aboutsummaryrefslogtreecommitdiffstats
path: root/arch/arm/kernel
diff options
context:
space:
mode:
authorH. Peter Anvin <hpa@zytor.com>2010-04-29 19:53:17 -0400
committerH. Peter Anvin <hpa@zytor.com>2010-04-29 19:53:17 -0400
commitd9c5841e22231e4e49fd0a1004164e6fce59b7a6 (patch)
treee1f589c46b3ff79bbe7b1b2469f6362f94576da6 /arch/arm/kernel
parentb701a47ba48b698976fb2fe05fb285b0edc1d26a (diff)
parent5967ed87ade85a421ef814296c3c7f182b08c225 (diff)
Merge branch 'x86/asm' into x86/atomic
Merge reason: Conflict between LOCK_PREFIX_HERE and relative alternatives pointers Resolved Conflicts: arch/x86/include/asm/alternative.h arch/x86/kernel/alternative.c Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Diffstat (limited to 'arch/arm/kernel')
-rw-r--r--arch/arm/kernel/Makefile3
-rw-r--r--arch/arm/kernel/asm-offsets.c5
-rw-r--r--arch/arm/kernel/bios32.c8
-rw-r--r--arch/arm/kernel/calls.S4
-rw-r--r--arch/arm/kernel/debug.S30
-rw-r--r--arch/arm/kernel/elf.c9
-rw-r--r--arch/arm/kernel/entry-armv.S4
-rw-r--r--arch/arm/kernel/entry-header.S2
-rw-r--r--arch/arm/kernel/irq.c1
-rw-r--r--arch/arm/kernel/kgdb.c13
-rw-r--r--arch/arm/kernel/kprobes.c11
-rw-r--r--arch/arm/kernel/leds.c115
-rw-r--r--arch/arm/kernel/module.c2
-rw-r--r--arch/arm/kernel/perf_event.c2277
-rw-r--r--arch/arm/kernel/pmu.c103
-rw-r--r--arch/arm/kernel/process.c4
-rw-r--r--arch/arm/kernel/ptrace.c113
-rw-r--r--arch/arm/kernel/ptrace.h14
-rw-r--r--arch/arm/kernel/setup.c80
-rw-r--r--arch/arm/kernel/signal.c93
-rw-r--r--arch/arm/kernel/smp.c4
-rw-r--r--arch/arm/kernel/sys_arm.c131
-rw-r--r--arch/arm/kernel/sys_oabi-compat.c3
-rw-r--r--arch/arm/kernel/time.c178
-rw-r--r--arch/arm/kernel/traps.c35
-rw-r--r--arch/arm/kernel/unwind.c4
-rw-r--r--arch/arm/kernel/vmlinux.lds.S4
27 files changed, 2764 insertions, 486 deletions
diff --git a/arch/arm/kernel/Makefile b/arch/arm/kernel/Makefile
index dd00f747e2ad..26d302c28e13 100644
--- a/arch/arm/kernel/Makefile
+++ b/arch/arm/kernel/Makefile
@@ -17,6 +17,7 @@ obj-y := compat.o elf.o entry-armv.o entry-common.o irq.o \
17 process.o ptrace.o return_address.o setup.o signal.o \ 17 process.o ptrace.o return_address.o setup.o signal.o \
18 sys_arm.o stacktrace.o time.o traps.o 18 sys_arm.o stacktrace.o time.o traps.o
19 19
20obj-$(CONFIG_LEDS) += leds.o
20obj-$(CONFIG_OC_ETM) += etm.o 21obj-$(CONFIG_OC_ETM) += etm.o
21 22
22obj-$(CONFIG_ISA_DMA_API) += dma.o 23obj-$(CONFIG_ISA_DMA_API) += dma.o
@@ -46,6 +47,8 @@ obj-$(CONFIG_CPU_XSCALE) += xscale-cp0.o
46obj-$(CONFIG_CPU_XSC3) += xscale-cp0.o 47obj-$(CONFIG_CPU_XSC3) += xscale-cp0.o
47obj-$(CONFIG_CPU_MOHAWK) += xscale-cp0.o 48obj-$(CONFIG_CPU_MOHAWK) += xscale-cp0.o
48obj-$(CONFIG_IWMMXT) += iwmmxt.o 49obj-$(CONFIG_IWMMXT) += iwmmxt.o
50obj-$(CONFIG_CPU_HAS_PMU) += pmu.o
51obj-$(CONFIG_HW_PERF_EVENTS) += perf_event.o
49AFLAGS_iwmmxt.o := -Wa,-mcpu=iwmmxt 52AFLAGS_iwmmxt.o := -Wa,-mcpu=iwmmxt
50 53
51ifneq ($(CONFIG_ARCH_EBSA110),y) 54ifneq ($(CONFIG_ARCH_EBSA110),y)
diff --git a/arch/arm/kernel/asm-offsets.c b/arch/arm/kernel/asm-offsets.c
index 4a881258bb17..883511522fca 100644
--- a/arch/arm/kernel/asm-offsets.c
+++ b/arch/arm/kernel/asm-offsets.c
@@ -12,6 +12,7 @@
12 */ 12 */
13#include <linux/sched.h> 13#include <linux/sched.h>
14#include <linux/mm.h> 14#include <linux/mm.h>
15#include <linux/dma-mapping.h>
15#include <asm/mach/arch.h> 16#include <asm/mach/arch.h>
16#include <asm/thread_info.h> 17#include <asm/thread_info.h>
17#include <asm/memory.h> 18#include <asm/memory.h>
@@ -112,5 +113,9 @@ int main(void)
112#ifdef MULTI_PABORT 113#ifdef MULTI_PABORT
113 DEFINE(PROCESSOR_PABT_FUNC, offsetof(struct processor, _prefetch_abort)); 114 DEFINE(PROCESSOR_PABT_FUNC, offsetof(struct processor, _prefetch_abort));
114#endif 115#endif
116 BLANK();
117 DEFINE(DMA_BIDIRECTIONAL, DMA_BIDIRECTIONAL);
118 DEFINE(DMA_TO_DEVICE, DMA_TO_DEVICE);
119 DEFINE(DMA_FROM_DEVICE, DMA_FROM_DEVICE);
115 return 0; 120 return 0;
116} 121}
diff --git a/arch/arm/kernel/bios32.c b/arch/arm/kernel/bios32.c
index 809681900ec8..bd397e0b663e 100644
--- a/arch/arm/kernel/bios32.c
+++ b/arch/arm/kernel/bios32.c
@@ -616,15 +616,17 @@ char * __init pcibios_setup(char *str)
616 * but we want to try to avoid allocating at 0x2900-0x2bff 616 * but we want to try to avoid allocating at 0x2900-0x2bff
617 * which might be mirrored at 0x0100-0x03ff.. 617 * which might be mirrored at 0x0100-0x03ff..
618 */ 618 */
619void pcibios_align_resource(void *data, struct resource *res, 619resource_size_t pcibios_align_resource(void *data, const struct resource *res,
620 resource_size_t size, resource_size_t align) 620 resource_size_t size, resource_size_t align)
621{ 621{
622 resource_size_t start = res->start; 622 resource_size_t start = res->start;
623 623
624 if (res->flags & IORESOURCE_IO && start & 0x300) 624 if (res->flags & IORESOURCE_IO && start & 0x300)
625 start = (start + 0x3ff) & ~0x3ff; 625 start = (start + 0x3ff) & ~0x3ff;
626 626
627 res->start = (start + align - 1) & ~(align - 1); 627 start = (start + align - 1) & ~(align - 1);
628
629 return start;
628} 630}
629 631
630/** 632/**
diff --git a/arch/arm/kernel/calls.S b/arch/arm/kernel/calls.S
index 9314a2d681f1..37ae301cc47c 100644
--- a/arch/arm/kernel/calls.S
+++ b/arch/arm/kernel/calls.S
@@ -91,7 +91,7 @@
91 CALL(sys_settimeofday) 91 CALL(sys_settimeofday)
92/* 80 */ CALL(sys_getgroups16) 92/* 80 */ CALL(sys_getgroups16)
93 CALL(sys_setgroups16) 93 CALL(sys_setgroups16)
94 CALL(OBSOLETE(old_select)) /* used by libc4 */ 94 CALL(OBSOLETE(sys_old_select)) /* used by libc4 */
95 CALL(sys_symlink) 95 CALL(sys_symlink)
96 CALL(sys_ni_syscall) /* was sys_lstat */ 96 CALL(sys_ni_syscall) /* was sys_lstat */
97/* 85 */ CALL(sys_readlink) 97/* 85 */ CALL(sys_readlink)
@@ -99,7 +99,7 @@
99 CALL(sys_swapon) 99 CALL(sys_swapon)
100 CALL(sys_reboot) 100 CALL(sys_reboot)
101 CALL(OBSOLETE(sys_old_readdir)) /* used by libc4 */ 101 CALL(OBSOLETE(sys_old_readdir)) /* used by libc4 */
102/* 90 */ CALL(OBSOLETE(old_mmap)) /* used by libc4 */ 102/* 90 */ CALL(OBSOLETE(sys_old_mmap)) /* used by libc4 */
103 CALL(sys_munmap) 103 CALL(sys_munmap)
104 CALL(sys_truncate) 104 CALL(sys_truncate)
105 CALL(sys_ftruncate) 105 CALL(sys_ftruncate)
diff --git a/arch/arm/kernel/debug.S b/arch/arm/kernel/debug.S
index b121b6053cce..a38b4879441d 100644
--- a/arch/arm/kernel/debug.S
+++ b/arch/arm/kernel/debug.S
@@ -24,7 +24,7 @@
24 24
25#if defined(CONFIG_CPU_V6) 25#if defined(CONFIG_CPU_V6)
26 26
27 .macro addruart, rx 27 .macro addruart, rx, tmp
28 .endm 28 .endm
29 29
30 .macro senduart, rd, rx 30 .macro senduart, rd, rx
@@ -49,9 +49,29 @@
491002: 491002:
50 .endm 50 .endm
51 51
52#elif defined(CONFIG_CPU_V7)
53
54 .macro addruart, rx, tmp
55 .endm
56
57 .macro senduart, rd, rx
58 mcr p14, 0, \rd, c0, c5, 0
59 .endm
60
61 .macro busyuart, rd, rx
62busy: mrc p14, 0, pc, c0, c1, 0
63 bcs busy
64 .endm
65
66 .macro waituart, rd, rx
67wait: mrc p14, 0, pc, c0, c1, 0
68 bcs wait
69
70 .endm
71
52#elif defined(CONFIG_CPU_XSCALE) 72#elif defined(CONFIG_CPU_XSCALE)
53 73
54 .macro addruart, rx 74 .macro addruart, rx, tmp
55 .endm 75 .endm
56 76
57 .macro senduart, rd, rx 77 .macro senduart, rd, rx
@@ -78,7 +98,7 @@
78 98
79#else 99#else
80 100
81 .macro addruart, rx 101 .macro addruart, rx, tmp
82 .endm 102 .endm
83 103
84 .macro senduart, rd, rx 104 .macro senduart, rd, rx
@@ -144,7 +164,7 @@ ENDPROC(printhex2)
144 .ltorg 164 .ltorg
145 165
146ENTRY(printascii) 166ENTRY(printascii)
147 addruart r3 167 addruart r3, r1
148 b 2f 168 b 2f
1491: waituart r2, r3 1691: waituart r2, r3
150 senduart r1, r3 170 senduart r1, r3
@@ -160,7 +180,7 @@ ENTRY(printascii)
160ENDPROC(printascii) 180ENDPROC(printascii)
161 181
162ENTRY(printch) 182ENTRY(printch)
163 addruart r3 183 addruart r3, r1
164 mov r1, r0 184 mov r1, r0
165 mov r0, #0 185 mov r0, #0
166 b 1b 186 b 1b
diff --git a/arch/arm/kernel/elf.c b/arch/arm/kernel/elf.c
index 950391f194c4..d4a0da1e48f4 100644
--- a/arch/arm/kernel/elf.c
+++ b/arch/arm/kernel/elf.c
@@ -78,15 +78,6 @@ int arm_elf_read_implies_exec(const struct elf32_hdr *x, int executable_stack)
78 return 1; 78 return 1;
79 if (cpu_architecture() < CPU_ARCH_ARMv6) 79 if (cpu_architecture() < CPU_ARCH_ARMv6)
80 return 1; 80 return 1;
81#if !defined(CONFIG_AEABI) || defined(CONFIG_OABI_COMPAT)
82 /*
83 * If we have support for OABI programs, we can never allow NX
84 * support - our signal syscall restart mechanism relies upon
85 * being able to execute code placed on the user stack.
