |= FPSCR_C | FPSCR_V; | ||
413 | if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) | ||
414 | /* | ||
415 | * Signalling NaN, or signalling on quiet NaN | ||
416 | */ | ||
417 | ret |= FPSCR_IOC; | ||
418 | } | ||
419 | |||
420 | if (ret == 0) { | ||
421 | if (d == m || vfp_single_packed_abs(d | m) == 0) { | ||
422 | /* | ||
423 | * equal | ||
424 | */ | ||
425 | ret |= FPSCR_Z | FPSCR_C; | ||
426 | } else if (vfp_single_packed_sign(d ^ m)) { | ||
427 | /* | ||
428 | * different signs | ||
429 | */ | ||
430 | if (vfp_single_packed_sign(d)) | ||
431 | /* | ||
432 | * d is negative, so d < m | ||
433 | */ | ||
434 | ret |= FPSCR_N; | ||
435 | else | ||
436 | /* | ||
437 | * d is positive, so d > m | ||
438 | */ | ||
439 | ret |= FPSCR_C; | ||
440 | } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) { | ||
441 | /* | ||
442 | * d < m | ||
443 | */ | ||
444 | ret |= FPSCR_N; | ||
445 | } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) { | ||
446 | /* | ||
447 | * d > m | ||
448 | */ | ||
449 | ret |= FPSCR_C; | ||
450 | } | ||
451 | } | ||
452 | return ret; | ||
453 | } | ||
454 | |||
455 | static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr) | ||
456 | { | ||
457 | return vfp_compare(sd, 0, m, fpscr); | ||
458 | } | ||
459 | |||
460 | static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr) | ||
461 | { | ||
462 | return vfp_compare(sd, 1, m, fpscr); | ||
463 | } | ||
464 | |||
465 | static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr) | ||
466 | { | ||
467 | return vfp_compare(sd, 0, 0, fpscr); | ||
468 | } | ||
469 | |||
470 | static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr) | ||
471 | { | ||
472 | return vfp_compare(sd, 1, 0, fpscr); | ||
473 | } | ||
474 | |||
475 | static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr) | ||
476 | { | ||
477 | struct vfp_single vsm; | ||
478 | struct vfp_double vdd; | ||
479 | int tm; | ||
480 | u32 exceptions = 0; | ||
481 | |||
482 | vfp_single_unpack(&vsm, m); | ||
483 | |||
484 | tm = vfp_single_type(&vsm); | ||
485 | |||
486 | /* | ||
487 | * If we have a signalling NaN, signal invalid operation. | ||
488 | */ | ||
489 | if (tm == VFP_SNAN) | ||
490 | exceptions = FPSCR_IOC; | ||
491 | |||
492 | if (tm & VFP_DENORMAL) | ||
493 | vfp_single_normalise_denormal(&vsm); | ||
494 | |||
495 | vdd.sign = vsm.sign; | ||
496 | vdd.significand = (u64)vsm.significand << 32; | ||
497 | |||
498 | /* | ||
499 | * If we have an infinity or NaN, the exponent must be 2047. | ||
500 | */ | ||
501 | if (tm & (VFP_INFINITY|VFP_NAN)) { | ||
502 | vdd.exponent = 2047; | ||
503 | if (tm & VFP_NAN) | ||
504 | vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN; | ||
505 | goto pack_nan; | ||
506 | } else if (tm & VFP_ZERO) | ||
507 | vdd.exponent = 0; | ||
508 | else | ||
509 | vdd.exponent = vsm.exponent + (1023 - 127); | ||
510 | |||
511 | /* | ||
512 | * Technically, if bit 0 of dd is set, this is an invalid | ||
513 | * instruction. However, we ignore this for efficiency. | ||
514 | */ | ||
515 | return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd"); | ||
516 | |||
517 | pack_nan: | ||
518 | vfp_put_double(dd, vfp_double_pack(&vdd)); | ||
519 | return exceptions; | ||
520 | } | ||
521 | |||
522 | static u32 vfp_single_fuito(int sd, int unused, s32 m, u32 fpscr) | ||
