aboutsummaryrefslogtreecommitdiffstats
path: root/arch/arm/mach-omap2/omap-smp.c
diff options
context:
space:
mode:
authorSantosh Shilimkar <santosh.shilimkar@ti.com>2012-10-18 05:20:05 -0400
committerKevin Hilman <khilman@ti.com>2012-11-05 17:26:43 -0500
commitff999b8a0983ee15668394ed49e38d3568fc6859 (patch)
tree50f37fcc78c8772438e72bd3336417f00ae8fe95 /arch/arm/mach-omap2/omap-smp.c
parentc962184459ab75502b242efb04291c2cf8700bc3 (diff)
ARM: OMAP4460: Workaround for ROM bug because of CA9 r2pX GIC control register change.
On OMAP4+ devices, GIC register context is lost when MPUSS hits the OSWR(Open Switch Retention). On the CPU wakeup path, ROM code gets executed and one of the steps in it is to restore the saved context of the GIC. The ROM Code GIC distributor restoration is split in two parts: CPU specific register done by each CPU and common register done by only one CPU. Below is the abstract flow. ............................................................... - MPUSS in OSWR state. - CPU0 wakes up on the event(interrupt) and start executing ROM code. [..] - CPU0 executes "GIC Restoration:" [...] - CPU0 swicthes to non-secure mode and jumps to OS resume code. [...] - CPU0 is online in OS - CPU0 enables the GIC distributor. GICD.Enable Non-secure = 1 - CPU0 wakes up CPU1 with clock-domain force wakeup method. - CPU0 continues it's execution. [..] - CPU1 wakes up and start executing ROM code. [..] - CPU1 executes "GIC Restoration:" [..] - CPU1 swicthes to non-secure mode and jumps to OS resume code. [...] - CPU1 is online in OS and start executing. [...] - GIC Restoration: /* Common routine for HS and GP devices */ { if (GICD != 1) { /* This will be true in OSWR state */ if (GIC_SAR_BACKUP_STATE == SAVED) - CPU restores GIC distributor else - reconfigure GIC distributor to boot values. GICD.Enable secure = 1 } if (GIC_SAR_BACKUP_STATE == SAVED) - CPU restore its GIC CPU interface registers if saved. else - reconfigure its GIC CPU interface registers to boot values. } ............................................................... So as mentioned in the flow, GICD != 1 condition decides how the GIC registers are handled in ROM code wakeup path from OSWR. As evident from the flow, ROM code relies on the entire GICD register value and not specific register bits. The assumption was valid till CortexA9 r1pX version since there was only one banked bit to control secure and non-secure GICD. Secure view which ROM code sees: bit 0 == Enable Non-secure Non-secure view which HLOS sees: bit 0 == Enable secure But GICD register has changed between CortexA9 r1pX and r2pX. On r2pX GICD register is composed of 2 bits. Secure view which ROM code sees: bit 1 == Enable Non-secure bit 0 == Enable secure Non-secure view which HLOS sees: bit 0 == Enable Non-secure Hence on OMAP4460(r2pX) devices, if you go through the above flow again during CPU1 wakeup, GICD == 3 and hence ROM code fails to understand the real wakeup power state and reconfigures GIC distributor to boot values. This is nasty since you loose the entire interrupt controller context in a live system. The ROM code fix done on next OMAP4 device (OMAP4470 - r2px) is to check "GICD.Enable secure != 1" for GIC restoration in OSWR wakeup path. Since ROM code can't be fixed on OMAP4460 devices, a work around needs to be implemented. As evident from the flow, as long as CPU1 sees GICD == 1 in it's wakeup path from OSWR, the issue won't happen. Below is the flow with the work-around. ............................................................... - MPUSS in OSWR state. - CPU0 wakes up on the event(interrupt) and start executing ROM code. [..] - CPU0 executes "GIC Restoration:" [..] - CPU0 swicthes to non-secure mode and jumps to OS resume code. [..] - CPU0 is online in OS. - CPU0 does GICD.Enable Non-secure = 0 - CPU0 wakes up CPU1 with clock domain force wakeup method. - CPU0 waits for GICD.Enable Non-secure = 1 - CPU0 