86 */
87 return 1;
88#else
89 return 0; 81 return 0;
90#endif
91} 82}
92EXPORT_SYMBOL(arm_elf_read_implies_exec); 83EXPORT_SYMBOL(arm_elf_read_implies_exec);
diff --git a/arch/arm/kernel/entry-armv.S b/arch/arm/kernel/entry-armv.S
index d2903e3bc861..6c5cf369183b 100644
--- a/arch/arm/kernel/entry-armv.S
+++ b/arch/arm/kernel/entry-armv.S
@@ -957,9 +957,7 @@ kuser_cmpxchg_fixup:
957 957
958#else 958#else
959 959
960#ifdef CONFIG_SMP 960 smp_dmb
961 mcr p15, 0, r0, c7, c10, 5 @ dmb
962#endif
9631: ldrex r3, [r2] 9611: ldrex r3, [r2]
964 subs r3, r3, r0 962 subs r3, r3, r0
965 strexeq r3, r1, [r2] 963 strexeq r3, r1, [r2]
diff --git a/arch/arm/kernel/entry-header.S b/arch/arm/kernel/entry-header.S
index 7e9ed1eea40a..d93f976fb389 100644
--- a/arch/arm/kernel/entry-header.S
+++ b/arch/arm/kernel/entry-header.S
@@ -102,6 +102,8 @@
102 .else 102 .else
103 ldmdb sp, {r0 - lr}^ @ get calling r0 - lr 103 ldmdb sp, {r0 - lr}^ @ get calling r0 - lr
104 .endif 104 .endif
105 mov r0, r0 @ ARMv5T and earlier require a nop
106 @ after ldm {}^
105 add sp, sp, #S_FRAME_SIZE - S_PC 107 add sp, sp, #S_FRAME_SIZE - S_PC
106 movs pc, lr @ return & move spsr_svc into cpsr 108 movs pc, lr @ return & move spsr_svc into cpsr
107 .endm 109 .endm
diff --git a/arch/arm/kernel/irq.c b/arch/arm/kernel/irq.c
index b7cb45bb91e8..3b3d2c80509c 100644
--- a/arch/arm/kernel/irq.c
+++ b/arch/arm/kernel/irq.c
@@ -27,7 +27,6 @@
27#include <linux/ioport.h> 27#include <linux/ioport.h>
28#include <linux/interrupt.h> 28#include <linux/interrupt.h>
29#include <linux/irq.h> 29#include <linux/irq.h>
30#include <linux/slab.h>
31#include <linux/random.h> 30#include <linux/random.h>
32#include <linux/smp.h> 31#include <linux/smp.h>
33#include <linux/init.h> 32#include <linux/init.h>
diff --git a/arch/arm/kernel/kgdb.c b/arch/arm/kernel/kgdb.c
index ba8ccfede964..a5b846b9895d 100644
--- a/arch/arm/kernel/kgdb.c
+++ b/arch/arm/kernel/kgdb.c
@@ -9,6 +9,7 @@
9 * Authors: George Davis <davis_g@mvista.com> 9 * Authors: George Davis <davis_g@mvista.com>
10 * Deepak Saxena <dsaxena@plexity.net> 10 * Deepak Saxena <dsaxena@plexity.net>
11 */ 11 */
12#include <linux/irq.h>
12#include <linux/kgdb.h> 13#include <linux/kgdb.h>
13#include <asm/traps.h> 14#include <asm/traps.h>
14 15
@@ -158,6 +159,18 @@ static struct undef_hook kgdb_compiled_brkpt_hook = {
158 .fn = kgdb_compiled_brk_fn 159 .fn = kgdb_compiled_brk_fn
159}; 160};
160 161
162static void kgdb_call_nmi_hook(void *ignored)
163{
164 kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
165}
166
167void kgdb_roundup_cpus(unsigned long flags)
168{
169 local_irq_enable();
170 smp_call_function(kgdb_call_nmi_hook, NULL, 0);
171 local_irq_disable();
172}
173
161/** 174/**
162 * kgdb_arch_init - Perform any architecture specific initalization. 175 * kgdb_arch_init - Perform any architecture specific initalization.
163 * 176 *
diff --git a/arch/arm/kernel/kprobes.c b/arch/arm/kernel/kprobes.c
index 60c62c377fa9..2ba7deb3072e 100644
--- a/arch/arm/kernel/kprobes.c
+++ b/arch/arm/kernel/kprobes.c
@@ -22,6 +22,7 @@
22#include <linux/kernel.h> 22#include <linux/kernel.h>
23#include <linux/kprobes.h> 23#include <linux/kprobes.h>
24#include <linux/module.h> 24#include <linux/module.h>
25#include <linux/slab.h>
25#include <linux/stop_machine.h> 26#include <linux/stop_machine.h>
26#include <linux/stringify.h> 27#include <linux/stringify.h>
27#include <asm/traps.h> 28#include <asm/traps.h>
@@ -393,6 +394,14 @@ void __kprobes jprobe_return(void)
393 /* 394 /*
394 * Setup an empty pt_regs. Fill SP and PC fields as 395 * Setup an empty pt_regs. Fill SP and PC fields as
395 * they're needed by longjmp_break_handler. 396 * they're needed by longjmp_break_handler.
397 *
398 * We allocate some slack between the original SP and start of
399 * our fabricated regs. To be precise we want to have worst case
400 * covered which is STMFD with all 16 regs so we allocate 2 *
401 * sizeof(struct_pt_regs)).
402 *
403 * This is to prevent any simulated instruction from writing
404 * over the regs when they are accessing the stack.
396 */ 405 */
397 "sub sp, %0, %1 \n\t" 406 "sub sp, %0, %1 \n\t"
398 "ldr r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t" 407 "ldr r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
@@ -410,7 +419,7 @@ void __kprobes jprobe_return(void)
410 "ldmia sp, {r0 - pc} \n\t" 419 "ldmia sp, {r0 - pc} \n\t"
411 : 420 :
412 : "r" (kcb->jprobe_saved_regs.ARM_sp), 421 : "r" (kcb->jprobe_saved_regs.ARM_sp),
413 "I" (sizeof(struct pt_regs)), 422 "I" (sizeof(struct pt_regs) * 2),
414 "J" (offsetof(struct pt_regs, ARM_sp)), 423 "J" (offsetof(struct pt_regs, ARM_sp)),
415 "J" (offsetof(struct pt_regs, ARM_pc)), 424 "J" (offsetof(struct pt_regs, ARM_pc)),
416 "J" (offsetof(struct pt_regs, ARM_cpsr)) 425 "J" (offsetof(struct pt_regs, ARM_cpsr))
diff --git a/arch/arm/kernel/leds.c b/arch/arm/kernel/leds.c
new file mode 100644
index 000000000000..31a316c1777b
--- /dev/null
+++ b/arch/arm/kernel/leds.c
@@ -0,0 +1,115 @@
1/*
2 * LED support code, ripped out of arch/arm/kernel/time.c
3 *
4 * Copyright (C) 1994-2001 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#include <linux/module.h>
11#include <linux/init.h>
12#include <linux/sysdev.h>
13
14#include <asm/leds.h>
15
16static void dummy_leds_event(led_event_t evt)
17{
18}
19
20void (*leds_event)(led_event_t) = dummy_leds_event;
21
22struct leds_evt_name {
23 const char name[8];
24 int on;
25 int off;
26};
27
28static const struct leds_evt_name evt_names[] = {
29 { "amber", led_amber_on, led_amber_off },
30 { "blue", led_blue_on, led_blue_off },
31 { "green", led_green_on, led_green_off },
32 { "red", led_red_on, led_red_off },
33};
34
35static ssize_t leds_store(struct sys_device *dev,
36 struct sysdev_attribute *attr,
37 const char *buf, size_t size)
38{
39 int ret = -EINVAL, len = strcspn(buf, " ");
40
41 if (len > 0 && buf[len] == '\0')
42 len--;
43
44 if (strncmp(buf, "claim", len) == 0) {
45 leds_event(led_claim);
46 ret = size;
47 } else if (strncmp(buf, "release", len) == 0) {
48 leds_event(led_release);
49 ret = size;
50 } else {
51 int i;
52
53 for (i = 0; i < ARRAY_SIZE(evt_names); i++) {
54 if (strlen(evt_names[i].name) != len ||
55 strncmp(buf, evt_names[i].name, len) != 0)
56 continue;
57 if (strncmp(buf+len, " on", 3) == 0) {
58 leds_event(evt_names[i].on);
59 ret = size;
60 } else if (strncmp(buf+len, " off", 4) == 0) {
61 leds_event(evt_names[i].off);
62 ret = size;
63 }
64 break;
65 }
66 }
67 return ret;
68}
69
70static SYSDEV_ATTR(event, 0200, NULL, leds_store);
71
72static int leds_suspend(struct sys_device *dev, pm_message_t state)
73{
74 leds_event(led_stop);
75 return 0;
76}
77
78static int leds_resume(struct sys_device *dev)
79{
80 leds_event(led_start);
81 return 0;
82}
83
84static int leds_shutdown(struct sys_device *dev)
85{
86 leds_event(led_halted);
87 return 0;
88}
89
90static struct sysdev_class leds_sysclass = {
91 .name = "leds",
92 .shutdown = leds_shutdown,
93 .suspend = leds_suspend,
94 .resume = leds_resume,
95};
96
97static struct sys_device leds_device = {
98 .id = 0,
99 .cls = &leds_sysclass,
100};
101
102static int __init leds_init(void)
103{
104 int ret;
105 ret = sysdev_class_register(&leds_sysclass);
106 if (ret == 0)
107 ret = sysdev_register(&leds_device);
108 if (ret == 0)
109 ret = sysdev_create_file(&leds_device, &attr_event);
110 return ret;
111}
112
113device_initcall(leds_init);
114
115EXPORT_SYMBOL(leds_event);
diff --git a/arch/arm/kernel/module.c b/arch/arm/kernel/module.c
index f28c5e9c51ea..c628bdf6c430 100644
--- a/arch/arm/kernel/module.c
+++ b/arch/arm/kernel/module.c
@@ -16,9 +16,9 @@
16#include <linux/mm.h> 16#include <linux/mm.h>
17#include <linux/elf.h> 17#include <linux/elf.h>
18#include <linux/vmalloc.h> 18#include <linux/vmalloc.h>
19#include <linux/slab.h>
20#include <linux/fs.h> 19#include <linux/fs.h>
21#include <linux/string.h> 20#include <linux/string.h>
21#include <linux/gfp.h>
22 22
23#include <asm/pgtable.h> 23#include <asm/pgtable.h>
24#include <asm/sections.h> 24#include <asm/sections.h>
diff --git a/arch/arm/kernel/perf_event.c b/arch/arm/kernel/perf_event.c
new file mode 100644
index 000000000000..9e70f2053f9a
--- /dev/null
+++ b/arch/arm/kernel/perf_event.c
@@ -0,0 +1,2277 @@
1#undef DEBUG
2
3/*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 *
8 * ARMv7 support: Jean Pihet <jpihet@mvista.com>
9 * 2010 (c) MontaVista Software, LLC.
