aboutsummaryrefslogtreecommitdiffstats
path: root/arch/arm/plat-s3c24xx/s3c2410-iotiming.c
diff options
context:
space:
mode:
authorRussell King <rmk@dyn-67.arm.linux.org.uk>2009-09-12 07:02:26 -0400
committerRussell King <rmk+kernel@arm.linux.org.uk>2009-09-12 07:02:26 -0400
commitddd559b13f6d2fe3ad68c4b3f5235fd3c2eae4e3 (patch)
treed827bca3fc825a0ac33efbcd493713be40fcc812 /arch/arm/plat-s3c24xx/s3c2410-iotiming.c
parentcf7a2b4fb6a9b86779930a0a123b0df41aa9208f (diff)
parentf17a1f06d2fa93f4825be572622eb02c4894db4e (diff)
Merge branch 'devel-stable' into devel
Conflicts: MAINTAINERS arch/arm/mm/fault.c
Diffstat (limited to 'arch/arm/plat-s3c24xx/s3c2410-iotiming.c')
-rw-r--r--arch/arm/plat-s3c24xx/s3c2410-iotiming.c477
1 files changed, 477 insertions, 0 deletions
diff --git a/arch/arm/plat-s3c24xx/s3c2410-iotiming.c b/arch/arm/plat-s3c24xx/s3c2410-iotiming.c
new file mode 100644
index 000000000000..d0a3a145cd4d
--- /dev/null
+++ b/arch/arm/plat-s3c24xx/s3c2410-iotiming.c
@@ -0,0 +1,477 @@
1/* linux/arch/arm/plat-s3c24xx/s3c2410-iotiming.c
2 *
3 * Copyright (c) 2006,2008,2009 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
6 *
7 * S3C24XX CPU Frequency scaling - IO timing for S3C2410/S3C2440/S3C2442
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12*/
13
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/errno.h>
17#include <linux/cpufreq.h>
18#include <linux/seq_file.h>
19#include <linux/io.h>
20
21#include <mach/map.h>
22#include <mach/regs-mem.h>
23#include <mach/regs-clock.h>
24
25#include <plat/cpu-freq-core.h>
26
27#define print_ns(x) ((x) / 10), ((x) % 10)
28
29/**
30 * s3c2410_print_timing - print bank timing data for debug purposes
31 * @pfx: The prefix to put on the output
32 * @timings: The timing inforamtion to print.
33*/
34static void s3c2410_print_timing(const char *pfx,
35 struct s3c_iotimings *timings)
36{
37 struct s3c2410_iobank_timing *bt;
38 int bank;
39
40 for (bank = 0; bank < MAX_BANKS; bank++) {
41 bt = timings->bank[bank].io_2410;
42 if (!bt)
43 continue;
44
45 printk(KERN_DEBUG "%s %d: Tacs=%d.%d, Tcos=%d.%d, Tacc=%d.%d, "
46 "Tcoh=%d.%d, Tcah=%d.%d\n", pfx, bank,
47 print_ns(bt->tacs),
48 print_ns(bt->tcos),
49 print_ns(bt->tacc),
50 print_ns(bt->tcoh),
51 print_ns(bt->tcah));
52 }
53}
54
55/**
56 * bank_reg - convert bank number to pointer to the control register.
57 * @bank: The IO bank number.
58 */
59static inline void __iomem *bank_reg(unsigned int bank)
60{
61 return S3C2410_BANKCON0 + (bank << 2);
62}
63
64/**
65 * bank_is_io - test whether bank is used for IO
66 * @bankcon: The bank control register.
67 *
68 * This is a simplistic test to see if any BANKCON[x] is not an IO
69 * bank. It currently does not take into account whether BWSCON has
70 * an illegal width-setting in it, or if the pin connected to nCS[x]
71 * is actually being handled as a chip-select.
72 */
73static inline int bank_is_io(unsigned long bankcon)
74{
75 return !(bankcon & S3C2410_BANKCON_SDRAM);
76}
77
78/**
79 * to_div - convert cycle time to divisor
80 * @cyc: The cycle time, in 10ths of nanoseconds.
81 * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds.
82 *
83 * Convert the given cycle time into the divisor to use to obtain it from
84 * HCLK.
