aboutsummaryrefslogtreecommitdiffstats
path: root/arch/arm/mm/mm-armv.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@g5.osdl.org>2006-09-28 17:40:39 -0400
committerLinus Torvalds <torvalds@g5.osdl.org>2006-09-28 17:40:39 -0400
commitebdea46fecae40c4d7effcd33f40918a37a1df4b (patch)
treee4312bf7f1f3d184738963a0ec300aa9fdfd55c1 /arch/arm/mm/mm-armv.c
parentfecf3404f4aba6d0edeba31eeb018cbb6326dff2 (diff)
parent250d375d1da45a5e08ab8baf5eaa7eb258afd82b (diff)
Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm
* 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm: (130 commits) [ARM] 3856/1: Add clocksource for Intel IXP4xx platforms [ARM] 3855/1: Add generic time support [ARM] 3873/1: S3C24XX: Add irq_chip names [ARM] 3872/1: S3C24XX: Apply consistant tabbing to irq_chips [ARM] 3871/1: S3C24XX: Fix ordering of EINT4..23 [ARM] nommu: confirms the CR_V bit in nommu mode [ARM] nommu: abort handler fixup for !CPU_CP15_MMU cores. [ARM] 3870/1: AT91: Start removing static memory mappings [ARM] 3869/1: AT91: NAND support for DK and KB9202 boards [ARM] 3868/1: AT91 hardware header update [ARM] 3867/1: AT91 GPIO update [ARM] 3866/1: AT91 clock update [ARM] 3865/1: AT91RM9200 header updates [ARM] 3862/2: S3C2410 - add basic power management support for AML M5900 series [ARM] kthread: switch arch/arm/kernel/apm.c [ARM] Off-by-one in arch/arm/common/icst* [ARM] 3864/1: Refactore sharpsl_pm [ARM] 3863/1: Add Locomo SPI Device [ARM] 3847/2: Convert LOMOMO to use struct device for GPIOs [ARM] Use CPU_CACHE_* where possible in asm/cacheflush.h ...
Diffstat (limited to 'arch/arm/mm/mm-armv.c')
-rw-r--r--arch/arm/mm/mm-armv.c663
1 files changed, 0 insertions, 663 deletions
diff --git a/arch/arm/mm/mm-armv.c b/arch/arm/mm/mm-armv.c
deleted file mode 100644
index 38769f5862bc..000000000000
--- a/arch/arm/mm/mm-armv.c
+++ /dev/null
@@ -1,663 +0,0 @@
1/*
2 * linux/arch/arm/mm/mm-armv.c
3 *
4 * Copyright (C) 1998-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * Page table sludge for ARM v3 and v4 processor architectures.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/bootmem.h>
16#include <linux/highmem.h>
17#include <linux/nodemask.h>
18
19#include <asm/pgalloc.h>
20#include <asm/page.h>
21#include <asm/setup.h>
22#include <asm/tlbflush.h>
23
24#include <asm/mach/map.h>
25
26#define CPOLICY_UNCACHED 0
27#define CPOLICY_BUFFERED 1
28#define CPOLICY_WRITETHROUGH 2
29#define CPOLICY_WRITEBACK 3
30#define CPOLICY_WRITEALLOC 4
31
32static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
33static unsigned int ecc_mask __initdata = 0;
34pgprot_t pgprot_kernel;
35
36EXPORT_SYMBOL(pgprot_kernel);
37
38pmd_t *top_pmd;
39
40struct cachepolicy {
41 const char policy[16];
42 unsigned int cr_mask;
43 unsigned int pmd;
44 unsigned int pte;
45};
46
47static struct cachepolicy cache_policies[] __initdata = {
48 {
49 .policy = "uncached",
50 .cr_mask = CR_W|CR_C,
51 .pmd = PMD_SECT_UNCACHED,
52 .pte = 0,
53 }, {
54 .policy = "buffered",
55 .cr_mask = CR_C,
56 .pmd = PMD_SECT_BUFFERED,
57 .pte = PTE_BUFFERABLE,
58 }, {
59 .policy = "writethrough",
60 .cr_mask = 0,
61 .pmd = PMD_SECT_WT,
62 .pte = PTE_CACHEABLE,
63 }, {
64 .policy = "writeback",
65 .cr_mask = 0,
66 .pmd = PMD_SECT_WB,
67 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
68 }, {
69 .policy = "writealloc",
70 .cr_mask = 0,
71 .pmd = PMD_SECT_WBWA,
72 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
73 }
74};
75
76/*
77 * These are useful for identifing cache coherency
78 * problems by allowing the cache or the cache and
79 * writebuffer to be turned off. (Note: the write
80 * buffer should not be on and the cache off).