523 | { | ||
524 | struct vfp_single vs; | ||
525 | |||
526 | vs.sign = 0; | ||
527 | vs.exponent = 127 + 31 - 1; | ||
528 | vs.significand = (u32)m; | ||
529 | |||
530 | return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fuito"); | ||
531 | } | ||
532 | |||
533 | static u32 vfp_single_fsito(int sd, int unused, s32 m, u32 fpscr) | ||
534 | { | ||
535 | struct vfp_single vs; | ||
536 | |||
537 | vs.sign = (m & 0x80000000) >> 16; | ||
538 | vs.exponent = 127 + 31 - 1; | ||
539 | vs.significand = vs.sign ? -m : m; | ||
540 | |||
541 | return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fsito"); | ||
542 | } | ||
543 | |||
544 | static u32 vfp_single_ftoui(int sd, int unused, s32 m, u32 fpscr) | ||
545 | { | ||
546 | struct vfp_single vsm; | ||
547 | u32 d, exceptions = 0; | ||
548 | int rmode = fpscr & FPSCR_RMODE_MASK; | ||
549 | int tm; | ||
550 | |||
551 | vfp_single_unpack(&vsm, m); | ||
552 | vfp_single_dump("VSM", &vsm); | ||
553 | |||
554 | /* | ||
555 | * Do we have a denormalised number? | ||
556 | */ | ||
557 | tm = vfp_single_type(&vsm); | ||
558 | if (tm & VFP_DENORMAL) | ||
559 | exceptions |= FPSCR_IDC; | ||
560 | |||
561 | if (tm & VFP_NAN) | ||
562 | vsm.sign = 0; | ||
563 | |||
564 | if (vsm.exponent >= 127 + 32) { | ||
565 | d = vsm.sign ? 0 : 0xffffffff; | ||
566 | exceptions = FPSCR_IOC; | ||
567 | } else if (vsm.exponent >= 127 - 1) { | ||
568 | int shift = 127 + 31 - vsm.exponent; | ||
569 | u32 rem, incr = 0; | ||
570 | |||
571 | /* | ||
572 | * 2^0 <= m < 2^32-2^8 | ||
573 | */ | ||
574 | d = (vsm.significand << 1) >> shift; | ||
575 | rem = vsm.significand << (33 - shift); | ||
576 | |||
577 | if (rmode == FPSCR_ROUND_NEAREST) { | ||
578 | incr = 0x80000000; | ||
579 | if ((d & 1) == 0) | ||
580 | incr -= 1; | ||
581 | } else if (rmode == FPSCR_ROUND_TOZERO) { | ||
582 | incr = 0; | ||
583 | } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) { | ||
584 | incr = ~0; | ||
585 | } | ||
586 | |||
587 | if ((rem + incr) < rem) { | ||
588 | if (d < 0xffffffff) | ||
589 | d += 1; | ||
590 | else | ||
591 | exceptions |= FPSCR_IOC; | ||
592 | } | ||
593 | |||
594 | if (d && vsm.sign) { | ||
595 | d = 0; | ||
596 | exceptions |= FPSCR_IOC; | ||
597 | } else if (rem) | ||
598 | exceptions |= FPSCR_IXC; | ||
599 | } else { | ||
600 | d = 0; | ||
601 | if (vsm.exponent | vsm.significand) { | ||
602 | exceptions |= FPSCR_IXC; | ||
603 | if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0) | ||
604 | d = 1; | ||
605 | else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) { | ||
606 | d = 0; | ||
607 | exceptions |= FPSCR_IOC; | ||
608 | } | ||
609 | } | ||
610 | } | ||
611 | |||
612 | pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); | ||
613 | |||
614 | vfp_put_float(sd, d); | ||
615 | |||
616 | return exceptions; | ||
617 | } | ||
618 | |||
619 | static u32 vfp_single_ftouiz(int sd, int unused, s32 m, u32 fpscr) | ||
620 | { | ||
621 | return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO); | ||
622 | } | ||
623 | |||
624 | static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr) | ||
625 | { | ||
626 | struct vfp_single vsm; | ||
627 | u32 d, exceptions = 0; | ||
628 | int rmode = fpscr & FPSCR_RMODE_MASK; | ||
629 | |||
630 | vfp_single_unpack(&vsm, m); | ||
