diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/arm/vfp/vfp.h |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/arm/vfp/vfp.h')
-rw-r--r-- | arch/arm/vfp/vfp.h | 344 |
1 files changed, 344 insertions, 0 deletions
diff --git a/arch/arm/vfp/vfp.h b/arch/arm/vfp/vfp.h new file mode 100644 index 000000000000..55a02bc994a3 --- /dev/null +++ b/arch/arm/vfp/vfp.h | |||
@@ -0,0 +1,344 @@ | |||
1 | /* | ||
2 | * linux/arch/arm/vfp/vfp.h | ||
3 | * | ||
4 | * Copyright (C) 2004 ARM Limited. | ||
5 | * Written by Deep Blue Solutions Limited. | ||
6 | * | ||
7 | * This program is free software; you can redistribute it and/or modify | ||
8 | * it under the terms of the GNU General Public License version 2 as | ||
9 | * published by the Free Software Foundation. | ||
10 | */ | ||
11 | |||
12 | static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) | ||
13 | { | ||
14 | if (shift) { | ||
15 | if (shift < 32) | ||
16 | val = val >> shift | ((val << (32 - shift)) != 0); | ||
17 | else | ||
18 | val = val != 0; | ||
19 | } | ||
20 | return val; | ||
21 | } | ||
22 | |||
23 | static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift) | ||
24 | { | ||
25 | if (shift) { | ||
26 | if (shift < 64) | ||
27 | val = val >> shift | ((val << (64 - shift)) != 0); | ||
28 | else | ||
29 | val = val != 0; | ||
30 | } | ||
31 | return val; | ||
32 | } | ||
33 | |||
34 | static inline u32 vfp_hi64to32jamming(u64 val) | ||
35 | { | ||
36 | u32 v; | ||
37 | |||
38 | asm( | ||
39 | "cmp %Q1, #1 @ vfp_hi64to32jamming\n\t" | ||
40 | "movcc %0, %R1\n\t" | ||
41 | "orrcs %0, %R1, #1" | ||
42 | : "=r" (v) : "r" (val) : "cc"); | ||
43 | |||
44 | return v; | ||
45 | } | ||
46 | |||
47 | static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) | ||
48 | { | ||
49 | asm( "adds %Q0, %Q2, %Q4\n\t" | ||
50 | "adcs %R0, %R2, %R4\n\t" | ||
51 | "adcs %Q1, %Q3, %Q5\n\t" | ||
52 | "adc %R1, %R3, %R5" | ||
53 | : "=r" (nl), "=r" (nh) | ||
54 | : "0" (nl), "1" (nh), "r" (ml), "r" (mh) | ||
55 | : "cc"); | ||
56 | *resh = nh; | ||
57 | *resl = nl; | ||
58 | } | ||
59 | |||
60 | static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) | ||
61 | { | ||
62 | asm( "subs %Q0, %Q2, %Q4\n\t" | ||
63 | "sbcs %R0, %R2, %R4\n\t" | ||
64 | "sbcs %Q1, %Q3, %Q5\n\t" | ||
65 | "sbc %R1, %R3, %R5\n\t" | ||
66 | : "=r" (nl), "=r" (nh) | ||
67 | : "0" (nl), "1" (nh), "r" (ml), "r" (mh) | ||
68 | : "cc"); | ||
69 | *resh = nh; | ||
70 | *resl = nl; | ||
71 | } | ||
72 | |||
73 | static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m) | ||
74 | { | ||
75 | u32 nh, nl, mh, ml; | ||
76 | u64 rh, rma, rmb, rl; | ||
77 | |||
78 | nl = n; | ||
79 | ml = m; | ||
80 | rl = (u64)nl * ml; | ||
81 | |||
82 | nh = n >> 32; | ||
83 | rma = (u64)nh * ml; | ||
84 | |||
85 | mh = m >> 32; | ||
86 | rmb = (u64)nl * mh; | ||
87 | rma += rmb; | ||
88 | |||
89 | rh = (u64)nh * mh; | ||
90 | rh += ((u64)(rma < rmb) << 32) + (rma >> 32); | ||
91 | |||
92 | rma <<= 32; | ||
93 | rl += rma; | ||
94 | rh += (rl < rma); | ||
95 | |||
96 | *resl = rl; | ||
97 | *resh = rh; | ||
98 | } | ||
99 | |||
100 | static inline void shift64left(u64 *resh, u64 *resl, u64 n) | ||
101 | { | ||
102 | *resh = n >> 63; | ||
103 | *resl = n << 1; | ||
104 | } | ||
105 | |||
106 | static inline u64 vfp_hi64multiply64(u64 n, u64 m) | ||
107 | { | ||
108 | u64 rh, rl; | ||
109 | mul64to128(&rh, &rl, n, m); | ||
110 | return rh | (rl != 0); | ||
111 | } | ||
112 | |||
113 | static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m) | ||
114 | { | ||
115 | u64 mh, ml, remh, reml, termh, terml, z; | ||
116 | |||
117 | if (nh >= m) | ||
118 | return ~0ULL; | ||
119 | mh = m >> 32; | ||
120 | z = (mh << 32 <= nh) ? 0xffffffff00000000ULL : (nh / mh) << 32; | ||
121 | mul64to128(&termh, &terml, m, z); | ||
122 | sub128(&remh, &reml, nh, nl, termh, terml); | ||
123 | ml = m << 32; | ||
124 | while ((s64)remh < 0) { | ||
125 | z -= 0x100000000ULL; | ||
126 | add128(&remh, &reml, remh, reml, mh, ml); | ||
127 | } | ||