81 */
82static void __init early_cachepolicy(char **p)
83{
84 int i;
85
86 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
87 int len = strlen(cache_policies[i].policy);
88
89 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
90 cachepolicy = i;
91 cr_alignment &= ~cache_policies[i].cr_mask;
92 cr_no_alignment &= ~cache_policies[i].cr_mask;
93 *p += len;
94 break;
95 }
96 }
97 if (i == ARRAY_SIZE(cache_policies))
98 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
99 flush_cache_all();
100 set_cr(cr_alignment);
101}
102
103static void __init early_nocache(char **__unused)
104{
105 char *p = "buffered";
106 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
107 early_cachepolicy(&p);
108}
109
110static void __init early_nowrite(char **__unused)
111{
112 char *p = "uncached";
113 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
114 early_cachepolicy(&p);
115}
116
117static void __init early_ecc(char **p)
118{
119 if (memcmp(*p, "on", 2) == 0) {
120 ecc_mask = PMD_PROTECTION;
121 *p += 2;
122 } else if (memcmp(*p, "off", 3) == 0) {
123 ecc_mask = 0;
124 *p += 3;
125 }
126}
127
128__early_param("nocache", early_nocache);
129__early_param("nowb", early_nowrite);
130__early_param("cachepolicy=", early_cachepolicy);
131__early_param("ecc=", early_ecc);
132
133static int __init noalign_setup(char *__unused)
134{
135 cr_alignment &= ~CR_A;
136 cr_no_alignment &= ~CR_A;
137 set_cr(cr_alignment);
138 return 1;
139}
140
141__setup("noalign", noalign_setup);
142
143#define FIRST_KERNEL_PGD_NR (FIRST_USER_PGD_NR + USER_PTRS_PER_PGD)
144
145static inline pmd_t *pmd_off(pgd_t *pgd, unsigned long virt)
146{
147 return pmd_offset(pgd, virt);
148}
149
150static inline pmd_t *pmd_off_k(unsigned long virt)
151{
152 return pmd_off(pgd_offset_k(virt), virt);
153}
154
155/*
156 * need to get a 16k page for level 1
157 */
158pgd_t *get_pgd_slow(struct mm_struct *mm)
159{
160 pgd_t *new_pgd, *init_pgd;
161 pmd_t *new_pmd, *init_pmd;
162 pte_t *new_pte, *init_pte;
163
164 new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2);
165 if (!new_pgd)
166 goto no_pgd;
167
168 memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t));
169
170 /*
171 * Copy over the kernel and IO PGD entries
172 */
173 init_pgd = pgd_offset_k(0);
174 memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR,
175 (PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t));
176
177 clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t));
178
179 if (!vectors_high()) {
180 /*
181 * On ARM, first page must always be allocated since it
182 * contains the machine vectors.