631 | vfp_single_dump("VSM", &vsm); | ||
632 | |||
633 | /* | ||
634 | * Do we have a denormalised number? | ||
635 | */ | ||
636 | if (vfp_single_type(&vsm) & VFP_DENORMAL) | ||
637 | exceptions |= FPSCR_IDC; | ||
638 | |||
639 | if (vsm.exponent >= 127 + 32) { | ||
640 | /* | ||
641 | * m >= 2^31-2^7: invalid | ||
642 | */ | ||
643 | d = 0x7fffffff; | ||
644 | if (vsm.sign) | ||
645 | d = ~d; | ||
646 | exceptions |= FPSCR_IOC; | ||
647 | } else if (vsm.exponent >= 127 - 1) { | ||
648 | int shift = 127 + 31 - vsm.exponent; | ||
649 | u32 rem, incr = 0; | ||
650 | |||
651 | /* 2^0 <= m <= 2^31-2^7 */ | ||
652 | d = (vsm.significand << 1) >> shift; | ||
653 | rem = vsm.significand << (33 - shift); | ||
654 | |||
655 | if (rmode == FPSCR_ROUND_NEAREST) { | ||
656 | incr = 0x80000000; | ||
657 | if ((d & 1) == 0) | ||
658 | incr -= 1; | ||
659 | } else if (rmode == FPSCR_ROUND_TOZERO) { | ||
660 | incr = 0; | ||
661 | } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) { | ||
662 | incr = ~0; | ||
663 | } | ||
664 | |||
665 | if ((rem + incr) < rem && d < 0xffffffff) | ||
666 | d += 1; | ||
667 | if (d > 0x7fffffff + (vsm.sign != 0)) { | ||
668 | d = 0x7fffffff + (vsm.sign != 0); | ||
669 | exceptions |= FPSCR_IOC; | ||
670 | } else if (rem) | ||
671 | exceptions |= FPSCR_IXC; | ||
672 | |||
673 | if (vsm.sign) | ||
674 | d = -d; | ||
675 | } else { | ||
676 | d = 0; | ||
677 | if (vsm.exponent | vsm.significand) { | ||
678 | exceptions |= FPSCR_IXC; | ||
679 | if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0) | ||
680 | d = 1; | ||
681 | else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) | ||
682 | d = -1; | ||
683 | } | ||
684 | } | ||
685 | |||
686 | pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); | ||
687 | |||
688 | vfp_put_float(sd, (s32)d); | ||
689 | |||
690 | return exceptions; | ||
691 | } | ||
692 | |||
693 | static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr) | ||
694 | { | ||
695 | return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO); | ||
696 | } | ||
697 | |||
698 | static u32 (* const fop_extfns[32])(int sd, int unused, s32 m, u32 fpscr) = { | ||
699 | [FEXT_TO_IDX(FEXT_FCPY)] = vfp_single_fcpy, | ||
700 | [FEXT_TO_IDX(FEXT_FABS)] = vfp_single_fabs, | ||
701 | [FEXT_TO_IDX(FEXT_FNEG)] = vfp_single_fneg, | ||
702 | [FEXT_TO_IDX(FEXT_FSQRT)] = vfp_single_fsqrt, | ||
703 | [FEXT_TO_IDX(FEXT_FCMP)] = vfp_single_fcmp, | ||
704 | [FEXT_TO_IDX(FEXT_FCMPE)] = vfp_single_fcmpe, | ||
705 | [FEXT_TO_IDX(FEXT_FCMPZ)] = vfp_single_fcmpz, | ||
706 | [FEXT_TO_IDX(FEXT_FCMPEZ)] = vfp_single_fcmpez, | ||
707 | [FEXT_TO_IDX(FEXT_FCVT)] = vfp_single_fcvtd, | ||
708 | [FEXT_TO_IDX(FEXT_FUITO)] = vfp_single_fuito, | ||
709 | [FEXT_TO_IDX(FEXT_FSITO)] = vfp_single_fsito, | ||
710 | [FEXT_TO_IDX(FEXT_FTOUI)] = vfp_single_ftoui, | ||
711 | [FEXT_TO_IDX(FEXT_FTOUIZ)] = vfp_single_ftouiz, | ||
712 | [FEXT_TO_IDX(FEXT_FTOSI)] = vfp_single_ftosi, | ||
713 | [FEXT_TO_IDX(FEXT_FTOSIZ)] = vfp_single_ftosiz, | ||
714 | }; | ||
715 | |||
716 | |||
717 | |||
718 | |||
719 | |||
720 | static u32 | ||
721 | vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn, | ||
722 | struct vfp_single *vsm, u32 fpscr) | ||
723 | { | ||
724 | struct vfp_single *vsp; | ||
725 | u32 exceptions = 0; | ||
726 | int tn, tm; | ||
727 | |||