128 | remh = (remh << 32) | (reml >> 32); | ||
129 | z |= (mh << 32 <= remh) ? 0xffffffff : remh / mh; | ||
130 | return z; | ||
131 | } | ||
132 | |||
133 | /* | ||
134 | * Operations on unpacked elements | ||
135 | */ | ||
136 | #define vfp_sign_negate(sign) (sign ^ 0x8000) | ||
137 | |||
138 | /* | ||
139 | * Single-precision | ||
140 | */ | ||
141 | struct vfp_single { | ||
142 | s16 exponent; | ||
143 | u16 sign; | ||
144 | u32 significand; | ||
145 | }; | ||
146 | |||
147 | extern s32 vfp_get_float(unsigned int reg); | ||
148 | extern void vfp_put_float(unsigned int reg, s32 val); | ||
149 | |||
150 | /* | ||
151 | * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa | ||
152 | * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent | ||
153 | * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand | ||
154 | * which are not propagated to the float upon packing. | ||
155 | */ | ||
156 | #define VFP_SINGLE_MANTISSA_BITS (23) | ||
157 | #define VFP_SINGLE_EXPONENT_BITS (8) | ||
158 | #define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2) | ||
159 | #define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1) | ||
160 | |||
161 | /* | ||
162 | * The bit in an unpacked float which indicates that it is a quiet NaN | ||
163 | */ | ||
164 | #define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS)) | ||
165 | |||
166 | /* | ||
167 | * Operations on packed single-precision numbers | ||
168 | */ | ||
169 | #define vfp_single_packed_sign(v) ((v) & 0x80000000) | ||
170 | #define vfp_single_packed_negate(v) ((v) ^ 0x80000000) | ||
171 | #define vfp_single_packed_abs(v) ((v) & ~0x80000000) | ||
172 | #define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1)) | ||
173 | #define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1)) | ||
174 | |||
175 | /* | ||
176 | * Unpack a single-precision float. Note that this returns the magnitude | ||
177 | * of the single-precision float mantissa with the 1. if necessary, | ||
178 | * aligned to bit 30. | ||
179 | */ | ||
180 | static inline void vfp_single_unpack(struct vfp_single *s, s32 val) | ||
181 | { | ||
182 | u32 significand; | ||
183 | |||
184 | s->sign = vfp_single_packed_sign(val) >> 16, | ||
185 | s->exponent = vfp_single_packed_exponent(val); | ||
186 | |||
187 | significand = (u32) val; | ||
188 | significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2; | ||
189 | if (s->exponent && s->exponent != 255) | ||
190 | significand |= 0x40000000; | ||
191 | s->significand = significand; | ||
192 | } | ||
193 | |||
194 | /* | ||
195 | * Re-pack a single-precision float. This assumes that the float is | ||
196 | * already normalised such that the MSB is bit 30, _not_ bit 31. | ||
197 | */ | ||
198 | static inline s32 vfp_single_pack(struct vfp_single *s) | ||
199 | { | ||
200 | u32 val; | ||
201 | val = (s->sign << 16) + | ||
202 | (s->exponent << VFP_SINGLE_MANTISSA_BITS) + | ||
203 | (s->significand >> VFP_SINGLE_LOW_BITS); | ||
204 | return (s32)val; | ||
205 | } | ||
206 | |||
207 | #define VFP_NUMBER (1<<0) | ||
208 | #define VFP_ZERO (1<<1) | ||
209 | #define VFP_DENORMAL (1<<2) | ||
210 | #define VFP_INFINITY (1<<3) | ||
211 | #define VFP_NAN (1<<4) | ||
212 | #define VFP_NAN_SIGNAL (1<<5) | ||
213 | |||
214 | #define VFP_QNAN (VFP_NAN) | ||
215 | #define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL) | ||
216 | |||
217 | static inline int vfp_single_type(struct vfp_single *s) | ||
218 | { | ||
219 | int type = VFP_NUMBER; | ||
220 | if (s->exponent == 255) { | ||
221 | if (s->significand == 0) | ||
222 | type = VFP_INFINITY; | ||
223 | else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN) | ||
224 | type = VFP_QNAN; | ||
225 | else | ||
226 | type = VFP_SNAN; | ||
227 | } else if (s->exponent == 0) { | ||
228 | if (s->significand == 0) | ||
229 | type |= VFP_ZERO; | ||
230 | else | ||
231 | type |= VFP_DENORMAL; | ||
232 | } | ||
233 | return type; | ||
234 | } | ||
235 | |||
236 | #ifndef DEBUG | ||
237 | #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except) | ||