183 */
184 new_pmd = pmd_alloc(mm, new_pgd, 0);
185 if (!new_pmd)
186 goto no_pmd;
187
188 new_pte = pte_alloc_map(mm, new_pmd, 0);
189 if (!new_pte)
190 goto no_pte;
191
192 init_pmd = pmd_offset(init_pgd, 0);
193 init_pte = pte_offset_map_nested(init_pmd, 0);
194 set_pte(new_pte, *init_pte);
195 pte_unmap_nested(init_pte);
196 pte_unmap(new_pte);
197 }
198
199 return new_pgd;
200
201no_pte:
202 pmd_free(new_pmd);
203no_pmd:
204 free_pages((unsigned long)new_pgd, 2);
205no_pgd:
206 return NULL;
207}
208
209void free_pgd_slow(pgd_t *pgd)
210{
211 pmd_t *pmd;
212 struct page *pte;
213
214 if (!pgd)
215 return;
216
217 /* pgd is always present and good */
218 pmd = pmd_off(pgd, 0);
219 if (pmd_none(*pmd))
220 goto free;
221 if (pmd_bad(*pmd)) {
222 pmd_ERROR(*pmd);
223 pmd_clear(pmd);
224 goto free;
225 }
226
227 pte = pmd_page(*pmd);
228 pmd_clear(pmd);
229 dec_zone_page_state(virt_to_page((unsigned long *)pgd), NR_PAGETABLE);
230 pte_lock_deinit(pte);
231 pte_free(pte);
232 pmd_free(pmd);
233free:
234 free_pages((unsigned long) pgd, 2);
235}
236
237/*
238 * Create a SECTION PGD between VIRT and PHYS in domain
239 * DOMAIN with protection PROT. This operates on half-
240 * pgdir entry increments.
241 */
242static inline void
243alloc_init_section(unsigned long virt, unsigned long phys, int prot)
244{
245 pmd_t *pmdp = pmd_off_k(virt);
246
247 if (virt & (1 << 20))
248 pmdp++;
249
250 *pmdp = __pmd(phys | prot);
251 flush_pmd_entry(pmdp);
252}
253
254/*
255 * Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT
256 */
257static inline void
258alloc_init_supersection(unsigned long virt, unsigned long phys, int prot)
259{
260 int i;
261
262 for (i = 0; i < 16; i += 1) {
263 alloc_init_section(virt, phys, prot | PMD_SECT_SUPER);
264
265 virt += (PGDIR_SIZE / 2);
266 }
267}
268
269/*
270 * Add a PAGE mapping between VIRT and PHYS in domain
271 * DOMAIN with protection PROT. Note that due to the
272 * way we map the PTEs, we must allocate two PTE_SIZE'd
273 * blocks - one for the Linux pte table, and one for
274 * the hardware pte table.
275 */
276static inline void
277alloc_init_page(unsigned long virt, unsigned long phys, unsigned int prot_l1, pgprot_t prot)
278{
279 pmd_t *pmdp = pmd_off_k(virt);
280 pte_t *ptep;
281
282 if (pmd_none(*pmdp)) {
283 ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE *
284 sizeof(pte_t));
285
286 __pmd_populate(pmdp, __pa(ptep) | prot_l1);
287 }
288 ptep = pte_offset_kernel(pmdp, virt);
289
290 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
291}
292
293struct mem_types {
294 unsigned int prot_pte;
295 unsigned int prot_l1;
296 unsigned int prot_sect;
297 unsigned int domain;
298};
299
300static struct mem_types mem_types[] __initdata = {
301 [MT_DEVICE] = {
302 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
303 L_PTE_WRITE,
304 .prot_l1 = PMD_TYPE_TABLE,
305 .prot_sect = PMD_TYPE_SECT | PMD_BIT4 | PMD_SECT_UNCACHED |
306 PMD_SECT_AP_WRITE,
307 .domain = DOMAIN_IO,
308 },
309 [MT_CACHECLEAN] = {
310 .prot_sect = PMD_TYPE_SECT | PMD_BIT4,
