diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/arm/vfp/vfpdouble.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/arm/vfp/vfpdouble.c')
-rw-r--r-- | arch/arm/vfp/vfpdouble.c | 1186 |
1 files changed, 1186 insertions, 0 deletions
diff --git a/arch/arm/vfp/vfpdouble.c b/arch/arm/vfp/vfpdouble.c new file mode 100644 index 000000000000..fa3053e84db5 --- /dev/null +++ b/arch/arm/vfp/vfpdouble.c | |||
@@ -0,0 +1,1186 @@ | |||
1 | /* | ||
2 | * linux/arch/arm/vfp/vfpdouble.c | ||
3 | * | ||
4 | * This code is derived in part from John R. Housers softfloat library, which | ||
5 | * carries the following notice: | ||
6 | * | ||
7 | * =========================================================================== | ||
8 | * This C source file is part of the SoftFloat IEC/IEEE Floating-point | ||
9 | * Arithmetic Package, Release 2. | ||
10 | * | ||
11 | * Written by John R. Hauser. This work was made possible in part by the | ||
12 | * International Computer Science Institute, located at Suite 600, 1947 Center | ||
13 | * Street, Berkeley, California 94704. Funding was partially provided by the | ||
14 | * National Science Foundation under grant MIP-9311980. The original version | ||
15 | * of this code was written as part of a project to build a fixed-point vector | ||
16 | * processor in collaboration with the University of California at Berkeley, | ||
17 | * overseen by Profs. Nelson Morgan and John Wawrzynek. More information | ||
18 | * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ | ||
19 | * arithmetic/softfloat.html'. | ||
20 | * | ||
21 | * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort | ||
22 | * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | ||
23 | * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | ||
24 | * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | ||
25 | * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | ||
26 | * | ||
27 | * Derivative works are acceptable, even for commercial purposes, so long as | ||
28 | * (1) they include prominent notice that the work is derivative, and (2) they | ||
29 | * include prominent notice akin to these three paragraphs for those parts of | ||
30 | * this code that are retained. | ||
31 | * =========================================================================== | ||
32 | */ | ||
33 | #include <linux/kernel.h> | ||
34 | #include <linux/bitops.h> | ||
35 | #include <asm/ptrace.h> | ||
36 | #include <asm/vfp.h> | ||
37 | |||
38 | #include "vfpinstr.h" | ||
39 | #include "vfp.h" | ||
40 | |||
41 | static struct vfp_double vfp_double_default_qnan = { | ||
42 | .exponent = 2047, | ||
43 | .sign = 0, | ||
44 | .significand = VFP_DOUBLE_SIGNIFICAND_QNAN, | ||
45 | }; | ||
46 | |||
47 | static void vfp_double_dump(const char *str, struct vfp_double *d) | ||
48 | { | ||
49 | pr_debug("VFP: %s: sign=%d exponent=%d significand=%016llx\n", | ||
50 | str, d->sign != 0, d->exponent, d->significand); | ||
51 | } | ||
52 | |||
53 | static void vfp_double_normalise_denormal(struct vfp_double *vd) | ||
54 | { | ||
55 | int bits = 31 - fls(vd->significand >> 32); | ||
56 | if (bits == 31) | ||
57 | bits = 62 - fls(vd->significand); | ||
58 | |||
59 | vfp_double_dump("normalise_denormal: in", vd); | ||
60 | |||
61 | if (bits) { | ||
62 | vd->exponent -= bits - 1; | ||
63 | vd->significand <<= bits; | ||
64 | } | ||
65 | |||
66 | vfp_double_dump("normalise_denormal: out", vd); | ||
67 | } | ||
68 | |||
69 | u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func) | ||
70 | { | ||
71 | u64 significand, incr; | ||
72 | int exponent, shift, underflow; | ||
73 | u32 rmode; | ||
74 | |||
75 | vfp_double_dump("pack: in", vd); | ||
76 | |||
77 | /* | ||
78 | * Infinities and NaNs are a special case. | ||
79 | */ | ||
80 | if (vd->exponent == 2047 && (vd->significand == 0 || exceptions)) | ||
81 | goto pack; | ||
82 | |||
83 | /* | ||
84 | * Special-case zero. | ||
85 | */ | ||
86 | if (vd->significand == 0) { | ||
87 | vd->exponent = 0; | ||
88 | goto pack; | ||
89 | } | ||
90 | |||
91 | exponent = vd->exponent; | ||
92 | significand = vd->significand; | ||
93 | |||
94 | shift = 32 - fls(significand >> 32); | ||
95 | if (shift == 32) | ||
96 | shift = 64 - fls(significand); | ||
97 | if (shift) { | ||
98 | exponent -= shift; | ||
99 | significand <<= shift; | ||
100 | } | ||
101 | |||
102 | #ifdef DEBUG | ||
103 | vd->exponent = exponent; | ||
104 | vd->significand = significand; | ||
105 | vfp_double_dump("pack: normalised", vd); | ||
106 | #endif | ||
107 | |||
108 | /* | ||
109 | * Tiny number? | ||
110 | */ | ||
111 | underflow = exponent < 0; | ||
112 | if (underflow) { | ||
113 | significand = vfp_shiftright64jamming(significand, -exponent); | ||
114 | exponent = 0; | ||
115 | #ifdef DEBUG | ||
116 | vd->exponent = exponent; | ||
117 | vd->significand = significand; | ||
118 | vfp_double_dump("pack: tiny number", vd); | ||
119 | #endif | ||
120 | if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1))) | ||
121 | underflow = 0; | ||