85*/
86static inline unsigned int to_div(unsigned int cyc, unsigned int hclk_tns)
87{
88 if (cyc == 0)
89 return 0;
90
91 return DIV_ROUND_UP(cyc, hclk_tns);
92}
93
94/**
95 * calc_0124 - calculate divisor control for divisors that do /0, /1. /2 and /4
96 * @cyc: The cycle time, in 10ths of nanoseconds.
97 * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds.
98 * @v: Pointer to register to alter.
99 * @shift: The shift to get to the control bits.
100 *
101 * Calculate the divisor, and turn it into the correct control bits to
102 * set in the result, @v.
103 */
104static unsigned int calc_0124(unsigned int cyc, unsigned long hclk_tns,
105 unsigned long *v, int shift)
106{
107 unsigned int div = to_div(cyc, hclk_tns);
108 unsigned long val;
109
110 s3c_freq_iodbg("%s: cyc=%d, hclk=%lu, shift=%d => div %d\n",
111 __func__, cyc, hclk_tns, shift, div);
112
113 switch (div) {
114 case 0:
115 val = 0;
116 break;
117 case 1:
118 val = 1;
119 break;
120 case 2:
121 val = 2;
122 break;
123 case 3:
124 case 4:
125 val = 3;
126 break;
127 default:
128 return -1;
129 }
130
131 *v |= val << shift;
132 return 0;
133}
134
135int calc_tacp(unsigned int cyc, unsigned long hclk, unsigned long *v)
136{
137 /* Currently no support for Tacp calculations. */
138 return 0;
139}
140
141/**
142 * calc_tacc - calculate divisor control for tacc.
143 * @cyc: The cycle time, in 10ths of nanoseconds.
144 * @nwait_en: IS nWAIT enabled for this bank.
145 * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds.
146 * @v: Pointer to register to alter.
147 *
148 * Calculate the divisor control for tACC, taking into account whether
149 * the bank has nWAIT enabled. The result is used to modify the value
150 * pointed to by @v.
151*/
152static int calc_tacc(unsigned int cyc, int nwait_en,
153 unsigned long hclk_tns, unsigned long *v)
154{
155 unsigned int div = to_div(cyc, hclk_tns);
156 unsigned long val;
157
158 s3c_freq_iodbg("%s: cyc=%u, nwait=%d, hclk=%lu => div=%u\n",
159 __func__, cyc, nwait_en, hclk_tns, div);
160
161 /* if nWait enabled on an bank, Tacc must be at-least 4 cycles. */
162 if (nwait_en && div < 4)
163 div = 4;
164
165 switch (div) {
166 case 0:
167 val = 0;
168 break;
169
170 case 1:
171 case 2:
172 case 3:
173 case 4:
174 val = div - 1;
175 break;
176
177 case 5:
178 case 6:
179 val = 4;
180 break;
181
182 case 7:
183 case 8:
184 val = 5;
185 break;
186
187 case 9:
188 case 10:
189 val = 6;
190 break;
191
192 case 11:
193 case 12:
194 case 13:
195 case 14:
196 val = 7;
197 break;
198
199 default:
200 return -1;
201 }
202
203 *v |= val << 8;
204 return 0;
205}
206
207/**
208 * s3c2410_calc_bank - calculate bank timing infromation
209 * @cfg: The configuration we need to calculate for.
210 * @bt: The bank timing information.
211 *
212 * Given the cycle timine for a bank @bt, calculate the new BANKCON
213 * setting for the @cfg timing. This updates the timing information
214 * ready for the cpu frequency change.