311 .domain = DOMAIN_KERNEL,
312 },
313 [MT_MINICLEAN] = {
314 .prot_sect = PMD_TYPE_SECT | PMD_BIT4 | PMD_SECT_MINICACHE,
315 .domain = DOMAIN_KERNEL,
316 },
317 [MT_LOW_VECTORS] = {
318 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
319 L_PTE_EXEC,
320 .prot_l1 = PMD_TYPE_TABLE,
321 .domain = DOMAIN_USER,
322 },
323 [MT_HIGH_VECTORS] = {
324 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
325 L_PTE_USER | L_PTE_EXEC,
326 .prot_l1 = PMD_TYPE_TABLE,
327 .domain = DOMAIN_USER,
328 },
329 [MT_MEMORY] = {
330 .prot_sect = PMD_TYPE_SECT | PMD_BIT4 | PMD_SECT_AP_WRITE,
331 .domain = DOMAIN_KERNEL,
332 },
333 [MT_ROM] = {
334 .prot_sect = PMD_TYPE_SECT | PMD_BIT4,
335 .domain = DOMAIN_KERNEL,
336 },
337 [MT_IXP2000_DEVICE] = { /* IXP2400 requires XCB=101 for on-chip I/O */
338 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
339 L_PTE_WRITE,
340 .prot_l1 = PMD_TYPE_TABLE,
341 .prot_sect = PMD_TYPE_SECT | PMD_BIT4 | PMD_SECT_UNCACHED |
342 PMD_SECT_AP_WRITE | PMD_SECT_BUFFERABLE |
343 PMD_SECT_TEX(1),
344 .domain = DOMAIN_IO,
345 },
346 [MT_NONSHARED_DEVICE] = {
347 .prot_l1 = PMD_TYPE_TABLE,
348 .prot_sect = PMD_TYPE_SECT | PMD_BIT4 | PMD_SECT_NONSHARED_DEV |
349 PMD_SECT_AP_WRITE,
350 .domain = DOMAIN_IO,
351 }
352};
353
354/*
355 * Adjust the PMD section entries according to the CPU in use.
356 */
357void __init build_mem_type_table(void)
358{
359 struct cachepolicy *cp;
360 unsigned int cr = get_cr();
361 unsigned int user_pgprot, kern_pgprot;
362 int cpu_arch = cpu_architecture();
363 int i;
364
365#if defined(CONFIG_CPU_DCACHE_DISABLE)
366 if (cachepolicy > CPOLICY_BUFFERED)
367 cachepolicy = CPOLICY_BUFFERED;
368#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
369 if (cachepolicy > CPOLICY_WRITETHROUGH)
370 cachepolicy = CPOLICY_WRITETHROUGH;
371#endif
372 if (cpu_arch < CPU_ARCH_ARMv5) {
373 if (cachepolicy >= CPOLICY_WRITEALLOC)
374 cachepolicy = CPOLICY_WRITEBACK;
375 ecc_mask = 0;
376 }
377
378 /*
379 * Xscale must not have PMD bit 4 set for section mappings.
380 */
381 if (cpu_is_xscale())
382 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
383 mem_types[i].prot_sect &= ~PMD_BIT4;
384
385 /*
386 * ARMv5 and lower, excluding Xscale, bit 4 must be set for
387 * page tables.
388 */
389 if (cpu_arch < CPU_ARCH_ARMv6 && !cpu_is_xscale())
390 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
391 if (mem_types[i].prot_l1)
392 mem_types[i].prot_l1 |= PMD_BIT4;
393
394 cp = &cache_policies[cachepolicy];
395 kern_pgprot = user_pgprot = cp->pte;
396
397 /*
398 * Enable CPU-specific coherency if supported.
399 * (Only available on XSC3 at the moment.)
400 */
401 if (arch_is_coherent()) {
402 if (cpu_is_xsc3()) {
403 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
404 mem_types[MT_MEMORY].prot_pte |= L_PTE_COHERENT;
405 }
406 }
407
408 /*
409 * ARMv6 and above have extended page tables.
410 */
411 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
412 /*
413 * bit 4 becomes XN which we must clear for the
414 * kernel memory mapping.