122 | } | ||
123 | |||
124 | /* | ||
125 | * Select rounding increment. | ||
126 | */ | ||
127 | incr = 0; | ||
128 | rmode = fpscr & FPSCR_RMODE_MASK; | ||
129 | |||
130 | if (rmode == FPSCR_ROUND_NEAREST) { | ||
131 | incr = 1ULL << VFP_DOUBLE_LOW_BITS; | ||
132 | if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0) | ||
133 | incr -= 1; | ||
134 | } else if (rmode == FPSCR_ROUND_TOZERO) { | ||
135 | incr = 0; | ||
136 | } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0)) | ||
137 | incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1; | ||
138 | |||
139 | pr_debug("VFP: rounding increment = 0x%08llx\n", incr); | ||
140 | |||
141 | /* | ||
142 | * Is our rounding going to overflow? | ||
143 | */ | ||
144 | if ((significand + incr) < significand) { | ||
145 | exponent += 1; | ||
146 | significand = (significand >> 1) | (significand & 1); | ||
147 | incr >>= 1; | ||
148 | #ifdef DEBUG | ||
149 | vd->exponent = exponent; | ||
150 | vd->significand = significand; | ||
151 | vfp_double_dump("pack: overflow", vd); | ||
152 | #endif | ||
153 | } | ||
154 | |||
155 | /* | ||
156 | * If any of the low bits (which will be shifted out of the | ||
157 | * number) are non-zero, the result is inexact. | ||
158 | */ | ||
159 | if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1)) | ||
160 | exceptions |= FPSCR_IXC; | ||
161 | |||
162 | /* | ||
163 | * Do our rounding. | ||
164 | */ | ||
165 | significand += incr; | ||
166 | |||
167 | /* | ||
168 | * Infinity? | ||
169 | */ | ||
170 | if (exponent >= 2046) { | ||
171 | exceptions |= FPSCR_OFC | FPSCR_IXC; | ||
172 | if (incr == 0) { | ||
173 | vd->exponent = 2045; | ||
174 | vd->significand = 0x7fffffffffffffffULL; | ||
175 | } else { | ||
176 | vd->exponent = 2047; /* infinity */ | ||
177 | vd->significand = 0; | ||
178 | } | ||
179 | } else { | ||
180 | if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0) | ||
181 | exponent = 0; | ||
182 | if (exponent || significand > 0x8000000000000000ULL) | ||
183 | underflow = 0; | ||
184 | if (underflow) | ||
185 | exceptions |= FPSCR_UFC; | ||
186 | vd->exponent = exponent; | ||
187 | vd->significand = significand >> 1; | ||
188 | } | ||
189 | |||
190 | pack: | ||
191 | vfp_double_dump("pack: final", vd); | ||
192 | { | ||
193 | s64 d = vfp_double_pack(vd); | ||
194 | pr_debug("VFP: %s: d(d%d)=%016llx exceptions=%08x\n", func, | ||
195 | dd, d, exceptions); | ||
196 | vfp_put_double(dd, d); | ||
197 | } | ||
198 | return exceptions & ~VFP_NAN_FLAG; | ||
199 | } | ||
200 | |||
201 | /* | ||
202 | * Propagate the NaN, setting exceptions if it is signalling. | ||
203 | * 'n' is always a NaN. 'm' may be a number, NaN or infinity. | ||
204 | */ | ||
205 | static u32 | ||
206 | vfp_propagate_nan(struct vfp_double *vdd, struct vfp_double *vdn, | ||
207 | struct vfp_double *vdm, u32 fpscr) | ||
208 | { | ||
209 | struct vfp_double *nan; | ||
210 | int tn, tm = 0; | ||
211 | |||
212 | tn = vfp_double_type(vdn); | ||
213 | |||
214 | if (vdm) | ||
215 | tm = vfp_double_type(vdm); | ||
216 | |||
217 | if (fpscr & FPSCR_DEFAULT_NAN) | ||
218 | /* | ||
219 | * Default NaN mode - always returns a quiet NaN | ||
220 | */ | ||
221 | nan = &vfp_double_default_qnan; | ||
222 | else { | ||
223 | /* | ||
224 | * Contemporary mode - select the first signalling | ||
225 | * NAN, or if neither are signalling, the first | ||
226 | * quiet NAN. | ||
227 | */ | ||
228 | if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN)) | ||
229 | nan = vdn; | ||
230 | else | ||
231 | nan = vdm; | ||
232 | /* | ||
233 | * Make the NaN quiet. | ||
234 | */ | ||
235 | nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN; | ||
236 | } | ||
237 | |||
238 | *vdd = *nan; | ||
239 | |||
240 | /* | ||
241 | * If one was a signalling NAN, raise invalid operation. | ||
242 | */ | ||
243 | return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG; | ||
244 | } | ||
245 | |||
246 | /* | ||
247 | * Extended operations | ||
248 | */ | ||
249 | static u32 vfp_double_fabs(int dd, int unused, int dm, u32 fpscr) | ||
250 | { | ||
251 | vfp_put_double(dd, vfp_double_packed_abs(vfp_get_double(dm))); | ||
252 | return 0; | ||
253 | } | ||
254 | |||
255 | static u32 vfp_double_fcpy(int dd, int unused, int dm, u32 fpscr) | ||
256 | { | ||
257 | vfp_put_double(dd, vfp_get_double(dm)); | ||
258 | return 0; | ||
259 | } | ||
260 | |||
261 | static u32 vfp_double_fneg(int dd, int unused, int dm, u32 fpscr) | ||
262 | { | ||
263 | vfp_put_double(dd, vfp_double_packed_negate(vfp_get_double(dm))); | ||
264 | return 0; | ||
265 | } | ||
266 | |||
267 | static u32 vfp_double_fsqrt(int dd, int unused, int dm, u32 fpscr) | ||
268 | { | ||
269 | struct vfp_double vdm, vdd; | ||
270 | int ret, tm; | ||
271 | |||
272 | vfp_double_unpack(&vdm, vfp_get_double(dm)); | ||
273 | tm = vfp_double_type(&vdm); | ||
274 | if (tm & (VFP_NAN|VFP_INFINITY)) { | ||
275 | struct vfp_double *vdp = &vdd; | ||
276 | |||
277 | if (tm & VFP_NAN) | ||