728 | tn = vfp_single_type(vsn); | ||
729 | tm = vfp_single_type(vsm); | ||
730 | |||
731 | if (tn & tm & VFP_INFINITY) { | ||
732 | /* | ||
733 | * Two infinities. Are they different signs? | ||
734 | */ | ||
735 | if (vsn->sign ^ vsm->sign) { | ||
736 | /* | ||
737 | * different signs -> invalid | ||
738 | */ | ||
739 | exceptions = FPSCR_IOC; | ||
740 | vsp = &vfp_single_default_qnan; | ||
741 | } else { | ||
742 | /* | ||
743 | * same signs -> valid | ||
744 | */ | ||
745 | vsp = vsn; | ||
746 | } | ||
747 | } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) { | ||
748 | /* | ||
749 | * One infinity and one number -> infinity | ||
750 | */ | ||
751 | vsp = vsn; | ||
752 | } else { | ||
753 | /* | ||
754 | * 'n' is a NaN of some type | ||
755 | */ | ||
756 | return vfp_propagate_nan(vsd, vsn, vsm, fpscr); | ||
757 | } | ||
758 | *vsd = *vsp; | ||
759 | return exceptions; | ||
760 | } | ||
761 | |||
762 | static u32 | ||
763 | vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn, | ||
764 | struct vfp_single *vsm, u32 fpscr) | ||
765 | { | ||
766 | u32 exp_diff, m_sig; | ||
767 | |||
768 | if (vsn->significand & 0x80000000 || | ||
769 | vsm->significand & 0x80000000) { | ||
770 | pr_info("VFP: bad FP values in %s\n", __func__); | ||
771 | vfp_single_dump("VSN", vsn); | ||
772 | vfp_single_dump("VSM", vsm); | ||
773 | } | ||
774 | |||
775 | /* | ||
776 | * Ensure that 'n' is the largest magnitude number. Note that | ||
777 | * if 'n' and 'm' have equal exponents, we do not swap them. | ||
778 | * This ensures that NaN propagation works correctly. | ||
779 | */ | ||
780 | if (vsn->exponent < vsm->exponent) { | ||
781 | struct vfp_single *t = vsn; | ||
782 | vsn = vsm; | ||
783 | vsm = t; | ||
784 | } | ||
785 | |||
786 | /* | ||
787 | * Is 'n' an infinity or a NaN? Note that 'm' may be a number, | ||
788 | * infinity or a NaN here. | ||
789 | */ | ||
790 | if (vsn->exponent == 255) | ||
791 | return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr); | ||
792 | |||
793 | /* | ||
794 | * We have two proper numbers, where 'vsn' is the larger magnitude. | ||
795 | * | ||
796 | * Copy 'n' to 'd' before doing the arithmetic. | ||
797 | */ | ||
798 | *vsd = *vsn; | ||
799 | |||
800 | /* | ||
801 | * Align both numbers. | ||
802 | */ | ||
803 | exp_diff = vsn->exponent - vsm->exponent; | ||
804 | m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff); | ||
805 | |||
806 | /* | ||
807 | * If the signs are different, we are really subtracting. | ||
808 | */ | ||
809 | if (vsn->sign ^ vsm->sign) { | ||
810 | m_sig = vsn->significand - m_sig; | ||
811 | if ((s32)m_sig < 0) { | ||
812 | vsd->sign = vfp_sign_negate(vsd->sign); | ||
813 | m_sig = -m_sig; | ||
814 | } else if (m_sig == 0) { | ||
815 | vsd->sign = (fpscr & FPSCR_RMODE_MASK) == | ||
816 | FPSCR_ROUND_MINUSINF ? 0x8000 : 0; | ||
817 | } | ||
818 | } else { | ||
819 | m_sig = vsn->significand + m_sig; | ||
820 | } | ||
821 | vsd->significand = m_sig; | ||
822 | |||
823 | return 0; | ||
824 | } | ||
825 | |||
826 | static u32 | ||
827 | vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr) | ||
828 | { | ||
829 | vfp_single_dump("VSN", vsn); | ||
830 | vfp_single_dump("VSM", vsm); | ||
831 | |||
832 | /* | ||
833 | * Ensure that 'n' is the largest magnitude number. Note that | ||