coninues it's execution. [..] - CPU1 wakes up and start executing ROM code. [..] - CPU1 executes "GIC Restoration:" [..] - CPU1 swicthes to non-secure mode and jumps to OS resume code. [..] - CPU1 is online in OS - CPU1 does GICD.Enable Non-secure = 1 - CPU1 start executing [...] ............................................................... With this procedure, the GIC configuration done between the CPU0 wakeup and CPU1 wakeup will not be lost but during this short windows, the CPU0 will not receive interrupts. The BUG is applicable to only OMAP4460(r2pX) devices. OMAP4470 (also r2pX) is not affected by this bug because ROM code has been fixed. Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Signed-off-by: Tero Kristo <t-kristo@ti.com> Signed-off-by: Kevin Hilman <khilman@ti.com>
Diffstat (limited to 'arch/arm/mach-omap2/omap-smp.c')
-rw-r--r--arch/arm/mach-omap2/omap-smp.c28
1 files changed, 27 insertions, 1 deletions
diff --git a/arch/arm/mach-omap2/omap-smp.c b/arch/arm/mach-omap2/omap-smp.c
index 4d05fa8a4e48..7d9c0e3fedc4 100644
--- a/arch/arm/mach-omap2/omap-smp.c
+++ b/arch/arm/mach-omap2/omap-smp.c
@@ -32,6 +32,7 @@
32#include "iomap.h" 32#include "iomap.h"
33#include "common.h" 33#include "common.h"
34#include "clockdomain.h" 34#include "clockdomain.h"
35#include "pm.h"
35 36
36#define CPU_MASK 0xff0ffff0 37#define CPU_MASK 0xff0ffff0
37#define CPU_CORTEX_A9 0x410FC090 38#define CPU_CORTEX_A9 0x410FC090
@@ -118,6 +119,24 @@ static int __cpuinit omap4_boot_secondary(unsigned int cpu, struct task_struct *
118 * 4.3.4.2 Power States of CPU0 and CPU1 119 * 4.3.4.2 Power States of CPU0 and CPU1
119 */ 120 */
120 if (booted) { 121 if (booted) {
122 /*
123 * GIC distributor control register has changed between
124 * CortexA9 r1pX and r2pX. The Control Register secure
125 * banked version is now composed of 2 bits:
126 * bit 0 == Secure Enable
127 * bit 1 == Non-Secure Enable
128 * The Non-Secure banked register has not changed
129 * Because the ROM Code is based on the r1pX GIC, the CPU1
130 * GIC restoration will cause a problem to CPU0 Non-Secure SW.
131 * The workaround must be:
132 * 1) Before doing the CPU1 wakeup, CPU0 must disable
133 * the GIC distributor
134 * 2) CPU1 must re-enable the GIC distributor on
135 * it's wakeup path.
136 */
137 if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD))
138 gic_dist_disable();
139
121 clkdm_wakeup(cpu1_clkdm); 140 clkdm_wakeup(cpu1_clkdm);
122 clkdm_allow_idle(cpu1_clkdm); 141 clkdm_allow_idle(cpu1_clkdm);
123 } else { 142 } else {
@@ -138,7 +157,14 @@ static int __cpuinit omap4_boot_secondary(unsigned int cpu, struct task_struct *
138 157
139static void __init wakeup_secondary(void) 158static void __init wakeup_secondary(void)
140{ 159{
160 void *startup_addr = omap_secondary_startup;
141 void __iomem *base = omap_get_wakeupgen_base(); 161 void __iomem *base = omap_get_wakeupgen_base();
162
163 if (cpu_is_omap446x()) {
164 startup_addr = omap_secondary_startup_4460;
165 pm44xx_errata |= PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD;
166 }
167
142 /* 168 /*
143 * Write the address of secondary startup routine into the 169 * Write the address of secondary startup routine into the
144 * AuxCoreBoot1 where ROM code will jump and start executing 170 * AuxCoreBoot1 where ROM code will jump and start executing
@@ -146,7 +172,7 @@ static void __init wakeup_secondary(void)
146 * A barrier is added to ensure that write buffer is drained 172 * A barrier is added to ensure that write buffer is drained
147 */ 173 */
148 if (omap_secure_apis_support()) 174 if (omap_secure_apis_support())
149 omap_auxcoreboot_addr(virt_to_phys(omap_secondary_startup)); 175 omap_auxcoreboot_addr(virt_to_phys(startup_addr));
150 else 176 else
151 __raw_writel(virt_to_phys(omap5_secondary_startup), 177 __raw_writel(virt_to_phys(omap5_secondary_startup),
152 base + OMAP_AUX_CORE_BOOT_1); 178 base + OMAP_AUX_CORE_BOOT_1);