278 | ret = vfp_propagate_nan(vdp, &vdm, NULL, fpscr); | ||
279 | else if (vdm.sign == 0) { | ||
280 | sqrt_copy: | ||
281 | vdp = &vdm; | ||
282 | ret = 0; | ||
283 | } else { | ||
284 | sqrt_invalid: | ||
285 | vdp = &vfp_double_default_qnan; | ||
286 | ret = FPSCR_IOC; | ||
287 | } | ||
288 | vfp_put_double(dd, vfp_double_pack(vdp)); | ||
289 | return ret; | ||
290 | } | ||
291 | |||
292 | /* | ||
293 | * sqrt(+/- 0) == +/- 0 | ||
294 | */ | ||
295 | if (tm & VFP_ZERO) | ||
296 | goto sqrt_copy; | ||
297 | |||
298 | /* | ||
299 | * Normalise a denormalised number | ||
300 | */ | ||
301 | if (tm & VFP_DENORMAL) | ||
302 | vfp_double_normalise_denormal(&vdm); | ||
303 | |||
304 | /* | ||
305 | * sqrt(<0) = invalid | ||
306 | */ | ||
307 | if (vdm.sign) | ||
308 | goto sqrt_invalid; | ||
309 | |||
310 | vfp_double_dump("sqrt", &vdm); | ||
311 | |||
312 | /* | ||
313 | * Estimate the square root. | ||
314 | */ | ||
315 | vdd.sign = 0; | ||
316 | vdd.exponent = ((vdm.exponent - 1023) >> 1) + 1023; | ||
317 | vdd.significand = (u64)vfp_estimate_sqrt_significand(vdm.exponent, vdm.significand >> 32) << 31; | ||
318 | |||
319 | vfp_double_dump("sqrt estimate1", &vdd); | ||
320 | |||
321 | vdm.significand >>= 1 + (vdm.exponent & 1); | ||
322 | vdd.significand += 2 + vfp_estimate_div128to64(vdm.significand, 0, vdd.significand); | ||
323 | |||
324 | vfp_double_dump("sqrt estimate2", &vdd); | ||
325 | |||
326 | /* | ||
327 | * And now adjust. | ||
328 | */ | ||
329 | if ((vdd.significand & VFP_DOUBLE_LOW_BITS_MASK) <= 5) { | ||
330 | if (vdd.significand < 2) { | ||
331 | vdd.significand = ~0ULL; | ||
332 | } else { | ||
333 | u64 termh, terml, remh, reml; | ||
334 | vdm.significand <<= 2; | ||
335 | mul64to128(&termh, &terml, vdd.significand, vdd.significand); | ||
336 | sub128(&remh, &reml, vdm.significand, 0, termh, terml); | ||
337 | while ((s64)remh < 0) { | ||
338 | vdd.significand -= 1; | ||
339 | shift64left(&termh, &terml, vdd.significand); | ||
340 | terml |= 1; | ||
341 | add128(&remh, &reml, remh, reml, termh, terml); | ||
342 | } | ||
343 | vdd.significand |= (remh | reml) != 0; | ||
344 | } | ||
345 | } | ||
346 | vdd.significand = vfp_shiftright64jamming(vdd.significand, 1); | ||
347 | |||
348 | return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fsqrt"); | ||
349 | } | ||
350 | |||
351 | /* | ||
352 | * Equal := ZC | ||
353 | * Less than := N | ||
354 | * Greater than := C | ||
355 | * Unordered := CV | ||
356 | */ | ||
357 | static u32 vfp_compare(int dd, int signal_on_qnan, int dm, u32 fpscr) | ||
358 | { | ||
359 | s64 d, m; | ||
360 | u32 ret = 0; | ||
361 | |||
362 | m = vfp_get_double(dm); | ||
363 | if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) { | ||
364 | ret |= FPSCR_C | FPSCR_V; | ||
365 | if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) | ||
366 | /* | ||
367 | * Signalling NaN, or signalling on quiet NaN | ||
368 | */ | ||
369 | ret |= FPSCR_IOC; | ||
370 | } | ||
371 | |||
372 | d = vfp_get_double(dd); | ||
373 | if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) { | ||
374 | ret |= FPSCR_C | FPSCR_V; | ||
375 | if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) | ||
376 | /* | ||
377 | * Signalling NaN, or signalling on quiet NaN | ||
378 | */ | ||
379 | ret |= FPSCR_IOC; | ||
380 | } | ||
381 | |||
382 | if (ret == 0) { | ||
383 | if (d == m || vfp_double_packed_abs(d | m) == 0) { | ||
384 | /* | ||
385 | * equal | ||
386 | */ | ||
387 | ret |= FPSCR_Z | FPSCR_C; | ||
388 | } else if (vfp_double_packed_sign(d ^ m)) { | ||
389 | /* | ||
390 | * different signs | ||
391 | */ | ||
392 | if (vfp_double_packed_sign(d)) | ||
393 | /* | ||
394 | * d is negative, so d < m | ||
395 | */ | ||
396 | ret |= FPSCR_N; | ||
397 | else | ||
398 | /* | ||
399 | * d is positive, so d > m | ||
400 | */ | ||
401 | ret |= FPSCR_C; | ||
402 | } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) { | ||
403 | /* | ||
404 | * d < m | ||
405 | */ | ||
406 | ret |= FPSCR_N; | ||
407 | } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) { | ||
408 | /* | ||
409 | * d > m | ||
410 | */ | ||
411 | ret |= FPSCR_C; | ||
412 | } | ||
413 | } | ||
414 | |||
415 | return ret; | ||
416 | } | ||
417 | |||
418 | static u32 vfp_double_fcmp(int dd, int unused, int dm, u32 fpscr) | ||
419 | { | ||
420 | return vfp_compare(dd, 0, dm, fpscr); | ||
421 | } | ||
422 | |||
423 | static u32 vfp_double_fcmpe(int dd, int unused, int dm, u32 fpscr) | ||
424 | { | ||
425 | return vfp_compare(dd, 1, dm, fpscr); | ||
426 | } | ||
427 | |||
428 | static u32 vfp_double_fcmpz(int dd, int unused, int dm, u32 fpscr) | ||
429 | { | ||
430 | return vfp_compare(dd, 0, VFP_REG_ZERO, fpscr); | ||
431 | } | ||
432 | |||
433 | static u32 vfp_double_fcmpez(int dd, int unused, int dm, u32 fpscr) | ||
434 | { | ||
435 | return vfp_compare(dd, 1, VFP_REG_ZERO, fpscr); | ||
436 | } | ||
437 | |||
438 | static u32 vfp_double_fcvts(int sd, int unused, int dm, u32 fpscr) | ||
439 | { | ||
440 | struct vfp_double vdm; | ||