834 | * if 'n' and 'm' have equal exponents, we do not swap them. | ||
835 | * This ensures that NaN propagation works correctly. | ||
836 | */ | ||
837 | if (vsn->exponent < vsm->exponent) { | ||
838 | struct vfp_single *t = vsn; | ||
839 | vsn = vsm; | ||
840 | vsm = t; | ||
841 | pr_debug("VFP: swapping M <-> N\n"); | ||
842 | } | ||
843 | |||
844 | vsd->sign = vsn->sign ^ vsm->sign; | ||
845 | |||
846 | /* | ||
847 | * If 'n' is an infinity or NaN, handle it. 'm' may be anything. | ||
848 | */ | ||
849 | if (vsn->exponent == 255) { | ||
850 | if (vsn->significand || (vsm->exponent == 255 && vsm->significand)) | ||
851 | return vfp_propagate_nan(vsd, vsn, vsm, fpscr); | ||
852 | if ((vsm->exponent | vsm->significand) == 0) { | ||
853 | *vsd = vfp_single_default_qnan; | ||
854 | return FPSCR_IOC; | ||
855 | } | ||
856 | vsd->exponent = vsn->exponent; | ||
857 | vsd->significand = 0; | ||
858 | return 0; | ||
859 | } | ||
860 | |||
861 | /* | ||
862 | * If 'm' is zero, the result is always zero. In this case, | ||
863 | * 'n' may be zero or a number, but it doesn't matter which. | ||
864 | */ | ||
865 | if ((vsm->exponent | vsm->significand) == 0) { | ||
866 | vsd->exponent = 0; | ||
867 | vsd->significand = 0; | ||
868 | return 0; | ||
869 | } | ||
870 | |||
871 | /* | ||
872 | * We add 2 to the destination exponent for the same reason as | ||
873 | * the addition case - though this time we have +1 from each | ||
874 | * input operand. | ||
875 | */ | ||
876 | vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2; | ||
877 | vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand); | ||
878 | |||
879 | vfp_single_dump("VSD", vsd); | ||
880 | return 0; | ||
881 | } | ||
882 | |||
883 | #define NEG_MULTIPLY (1 << 0) | ||
884 | #define NEG_SUBTRACT (1 << 1) | ||
885 | |||
886 | static u32 | ||
887 | vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func) | ||
888 | { | ||
889 | struct vfp_single vsd, vsp, vsn, vsm; | ||
890 | u32 exceptions; | ||
891 | s32 v; | ||
892 | |||
893 | v = vfp_get_float(sn); | ||
894 | pr_debug("VFP: s%u = %08x\n", sn, v); | ||
895 | vfp_single_unpack(&vsn, v); | ||
896 | if (vsn.exponent == 0 && vsn.significand) | ||
897 | vfp_single_normalise_denormal(&vsn); | ||
898 | |||
899 | vfp_single_unpack(&vsm, m); | ||
900 | if (vsm.exponent == 0 && vsm.significand) | ||
901 | vfp_single_normalise_denormal(&vsm); | ||
902 | |||
903 | exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr); | ||
904 | if (negate & NEG_MULTIPLY) | ||
905 | vsp.sign = vfp_sign_negate(vsp.sign); | ||
906 | |||
907 | v = vfp_get_float(sd); | ||
908 | pr_debug("VFP: s%u = %08x\n", sd, v); | ||
909 | vfp_single_unpack(&vsn, v); | ||
910 | if (negate & NEG_SUBTRACT) | ||
911 | vsn.sign = vfp_sign_negate(vsn.sign); | ||
912 | |||
913 | exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr); | ||
914 | |||
915 | return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func); | ||
916 | } | ||
917 | |||
918 | /* | ||
919 | * Standard operations | ||
920 | */ | ||
921 | |||
922 | /* | ||
923 | * sd = sd + (sn * sm) | ||
924 | */ | ||
925 | static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr) | ||
926 | { | ||
927 | return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac"); | ||
928 | } | ||
929 | |||
930 | /* | ||