10 *
11 * This code is based on the sparc64 perf event code, which is in turn based
12 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
13 * code.
14 */
15#define pr_fmt(fmt) "hw perfevents: " fmt
16
17#include <linux/interrupt.h>
18#include <linux/kernel.h>
19#include <linux/perf_event.h>
20#include <linux/spinlock.h>
21#include <linux/uaccess.h>
22
23#include <asm/cputype.h>
24#include <asm/irq.h>
25#include <asm/irq_regs.h>
26#include <asm/pmu.h>
27#include <asm/stacktrace.h>
28
29static const struct pmu_irqs *pmu_irqs;
30
31/*
32 * Hardware lock to serialize accesses to PMU registers. Needed for the
33 * read/modify/write sequences.
34 */
35DEFINE_SPINLOCK(pmu_lock);
36
37/*
38 * ARMv6 supports a maximum of 3 events, starting from index 1. If we add
39 * another platform that supports more, we need to increase this to be the
40 * largest of all platforms.
41 *
42 * ARMv7 supports up to 32 events:
43 * cycle counter CCNT + 31 events counters CNT0..30.
44 * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
45 */
46#define ARMPMU_MAX_HWEVENTS 33
47
48/* The events for a given CPU. */
49struct cpu_hw_events {
50 /*
51 * The events that are active on the CPU for the given index. Index 0
52 * is reserved.
53 */
54 struct perf_event *events[ARMPMU_MAX_HWEVENTS];
55
56 /*
57 * A 1 bit for an index indicates that the counter is being used for
58 * an event. A 0 means that the counter can be used.
59 */
60 unsigned long used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
61
62 /*
63 * A 1 bit for an index indicates that the counter is actively being
64 * used.
65 */
66 unsigned long active_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
67};
68DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
69
70struct arm_pmu {
71 char *name;
72 irqreturn_t (*handle_irq)(int irq_num, void *dev);
73 void (*enable)(struct hw_perf_event *evt, int idx);
74 void (*disable)(struct hw_perf_event *evt, int idx);
75 int (*event_map)(int evt);
76 u64 (*raw_event)(u64);
77 int (*get_event_idx)(struct cpu_hw_events *cpuc,
78 struct hw_perf_event *hwc);
79 u32 (*read_counter)(int idx);
80 void (*write_counter)(int idx, u32 val);
81 void (*start)(void);
82 void (*stop)(void);
83 int num_events;
84 u64 max_period;
85};
86
87/* Set at runtime when we know what CPU type we are. */
88static const struct arm_pmu *armpmu;
89
90#define HW_OP_UNSUPPORTED 0xFFFF
91
92#define C(_x) \
93 PERF_COUNT_HW_CACHE_##_x
94
95#define CACHE_OP_UNSUPPORTED 0xFFFF
96
97static unsigned armpmu_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
98 [PERF_COUNT_HW_CACHE_OP_MAX]
99 [PERF_COUNT_HW_CACHE_RESULT_MAX];
100
101static int
102armpmu_map_cache_event(u64 config)
103{
104 unsigned int cache_type, cache_op, cache_result, ret;
105
106 cache_type = (config >> 0) & 0xff;
107 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
108 return -EINVAL;
109
110 cache_op = (config >> 8) & 0xff;
111 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
112 return -EINVAL;
113
114 cache_result = (config >> 16) & 0xff;
115 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
116 return -EINVAL;
117
118 ret = (int)armpmu_perf_cache_map[cache_type][cache_op][cache_result];
119
120 if (ret == CACHE_OP_UNSUPPORTED)
121 return -ENOENT;
122
123 return ret;
124}
125
126static int
127armpmu_event_set_period(struct perf_event *event,
128 struct hw_perf_event *hwc,
129 int idx)
130{
131 s64 left = atomic64_read(&hwc->period_left);
132 s64 period = hwc->sample_period;
133 int ret = 0;
134
135 if (unlikely(left <= -period)) {
136 left = period;
137 atomic64_set(&hwc->period_left, left);
138 hwc->last_period = period;
139 ret = 1;
140 }
141
142 if (unlikely(left <= 0)) {
143 left += period;
144 atomic64_set(&hwc->period_left, left);
145 hwc->last_period = period;
146 ret = 1;
147 }
148
149 if (left > (s64)armpmu->max_period)
150 left = armpmu->max_period;
151
152 atomic64_set(&hwc->prev_count, (u64)-left);
153
154 armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
155
156 perf_event_update_userpage(event);
157
158 return ret;
159}
160
161static u64
162armpmu_event_update(struct perf_event *event,
163 struct hw_perf_event *hwc,
164 int idx)
165{
166 int shift = 64 - 32;
167 s64 prev_raw_count, new_raw_count;
168 s64 delta;
169
170again:
171 prev_raw_count = atomic64_read(&hwc->prev_count);
172 new_raw_count = armpmu->read_counter(idx);
173
174 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
175 new_raw_count) != prev_raw_count)
176 goto again;
177
178 delta = (new_raw_count << shift) - (prev_raw_count << shift);
179 delta >>= shift;
180
181 atomic64_add(delta, &event->count);
182 atomic64_sub(delta, &hwc->period_left);
183
184 return new_raw_count;
185}
186
187static void
188armpmu_disable(struct perf_event *event)
189{
190 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
191 struct hw_perf_event *hwc = &event->hw;
192 int idx = hwc->idx;
193
194 WARN_ON(idx < 0);
195
196 clear_bit(idx, cpuc->active_mask);
197 armpmu->disable(hwc, idx);
198
199 barrier();
200
201 armpmu_event_update(event, hwc, idx);
202 cpuc->events[idx] = NULL;
203 clear_bit(idx, cpuc->used_mask);
204
205 perf_event_update_userpage(event);
206}
207
208static void
209armpmu_read(struct perf_event *event)
210{
211 struct hw_perf_event *hwc = &event->hw;
212
213 /* Don't read disabled counters! */
214 if (hwc->idx < 0)
215 return;
216
217 armpmu_event_update(event, hwc, hwc->idx);
218}
219
220static void
221armpmu_unthrottle(struct perf_event *event)
222{
223 struct hw_perf_event *hwc = &event->hw;
224
225 /*
226 * Set the period again. Some counters can't be stopped, so when we
227 * were throttled we simply disabled the IRQ source and the counter
228 * may have been left counting. If we don't do this step then we may
229 * get an interrupt too soon or *way* too late if the overflow has
230 * happened since disabling.
231 */
232 armpmu_event_set_period(event, hwc, hwc->idx);
233 armpmu->enable(hwc, hwc->idx);
234}
235
236static int
237armpmu_enable(struct perf_event *event)
238{
239 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
240 struct hw_perf_event *hwc = &event->hw;
241 int idx;
242 int err = 0;
243
244 /* If we don't have a space for the counter then finish early. */
245 idx = armpmu->get_event_idx(cpuc, hwc);
246 if (idx < 0) {
247 err = idx;
248 goto out;
249 }
250
251 /*
252 * If there is an event in the counter we are going to use then make
253 * sure it is disabled.
254 */
255 event->hw.idx = idx;
256 armpmu->disable(hwc, idx);
257 cpuc->events[idx] = event;
258 set_bit(idx, cpuc->active_mask);
259
260 /* Set the period for the event. */
261 armpmu_event_set_period(event, hwc, idx);
262
263 /* Enable the event. */
264 armpmu->enable(hwc, idx);
265
266 /* Propagate our changes to the userspace mapping. */
267 perf_event_update_userpage(event);
268
269out:
270 return err;
271}
272
273static struct pmu pmu = {
274 .enable = armpmu_enable,
275 .disable = armpmu_disable,
276 .unthrottle = armpmu_unthrottle,
277 .read = armpmu_read,
278};
279
280static int
281validate_event(struct cpu_hw_events *cpuc,
282 struct perf_event *event)
283{
284 struct hw_perf_event fake_event = event->hw;
285
286 if (event->pmu && event->pmu != &pmu)
287 return 0;
288
289 return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
290}
291
292static int
293validate_group(struct perf_event *event)
294{
295 struct perf_event *sibling, *leader = event->group_leader;
296 struct cpu_hw_events fake_pmu;
297
298 memset(&fake_pmu, 0, sizeof(fake_pmu));
299
300 if (!validate_event(&fake_pmu, leader))
301 return -ENOSPC;
302
303 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
304 if (!validate_event(&fake_pmu, sibling))
305 return -ENOSPC;
306 }
307
308 if (!validate_event(&fake_pmu, event))
309 return -ENOSPC;
310
311 return 0;
312}
313
314static int
315armpmu_reserve_hardware(void)
316{
317 int i;
318 int err;
319
320 pmu_irqs = reserve_pmu();
321 if (IS_ERR(pmu_irqs)) {
322 pr_warning("unable to reserve pmu\n");
323 return PTR_ERR(pmu_irqs);
324 }
325
326 init_pmu();
327
328 if (pmu_irqs->num_irqs < 1) {
329 pr_err("no irqs for PMUs defined\n");
330 return -ENODEV;
331 }
332
333 for (i = 0; i < pmu_irqs->num_irqs; ++i) {
334 err = request_irq(pmu_irqs->irqs[i], armpmu->handle_irq,
335 IRQF_DISABLED | IRQF_NOBALANCING,
336 "armpmu", NULL);
337 if (err) {
338 pr_warning("unable to request IRQ%d for ARM "
339 "perf counters\n", pmu_irqs->irqs[i]);
340 break;
341 }
342 }
343
344 if (err) {
345 for (i = i - 1; i >= 0; --i)
346 free_irq(pmu_irqs->irqs[i], NULL);
347 release_pmu(pmu_irqs);
348 pmu_irqs = NULL;
349 }
350
351 return err;
352}
353
354static void
355armpmu_release_hardware(void)
356{
357 int i;
358
359 for (i = pmu_irqs->num_irqs - 1; i >= 0; --i)
360 free_irq(pmu_irqs->irqs[i], NULL);
361 armpmu->stop();
362
363 release_pmu(pmu_irqs);
364 pmu_irqs = NULL;
365}
366
367static atomic_t active_events = ATOMIC_INIT(0);
368static DEFINE_MUTEX(pmu_reserve_mutex);
369
370static void
371hw_perf_event_destroy(struct perf_event *event)
372{
373 if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) {
374 armpmu_release_hardware();
375 mutex_unlock(&pmu_reserve_mutex);
376 }
377}
378
379static int
380__hw_perf_event_init(struct perf_event *event)
381{
382 struct hw_perf_event *hwc = &event->hw;
383 int mapping, err;
384
385 /* Decode the generic type into an ARM event identifier. */
386 if (PERF_TYPE_HARDWARE == event->attr.type) {
387 mapping = armpmu->event_map(event->attr.config);
388 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
389 mapping = armpmu_map_cache_event(event->attr.config);
390 } else if (PERF_TYPE_RAW == event->attr.type) {
391 mapping = armpmu->raw_event(event->attr.config);
392 } else {
393 pr_debug("event type %x not supported\n", event->attr.type);
394 return -EOPNOTSUPP;
395 }
396
397 if (mapping < 0) {
398 pr_debug("event %x:%llx not supported\n", event->attr.type,
399 event->attr.config);
400 return mapping;
401 }
402
403 /*
404 * Check whether we need to exclude the counter from certain modes.