441 | struct vfp_single vsd; | ||
442 | int tm; | ||
443 | u32 exceptions = 0; | ||
444 | |||
445 | vfp_double_unpack(&vdm, vfp_get_double(dm)); | ||
446 | |||
447 | tm = vfp_double_type(&vdm); | ||
448 | |||
449 | /* | ||
450 | * If we have a signalling NaN, signal invalid operation. | ||
451 | */ | ||
452 | if (tm == VFP_SNAN) | ||
453 | exceptions = FPSCR_IOC; | ||
454 | |||
455 | if (tm & VFP_DENORMAL) | ||
456 | vfp_double_normalise_denormal(&vdm); | ||
457 | |||
458 | vsd.sign = vdm.sign; | ||
459 | vsd.significand = vfp_hi64to32jamming(vdm.significand); | ||
460 | |||
461 | /* | ||
462 | * If we have an infinity or a NaN, the exponent must be 255 | ||
463 | */ | ||
464 | if (tm & (VFP_INFINITY|VFP_NAN)) { | ||
465 | vsd.exponent = 255; | ||
466 | if (tm & VFP_NAN) | ||
467 | vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN; | ||
468 | goto pack_nan; | ||
469 | } else if (tm & VFP_ZERO) | ||
470 | vsd.exponent = 0; | ||
471 | else | ||
472 | vsd.exponent = vdm.exponent - (1023 - 127); | ||
473 | |||
474 | return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fcvts"); | ||
475 | |||
476 | pack_nan: | ||
477 | vfp_put_float(sd, vfp_single_pack(&vsd)); | ||
478 | return exceptions; | ||
479 | } | ||
480 | |||
481 | static u32 vfp_double_fuito(int dd, int unused, int dm, u32 fpscr) | ||
482 | { | ||
483 | struct vfp_double vdm; | ||
484 | u32 m = vfp_get_float(dm); | ||
485 | |||
486 | vdm.sign = 0; | ||
487 | vdm.exponent = 1023 + 63 - 1; | ||
488 | vdm.significand = (u64)m; | ||
489 | |||
490 | return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fuito"); | ||
491 | } | ||
492 | |||
493 | static u32 vfp_double_fsito(int dd, int unused, int dm, u32 fpscr) | ||
494 | { | ||
495 | struct vfp_double vdm; | ||
496 | u32 m = vfp_get_float(dm); | ||
497 | |||
498 | vdm.sign = (m & 0x80000000) >> 16; | ||
499 | vdm.exponent = 1023 + 63 - 1; | ||
500 | vdm.significand = vdm.sign ? -m : m; | ||
501 | |||
502 | return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fsito"); | ||
503 | } | ||
504 | |||
505 | static u32 vfp_double_ftoui(int sd, int unused, int dm, u32 fpscr) | ||
506 | { | ||
507 | struct vfp_double vdm; | ||
508 | u32 d, exceptions = 0; | ||
509 | int rmode = fpscr & FPSCR_RMODE_MASK; | ||
510 | int tm; | ||
511 | |||
512 | vfp_double_unpack(&vdm, vfp_get_double(dm)); | ||
513 | |||
514 | /* | ||
515 | * Do we have a denormalised number? | ||
516 | */ | ||
517 | tm = vfp_double_type(&vdm); | ||
518 | if (tm & VFP_DENORMAL) | ||
519 | exceptions |= FPSCR_IDC; | ||
520 | |||
521 | if (tm & VFP_NAN) | ||
522 | vdm.sign = 0; | ||
523 | |||
524 | if (vdm.exponent >= 1023 + 32) { | ||
525 | d = vdm.sign ? 0 : 0xffffffff; | ||
526 | exceptions = FPSCR_IOC; | ||
527 | } else if (vdm.exponent >= 1023 - 1) { | ||
528 | int shift = 1023 + 63 - vdm.exponent; | ||
529 | u64 rem, incr = 0; | ||
530 | |||
531 | /* | ||
532 | * 2^0 <= m < 2^32-2^8 | ||
533 | */ | ||
534 | d = (vdm.significand << 1) >> shift; | ||
535 | rem = vdm.significand << (65 - shift); | ||
536 | |||
537 | if (rmode == FPSCR_ROUND_NEAREST) { | ||
538 | incr = 0x8000000000000000ULL; | ||
539 | if ((d & 1) == 0) | ||
540 | incr -= 1; | ||
541 | } else if (rmode == FPSCR_ROUND_TOZERO) { | ||
542 | incr = 0; | ||
543 | } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) { | ||
544 | incr = ~0ULL; | ||
545 | } | ||
546 | |||
547 | if ((rem + incr) < rem) { | ||
548 | if (d < 0xffffffff) | ||
549 | d += 1; | ||
550 | else | ||
551 | exceptions |= FPSCR_IOC; | ||
552 | } | ||
553 | |||
554 | if (d && vdm.sign) { | ||
555 | d = 0; | ||
556 | exceptions |= FPSCR_IOC; | ||
557 | } else if (rem) | ||
558 | exceptions |= FPSCR_IXC; | ||
559 | } else { | ||
560 | d = 0; | ||
561 | if (vdm.exponent | vdm.significand) { | ||
562 | exceptions |= FPSCR_IXC; | ||
563 | if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0) | ||
564 | d = 1; | ||
565 | else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) { | ||
566 | d = 0; | ||
567 | exceptions |= FPSCR_IOC; | ||
568 | } | ||
569 | } | ||
570 | } | ||
571 | |||
572 | pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); | ||
573 | |||
574 | vfp_put_float(sd, d); | ||
575 | |||
576 | return exceptions; | ||
577 | } | ||
578 | |||
579 | static u32 vfp_double_ftouiz(int sd, int unused, int dm, u32 fpscr) | ||
580 | { | ||
581 | return vfp_double_ftoui(sd, unused, dm, FPSCR_ROUND_TOZERO); | ||
582 | } | ||
583 | |||
584 | static u32 vfp_double_ftosi(int sd, int unused, int dm, u32 fpscr) | ||
585 | { | ||
586 | struct vfp_double vdm; | ||
587 | u32 d, exceptions = 0; | ||
588 | int rmode = fpscr & FPSCR_RMODE_MASK; | ||
589 | |||
590 | vfp_double_unpack(&vdm, vfp_get_double(dm)); | ||
591 | vfp_double_dump("VDM", &vdm); | ||
592 | |||
593 | /* | ||
594 | * Do we have denormalised number? | ||
595 | */ | ||
596 | if (vfp_double_type(&vdm) & VFP_DENORMAL) | ||
597 | exceptions |= FPSCR_IDC; | ||
598 | |||
599 | if (vdm.exponent >= 1023 + 32) { | ||
600 | d = 0x7fffffff; | ||