931 | * sd = sd - (sn * sm) | ||
932 | */ | ||
933 | static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr) | ||
934 | { | ||
935 | return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac"); | ||
936 | } | ||
937 | |||
938 | /* | ||
939 | * sd = -sd + (sn * sm) | ||
940 | */ | ||
941 | static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr) | ||
942 | { | ||
943 | return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc"); | ||
944 | } | ||
945 | |||
946 | /* | ||
947 | * sd = -sd - (sn * sm) | ||
948 | */ | ||
949 | static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr) | ||
950 | { | ||
951 | return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc"); | ||
952 | } | ||
953 | |||
954 | /* | ||
955 | * sd = sn * sm | ||
956 | */ | ||
957 | static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr) | ||
958 | { | ||
959 | struct vfp_single vsd, vsn, vsm; | ||
960 | u32 exceptions; | ||
961 | s32 n = vfp_get_float(sn); | ||
962 | |||
963 | pr_debug("VFP: s%u = %08x\n", sn, n); | ||
964 | |||
965 | vfp_single_unpack(&vsn, n); | ||
966 | if (vsn.exponent == 0 && vsn.significand) | ||
967 | vfp_single_normalise_denormal(&vsn); | ||
968 | |||
969 | vfp_single_unpack(&vsm, m); | ||
970 | if (vsm.exponent == 0 && vsm.significand) | ||
971 | vfp_single_normalise_denormal(&vsm); | ||
972 | |||
973 | exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr); | ||
974 | return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul"); | ||
975 | } | ||
976 | |||
977 | /* | ||
978 | * sd = -(sn * sm) | ||
979 | */ | ||
980 | static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr) | ||
981 | { | ||
982 | struct vfp_single vsd, vsn, vsm; | ||
983 | u32 exceptions; | ||
984 | s32 n = vfp_get_float(sn); | ||
985 | |||
986 | pr_debug("VFP: s%u = %08x\n", sn, n); | ||
987 | |||
988 | vfp_single_unpack(&vsn, n); | ||
989 | if (vsn.exponent == 0 && vsn.significand) | ||
990 | vfp_single_normalise_denormal(&vsn); | ||
991 | |||
992 | vfp_single_unpack(&vsm, m); | ||
993 | if (vsm.exponent == 0 && vsm.significand) | ||
994 | vfp_single_normalise_denormal(&vsm); | ||
995 | |||
996 | exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr); | ||
997 | vsd.sign = vfp_sign_negate(vsd.sign); | ||
998 | return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul"); | ||
999 | } | ||
1000 | |||
1001 | /* | ||
1002 | * sd = sn + sm | ||
1003 | */ | ||
1004 | static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr) | ||
1005 | { | ||
1006 | struct vfp_single vsd, vsn, vsm; | ||
1007 | u32 exceptions; | ||
1008 | s32 n = vfp_get_float(sn); | ||
1009 | |||
1010 | pr_debug("VFP: s%u = %08x\n", sn, n); | ||
1011 | |||
1012 | /* | ||
1013 | * Unpack and normalise denormals. | ||
1014 | */ | ||
1015 | vfp_single_unpack(&vsn, n); | ||
1016 | if (vsn.exponent == 0 && vsn.significand) | ||
1017 | vfp_single_normalise_denormal(&vsn); | ||
1018 | |||
1019 | vfp_single_unpack(&vsm, m); | ||
1020 | if (vsm.exponent == 0 && vsm.significand) | ||
1021 | vfp_single_normalise_denormal(&vsm); | ||
1022 | |||
1023 | exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr); | ||
1024 | |||
1025 | return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd"); | ||
1026 | } | ||
1027 | |||
1028 | /* | ||
1029 | * sd = sn - sm | ||
1030 | */ | ||