415 */
416 mem_types[MT_MEMORY].prot_sect &= ~PMD_SECT_XN;
417 mem_types[MT_ROM].prot_sect &= ~PMD_SECT_XN;
418
419 /*
420 * Mark cache clean areas and XIP ROM read only
421 * from SVC mode and no access from userspace.
422 */
423 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
424 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
425 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
426
427 /*
428 * Mark the device area as "shared device"
429 */
430 mem_types[MT_DEVICE].prot_pte |= L_PTE_BUFFERABLE;
431 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
432
433 /*
434 * User pages need to be mapped with the ASID
435 * (iow, non-global)
436 */
437 user_pgprot |= L_PTE_ASID;
438
439#ifdef CONFIG_SMP
440 /*
441 * Mark memory with the "shared" attribute for SMP systems
442 */
443 user_pgprot |= L_PTE_SHARED;
444 kern_pgprot |= L_PTE_SHARED;
445 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
446#endif
447 }
448
449 for (i = 0; i < 16; i++) {
450 unsigned long v = pgprot_val(protection_map[i]);
451 v = (v & ~(L_PTE_BUFFERABLE|L_PTE_CACHEABLE)) | user_pgprot;
452 protection_map[i] = __pgprot(v);
453 }
454
455 mem_types[MT_LOW_VECTORS].prot_pte |= kern_pgprot;
456 mem_types[MT_HIGH_VECTORS].prot_pte |= kern_pgprot;
457
458 if (cpu_arch >= CPU_ARCH_ARMv5) {
459#ifndef CONFIG_SMP
460 /*
461 * Only use write-through for non-SMP systems
462 */
463 mem_types[MT_LOW_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
464 mem_types[MT_HIGH_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
465#endif
466 } else {
467 mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
468 }
469
470 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
471 L_PTE_DIRTY | L_PTE_WRITE |
472 L_PTE_EXEC | kern_pgprot);
473
474 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
475 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
476 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
477 mem_types[MT_ROM].prot_sect |= cp->pmd;
478
479 switch (cp->pmd) {
480 case PMD_SECT_WT:
481 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
482 break;
483 case PMD_SECT_WB:
484 case PMD_SECT_WBWA:
485 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
486 break;
487 }
488 printk("Memory policy: ECC %sabled, Data cache %s\n",
489 ecc_mask ? "en" : "dis", cp->policy);
490}
491
492#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
493
494/*
495 * Create the page directory entries and any necessary
496 * page tables for the mapping specified by `md'. We
497 * are able to cope here with varying sizes and address
498 * offsets, and we take full advantage of sections and
499 * supersections.
500 */
501void __init create_mapping(struct map_desc *md)
502{
503 unsigned long virt, length;
504 int prot_sect, prot_l1, domain;
505 pgprot_t prot_pte;
506 unsigned long off = (u32)__pfn_to_phys(md->pfn);
507
508 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
509 printk(KERN_WARNING "BUG: not creating mapping for "
510 "0x%08llx at 0x%08lx in user region\n",
511 __pfn_to_phys((u64)md->pfn), md->virtual);
512 return;
513 }
514
515 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
516 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
517 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
518 "overlaps vmalloc space\n",
519 __pfn_to_phys((u64)md->pfn), md->virtual);
520 }
521
522 domain = mem_types[md->type].domain;
523 prot_pte = __pgprot(mem_types[md->type].prot_pte);
524 prot_l1 = mem_types[md->type].prot_l1 | PMD_DOMAIN(domain);
525 prot_sect = mem_types[md->type].prot_sect | PMD_DOMAIN(domain);
526
527 /*
528 * Catch 36-bit addresses
529 */
530 if(md->pfn >= 0x100000) {
531 if(domain) {
532 printk(KERN_ERR "MM: invalid domain in supersection "
533 "mapping for 0x%08llx at 0x%08lx\n",
534 __pfn_to_phys((u64)md->pfn), md->virtual);
535 return;
536 }
537 if((md->virtual | md->length | __pfn_to_phys(md->pfn))
538 & ~SUPERSECTION_MASK) {
539 printk(KERN_ERR "MM: cannot create mapping for "
540 "0x%08llx at 0x%08lx invalid alignment\n",
541 __pfn_to_phys((u64)md->pfn), md->virtual);
542 return;
543 }
544
545 /*
546 * Shift bits [35:32] of address into bits [23:20] of PMD
547 * (See ARMv6 spec).