601 | if (vdm.sign) | ||
602 | d = ~d; | ||
603 | exceptions |= FPSCR_IOC; | ||
604 | } else if (vdm.exponent >= 1023 - 1) { | ||
605 | int shift = 1023 + 63 - vdm.exponent; /* 58 */ | ||
606 | u64 rem, incr = 0; | ||
607 | |||
608 | d = (vdm.significand << 1) >> shift; | ||
609 | rem = vdm.significand << (65 - shift); | ||
610 | |||
611 | if (rmode == FPSCR_ROUND_NEAREST) { | ||
612 | incr = 0x8000000000000000ULL; | ||
613 | if ((d & 1) == 0) | ||
614 | incr -= 1; | ||
615 | } else if (rmode == FPSCR_ROUND_TOZERO) { | ||
616 | incr = 0; | ||
617 | } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) { | ||
618 | incr = ~0ULL; | ||
619 | } | ||
620 | |||
621 | if ((rem + incr) < rem && d < 0xffffffff) | ||
622 | d += 1; | ||
623 | if (d > 0x7fffffff + (vdm.sign != 0)) { | ||
624 | d = 0x7fffffff + (vdm.sign != 0); | ||
625 | exceptions |= FPSCR_IOC; | ||
626 | } else if (rem) | ||
627 | exceptions |= FPSCR_IXC; | ||
628 | |||
629 | if (vdm.sign) | ||
630 | d = -d; | ||
631 | } else { | ||
632 | d = 0; | ||
633 | if (vdm.exponent | vdm.significand) { | ||
634 | exceptions |= FPSCR_IXC; | ||
635 | if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0) | ||
636 | d = 1; | ||
637 | else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) | ||
638 | d = -1; | ||
639 | } | ||
640 | } | ||
641 | |||
642 | pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); | ||
643 | |||
644 | vfp_put_float(sd, (s32)d); | ||
645 | |||
646 | return exceptions; | ||
647 | } | ||
648 | |||
649 | static u32 vfp_double_ftosiz(int dd, int unused, int dm, u32 fpscr) | ||
650 | { | ||
651 | return vfp_double_ftosi(dd, unused, dm, FPSCR_ROUND_TOZERO); | ||
652 | } | ||
653 | |||
654 | |||
655 | static u32 (* const fop_extfns[32])(int dd, int unused, int dm, u32 fpscr) = { | ||
656 | [FEXT_TO_IDX(FEXT_FCPY)] = vfp_double_fcpy, | ||
657 | [FEXT_TO_IDX(FEXT_FABS)] = vfp_double_fabs, | ||
658 | [FEXT_TO_IDX(FEXT_FNEG)] = vfp_double_fneg, | ||
659 | [FEXT_TO_IDX(FEXT_FSQRT)] = vfp_double_fsqrt, | ||
660 | [FEXT_TO_IDX(FEXT_FCMP)] = vfp_double_fcmp, | ||
661 | [FEXT_TO_IDX(FEXT_FCMPE)] = vfp_double_fcmpe, | ||
662 | [FEXT_TO_IDX(FEXT_FCMPZ)] = vfp_double_fcmpz, | ||
663 | [FEXT_TO_IDX(FEXT_FCMPEZ)] = vfp_double_fcmpez, | ||
664 | [FEXT_TO_IDX(FEXT_FCVT)] = vfp_double_fcvts, | ||
665 | [FEXT_TO_IDX(FEXT_FUITO)] = vfp_double_fuito, | ||
666 | [FEXT_TO_IDX(FEXT_FSITO)] = vfp_double_fsito, | ||
667 | [FEXT_TO_IDX(FEXT_FTOUI)] = vfp_double_ftoui, | ||
668 | [FEXT_TO_IDX(FEXT_FTOUIZ)] = vfp_double_ftouiz, | ||
669 | [FEXT_TO_IDX(FEXT_FTOSI)] = vfp_double_ftosi, | ||
670 | [FEXT_TO_IDX(FEXT_FTOSIZ)] = vfp_double_ftosiz, | ||
671 | }; | ||
672 | |||
673 | |||
674 | |||
675 | |||
676 | static u32 | ||
677 | vfp_double_fadd_nonnumber(struct vfp_double *vdd, struct vfp_double *vdn, | ||
678 | struct vfp_double *vdm, u32 fpscr) | ||
679 | { | ||
680 | struct vfp_double *vdp; | ||
681 | u32 exceptions = 0; | ||
682 | int tn, tm; | ||
683 | |||
684 | tn = vfp_double_type(vdn); | ||
685 | tm = vfp_double_type(vdm); | ||
686 | |||
687 | if (tn & tm & VFP_INFINITY) { | ||
688 | /* | ||
689 | * Two infinities. Are they different signs? | ||
690 | */ | ||
691 | if (vdn->sign ^ vdm->sign) { | ||
692 | /* | ||
693 | * different signs -> invalid | ||
694 | */ | ||
695 | exceptions = FPSCR_IOC; | ||
696 | vdp = &vfp_double_default_qnan; | ||
697 | } else { | ||
698 | /* | ||
699 | * same signs -> valid | ||
700 | */ | ||
701 | vdp = vdn; | ||
702 | } | ||
703 | } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) { | ||
704 | /* | ||
705 | * One infinity and one number -> infinity | ||
706 | */ | ||
707 | vdp = vdn; | ||
708 | } else { | ||
709 | /* | ||
710 | * 'n' is a NaN of some type | ||
711 | */ | ||
712 | return vfp_propagate_nan(vdd, vdn, vdm, fpscr); | ||
713 | } | ||
714 | *vdd = *vdp; | ||
715 | return exceptions; | ||
716 | } | ||
717 | |||
718 | static u32 | ||
719 | vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn, | ||
720 | struct vfp_double *vdm, u32 fpscr) | ||
721 | { | ||
722 | u32 exp_diff; | ||
723 | u64 m_sig; | ||
724 | |||
725 | if (vdn->significand & (1ULL << 63) || | ||
726 | vdm->significand & (1ULL << 63)) { | ||
727 | pr_info("VFP: bad FP values in %s\n", __func__); | ||
728 | vfp_double_dump("VDN", vdn); | ||
729 | vfp_double_dump("VDM", vdm); | ||
730 | } | ||
731 | |||
732 | /* | ||
733 | * Ensure that 'n' is the largest magnitude number. Note that | ||
734 | * if 'n' and 'm' have equal exponents, we do not swap them. | ||
735 | * This ensures that NaN propagation works correctly. | ||
736 | */ | ||
737 | if (vdn->exponent < vdm->exponent) { | ||
738 | struct vfp_double *t = vdn; | ||
739 | vdn = vdm; | ||
740 | vdm = t; | ||
741 | } | ||
742 | |||
743 | /* | ||
744 | * Is 'n' an infinity or a NaN? Note that 'm' may be a number, | ||
745 | * infinity or a NaN here. | ||
746 | */ | ||
747 | if (vdn->exponent == 2047) | ||
748 | return vfp_double_fadd_nonnumber(vdd, vdn, vdm, fpscr); | ||
749 | |||
750 | /* | ||