405 * The ARM performance counters are on all of the time so if someone
406 * has asked us for some excludes then we have to fail.
407 */
408 if (event->attr.exclude_kernel || event->attr.exclude_user ||
409 event->attr.exclude_hv || event->attr.exclude_idle) {
410 pr_debug("ARM performance counters do not support "
411 "mode exclusion\n");
412 return -EPERM;
413 }
414
415 /*
416 * We don't assign an index until we actually place the event onto
417 * hardware. Use -1 to signify that we haven't decided where to put it
418 * yet. For SMP systems, each core has it's own PMU so we can't do any
419 * clever allocation or constraints checking at this point.
420 */
421 hwc->idx = -1;
422
423 /*
424 * Store the event encoding into the config_base field. config and
425 * event_base are unused as the only 2 things we need to know are
426 * the event mapping and the counter to use. The counter to use is
427 * also the indx and the config_base is the event type.
428 */
429 hwc->config_base = (unsigned long)mapping;
430 hwc->config = 0;
431 hwc->event_base = 0;
432
433 if (!hwc->sample_period) {
434 hwc->sample_period = armpmu->max_period;
435 hwc->last_period = hwc->sample_period;
436 atomic64_set(&hwc->period_left, hwc->sample_period);
437 }
438
439 err = 0;
440 if (event->group_leader != event) {
441 err = validate_group(event);
442 if (err)
443 return -EINVAL;
444 }
445
446 return err;
447}
448
449const struct pmu *
450hw_perf_event_init(struct perf_event *event)
451{
452 int err = 0;
453
454 if (!armpmu)
455 return ERR_PTR(-ENODEV);
456
457 event->destroy = hw_perf_event_destroy;
458
459 if (!atomic_inc_not_zero(&active_events)) {
460 if (atomic_read(&active_events) > perf_max_events) {
461 atomic_dec(&active_events);
462 return ERR_PTR(-ENOSPC);
463 }
464
465 mutex_lock(&pmu_reserve_mutex);
466 if (atomic_read(&active_events) == 0) {
467 err = armpmu_reserve_hardware();
468 }
469
470 if (!err)
471 atomic_inc(&active_events);
472 mutex_unlock(&pmu_reserve_mutex);
473 }
474
475 if (err)
476 return ERR_PTR(err);
477
478 err = __hw_perf_event_init(event);
479 if (err)
480 hw_perf_event_destroy(event);
481
482 return err ? ERR_PTR(err) : &pmu;
483}
484
485void
486hw_perf_enable(void)
487{
488 /* Enable all of the perf events on hardware. */
489 int idx;
490 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
491
492 if (!armpmu)
493 return;
494
495 for (idx = 0; idx <= armpmu->num_events; ++idx) {
496 struct perf_event *event = cpuc->events[idx];
497
498 if (!event)
499 continue;
500
501 armpmu->enable(&event->hw, idx);
502 }
503
504 armpmu->start();
505}
506
507void
508hw_perf_disable(void)
509{
510 if (armpmu)
511 armpmu->stop();
512}
513
514/*
515 * ARMv6 Performance counter handling code.
516 *
517 * ARMv6 has 2 configurable performance counters and a single cycle counter.
518 * They all share a single reset bit but can be written to zero so we can use
519 * that for a reset.
520 *
521 * The counters can't be individually enabled or disabled so when we remove
522 * one event and replace it with another we could get spurious counts from the
523 * wrong event. However, we can take advantage of the fact that the
524 * performance counters can export events to the event bus, and the event bus
525 * itself can be monitored. This requires that we *don't* export the events to
526 * the event bus. The procedure for disabling a configurable counter is:
527 * - change the counter to count the ETMEXTOUT[0] signal (0x20). This
528 * effectively stops the counter from counting.
529 * - disable the counter's interrupt generation (each counter has it's
530 * own interrupt enable bit).
531 * Once stopped, the counter value can be written as 0 to reset.
532 *
533 * To enable a counter:
534 * - enable the counter's interrupt generation.
535 * - set the new event type.
536 *
537 * Note: the dedicated cycle counter only counts cycles and can't be
538 * enabled/disabled independently of the others. When we want to disable the
539 * cycle counter, we have to just disable the interrupt reporting and start
540 * ignoring that counter. When re-enabling, we have to reset the value and
541 * enable the interrupt.
542 */
543
544enum armv6_perf_types {
545 ARMV6_PERFCTR_ICACHE_MISS = 0x0,
546 ARMV6_PERFCTR_IBUF_STALL = 0x1,
547 ARMV6_PERFCTR_DDEP_STALL = 0x2,
548 ARMV6_PERFCTR_ITLB_MISS = 0x3,
549 ARMV6_PERFCTR_DTLB_MISS = 0x4,
550 ARMV6_PERFCTR_BR_EXEC = 0x5,
551 ARMV6_PERFCTR_BR_MISPREDICT = 0x6,
552 ARMV6_PERFCTR_INSTR_EXEC = 0x7,
553 ARMV6_PERFCTR_DCACHE_HIT = 0x9,
554 ARMV6_PERFCTR_DCACHE_ACCESS = 0xA,
555 ARMV6_PERFCTR_DCACHE_MISS = 0xB,
556 ARMV6_PERFCTR_DCACHE_WBACK = 0xC,
557 ARMV6_PERFCTR_SW_PC_CHANGE = 0xD,
558 ARMV6_PERFCTR_MAIN_TLB_MISS = 0xF,
559 ARMV6_PERFCTR_EXPL_D_ACCESS = 0x10,
560 ARMV6_PERFCTR_LSU_FULL_STALL = 0x11,
561 ARMV6_PERFCTR_WBUF_DRAINED = 0x12,
562 ARMV6_PERFCTR_CPU_CYCLES = 0xFF,
563 ARMV6_PERFCTR_NOP = 0x20,
564};
565
566enum armv6_counters {
567 ARMV6_CYCLE_COUNTER = 1,
568 ARMV6_COUNTER0,
569 ARMV6_COUNTER1,
570};
571
572/*
573 * The hardware events that we support. We do support cache operations but
574 * we have harvard caches and no way to combine instruction and data
575 * accesses/misses in hardware.
576 */
577static const unsigned armv6_perf_map[PERF_COUNT_HW_MAX] = {
578 [PERF_COUNT_HW_CPU_CYCLES] = ARMV6_PERFCTR_CPU_CYCLES,
579 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6_PERFCTR_INSTR_EXEC,
580 [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
581 [PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED,
582 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6_PERFCTR_BR_EXEC,
583 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6_PERFCTR_BR_MISPREDICT,
584 [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED,
585};
586
587static const unsigned armv6_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
588 [PERF_COUNT_HW_CACHE_OP_MAX]
589 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
590 [C(L1D)] = {
591 /*
592 * The performance counters don't differentiate between read
593 * and write accesses/misses so this isn't strictly correct,
594 * but it's the best we can do. Writes and reads get
595 * combined.
596 */
597 [C(OP_READ)] = {
598 [C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
599 [C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS,
600 },
601 [C(OP_WRITE)] = {
602 [C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
603 [C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS,
604 },
605 [C(OP_PREFETCH)] = {
606 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
607 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
608 },
609 },
610 [C(L1I)] = {
611 [C(OP_READ)] = {
612 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
613 [C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS,
614 },
615 [C(OP_WRITE)] = {
616 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
617 [C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS,
618 },
619 [C(OP_PREFETCH)] = {
620 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
621 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
622 },
623 },
624 [C(LL)] = {
625 [C(OP_READ)] = {
626 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
627 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
628 },
629 [C(OP_WRITE)] = {
630 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
631 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
632 },
633 [C(OP_PREFETCH)] = {
634 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
635 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
636 },
637 },
638 [C(DTLB)] = {
639 /*
640 * The ARM performance counters can count micro DTLB misses,
641 * micro ITLB misses and main TLB misses. There isn't an event
642 * for TLB misses, so use the micro misses here and if users
643 * want the main TLB misses they can use a raw counter.
644 */
645 [C(OP_READ)] = {
646 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
647 [C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS,
648 },
649 [C(OP_WRITE)] = {
650 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
651 [C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS,
652 },
653 [C(OP_PREFETCH)] = {
654 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
655 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
656 },
657 },
658 [C(ITLB)] = {
659 [C(OP_READ)] = {
660 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
661 [C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS,
662 },
663 [C(OP_WRITE)] = {
664 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
665 [C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS,
666 },
667 [C(OP_PREFETCH)] = {
668 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
669 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
670 },
671 },
672 [C(BPU)] = {
673 [C(OP_READ)] = {
674 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
675 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
676 },
677 [C(OP_WRITE)] = {
678 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
679 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
680 },
681 [C(OP_PREFETCH)] = {
682 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
683 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
684 },
685 },
686};
687
688enum armv6mpcore_perf_types {
689 ARMV6MPCORE_PERFCTR_ICACHE_MISS = 0x0,
690 ARMV6MPCORE_PERFCTR_IBUF_STALL = 0x1,
691 ARMV6MPCORE_PERFCTR_DDEP_STALL = 0x2,
692 ARMV6MPCORE_PERFCTR_ITLB_MISS = 0x3,
693 ARMV6MPCORE_PERFCTR_DTLB_MISS = 0x4,
694 ARMV6MPCORE_PERFCTR_BR_EXEC = 0x5,
695 ARMV6MPCORE_PERFCTR_BR_NOTPREDICT = 0x6,
696 ARMV6MPCORE_PERFCTR_BR_MISPREDICT = 0x7,
697 ARMV6MPCORE_PERFCTR_INSTR_EXEC = 0x8,
698 ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS = 0xA,
699 ARMV6MPCORE_PERFCTR_DCACHE_RDMISS = 0xB,
700 ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS = 0xC,
701 ARMV6MPCORE_PERFCTR_DCACHE_WRMISS = 0xD,
702 ARMV6MPCORE_PERFCTR_DCACHE_EVICTION = 0xE,
703 ARMV6MPCORE_PERFCTR_SW_PC_CHANGE = 0xF,
704 ARMV6MPCORE_PERFCTR_MAIN_TLB_MISS = 0x10,
705 ARMV6MPCORE_PERFCTR_EXPL_MEM_ACCESS = 0x11,
706 ARMV6MPCORE_PERFCTR_LSU_FULL_STALL = 0x12,
707 ARMV6MPCORE_PERFCTR_WBUF_DRAINED = 0x13,
708 ARMV6MPCORE_PERFCTR_CPU_CYCLES = 0xFF,
709};
710
711/*
712 * The hardware events that we support. We do support cache operations but
713 * we have harvard caches and no way to combine instruction and data
714 * accesses/misses in hardware.