1031 | static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr) | ||
1032 | { | ||
1033 | /* | ||
1034 | * Subtraction is addition with one sign inverted. | ||
1035 | */ | ||
1036 | return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr); | ||
1037 | } | ||
1038 | |||
1039 | /* | ||
1040 | * sd = sn / sm | ||
1041 | */ | ||
1042 | static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr) | ||
1043 | { | ||
1044 | struct vfp_single vsd, vsn, vsm; | ||
1045 | u32 exceptions = 0; | ||
1046 | s32 n = vfp_get_float(sn); | ||
1047 | int tm, tn; | ||
1048 | |||
1049 | pr_debug("VFP: s%u = %08x\n", sn, n); | ||
1050 | |||
1051 | vfp_single_unpack(&vsn, n); | ||
1052 | vfp_single_unpack(&vsm, m); | ||
1053 | |||
1054 | vsd.sign = vsn.sign ^ vsm.sign; | ||
1055 | |||
1056 | tn = vfp_single_type(&vsn); | ||
1057 | tm = vfp_single_type(&vsm); | ||
1058 | |||
1059 | /* | ||
1060 | * Is n a NAN? | ||
1061 | */ | ||
1062 | if (tn & VFP_NAN) | ||
1063 | goto vsn_nan; | ||
1064 | |||
1065 | /* | ||
1066 | * Is m a NAN? | ||
1067 | */ | ||
1068 | if (tm & VFP_NAN) | ||
1069 | goto vsm_nan; | ||
1070 | |||
1071 | /* | ||
1072 | * If n and m are infinity, the result is invalid | ||
1073 | * If n and m are zero, the result is invalid | ||
1074 | */ | ||
1075 | if (tm & tn & (VFP_INFINITY|VFP_ZERO)) | ||
1076 | goto invalid; | ||
1077 | |||
1078 | /* | ||
1079 | * If n is infinity, the result is infinity | ||
1080 | */ | ||
1081 | if (tn & VFP_INFINITY) | ||
1082 | goto infinity; | ||
1083 | |||
1084 | /* | ||
1085 | * If m is zero, raise div0 exception | ||
1086 | */ | ||
1087 | if (tm & VFP_ZERO) | ||
1088 | goto divzero; | ||
1089 | |||
1090 | /* | ||
1091 | * If m is infinity, or n is zero, the result is zero | ||
1092 | */ | ||
1093 | if (tm & VFP_INFINITY || tn & VFP_ZERO) | ||
1094 | goto zero; | ||
1095 | |||
1096 | if (tn & VFP_DENORMAL) | ||
1097 | vfp_single_normalise_denormal(&vsn); | ||
1098 | if (tm & VFP_DENORMAL) | ||
1099 | vfp_single_normalise_denormal(&vsm); | ||
1100 | |||
1101 | /* | ||
1102 | * Ok, we have two numbers, we can perform division. | ||
1103 | */ | ||
1104 | vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1; | ||
1105 | vsm.significand <<= 1; | ||
1106 | if (vsm.significand <= (2 * vsn.significand)) { | ||
1107 | vsn.significand >>= 1; | ||
1108 | vsd.exponent++; | ||
1109 | } | ||
1110 | vsd.significand = ((u64)vsn.significand << 32) / vsm.significand; | ||
1111 | if ((vsd.significand & 0x3f) == 0) | ||
1112 | vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32); | ||
1113 | |||
1114 | return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv"); | ||
1115 | |||
1116 | vsn_nan: | ||
1117 | exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr); | ||
1118 | pack: | ||
1119 | vfp_put_float(sd, vfp_single_pack(&vsd)); | ||
1120 | return exceptions; | ||
1121 | |||
1122 | vsm_nan: | ||
1123 | exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr); | ||
1124 | goto pack; | ||
1125 | |||
1126 | zero: | ||
1127 | vsd.exponent = 0; | ||
1128 | vsd.significand = 0; | ||
1129 | goto pack; | ||
1130 | |||
1131 | divzero: | ||
1132 | exceptions = FPSCR_DZC; | ||
1133 | infinity: | ||
1134 | vsd.exponent = 255; | ||
1135 | vsd.significand = 0; | ||
1136 | goto pack; | ||
1137 | |||
1138 | invalid: | ||