751 | * We have two proper numbers, where 'vdn' is the larger magnitude. | ||
752 | * | ||
753 | * Copy 'n' to 'd' before doing the arithmetic. | ||
754 | */ | ||
755 | *vdd = *vdn; | ||
756 | |||
757 | /* | ||
758 | * Align 'm' with the result. | ||
759 | */ | ||
760 | exp_diff = vdn->exponent - vdm->exponent; | ||
761 | m_sig = vfp_shiftright64jamming(vdm->significand, exp_diff); | ||
762 | |||
763 | /* | ||
764 | * If the signs are different, we are really subtracting. | ||
765 | */ | ||
766 | if (vdn->sign ^ vdm->sign) { | ||
767 | m_sig = vdn->significand - m_sig; | ||
768 | if ((s64)m_sig < 0) { | ||
769 | vdd->sign = vfp_sign_negate(vdd->sign); | ||
770 | m_sig = -m_sig; | ||
771 | } | ||
772 | } else { | ||
773 | m_sig += vdn->significand; | ||
774 | } | ||
775 | vdd->significand = m_sig; | ||
776 | |||
777 | return 0; | ||
778 | } | ||
779 | |||
780 | static u32 | ||
781 | vfp_double_multiply(struct vfp_double *vdd, struct vfp_double *vdn, | ||
782 | struct vfp_double *vdm, u32 fpscr) | ||
783 | { | ||
784 | vfp_double_dump("VDN", vdn); | ||
785 | vfp_double_dump("VDM", vdm); | ||
786 | |||
787 | /* | ||
788 | * Ensure that 'n' is the largest magnitude number. Note that | ||
789 | * if 'n' and 'm' have equal exponents, we do not swap them. | ||
790 | * This ensures that NaN propagation works correctly. | ||
791 | */ | ||
792 | if (vdn->exponent < vdm->exponent) { | ||
793 | struct vfp_double *t = vdn; | ||
794 | vdn = vdm; | ||
795 | vdm = t; | ||
796 | pr_debug("VFP: swapping M <-> N\n"); | ||
797 | } | ||
798 | |||
799 | vdd->sign = vdn->sign ^ vdm->sign; | ||
800 | |||
801 | /* | ||
802 | * If 'n' is an infinity or NaN, handle it. 'm' may be anything. | ||
803 | */ | ||
804 | if (vdn->exponent == 2047) { | ||
805 | if (vdn->significand || (vdm->exponent == 2047 && vdm->significand)) | ||
806 | return vfp_propagate_nan(vdd, vdn, vdm, fpscr); | ||
807 | if ((vdm->exponent | vdm->significand) == 0) { | ||
808 | *vdd = vfp_double_default_qnan; | ||
809 | return FPSCR_IOC; | ||
810 | } | ||
811 | vdd->exponent = vdn->exponent; | ||
812 | vdd->significand = 0; | ||
813 | return 0; | ||
814 | } | ||
815 | |||
816 | /* | ||
817 | * If 'm' is zero, the result is always zero. In this case, | ||
818 | * 'n' may be zero or a number, but it doesn't matter which. | ||
819 | */ | ||
820 | if ((vdm->exponent | vdm->significand) == 0) { | ||
821 | vdd->exponent = 0; | ||
822 | vdd->significand = 0; | ||
823 | return 0; | ||
824 | } | ||
825 | |||
826 | /* | ||
827 | * We add 2 to the destination exponent for the same reason | ||
828 | * as the addition case - though this time we have +1 from | ||
829 | * each input operand. | ||
830 | */ | ||
831 | vdd->exponent = vdn->exponent + vdm->exponent - 1023 + 2; | ||
832 | vdd->significand = vfp_hi64multiply64(vdn->significand, vdm->significand); | ||
833 | |||
834 | vfp_double_dump("VDD", vdd); | ||
835 | return 0; | ||
836 | } | ||
837 | |||
838 | #define NEG_MULTIPLY (1 << 0) | ||
839 | #define NEG_SUBTRACT (1 << 1) | ||
840 | |||
841 | static u32 | ||
842 | vfp_double_multiply_accumulate(int dd, int dn, int dm, u32 fpscr, u32 negate, char *func) | ||
843 | { | ||
844 | struct vfp_double vdd, vdp, vdn, vdm; | ||
845 | u32 exceptions; | ||
846 | |||
847 | vfp_double_unpack(&vdn, vfp_get_double(dn)); | ||
848 | if (vdn.exponent == 0 && vdn.significand) | ||
849 | vfp_double_normalise_denormal(&vdn); | ||
850 | |||
851 | vfp_double_unpack(&vdm, vfp_get_double(dm)); | ||
852 | if (vdm.exponent == 0 && vdm.significand) | ||
853 | vfp_double_normalise_denormal(&vdm); | ||
854 | |||
855 | exceptions = vfp_double_multiply(&vdp, &vdn, &vdm, fpscr); | ||
856 | if (negate & NEG_MULTIPLY) | ||
857 | vdp.sign = vfp_sign_negate(vdp.sign); | ||
858 | |||
859 | vfp_double_unpack(&vdn, vfp_get_double(dd)); | ||
860 | if (negate & NEG_SUBTRACT) | ||
861 | vdn.sign = vfp_sign_negate(vdn.sign); | ||
862 | |||
863 | exceptions |= vfp_double_add(&vdd, &vdn, &vdp, fpscr); | ||
864 | |||
865 | return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, func); | ||
866 | } | ||
867 | |||
868 | /* | ||
869 | * Standard operations | ||
870 | */ | ||
871 | |||
872 | /* | ||
873 | * sd = sd + (sn * sm) | ||
874 | */ | ||
875 | static u32 vfp_double_fmac(int dd, int dn, int dm, u32 fpscr) | ||
876 | { | ||
877 | return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, 0, "fmac"); | ||
878 | } | ||
879 | |||
880 | /* | ||
881 | * sd = sd - (sn * sm) | ||
882 | */ | ||
883 | static u32 vfp_double_fnmac(int dd, int dn, int dm, u32 fpscr) | ||
884 | { | ||
885 | return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_MULTIPLY, "fnmac"); | ||
886 | } | ||
887 | |||
888 | /* | ||
889 | * sd = -sd + (sn * sm) | ||
890 | */ | ||
891 | static u32 vfp_double_fmsc(int dd, int dn, int dm, u32 fpscr) | ||
892 | { | ||
893 | return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT, "fmsc"); | ||
894 | } | ||
895 | |||
896 | /* | ||
897 | * sd = -sd - (sn * sm) | ||
898 | */ | ||