715 */
716static const unsigned armv6mpcore_perf_map[PERF_COUNT_HW_MAX] = {
717 [PERF_COUNT_HW_CPU_CYCLES] = ARMV6MPCORE_PERFCTR_CPU_CYCLES,
718 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_INSTR_EXEC,
719 [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
720 [PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED,
721 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_BR_EXEC,
722 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6MPCORE_PERFCTR_BR_MISPREDICT,
723 [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED,
724};
725
726static const unsigned armv6mpcore_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
727 [PERF_COUNT_HW_CACHE_OP_MAX]
728 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
729 [C(L1D)] = {
730 [C(OP_READ)] = {
731 [C(RESULT_ACCESS)] =
732 ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS,
733 [C(RESULT_MISS)] =
734 ARMV6MPCORE_PERFCTR_DCACHE_RDMISS,
735 },
736 [C(OP_WRITE)] = {
737 [C(RESULT_ACCESS)] =
738 ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS,
739 [C(RESULT_MISS)] =
740 ARMV6MPCORE_PERFCTR_DCACHE_WRMISS,
741 },
742 [C(OP_PREFETCH)] = {
743 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
744 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
745 },
746 },
747 [C(L1I)] = {
748 [C(OP_READ)] = {
749 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
750 [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
751 },
752 [C(OP_WRITE)] = {
753 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
754 [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
755 },
756 [C(OP_PREFETCH)] = {
757 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
758 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
759 },
760 },
761 [C(LL)] = {
762 [C(OP_READ)] = {
763 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
764 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
765 },
766 [C(OP_WRITE)] = {
767 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
768 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
769 },
770 [C(OP_PREFETCH)] = {
771 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
772 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
773 },
774 },
775 [C(DTLB)] = {
776 /*
777 * The ARM performance counters can count micro DTLB misses,
778 * micro ITLB misses and main TLB misses. There isn't an event
779 * for TLB misses, so use the micro misses here and if users
780 * want the main TLB misses they can use a raw counter.
781 */
782 [C(OP_READ)] = {
783 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
784 [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS,
785 },
786 [C(OP_WRITE)] = {
787 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
788 [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS,
789 },
790 [C(OP_PREFETCH)] = {
791 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
792 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
793 },
794 },
795 [C(ITLB)] = {
796 [C(OP_READ)] = {
797 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
798 [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS,
799 },
800 [C(OP_WRITE)] = {
801 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
802 [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS,
803 },
804 [C(OP_PREFETCH)] = {
805 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
806 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
807 },
808 },
809 [C(BPU)] = {
810 [C(OP_READ)] = {
811 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
812 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
813 },
814 [C(OP_WRITE)] = {
815 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
816 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
817 },
818 [C(OP_PREFETCH)] = {
819 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
820 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
821 },
822 },
823};
824
825static inline unsigned long
826armv6_pmcr_read(void)
827{
828 u32 val;
829 asm volatile("mrc p15, 0, %0, c15, c12, 0" : "=r"(val));
830 return val;
831}
832
833static inline void
834armv6_pmcr_write(unsigned long val)
835{
836 asm volatile("mcr p15, 0, %0, c15, c12, 0" : : "r"(val));
837}
838
839#define ARMV6_PMCR_ENABLE (1 << 0)
840#define ARMV6_PMCR_CTR01_RESET (1 << 1)
841#define ARMV6_PMCR_CCOUNT_RESET (1 << 2)
842#define ARMV6_PMCR_CCOUNT_DIV (1 << 3)
843#define ARMV6_PMCR_COUNT0_IEN (1 << 4)
844#define ARMV6_PMCR_COUNT1_IEN (1 << 5)
845#define ARMV6_PMCR_CCOUNT_IEN (1 << 6)
846#define ARMV6_PMCR_COUNT0_OVERFLOW (1 << 8)
847#define ARMV6_PMCR_COUNT1_OVERFLOW (1 << 9)
848#define ARMV6_PMCR_CCOUNT_OVERFLOW (1 << 10)
849#define ARMV6_PMCR_EVT_COUNT0_SHIFT 20
850#define ARMV6_PMCR_EVT_COUNT0_MASK (0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT)
851#define ARMV6_PMCR_EVT_COUNT1_SHIFT 12
852#define ARMV6_PMCR_EVT_COUNT1_MASK (0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT)
853
854#define ARMV6_PMCR_OVERFLOWED_MASK \
855 (ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \
856 ARMV6_PMCR_CCOUNT_OVERFLOW)
857
858static inline int
859armv6_pmcr_has_overflowed(unsigned long pmcr)
860{
861 return (pmcr & ARMV6_PMCR_OVERFLOWED_MASK);
862}
863
864static inline int
865armv6_pmcr_counter_has_overflowed(unsigned long pmcr,
866 enum armv6_counters counter)
867{
868 int ret = 0;
869
870 if (ARMV6_CYCLE_COUNTER == counter)
871 ret = pmcr & ARMV6_PMCR_CCOUNT_OVERFLOW;
872 else if (ARMV6_COUNTER0 == counter)
873 ret = pmcr & ARMV6_PMCR_COUNT0_OVERFLOW;
874 else if (ARMV6_COUNTER1 == counter)
875 ret = pmcr & ARMV6_PMCR_COUNT1_OVERFLOW;
876 else
877 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
878
879 return ret;
880}
881
882static inline u32
883armv6pmu_read_counter(int counter)
884{
885 unsigned long value = 0;
886
887 if (ARMV6_CYCLE_COUNTER == counter)
888 asm volatile("mrc p15, 0, %0, c15, c12, 1" : "=r"(value));
889 else if (ARMV6_COUNTER0 == counter)
890 asm volatile("mrc p15, 0, %0, c15, c12, 2" : "=r"(value));
891 else if (ARMV6_COUNTER1 == counter)
892 asm volatile("mrc p15, 0, %0, c15, c12, 3" : "=r"(value));
893 else
894 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
895
896 return value;
897}
898
899static inline void
900armv6pmu_write_counter(int counter,
901 u32 value)
902{
903 if (ARMV6_CYCLE_COUNTER == counter)
904 asm volatile("mcr p15, 0, %0, c15, c12, 1" : : "r"(value));
905 else if (ARMV6_COUNTER0 == counter)
906 asm volatile("mcr p15, 0, %0, c15, c12, 2" : : "r"(value));
907 else if (ARMV6_COUNTER1 == counter)
908 asm volatile("mcr p15, 0, %0, c15, c12, 3" : : "r"(value));
909 else
910 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
911}
912
913void
914armv6pmu_enable_event(struct hw_perf_event *hwc,
915 int idx)
916{
917 unsigned long val, mask, evt, flags;
918
919 if (ARMV6_CYCLE_COUNTER == idx) {
920 mask = 0;
921 evt = ARMV6_PMCR_CCOUNT_IEN;
922 } else if (ARMV6_COUNTER0 == idx) {
923 mask = ARMV6_PMCR_EVT_COUNT0_MASK;
924 evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT0_SHIFT) |
925 ARMV6_PMCR_COUNT0_IEN;
926 } else if (ARMV6_COUNTER1 == idx) {
927 mask = ARMV6_PMCR_EVT_COUNT1_MASK;
928 evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT1_SHIFT) |
929 ARMV6_PMCR_COUNT1_IEN;
930 } else {
931 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
932 return;
933 }
934
935 /*
936 * Mask out the current event and set the counter to count the event
937 * that we're interested in.
938 */
939 spin_lock_irqsave(&pmu_lock, flags);
940 val = armv6_pmcr_read();
941 val &= ~mask;
942 val |= evt;
943 armv6_pmcr_write(val);
944 spin_unlock_irqrestore(&pmu_lock, flags);
945}
946
947static irqreturn_t
948armv6pmu_handle_irq(int irq_num,
949 void *dev)
950{
951 unsigned long pmcr = armv6_pmcr_read();
952 struct perf_sample_data data;
953 struct cpu_hw_events *cpuc;
954 struct pt_regs *regs;
955 int idx;
956
957 if (!armv6_pmcr_has_overflowed(pmcr))
958 return IRQ_NONE;
959
960 regs = get_irq_regs();
961
962 /*
963 * The interrupts are cleared by writing the overflow flags back to
964 * the control register. All of the other bits don't have any effect
965 * if they are rewritten, so write the whole value back.
966 */
967 armv6_pmcr_write(pmcr);
968
969 perf_sample_data_init(&data, 0);
970
971 cpuc = &__get_cpu_var(cpu_hw_events);
972 for (idx = 0; idx <= armpmu->num_events; ++idx) {
973 struct perf_event *event = cpuc->events[idx];
974 struct hw_perf_event *hwc;
975
976 if (!test_bit(idx, cpuc->active_mask))
977 continue;
978
979 /*
980 * We have a single interrupt for all counters. Check that
981 * each counter has overflowed before we process it.
982 */
983 if (!armv6_pmcr_counter_has_overflowed(pmcr, idx))
984 continue;
985
986 hwc = &event->hw;
987 armpmu_event_update(event, hwc, idx);
988 data.period = event->hw.last_period;
989 if (!armpmu_event_set_period(event, hwc, idx))
990 continue;
991
992 if (perf_event_overflow(event, 0, &data, regs))
993 armpmu->disable(hwc, idx);
994 }
995
996 /*
997 * Handle the pending perf events.
998 *
999 * Note: this call *must* be run with interrupts enabled. For
1000 * platforms that can have the PMU interrupts raised as a PMI, this
1001 * will not work.
1002 */
1003 perf_event_do_pending();
1004
1005 return IRQ_HANDLED;
1006}
1007
1008static void
1009armv6pmu_start(void)
1010{
1011 unsigned long flags, val;
1012
1013 spin_lock_irqsave(&pmu_lock, flags);
1014 val = armv6_pmcr_read();
1015 val |= ARMV6_PMCR_ENABLE;
1016 armv6_pmcr_write(val);
1017 spin_unlock_irqrestore(&pmu_lock, flags);
1018}
1019
1020void
1021armv6pmu_stop(void)
1022{
1023 unsigned long flags, val;
1024
1025 spin_lock_irqsave(&pmu_lock, flags);
1026 val = armv6_pmcr_read();
1027 val &= ~ARMV6_PMCR_ENABLE;
1028 armv6_pmcr_write(val);
1029 spin_unlock_irqrestore(&pmu_lock, flags);
1030}
1031
1032static inline int
1033armv6pmu_event_map(int config)
1034{
1035 int mapping = armv6_perf_map[config];
1036 if (HW_OP_UNSUPPORTED == mapping)
1037 mapping = -EOPNOTSUPP;
1038 return mapping;
1039}
1040
1041static inline int
1042armv6mpcore_pmu_event_map(int config)
1043{
1044 int mapping = armv6mpcore_perf_map[config];
1045 if (HW_OP_UNSUPPORTED == mapping)
1046 mapping = -EOPNOTSUPP;
1047 return mapping;
1048}
1049
1050static u64
1051armv6pmu_raw_event(u64 config)
1052{
1053 return config & 0xff;
1054}
1055
1056static int
1057armv6pmu_get_event_idx(struct cpu_hw_events *cpuc,
1058 struct hw_perf_event *event)
1059{
1060 /* Always place a cycle counter into the cycle counter. */
1061 if (ARMV6_PERFCTR_CPU_CYCLES == event->config_base) {
1062 if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask))
1063 return -EAGAIN;
1064
1065 return ARMV6_CYCLE_COUNTER;
1066 } else {
1067 /*
1068 * For anything other than a cycle counter, try and use
1069 * counter0 and counter1.