238 | u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions); | ||
239 | #else | ||
240 | u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func); | ||
241 | #endif | ||
242 | |||
243 | /* | ||
244 | * Double-precision | ||
245 | */ | ||
246 | struct vfp_double { | ||
247 | s16 exponent; | ||
248 | u16 sign; | ||
249 | u64 significand; | ||
250 | }; | ||
251 | |||
252 | /* | ||
253 | * VFP_REG_ZERO is a special register number for vfp_get_double | ||
254 | * which returns (double)0.0. This is useful for the compare with | ||
255 | * zero instructions. | ||
256 | */ | ||
257 | #define VFP_REG_ZERO 16 | ||
258 | extern u64 vfp_get_double(unsigned int reg); | ||
259 | extern void vfp_put_double(unsigned int reg, u64 val); | ||
260 | |||
261 | #define VFP_DOUBLE_MANTISSA_BITS (52) | ||
262 | #define VFP_DOUBLE_EXPONENT_BITS (11) | ||
263 | #define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2) | ||
264 | #define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1) | ||
265 | |||
266 | /* | ||
267 | * The bit in an unpacked double which indicates that it is a quiet NaN | ||
268 | */ | ||
269 | #define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS)) | ||
270 | |||
271 | /* | ||
272 | * Operations on packed single-precision numbers | ||
273 | */ | ||
274 | #define vfp_double_packed_sign(v) ((v) & (1ULL << 63)) | ||
275 | #define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63)) | ||
276 | #define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63)) | ||
277 | #define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1)) | ||
278 | #define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1)) | ||
279 | |||
280 | /* | ||
281 | * Unpack a double-precision float. Note that this returns the magnitude | ||
282 | * of the double-precision float mantissa with the 1. if necessary, | ||
283 | * aligned to bit 62. | ||
284 | */ | ||
285 | static inline void vfp_double_unpack(struct vfp_double *s, s64 val) | ||
286 | { | ||
287 | u64 significand; | ||
288 | |||
289 | s->sign = vfp_double_packed_sign(val) >> 48; | ||
290 | s->exponent = vfp_double_packed_exponent(val); | ||
291 | |||
292 | significand = (u64) val; | ||
293 | significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2; | ||
294 | if (s->exponent && s->exponent != 2047) | ||
295 | significand |= (1ULL << 62); | ||
296 | s->significand = significand; | ||
297 | } | ||
298 | |||
299 | /* | ||
300 | * Re-pack a double-precision float. This assumes that the float is | ||
301 | * already normalised such that the MSB is bit 30, _not_ bit 31. | ||
302 | */ | ||
303 | static inline s64 vfp_double_pack(struct vfp_double *s) | ||
304 | { | ||
305 | u64 val; | ||
306 | val = ((u64)s->sign << 48) + | ||
307 | ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) + | ||
308 | (s->significand >> VFP_DOUBLE_LOW_BITS); | ||
309 | return (s64)val; | ||
310 | } | ||
311 | |||
312 | static inline int vfp_double_type(struct vfp_double *s) | ||
313 | { | ||
314 | int type = VFP_NUMBER; | ||
315 | if (s->exponent == 2047) { | ||
316 | if (s->significand == 0) | ||
317 | type = VFP_INFINITY; | ||
318 | else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN) | ||
319 | type = VFP_QNAN; | ||
320 | else | ||
321 | type = VFP_SNAN; | ||
322 | } else if (s->exponent == 0) { | ||
323 | if (s->significand == 0) | ||
324 | type |= VFP_ZERO; | ||
325 | else | ||
326 | type |= VFP_DENORMAL; | ||
327 | } | ||
328 | return type; | ||
329 | } | ||
330 | |||
331 | u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func); | ||
332 | |||
333 | /* | ||
334 | * System registers | ||
335 | */ | ||
336 | extern u32 vfp_get_sys(unsigned int reg); | ||
337 | extern void vfp_put_sys(unsigned int reg, u32 val); | ||
338 | |||
339 | u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand); | ||
340 | |||
341 | /* | ||
342 | * A special flag to tell the normalisation code not to normalise. | ||
343 | */ | ||
344 | #define VFP_NAN_FLAG 0x100 | ||