899 | static u32 vfp_double_fnmsc(int dd, int dn, int dm, u32 fpscr) | ||
900 | { | ||
901 | return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc"); | ||
902 | } | ||
903 | |||
904 | /* | ||
905 | * sd = sn * sm | ||
906 | */ | ||
907 | static u32 vfp_double_fmul(int dd, int dn, int dm, u32 fpscr) | ||
908 | { | ||
909 | struct vfp_double vdd, vdn, vdm; | ||
910 | u32 exceptions; | ||
911 | |||
912 | vfp_double_unpack(&vdn, vfp_get_double(dn)); | ||
913 | if (vdn.exponent == 0 && vdn.significand) | ||
914 | vfp_double_normalise_denormal(&vdn); | ||
915 | |||
916 | vfp_double_unpack(&vdm, vfp_get_double(dm)); | ||
917 | if (vdm.exponent == 0 && vdm.significand) | ||
918 | vfp_double_normalise_denormal(&vdm); | ||
919 | |||
920 | exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr); | ||
921 | return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fmul"); | ||
922 | } | ||
923 | |||
924 | /* | ||
925 | * sd = -(sn * sm) | ||
926 | */ | ||
927 | static u32 vfp_double_fnmul(int dd, int dn, int dm, u32 fpscr) | ||
928 | { | ||
929 | struct vfp_double vdd, vdn, vdm; | ||
930 | u32 exceptions; | ||
931 | |||
932 | vfp_double_unpack(&vdn, vfp_get_double(dn)); | ||
933 | if (vdn.exponent == 0 && vdn.significand) | ||
934 | vfp_double_normalise_denormal(&vdn); | ||
935 | |||
936 | vfp_double_unpack(&vdm, vfp_get_double(dm)); | ||
937 | if (vdm.exponent == 0 && vdm.significand) | ||
938 | vfp_double_normalise_denormal(&vdm); | ||
939 | |||
940 | exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr); | ||
941 | vdd.sign = vfp_sign_negate(vdd.sign); | ||
942 | |||
943 | return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fnmul"); | ||
944 | } | ||
945 | |||
946 | /* | ||
947 | * sd = sn + sm | ||
948 | */ | ||
949 | static u32 vfp_double_fadd(int dd, int dn, int dm, u32 fpscr) | ||
950 | { | ||
951 | struct vfp_double vdd, vdn, vdm; | ||
952 | u32 exceptions; | ||
953 | |||
954 | vfp_double_unpack(&vdn, vfp_get_double(dn)); | ||
955 | if (vdn.exponent == 0 && vdn.significand) | ||
956 | vfp_double_normalise_denormal(&vdn); | ||
957 | |||
958 | vfp_double_unpack(&vdm, vfp_get_double(dm)); | ||
959 | if (vdm.exponent == 0 && vdm.significand) | ||
960 | vfp_double_normalise_denormal(&vdm); | ||
961 | |||
962 | exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr); | ||
963 | |||
964 | return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fadd"); | ||
965 | } | ||
966 | |||
967 | /* | ||
968 | * sd = sn - sm | ||
969 | */ | ||
970 | static u32 vfp_double_fsub(int dd, int dn, int dm, u32 fpscr) | ||
971 | { | ||
972 | struct vfp_double vdd, vdn, vdm; | ||
973 | u32 exceptions; | ||
974 | |||
975 | vfp_double_unpack(&vdn, vfp_get_double(dn)); | ||
976 | if (vdn.exponent == 0 && vdn.significand) | ||
977 | vfp_double_normalise_denormal(&vdn); | ||
978 | |||
979 | vfp_double_unpack(&vdm, vfp_get_double(dm)); | ||
980 | if (vdm.exponent == 0 && vdm.significand) | ||
981 | vfp_double_normalise_denormal(&vdm); | ||
982 | |||
983 | /* | ||
984 | * Subtraction is like addition, but with a negated operand. | ||
985 | */ | ||
986 | vdm.sign = vfp_sign_negate(vdm.sign); | ||
987 | |||
988 | exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr); | ||
989 | |||
990 | return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fsub"); | ||
991 | } | ||
992 | |||
993 | /* | ||
994 | * sd = sn / sm | ||
995 | */ | ||
996 | static u32 vfp_double_fdiv(int dd, int dn, int dm, u32 fpscr) | ||
997 | { | ||
998 | struct vfp_double vdd, vdn, vdm; | ||
999 | u32 exceptions = 0; | ||
1000 | int tm, tn; | ||
1001 | |||
1002 | vfp_double_unpack(&vdn, vfp_get_double(dn)); | ||
1003 | vfp_double_unpack(&vdm, vfp_get_double(dm)); | ||
1004 | |||
1005 | vdd.sign = vdn.sign ^ vdm.sign; | ||
1006 | |||
1007 | tn = vfp_double_type(&vdn); | ||
1008 | tm = vfp_double_type(&vdm); | ||
1009 | |||
1010 | /* | ||
1011 | * Is n a NAN? | ||
1012 | */ | ||
1013 | if (tn & VFP_NAN) | ||
1014 | goto vdn_nan; | ||
1015 | |||
1016 | /* | ||
1017 | * Is m a NAN? | ||
1018 | */ | ||
1019 | if (tm & VFP_NAN) | ||
1020 | goto vdm_nan; | ||
1021 | |||
1022 | /* | ||
1023 | * If n and m are infinity, the result is invalid | ||
1024 | * If n and m are zero, the result is invalid | ||
1025 | */ | ||
1026 | if (tm & tn & (VFP_INFINITY|VFP_ZERO)) | ||
1027 | goto invalid; | ||
1028 | |||
1029 | /* | ||
1030 | * If n is infinity, the result is infinity | ||
1031 | */ | ||
1032 | if (tn & VFP_INFINITY) | ||
1033 | goto infinity; | ||
1034 | |||
1035 | /* | ||
1036 | * If m is zero, raise div0 exceptions | ||
1037 | */ | ||
1038 | if (tm & VFP_ZERO) | ||
1039 | goto divzero; | ||
1040 | |||
1041 | /* | ||
1042 | * If m is infinity, or n is zero, the result is zero | ||
1043 | */ | ||
1044 | if (tm & VFP_INFINITY || tn & VFP_ZERO) | ||
1045 | goto zero; | ||
1046 | |||
1047 | if (tn & VFP_DENORMAL) | ||
1048 | vfp_double_normalise_denormal(&vdn); | ||
1049 | if (tm & VFP_DENORMAL) | ||
1050 | vfp_double_normalise_denormal(&vdm); | ||
1051 | |||
1052 | /* | ||