1139 | vfp_put_float(sd, vfp_single_pack(&vfp_single_default_qnan)); | ||
1140 | return FPSCR_IOC; | ||
1141 | } | ||
1142 | |||
1143 | static u32 (* const fop_fns[16])(int sd, int sn, s32 m, u32 fpscr) = { | ||
1144 | [FOP_TO_IDX(FOP_FMAC)] = vfp_single_fmac, | ||
1145 | [FOP_TO_IDX(FOP_FNMAC)] = vfp_single_fnmac, | ||
1146 | [FOP_TO_IDX(FOP_FMSC)] = vfp_single_fmsc, | ||
1147 | [FOP_TO_IDX(FOP_FNMSC)] = vfp_single_fnmsc, | ||
1148 | [FOP_TO_IDX(FOP_FMUL)] = vfp_single_fmul, | ||
1149 | [FOP_TO_IDX(FOP_FNMUL)] = vfp_single_fnmul, | ||
1150 | [FOP_TO_IDX(FOP_FADD)] = vfp_single_fadd, | ||
1151 | [FOP_TO_IDX(FOP_FSUB)] = vfp_single_fsub, | ||
1152 | [FOP_TO_IDX(FOP_FDIV)] = vfp_single_fdiv, | ||
1153 | }; | ||
1154 | |||
1155 | #define FREG_BANK(x) ((x) & 0x18) | ||
1156 | #define FREG_IDX(x) ((x) & 7) | ||
1157 | |||
1158 | u32 vfp_single_cpdo(u32 inst, u32 fpscr) | ||
1159 | { | ||
1160 | u32 op = inst & FOP_MASK; | ||
1161 | u32 exceptions = 0; | ||
1162 | unsigned int sd = vfp_get_sd(inst); | ||
1163 | unsigned int sn = vfp_get_sn(inst); | ||
1164 | unsigned int sm = vfp_get_sm(inst); | ||
1165 | unsigned int vecitr, veclen, vecstride; | ||
1166 | u32 (*fop)(int, int, s32, u32); | ||
1167 | |||
1168 | veclen = fpscr & FPSCR_LENGTH_MASK; | ||
1169 | vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK); | ||
1170 | |||
1171 | /* | ||
1172 | * If destination bank is zero, vector length is always '1'. | ||
1173 | * ARM DDI0100F C5.1.3, C5.3.2. | ||
1174 | */ | ||
1175 | if (FREG_BANK(sd) == 0) | ||
1176 | veclen = 0; | ||
1177 | |||
1178 | pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride, | ||
1179 | (veclen >> FPSCR_LENGTH_BIT) + 1); | ||
1180 | |||
1181 | fop = (op == FOP_EXT) ? fop_extfns[sn] : fop_fns[FOP_TO_IDX(op)]; | ||
1182 | if (!fop) | ||
1183 | goto invalid; | ||
1184 | |||
1185 | for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) { | ||
1186 | s32 m = vfp_get_float(sm); | ||
1187 | u32 except; | ||
1188 | |||
1189 | if (op == FOP_EXT) | ||
1190 | pr_debug("VFP: itr%d (s%u) = op[%u] (s%u=%08x)\n", | ||
1191 | vecitr >> FPSCR_LENGTH_BIT, sd, sn, sm, m); | ||
1192 | else | ||
1193 | pr_debug("VFP: itr%d (s%u) = (s%u) op[%u] (s%u=%08x)\n", | ||
1194 | vecitr >> FPSCR_LENGTH_BIT, sd, sn, | ||
1195 | FOP_TO_IDX(op), sm, m); | ||
1196 | |||
1197 | except = fop(sd, sn, m, fpscr); | ||
1198 | pr_debug("VFP: itr%d: exceptions=%08x\n", | ||
1199 | vecitr >> FPSCR_LENGTH_BIT, except); | ||
1200 | |||
1201 | exceptions |= except; | ||
1202 | |||
1203 | /* | ||
1204 | * This ensures that comparisons only operate on scalars; | ||
1205 | * comparisons always return with one FPSCR status bit set. | ||
1206 | */ | ||
1207 | if (except & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V)) | ||
1208 | break; | ||
1209 | |||
1210 | /* | ||
1211 | * CHECK: It appears to be undefined whether we stop when | ||
1212 | * we encounter an exception. We continue. | ||
1213 | */ | ||
1214 | |||
1215 | sd = FREG_BANK(sd) + ((FREG_IDX(sd) + vecstride) & 7); | ||
1216 | sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7); | ||
1217 | if (FREG_BANK(sm) != 0) | ||
1218 | sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7); | ||
1219 | } | ||
1220 | return exceptions; | ||
1221 | |||
1222 | invalid: | ||
1223 | return (u32)-1; | ||
1224 | } | ||