1070 */
1071 if (!test_and_set_bit(ARMV6_COUNTER1, cpuc->used_mask)) {
1072 return ARMV6_COUNTER1;
1073 }
1074
1075 if (!test_and_set_bit(ARMV6_COUNTER0, cpuc->used_mask)) {
1076 return ARMV6_COUNTER0;
1077 }
1078
1079 /* The counters are all in use. */
1080 return -EAGAIN;
1081 }
1082}
1083
1084static void
1085armv6pmu_disable_event(struct hw_perf_event *hwc,
1086 int idx)
1087{
1088 unsigned long val, mask, evt, flags;
1089
1090 if (ARMV6_CYCLE_COUNTER == idx) {
1091 mask = ARMV6_PMCR_CCOUNT_IEN;
1092 evt = 0;
1093 } else if (ARMV6_COUNTER0 == idx) {
1094 mask = ARMV6_PMCR_COUNT0_IEN | ARMV6_PMCR_EVT_COUNT0_MASK;
1095 evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT0_SHIFT;
1096 } else if (ARMV6_COUNTER1 == idx) {
1097 mask = ARMV6_PMCR_COUNT1_IEN | ARMV6_PMCR_EVT_COUNT1_MASK;
1098 evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT1_SHIFT;
1099 } else {
1100 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
1101 return;
1102 }
1103
1104 /*
1105 * Mask out the current event and set the counter to count the number
1106 * of ETM bus signal assertion cycles. The external reporting should
1107 * be disabled and so this should never increment.
1108 */
1109 spin_lock_irqsave(&pmu_lock, flags);
1110 val = armv6_pmcr_read();
1111 val &= ~mask;
1112 val |= evt;
1113 armv6_pmcr_write(val);
1114 spin_unlock_irqrestore(&pmu_lock, flags);
1115}
1116
1117static void
1118armv6mpcore_pmu_disable_event(struct hw_perf_event *hwc,
1119 int idx)
1120{
1121 unsigned long val, mask, flags, evt = 0;
1122
1123 if (ARMV6_CYCLE_COUNTER == idx) {
1124 mask = ARMV6_PMCR_CCOUNT_IEN;
1125 } else if (ARMV6_COUNTER0 == idx) {
1126 mask = ARMV6_PMCR_COUNT0_IEN;
1127 } else if (ARMV6_COUNTER1 == idx) {
1128 mask = ARMV6_PMCR_COUNT1_IEN;
1129 } else {
1130 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
1131 return;
1132 }
1133
1134 /*
1135 * Unlike UP ARMv6, we don't have a way of stopping the counters. We
1136 * simply disable the interrupt reporting.
1137 */
1138 spin_lock_irqsave(&pmu_lock, flags);
1139 val = armv6_pmcr_read();
1140 val &= ~mask;
1141 val |= evt;
1142 armv6_pmcr_write(val);
1143 spin_unlock_irqrestore(&pmu_lock, flags);
1144}
1145
1146static const struct arm_pmu armv6pmu = {
1147 .name = "v6",
1148 .handle_irq = armv6pmu_handle_irq,
1149 .enable = armv6pmu_enable_event,
1150 .disable = armv6pmu_disable_event,
1151 .event_map = armv6pmu_event_map,
1152 .raw_event = armv6pmu_raw_event,
1153 .read_counter = armv6pmu_read_counter,
1154 .write_counter = armv6pmu_write_counter,
1155 .get_event_idx = armv6pmu_get_event_idx,
1156 .start = armv6pmu_start,
1157 .stop = armv6pmu_stop,
1158 .num_events = 3,
1159 .max_period = (1LLU << 32) - 1,
1160};
1161
1162/*
1163 * ARMv6mpcore is almost identical to single core ARMv6 with the exception
1164 * that some of the events have different enumerations and that there is no
1165 * *hack* to stop the programmable counters. To stop the counters we simply
1166 * disable the interrupt reporting and update the event. When unthrottling we
1167 * reset the period and enable the interrupt reporting.
1168 */
1169static const struct arm_pmu armv6mpcore_pmu = {
1170 .name = "v6mpcore",
1171 .handle_irq = armv6pmu_handle_irq,
1172 .enable = armv6pmu_enable_event,
1173 .disable = armv6mpcore_pmu_disable_event,
1174 .event_map = armv6mpcore_pmu_event_map,
1175 .raw_event = armv6pmu_raw_event,
1176 .read_counter = armv6pmu_read_counter,
1177 .write_counter = armv6pmu_write_counter,
1178 .get_event_idx = armv6pmu_get_event_idx,
1179 .start = armv6pmu_start,
1180 .stop = armv6pmu_stop,
1181 .num_events = 3,
1182 .max_period = (1LLU << 32) - 1,
1183};
1184
1185/*
1186 * ARMv7 Cortex-A8 and Cortex-A9 Performance Events handling code.
1187 *
1188 * Copied from ARMv6 code, with the low level code inspired
1189 * by the ARMv7 Oprofile code.
1190 *
1191 * Cortex-A8 has up to 4 configurable performance counters and
1192 * a single cycle counter.
1193 * Cortex-A9 has up to 31 configurable performance counters and
1194 * a single cycle counter.
1195 *
1196 * All counters can be enabled/disabled and IRQ masked separately. The cycle
1197 * counter and all 4 performance counters together can be reset separately.
1198 */
1199
1200#define ARMV7_PMU_CORTEX_A8_NAME "ARMv7 Cortex-A8"
1201
1202#define ARMV7_PMU_CORTEX_A9_NAME "ARMv7 Cortex-A9"
1203
1204/* Common ARMv7 event types */
1205enum armv7_perf_types {
1206 ARMV7_PERFCTR_PMNC_SW_INCR = 0x00,
1207 ARMV7_PERFCTR_IFETCH_MISS = 0x01,
1208 ARMV7_PERFCTR_ITLB_MISS = 0x02,
1209 ARMV7_PERFCTR_DCACHE_REFILL = 0x03,
1210 ARMV7_PERFCTR_DCACHE_ACCESS = 0x04,
1211 ARMV7_PERFCTR_DTLB_REFILL = 0x05,
1212 ARMV7_PERFCTR_DREAD = 0x06,
1213 ARMV7_PERFCTR_DWRITE = 0x07,
1214
1215 ARMV7_PERFCTR_EXC_TAKEN = 0x09,
1216 ARMV7_PERFCTR_EXC_EXECUTED = 0x0A,
1217 ARMV7_PERFCTR_CID_WRITE = 0x0B,
1218 /* ARMV7_PERFCTR_PC_WRITE is equivalent to HW_BRANCH_INSTRUCTIONS.
1219 * It counts:
1220 * - all branch instructions,
1221 * - instructions that explicitly write the PC,
1222 * - exception generating instructions.
1223 */
1224 ARMV7_PERFCTR_PC_WRITE = 0x0C,
1225 ARMV7_PERFCTR_PC_IMM_BRANCH = 0x0D,
1226 ARMV7_PERFCTR_UNALIGNED_ACCESS = 0x0F,
1227 ARMV7_PERFCTR_PC_BRANCH_MIS_PRED = 0x10,
1228 ARMV7_PERFCTR_CLOCK_CYCLES = 0x11,
1229
1230 ARMV7_PERFCTR_PC_BRANCH_MIS_USED = 0x12,
1231
1232 ARMV7_PERFCTR_CPU_CYCLES = 0xFF
1233};
1234
1235/* ARMv7 Cortex-A8 specific event types */
1236enum armv7_a8_perf_types {
1237 ARMV7_PERFCTR_INSTR_EXECUTED = 0x08,
1238
1239 ARMV7_PERFCTR_PC_PROC_RETURN = 0x0E,
1240
1241 ARMV7_PERFCTR_WRITE_BUFFER_FULL = 0x40,
1242 ARMV7_PERFCTR_L2_STORE_MERGED = 0x41,
1243 ARMV7_PERFCTR_L2_STORE_BUFF = 0x42,
1244 ARMV7_PERFCTR_L2_ACCESS = 0x43,
1245 ARMV7_PERFCTR_L2_CACH_MISS = 0x44,
1246 ARMV7_PERFCTR_AXI_READ_CYCLES = 0x45,
1247 ARMV7_PERFCTR_AXI_WRITE_CYCLES = 0x46,
1248 ARMV7_PERFCTR_MEMORY_REPLAY = 0x47,
1249 ARMV7_PERFCTR_UNALIGNED_ACCESS_REPLAY = 0x48,
1250 ARMV7_PERFCTR_L1_DATA_MISS = 0x49,
1251 ARMV7_PERFCTR_L1_INST_MISS = 0x4A,
1252 ARMV7_PERFCTR_L1_DATA_COLORING = 0x4B,
1253 ARMV7_PERFCTR_L1_NEON_DATA = 0x4C,
1254 ARMV7_PERFCTR_L1_NEON_CACH_DATA = 0x4D,
1255 ARMV7_PERFCTR_L2_NEON = 0x4E,
1256 ARMV7_PERFCTR_L2_NEON_HIT = 0x4F,
1257 ARMV7_PERFCTR_L1_INST = 0x50,
1258 ARMV7_PERFCTR_PC_RETURN_MIS_PRED = 0x51,
1259 ARMV7_PERFCTR_PC_BRANCH_FAILED = 0x52,
1260 ARMV7_PERFCTR_PC_BRANCH_TAKEN = 0x53,
1261 ARMV7_PERFCTR_PC_BRANCH_EXECUTED = 0x54,
1262 ARMV7_PERFCTR_OP_EXECUTED = 0x55,
1263 ARMV7_PERFCTR_CYCLES_INST_STALL = 0x56,
1264 ARMV7_PERFCTR_CYCLES_INST = 0x57,
1265 ARMV7_PERFCTR_CYCLES_NEON_DATA_STALL = 0x58,
1266 ARMV7_PERFCTR_CYCLES_NEON_INST_STALL = 0x59,
1267 ARMV7_PERFCTR_NEON_CYCLES = 0x5A,
1268
1269 ARMV7_PERFCTR_PMU0_EVENTS = 0x70,
1270 ARMV7_PERFCTR_PMU1_EVENTS = 0x71,
1271 ARMV7_PERFCTR_PMU_EVENTS = 0x72,
1272};
1273
1274/* ARMv7 Cortex-A9 specific event types */
1275enum armv7_a9_perf_types {
1276 ARMV7_PERFCTR_JAVA_HW_BYTECODE_EXEC = 0x40,
1277 ARMV7_PERFCTR_JAVA_SW_BYTECODE_EXEC = 0x41,
1278 ARMV7_PERFCTR_JAZELLE_BRANCH_EXEC = 0x42,
1279
1280 ARMV7_PERFCTR_COHERENT_LINE_MISS = 0x50,
1281 ARMV7_PERFCTR_COHERENT_LINE_HIT = 0x51,
1282
1283 ARMV7_PERFCTR_ICACHE_DEP_STALL_CYCLES = 0x60,
1284 ARMV7_PERFCTR_DCACHE_DEP_STALL_CYCLES = 0x61,
1285 ARMV7_PERFCTR_TLB_MISS_DEP_STALL_CYCLES = 0x62,
1286 ARMV7_PERFCTR_STREX_EXECUTED_PASSED = 0x63,
1287 ARMV7_PERFCTR_STREX_EXECUTED_FAILED = 0x64,
1288 ARMV7_PERFCTR_DATA_EVICTION = 0x65,
1289 ARMV7_PERFCTR_ISSUE_STAGE_NO_INST = 0x66,
1290 ARMV7_PERFCTR_ISSUE_STAGE_EMPTY = 0x67,
1291 ARMV7_PERFCTR_INST_OUT_OF_RENAME_STAGE = 0x68,
1292
1293 ARMV7_PERFCTR_PREDICTABLE_FUNCT_RETURNS = 0x6E,
1294
1295 ARMV7_PERFCTR_MAIN_UNIT_EXECUTED_INST = 0x70,
1296 ARMV7_PERFCTR_SECOND_UNIT_EXECUTED_INST = 0x71,
1297 ARMV7_PERFCTR_LD_ST_UNIT_EXECUTED_INST = 0x72,