1053 | * Ok, we have two numbers, we can perform division. | ||
1054 | */ | ||
1055 | vdd.exponent = vdn.exponent - vdm.exponent + 1023 - 1; | ||
1056 | vdm.significand <<= 1; | ||
1057 | if (vdm.significand <= (2 * vdn.significand)) { | ||
1058 | vdn.significand >>= 1; | ||
1059 | vdd.exponent++; | ||
1060 | } | ||
1061 | vdd.significand = vfp_estimate_div128to64(vdn.significand, 0, vdm.significand); | ||
1062 | if ((vdd.significand & 0x1ff) <= 2) { | ||
1063 | u64 termh, terml, remh, reml; | ||
1064 | mul64to128(&termh, &terml, vdm.significand, vdd.significand); | ||
1065 | sub128(&remh, &reml, vdn.significand, 0, termh, terml); | ||
1066 | while ((s64)remh < 0) { | ||
1067 | vdd.significand -= 1; | ||
1068 | add128(&remh, &reml, remh, reml, 0, vdm.significand); | ||
1069 | } | ||
1070 | vdd.significand |= (reml != 0); | ||
1071 | } | ||
1072 | return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fdiv"); | ||
1073 | |||
1074 | vdn_nan: | ||
1075 | exceptions = vfp_propagate_nan(&vdd, &vdn, &vdm, fpscr); | ||
1076 | pack: | ||
1077 | vfp_put_double(dd, vfp_double_pack(&vdd)); | ||
1078 | return exceptions; | ||
1079 | |||
1080 | vdm_nan: | ||
1081 | exceptions = vfp_propagate_nan(&vdd, &vdm, &vdn, fpscr); | ||
1082 | goto pack; | ||
1083 | |||
1084 | zero: | ||
1085 | vdd.exponent = 0; | ||
1086 | vdd.significand = 0; | ||
1087 | goto pack; | ||
1088 | |||
1089 | divzero: | ||
1090 | exceptions = FPSCR_DZC; | ||
1091 | infinity: | ||
1092 | vdd.exponent = 2047; | ||
1093 | vdd.significand = 0; | ||
1094 | goto pack; | ||
1095 | |||
1096 | invalid: | ||
1097 | vfp_put_double(dd, vfp_double_pack(&vfp_double_default_qnan)); | ||
1098 | return FPSCR_IOC; | ||
1099 | } | ||
1100 | |||
1101 | static u32 (* const fop_fns[16])(int dd, int dn, int dm, u32 fpscr) = { | ||
1102 | [FOP_TO_IDX(FOP_FMAC)] = vfp_double_fmac, | ||
1103 | [FOP_TO_IDX(FOP_FNMAC)] = vfp_double_fnmac, | ||
1104 | [FOP_TO_IDX(FOP_FMSC)] = vfp_double_fmsc, | ||
1105 | [FOP_TO_IDX(FOP_FNMSC)] = vfp_double_fnmsc, | ||
1106 | [FOP_TO_IDX(FOP_FMUL)] = vfp_double_fmul, | ||
1107 | [FOP_TO_IDX(FOP_FNMUL)] = vfp_double_fnmul, | ||
1108 | [FOP_TO_IDX(FOP_FADD)] = vfp_double_fadd, | ||
1109 | [FOP_TO_IDX(FOP_FSUB)] = vfp_double_fsub, | ||
1110 | [FOP_TO_IDX(FOP_FDIV)] = vfp_double_fdiv, | ||
1111 | }; | ||
1112 | |||
1113 | #define FREG_BANK(x) ((x) & 0x0c) | ||
1114 | #define FREG_IDX(x) ((x) & 3) | ||
1115 | |||
1116 | u32 vfp_double_cpdo(u32 inst, u32 fpscr) | ||
1117 | { | ||
1118 | u32 op = inst & FOP_MASK; | ||
1119 | u32 exceptions = 0; | ||
1120 | unsigned int dd = vfp_get_sd(inst); | ||
1121 | unsigned int dn = vfp_get_sn(inst); | ||
1122 | unsigned int dm = vfp_get_sm(inst); | ||
1123 | unsigned int vecitr, veclen, vecstride; | ||
1124 | u32 (*fop)(int, int, s32, u32); | ||
1125 | |||
1126 | veclen = fpscr & FPSCR_LENGTH_MASK; | ||
1127 | vecstride = (1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK)) * 2; | ||
1128 | |||
1129 | /* | ||
1130 | * If destination bank is zero, vector length is always '1'. | ||
1131 | * ARM DDI0100F C5.1.3, C5.3.2. | ||
1132 | */ | ||
1133 | if (FREG_BANK(dd) == 0) | ||
1134 | veclen = 0; | ||
1135 | |||
1136 | pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride, | ||
1137 | (veclen >> FPSCR_LENGTH_BIT) + 1); | ||
1138 | |||
1139 | fop = (op == FOP_EXT) ? fop_extfns[dn] : fop_fns[FOP_TO_IDX(op)]; | ||
1140 | if (!fop) | ||
1141 | goto invalid; | ||
1142 | |||
1143 | for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) { | ||
1144 | u32 except; | ||
1145 | |||
1146 | if (op == FOP_EXT) | ||
1147 | pr_debug("VFP: itr%d (d%u.%u) = op[%u] (d%u.%u)\n", | ||
1148 | vecitr >> FPSCR_LENGTH_BIT, | ||
1149 | dd >> 1, dd & 1, dn, | ||
1150 | dm >> 1, dm & 1); | ||
1151 | else | ||
1152 | pr_debug("VFP: itr%d (d%u.%u) = (d%u.%u) op[%u] (d%u.%u)\n", | ||
1153 | vecitr >> FPSCR_LENGTH_BIT, | ||
1154 | dd >> 1, dd & 1, | ||
1155 | dn >> 1, dn & 1, | ||
1156 | FOP_TO_IDX(op), | ||
1157 | dm >> 1, dm & 1); | ||
1158 | |||
1159 | except = fop(dd, dn, dm, fpscr); | ||
1160 | pr_debug("VFP: itr%d: exceptions=%08x\n", | ||
1161 | vecitr >> FPSCR_LENGTH_BIT, except); | ||
1162 | |||
1163 | exceptions |= except; | ||
1164 | |||
1165 | /* | ||
1166 | * This ensures that comparisons only operate on scalars; | ||
1167 | * comparisons always return with one FPSCR status bit set. | ||
1168 | */ | ||
1169 | if (except & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V)) | ||
1170 | break; | ||
1171 | |||
1172 | /* | ||
1173 | * CHECK: It appears to be undefined whether we stop when | ||
1174 | * we encounter an exception. We continue. | ||
1175 | */ | ||
1176 | |||
1177 | dd = FREG_BANK(dd) + ((FREG_IDX(dd) + vecstride) & 6); | ||
1178 | dn = FREG_BANK(dn) + ((FREG_IDX(dn) + vecstride) & 6); | ||
1179 | if (FREG_BANK(dm) != 0) | ||
1180 | dm = FREG_BANK(dm) + ((FREG_IDX(dm) + vecstride) & 6); | ||
1181 | } | ||
1182 | return exceptions; | ||
1183 | |||
1184 | invalid: | ||
1185 | return ~0; | ||
1186 | } | ||