215 */
216static int s3c2410_calc_bank(struct s3c_cpufreq_config *cfg,
217 struct s3c2410_iobank_timing *bt)
218{
219 unsigned long hclk = cfg->freq.hclk_tns;
220 unsigned long res;
221 int ret;
222
223 res = bt->bankcon;
224 res &= (S3C2410_BANKCON_SDRAM | S3C2410_BANKCON_PMC16);
225
226 /* tacp: 2,3,4,5 */
227 /* tcah: 0,1,2,4 */
228 /* tcoh: 0,1,2,4 */
229 /* tacc: 1,2,3,4,6,7,10,14 (>4 for nwait) */
230 /* tcos: 0,1,2,4 */
231 /* tacs: 0,1,2,4 */
232
233 ret = calc_0124(bt->tacs, hclk, &res, S3C2410_BANKCON_Tacs_SHIFT);
234 ret |= calc_0124(bt->tcos, hclk, &res, S3C2410_BANKCON_Tcos_SHIFT);
235 ret |= calc_0124(bt->tcah, hclk, &res, S3C2410_BANKCON_Tcah_SHIFT);
236 ret |= calc_0124(bt->tcoh, hclk, &res, S3C2410_BANKCON_Tcoh_SHIFT);
237
238 if (ret)
239 return -EINVAL;
240
241 ret |= calc_tacp(bt->tacp, hclk, &res);
242 ret |= calc_tacc(bt->tacc, bt->nwait_en, hclk, &res);
243
244 if (ret)
245 return -EINVAL;
246
247 bt->bankcon = res;
248 return 0;
249}
250
251static unsigned int tacc_tab[] = {
252 [0] = 1,
253 [1] = 2,
254 [2] = 3,
255 [3] = 4,
256 [4] = 6,
257 [5] = 9,
258 [6] = 10,
259 [7] = 14,
260};
261
262/**
263 * get_tacc - turn tACC value into cycle time
264 * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds.
265 * @val: The bank timing register value, shifed down.
266 */
267static unsigned int get_tacc(unsigned long hclk_tns,
268 unsigned long val)
269{
270 val &= 7;
271 return hclk_tns * tacc_tab[val];
272}
273
274/**
275 * get_0124 - turn 0/1/2/4 divider into cycle time
276 * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds.
277 * @val: The bank timing register value, shifed down.
278 */
279static unsigned int get_0124(unsigned long hclk_tns,
280 unsigned long val)
281{
282 val &= 3;
283 return hclk_tns * ((val == 3) ? 4 : val);
284}
285
286/**
287 * s3c2410_iotiming_getbank - turn BANKCON into cycle time information
288 * @cfg: The frequency configuration
289 * @bt: The bank timing to fill in (uses cached BANKCON)
290 *
291 * Given the BANKCON setting in @bt and the current frequency settings
292 * in @cfg, update the cycle timing information.
293 */
294void s3c2410_iotiming_getbank(struct s3c_cpufreq_config *cfg,
295 struct s3c2410_iobank_timing *bt)
296{
297 unsigned long bankcon = bt->bankcon;
298 unsigned long hclk = cfg->freq.hclk_tns;
299
300 bt->tcah = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcah_SHIFT);
301 bt->tcoh = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcoh_SHIFT);
302 bt->tcos = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcos_SHIFT);
303 bt->tacs = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tacs_SHIFT);
304 bt->tacc = get_tacc(hclk, bankcon >> S3C2410_BANKCON_Tacc_SHIFT);
305}
306
307/**
308 * s3c2410_iotiming_debugfs - debugfs show io bank timing information
309 * @seq: The seq_file to write output to using seq_printf().
310 * @cfg: The current configuration.
311 * @iob: The IO bank information to decode.
312 */
313void s3c2410_iotiming_debugfs(struct seq_file *seq,
314 struct s3c_cpufreq_config *cfg,
315 union s3c_iobank *iob)
316{
317 struct s3c2410_iobank_timing *bt = iob->io_2410;
318 unsigned long bankcon = bt->bankcon;
319 unsigned long hclk = cfg->freq.hclk_tns;
320 unsigned int tacs;
321 unsigned int tcos;
322 unsigned int tacc;
323 unsigned int tcoh;
324 unsigned int tcah;
325
326 seq_printf(seq, "BANKCON=0x%08lx\n", bankcon);
327
328 tcah = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcah_SHIFT);
329 tcoh = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcoh_SHIFT);
330 tcos = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcos_SHIFT);
331 tacs = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tacs_SHIFT);
332 tacc = get_tacc(hclk, bankcon >> S3C2410_BANKCON_Tacc_SHIFT);
333
334 seq_printf(seq,
335 "\tRead: Tacs=%d.%d, Tcos=%d.%d, Tacc=%d.%d, Tcoh=%d.%d, Tcah=%d.%d\n",
336 print_ns(bt->tacs),
337 print_ns(bt->tcos),
338 print_ns(bt->tacc),
339 print_ns(bt->tcoh),
340 print_ns(bt->tcah));
341
342 seq_printf(seq,
343 "\t Set: Tacs=%d.%d, Tcos=%d.%d, Tacc=%d.%d, Tcoh=%d.%d, Tcah=%d.%d\n",
344 print_ns(tacs),
345 print_ns(tcos),
346 print_ns(tacc),
347 print_ns(tcoh),
348 print_ns(tcah));
349}
350
351/**
352 * s3c2410_iotiming_calc - Calculate bank timing for frequency change.