1298 ARMV7_PERFCTR_FP_EXECUTED_INST = 0x73,
1299 ARMV7_PERFCTR_NEON_EXECUTED_INST = 0x74,
1300
1301 ARMV7_PERFCTR_PLD_FULL_DEP_STALL_CYCLES = 0x80,
1302 ARMV7_PERFCTR_DATA_WR_DEP_STALL_CYCLES = 0x81,
1303 ARMV7_PERFCTR_ITLB_MISS_DEP_STALL_CYCLES = 0x82,
1304 ARMV7_PERFCTR_DTLB_MISS_DEP_STALL_CYCLES = 0x83,
1305 ARMV7_PERFCTR_MICRO_ITLB_MISS_DEP_STALL_CYCLES = 0x84,
1306 ARMV7_PERFCTR_MICRO_DTLB_MISS_DEP_STALL_CYCLES = 0x85,
1307 ARMV7_PERFCTR_DMB_DEP_STALL_CYCLES = 0x86,
1308
1309 ARMV7_PERFCTR_INTGR_CLK_ENABLED_CYCLES = 0x8A,
1310 ARMV7_PERFCTR_DATA_ENGINE_CLK_EN_CYCLES = 0x8B,
1311
1312 ARMV7_PERFCTR_ISB_INST = 0x90,
1313 ARMV7_PERFCTR_DSB_INST = 0x91,
1314 ARMV7_PERFCTR_DMB_INST = 0x92,
1315 ARMV7_PERFCTR_EXT_INTERRUPTS = 0x93,
1316
1317 ARMV7_PERFCTR_PLE_CACHE_LINE_RQST_COMPLETED = 0xA0,
1318 ARMV7_PERFCTR_PLE_CACHE_LINE_RQST_SKIPPED = 0xA1,
1319 ARMV7_PERFCTR_PLE_FIFO_FLUSH = 0xA2,
1320 ARMV7_PERFCTR_PLE_RQST_COMPLETED = 0xA3,
1321 ARMV7_PERFCTR_PLE_FIFO_OVERFLOW = 0xA4,
1322 ARMV7_PERFCTR_PLE_RQST_PROG = 0xA5
1323};
1324
1325/*
1326 * Cortex-A8 HW events mapping
1327 *
1328 * The hardware events that we support. We do support cache operations but
1329 * we have harvard caches and no way to combine instruction and data
1330 * accesses/misses in hardware.
1331 */
1332static const unsigned armv7_a8_perf_map[PERF_COUNT_HW_MAX] = {
1333 [PERF_COUNT_HW_CPU_CYCLES] = ARMV7_PERFCTR_CPU_CYCLES,
1334 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV7_PERFCTR_INSTR_EXECUTED,
1335 [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
1336 [PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED,
1337 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV7_PERFCTR_PC_WRITE,
1338 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
1339 [PERF_COUNT_HW_BUS_CYCLES] = ARMV7_PERFCTR_CLOCK_CYCLES,
1340};
1341
1342static const unsigned armv7_a8_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
1343 [PERF_COUNT_HW_CACHE_OP_MAX]
1344 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1345 [C(L1D)] = {
1346 /*
1347 * The performance counters don't differentiate between read
1348 * and write accesses/misses so this isn't strictly correct,
1349 * but it's the best we can do. Writes and reads get
1350 * combined.
1351 */
1352 [C(OP_READ)] = {
1353 [C(RESULT_ACCESS)] = ARMV7_PERFCTR_DCACHE_ACCESS,
1354 [C(RESULT_MISS)] = ARMV7_PERFCTR_DCACHE_REFILL,
1355 },
1356 [C(OP_WRITE)] = {
1357 [C(RESULT_ACCESS)] = ARMV7_PERFCTR_DCACHE_ACCESS,
1358 [C(RESULT_MISS)] = ARMV7_PERFCTR_DCACHE_REFILL,
1359 },
1360 [C(OP_PREFETCH)] = {
1361 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1362 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
1363 },
1364 },
1365 [C(L1I)] = {
1366 [C(OP_READ)] = {
1367 [C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_INST,
1368 [C(RESULT_MISS)] = ARMV7_PERFCTR_L1_INST_MISS,
1369 },
1370 [C(OP_WRITE)] = {
1371 [C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_INST,
1372 [C(RESULT_MISS)] = ARMV7_PERFCTR_L1_INST_MISS,
1373 },
1374 [C(OP_PREFETCH)] = {
1375 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1376 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
1377 },
1378 },
1379 [C(LL)] = {
1380 [C(OP_READ)] = {
1381 [C(RESULT_ACCESS)] = ARMV7_PERFCTR_L2_ACCESS,
1382 [C(RESULT_MISS)] = ARMV7_PERFCTR_L2_CACH_MISS,
1383 },
1384 [C(OP_WRITE)] = {
1385 [C(RESULT_ACCESS)] = ARMV7_PERFCTR_L2_ACCESS,
1386 [C(RESULT_MISS)] = ARMV7_PERFCTR_L2_CACH_MISS,
1387 },
1388 [C(OP_PREFETCH)] = {
1389 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1390 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
1391 },
1392 },
1393 [C(DTLB)] = {
1394 /*
1395 * Only ITLB misses and DTLB refills are supported.
1396 * If users want the DTLB refills misses a raw counter
1397 * must be used.
1398 */
1399 [C(OP_READ)] = {
1400 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1401 [C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
1402 },
1403 [C(OP_WRITE)] = {
1404 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1405 [C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
1406 },
1407 [C(OP_PREFETCH)] = {
1408 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1409 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
1410 },
1411 },
1412 [C(ITLB)] = {
1413 [C(OP_READ)] = {
1414 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1415 [C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_MISS,
1416 },
1417 [C(OP_WRITE)] = {
1418 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1419 [C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_MISS,
1420 },
1421 [C(OP_PREFETCH)] = {
1422 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1423 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
1424 },
1425 },
1426 [C(BPU)] = {
1427 [C(OP_READ)] = {
1428 [C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_WRITE,
1429 [C(RESULT_MISS)]
1430 = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
1431 },
1432 [C(OP_WRITE)] = {
1433 [C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_WRITE,
1434 [C(RESULT_MISS)]
1435 = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
1436 },
1437 [C(OP_PREFETCH)] = {
1438 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1439 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
1440 },
1441 },
1442};
1443
1444/*
1445 * Cortex-A9 HW events mapping
1446 */
1447static const unsigned armv7_a9_perf_map[PERF_COUNT_HW_MAX] = {
1448 [PERF_COUNT_HW_CPU_CYCLES] = ARMV7_PERFCTR_CPU_CYCLES,
1449 [PERF_COUNT_HW_INSTRUCTIONS] =
1450 ARMV7_PERFCTR_INST_OUT_OF_RENAME_STAGE,
1451 [PERF_COUNT_HW_CACHE_REFERENCES] = ARMV7_PERFCTR_COHERENT_LINE_HIT,
1452 [PERF_COUNT_HW_CACHE_MISSES] = ARMV7_PERFCTR_COHERENT_LINE_MISS,
1453 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV7_PERFCTR_PC_WRITE,
1454 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
1455 [PERF_COUNT_HW_BUS_CYCLES] = ARMV7_PERFCTR_CLOCK_CYCLES,
1456};
1457
1458static const unsigned armv7_a9_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
1459 [PERF_COUNT_HW_CACHE_OP_MAX]
1460 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1461 [C(L1D)] = {
1462 /*
1463 * The performance counters don't differentiate between read
1464 * and write accesses/misses so this isn't strictly correct,
1465 * but it's the best we can do. Writes and reads get
1466 * combined.
1467 */
1468 [C(OP_READ)] = {
1469 [C(RESULT_ACCESS)] = ARMV7_PERFCTR_DCACHE_ACCESS,
1470 [C(RESULT_MISS)] = ARMV7_PERFCTR_DCACHE_REFILL,
1471 },
1472 [C(OP_WRITE)] = {
1473 [C(RESULT_ACCESS)] = ARMV7_PERFCTR_DCACHE_ACCESS,
1474 [C(RESULT_MISS)] = ARMV7_PERFCTR_DCACHE_REFILL,
1475 },
1476 [C(OP_PREFETCH)] = {
1477 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1478 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
1479 },
1480 },
1481 [C(L1I)] = {
1482 [C(OP_READ)] = {
1483 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1484 [C(RESULT_MISS)] = ARMV7_PERFCTR_IFETCH_MISS,
1485 },
1486 [C(OP_WRITE)] = {
1487 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1488 [C(RESULT_MISS)] = ARMV7_PERFCTR_IFETCH_MISS,
1489 },
1490 [C(OP_PREFETCH)] = {
1491 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1492 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
1493 },
1494 },
1495 [C(LL)] = {
1496 [C(OP_READ)] = {
1497 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1498 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
1499 },
1500 [C(OP_WRITE)] = {
1501 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1502 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
1503 },
1504 [C(OP_PREFETCH)] = {
1505 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1506 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
1507 },
1508 },
1509 [C(DTLB)] = {
1510 /*
1511 * Only ITLB misses and DTLB refills are supported.
1512 * If users want the DTLB refills misses a raw counter
1513 * must be used.