548 */
549 off |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
550 }
551
552 virt = md->virtual;
553 off -= virt;
554 length = md->length;
555
556 if (mem_types[md->type].prot_l1 == 0 &&
557 (virt & 0xfffff || (virt + off) & 0xfffff || (virt + length) & 0xfffff)) {
558 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
559 "be mapped using pages, ignoring.\n",
560 __pfn_to_phys(md->pfn), md->virtual);
561 return;
562 }
563
564 while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) {
565 alloc_init_page(virt, virt + off, prot_l1, prot_pte);
566
567 virt += PAGE_SIZE;
568 length -= PAGE_SIZE;
569 }
570
571 /* N.B. ARMv6 supersections are only defined to work with domain 0.
572 * Since domain assignments can in fact be arbitrary, the
573 * 'domain == 0' check below is required to insure that ARMv6
574 * supersections are only allocated for domain 0 regardless
575 * of the actual domain assignments in use.
576 */
577 if ((cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())
578 && domain == 0) {
579 /*
580 * Align to supersection boundary if !high pages.
581 * High pages have already been checked for proper
582 * alignment above and they will fail the SUPSERSECTION_MASK
583 * check because of the way the address is encoded into
584 * offset.
585 */
586 if (md->pfn <= 0x100000) {
587 while ((virt & ~SUPERSECTION_MASK ||
588 (virt + off) & ~SUPERSECTION_MASK) &&
589 length >= (PGDIR_SIZE / 2)) {
590 alloc_init_section(virt, virt + off, prot_sect);
591
592 virt += (PGDIR_SIZE / 2);
593 length -= (PGDIR_SIZE / 2);
594 }
595 }
596
597 while (length >= SUPERSECTION_SIZE) {
598 alloc_init_supersection(virt, virt + off, prot_sect);
599
600 virt += SUPERSECTION_SIZE;
601 length -= SUPERSECTION_SIZE;
602 }
603 }
604
605 /*
606 * A section mapping covers half a "pgdir" entry.
607 */
608 while (length >= (PGDIR_SIZE / 2)) {
609 alloc_init_section(virt, virt + off, prot_sect);
610
611 virt += (PGDIR_SIZE / 2);
612 length -= (PGDIR_SIZE / 2);
613 }
614
615 while (length >= PAGE_SIZE) {
616 alloc_init_page(virt, virt + off, prot_l1, prot_pte);
617
618 virt += PAGE_SIZE;
619 length -= PAGE_SIZE;
620 }
621}
622
623/*
624 * In order to soft-boot, we need to insert a 1:1 mapping in place of
625 * the user-mode pages. This will then ensure that we have predictable
626 * results when turning the mmu off
627 */
628void setup_mm_for_reboot(char mode)
629{
630 unsigned long base_pmdval;
631 pgd_t *pgd;
632 int i;
633
634 if (current->mm && current->mm->pgd)
635 pgd = current->mm->pgd;
636 else
637 pgd = init_mm.pgd;
638
639 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
640 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
641 base_pmdval |= PMD_BIT4;
642
643 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
644 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
645 pmd_t *pmd;
646
647 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
648 pmd[0] = __pmd(pmdval);
649 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
650 flush_pmd_entry(pmd);
651 }
652}
653
654/*
655 * Create the architecture specific mappings
656 */
657void __init iotable_init(struct map_desc *io_desc, int nr)
658{
659 int i;
660
661 for (i = 0; i < nr; i++)
662 create_mapping(io_desc + i);
663}