353 * @cfg: The frequency configuration
354 * @iot: The IO timing information to fill out.
355 *
356 * Calculate the new values for the banks in @iot based on the new
357 * frequency information in @cfg. This is then used by s3c2410_iotiming_set()
358 * to update the timing when necessary.
359 */
360int s3c2410_iotiming_calc(struct s3c_cpufreq_config *cfg,
361 struct s3c_iotimings *iot)
362{
363 struct s3c2410_iobank_timing *bt;
364 unsigned long bankcon;
365 int bank;
366 int ret;
367
368 for (bank = 0; bank < MAX_BANKS; bank++) {
369 bankcon = __raw_readl(bank_reg(bank));
370 bt = iot->bank[bank].io_2410;
371
372 if (!bt)
373 continue;
374
375 bt->bankcon = bankcon;
376
377 ret = s3c2410_calc_bank(cfg, bt);
378 if (ret) {
379 printk(KERN_ERR "%s: cannot calculate bank %d io\n",
380 __func__, bank);
381 goto err;
382 }
383
384 s3c_freq_iodbg("%s: bank %d: con=%08lx\n",
385 __func__, bank, bt->bankcon);
386 }
387
388 return 0;
389 err:
390 return ret;
391}
392
393/**
394 * s3c2410_iotiming_set - set the IO timings from the given setup.
395 * @cfg: The frequency configuration
396 * @iot: The IO timing information to use.
397 *
398 * Set all the currently used IO bank timing information generated
399 * by s3c2410_iotiming_calc() once the core has validated that all
400 * the new values are within permitted bounds.
401 */
402void s3c2410_iotiming_set(struct s3c_cpufreq_config *cfg,
403 struct s3c_iotimings *iot)
404{
405 struct s3c2410_iobank_timing *bt;
406 int bank;
407
408 /* set the io timings from the specifier */
409
410 for (bank = 0; bank < MAX_BANKS; bank++) {
411 bt = iot->bank[bank].io_2410;
412 if (!bt)
413 continue;
414
415 __raw_writel(bt->bankcon, bank_reg(bank));
416 }
417}
418
419/**
420 * s3c2410_iotiming_get - Get the timing information from current registers.
421 * @cfg: The frequency configuration
422 * @timings: The IO timing information to fill out.
423 *
424 * Calculate the @timings timing information from the current frequency
425 * information in @cfg, and the new frequency configur
426 * through all the IO banks, reading the state and then updating @iot
427 * as necessary.
428 *
429 * This is used at the moment on initialisation to get the current
430 * configuration so that boards do not have to carry their own setup
431 * if the timings are correct on initialisation.
432 */
433
434int s3c2410_iotiming_get(struct s3c_cpufreq_config *cfg,
435 struct s3c_iotimings *timings)
436{
437 struct s3c2410_iobank_timing *bt;
438 unsigned long bankcon;
439 unsigned long bwscon;
440 int bank;
441
442 bwscon = __raw_readl(S3C2410_BWSCON);
443
444 /* look through all banks to see what is currently set. */
445
446 for (bank = 0; bank < MAX_BANKS; bank++) {
447 bankcon = __raw_readl(bank_reg(bank));
448
449 if (!bank_is_io(bankcon))
450 continue;
451
452 s3c_freq_iodbg("%s: bank %d: con %08lx\n",
453 __func__, bank, bankcon);
454
455 bt = kzalloc(sizeof(struct s3c2410_iobank_timing), GFP_KERNEL);
456 if (!bt) {
457 printk(KERN_ERR "%s: no memory for bank\n", __func__);
458 return -ENOMEM;
459 }
460
461 /* find out in nWait is enabled for bank. */
462
463 if (bank != 0) {
464 unsigned long tmp = S3C2410_BWSCON_GET(bwscon, bank);
465 if (tmp & S3C2410_BWSCON_WS)
466 bt->nwait_en = 1;
467 }
468
469 timings->bank[bank].io_2410 = bt;
470 bt->bankcon = bankcon;
471
472 s3c2410_iotiming_getbank(cfg, bt);
473 }
474
475 s3c2410_print_timing("get", timings);
476 return 0;
477}