1514 */
1515 [C(OP_READ)] = {
1516 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1517 [C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
1518 },
1519 [C(OP_WRITE)] = {
1520 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1521 [C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
1522 },
1523 [C(OP_PREFETCH)] = {
1524 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1525 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
1526 },
1527 },
1528 [C(ITLB)] = {
1529 [C(OP_READ)] = {
1530 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1531 [C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_MISS,
1532 },
1533 [C(OP_WRITE)] = {
1534 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1535 [C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_MISS,
1536 },
1537 [C(OP_PREFETCH)] = {
1538 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1539 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
1540 },
1541 },
1542 [C(BPU)] = {
1543 [C(OP_READ)] = {
1544 [C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_WRITE,
1545 [C(RESULT_MISS)]
1546 = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
1547 },
1548 [C(OP_WRITE)] = {
1549 [C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_WRITE,
1550 [C(RESULT_MISS)]
1551 = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
1552 },
1553 [C(OP_PREFETCH)] = {
1554 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
1555 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
1556 },
1557 },
1558};
1559
1560/*
1561 * Perf Events counters
1562 */
1563enum armv7_counters {
1564 ARMV7_CYCLE_COUNTER = 1, /* Cycle counter */
1565 ARMV7_COUNTER0 = 2, /* First event counter */
1566};
1567
1568/*
1569 * The cycle counter is ARMV7_CYCLE_COUNTER.
1570 * The first event counter is ARMV7_COUNTER0.
1571 * The last event counter is (ARMV7_COUNTER0 + armpmu->num_events - 1).
1572 */
1573#define ARMV7_COUNTER_LAST (ARMV7_COUNTER0 + armpmu->num_events - 1)
1574
1575/*
1576 * ARMv7 low level PMNC access
1577 */
1578
1579/*
1580 * Per-CPU PMNC: config reg
1581 */
1582#define ARMV7_PMNC_E (1 << 0) /* Enable all counters */
1583#define ARMV7_PMNC_P (1 << 1) /* Reset all counters */
1584#define ARMV7_PMNC_C (1 << 2) /* Cycle counter reset */
1585#define ARMV7_PMNC_D (1 << 3) /* CCNT counts every 64th cpu cycle */
1586#define ARMV7_PMNC_X (1 << 4) /* Export to ETM */
1587#define ARMV7_PMNC_DP (1 << 5) /* Disable CCNT if non-invasive debug*/
1588#define ARMV7_PMNC_N_SHIFT 11 /* Number of counters supported */
1589#define ARMV7_PMNC_N_MASK 0x1f
1590#define ARMV7_PMNC_MASK 0x3f /* Mask for writable bits */
1591
1592/*
1593 * Available counters
1594 */
1595#define ARMV7_CNT0 0 /* First event counter */
1596#define ARMV7_CCNT 31 /* Cycle counter */
1597
1598/* Perf Event to low level counters mapping */
1599#define ARMV7_EVENT_CNT_TO_CNTx (ARMV7_COUNTER0 - ARMV7_CNT0)
1600
1601/*
1602 * CNTENS: counters enable reg
1603 */
1604#define ARMV7_CNTENS_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
1605#define ARMV7_CNTENS_C (1 << ARMV7_CCNT)
1606
1607/*
1608 * CNTENC: counters disable reg
1609 */
1610#define ARMV7_CNTENC_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
1611#define ARMV7_CNTENC_C (1 << ARMV7_CCNT)
1612
1613/*
1614 * INTENS: counters overflow interrupt enable reg
1615 */
1616#define ARMV7_INTENS_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
1617#define ARMV7_INTENS_C (1 << ARMV7_CCNT)
1618
1619/*
1620 * INTENC: counters overflow interrupt disable reg
1621 */
1622#define ARMV7_INTENC_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
1623#define ARMV7_INTENC_C (1 << ARMV7_CCNT)
1624
1625/*
1626 * EVTSEL: Event selection reg
1627 */
1628#define ARMV7_EVTSEL_MASK 0xff /* Mask for writable bits */
1629
1630/*
1631 * SELECT: Counter selection reg
1632 */
1633#define ARMV7_SELECT_MASK 0x1f /* Mask for writable bits */
1634
1635/*
1636 * FLAG: counters overflow flag status reg
1637 */
1638#define ARMV7_FLAG_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
1639#define ARMV7_FLAG_C (1 << ARMV7_CCNT)
1640#define ARMV7_FLAG_MASK 0xffffffff /* Mask for writable bits */
1641#define ARMV7_OVERFLOWED_MASK ARMV7_FLAG_MASK
1642
1643static inline unsigned long armv7_pmnc_read(void)
1644{
1645 u32 val;
1646 asm volatile("mrc p15, 0, %0, c9, c12, 0" : "=r"(val));
1647 return val;
1648}
1649
1650static inline void armv7_pmnc_write(unsigned long val)
1651{
1652 val &= ARMV7_PMNC_MASK;
1653 asm volatile("mcr p15, 0, %0, c9, c12, 0" : : "r"(val));
1654}
1655
1656static inline int armv7_pmnc_has_overflowed(unsigned long pmnc)
1657{
1658 return pmnc & ARMV7_OVERFLOWED_MASK;
1659}
1660
1661static inline int armv7_pmnc_counter_has_overflowed(unsigned long pmnc,
1662 enum armv7_counters counter)
1663{
1664 int ret;
1665
1666 if (counter == ARMV7_CYCLE_COUNTER)
1667 ret = pmnc & ARMV7_FLAG_C;
1668 else if ((counter >= ARMV7_COUNTER0) && (counter <= ARMV7_COUNTER_LAST))
1669 ret = pmnc & ARMV7_FLAG_P(counter);
1670 else
1671 pr_err("CPU%u checking wrong counter %d overflow status\n",
1672 smp_processor_id(), counter);
1673
1674 return ret;
1675}
1676
1677static inline int armv7_pmnc_select_counter(unsigned int idx)
1678{
1679 u32 val;
1680
1681 if ((idx < ARMV7_COUNTER0) || (idx > ARMV7_COUNTER_LAST)) {
1682 pr_err("CPU%u selecting wrong PMNC counter"
1683 " %d\n", smp_processor_id(), idx);
1684 return -1;
1685 }
1686
1687 val = (idx - ARMV7_EVENT_CNT_TO_CNTx) & ARMV7_SELECT_MASK;
1688 asm volatile("mcr p15, 0, %0, c9, c12, 5" : : "r" (val));
1689
1690 return idx;
1691}
1692
1693static inline u32 armv7pmu_read_counter(int idx)
1694{
1695 unsigned long value = 0;
1696
1697 if (idx == ARMV7_CYCLE_COUNTER)
1698 asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r" (value));
1699 else if ((idx >= ARMV7_COUNTER0) && (idx <= ARMV7_COUNTER_LAST)) {
1700 if (armv7_pmnc_select_counter(idx) == idx)
1701 asm volatile("mrc p15, 0, %0, c9, c13, 2"
1702 : "=r" (value));
1703 } else
1704 pr_err("CPU%u reading wrong counter %d\n",
1705 smp_processor_id(), idx);
1706
1707 return value;
1708}
1709
1710static inline void armv7pmu_write_counter(int idx, u32 value)
1711{
1712 if (idx == ARMV7_CYCLE_COUNTER)
1713 asm volatile("mcr p15, 0, %0, c9, c13, 0" : : "r" (value));
1714 else if ((idx >= ARMV7_COUNTER0) && (idx <= ARMV7_COUNTER_LAST)) {
1715 if (armv7_pmnc_select_counter(idx) == idx)
1716 asm volatile("mcr p15, 0, %0, c9, c13, 2"
1717 : : "r" (value));
1718 } else
1719 pr_err("CPU%u writing wrong counter %d\n",
1720 smp_processor_id(), idx);
1721}
1722
1723static inline void armv7_pmnc_write_evtsel(unsigned int idx, u32 val)
1724{
1725 if (armv7_pmnc_select_counter(idx) == idx) {
1726 val &= ARMV7_EVTSEL_MASK;
1727 asm volatile("mcr p15, 0, %0, c9, c13, 1" : : "r" (val));
1728 }
1729}
1730
1731static inline u32 armv7_pmnc_enable_counter(unsigned int idx)
1732{
1733 u32 val;
1734
1735 if ((idx != ARMV7_CYCLE_COUNTER) &&
1736 ((idx < ARMV7_COUNTER0) || (idx > ARMV7_COUNTER_LAST))) {
1737 pr_err("CPU%u enabling wrong PMNC counter"
1738 " %d\n", smp_processor_id(), idx);
1739 return -1;
1740 }
1741
1742 if (idx == ARMV7_CYCLE_COUNTER)
1743 val = ARMV7_CNTENS_C;
1744 else
1745 val = ARMV7_CNTENS_P(idx);
1746
1747 asm volatile("mcr p15, 0, %0, c9, c12, 1" : : "r" (val));
1748
1749 return idx;
1750}
1751
1752static inline u32 armv7_pmnc_disable_counter(unsigned int idx)
1753{
1754 u32 val;
1755
1756
1757 if ((idx != ARMV7_CYCLE_COUNTER) &&
1758 ((idx < ARMV7_COUNTER0) || (idx > ARMV7_COUNTER_LAST))) {
1759 pr_err("CPU%u disabling wrong PMNC counter"
1760 " %d\n", smp_processor_id(), idx);
1761 return -1;
1762 }
1763
1764 if (idx == ARMV7_CYCLE_COUNTER)
1765 val = ARMV7_CNTENC_C;
1766 else
1767 val = ARMV7_CNTENC_P(idx);
1768
1769 asm volatile("mcr p15, 0, %0, c9, c12, 2" : : "r" (val));
1770
1771 return idx;
1772}
1773
1774static inline u32 armv7_pmnc_enable_intens(unsigned int idx)
1775{
1776 u32 val;
1777
1778 if ((idx != ARMV7_CYCLE_COUNTER) &&
1779 ((idx < ARMV7_COUNTER0) || (idx > ARMV7_COUNTER_LAST))) {
1780 pr_err("CPU%u enabling wrong PMNC counter"
1781 " interrupt enable %d\n", smp_processor_id(), idx);
1782 return -1;
1783 }
1784
1785 if (idx == ARMV7_CYCLE_COUNTER)
1786 val = ARMV7_INTENS_C;
1787 else
1788 val = ARMV7_INTENS_P(idx);
1789
1790 asm volatile("mcr p15, 0, %0, c9, c14, 1" : : "r" (val));
1791
1792 return idx;
1793}
1794
1795static inline u32 armv7_pmnc_disable_intens(unsigned int idx)
1796{
1797 u32 val;
1798
1799 if ((idx != ARMV7_CYCLE_COUNTER) &&
1800 ((idx < ARMV7_COUNTER0) || (idx > ARMV7_COUNTER_LAST))) {
1801 pr_err("CPU%u disabling wrong PMNC counter"
1802 " interrupt enable %d\n", smp_processor_id(), idx);
1803 return -1;
1804 }
1805
1806 if (idx == ARMV7_CYCLE_COUNTER)
1807 val = ARMV7_INTENC_C;
1808 else
1809 val = ARMV7_INTENC_P(idx);
1810
1811 asm volatile("mcr p15, 0, %0, c9, c14, 2" : : "r" (val));
1812
1813 return idx;
1814}
1815
1816static inline u32 armv7_pmnc_getreset_flags(void)
1817{
1818 u32 val;
1819
1820 /* Read */
1821 asm volatile("mrc p15, 0, %0, c9, c12, 3" : "=r" (val));
1822
1823 /* Write to clear flags */
1824 val &= ARMV7_FLAG_MASK;
1825 asm volatile("mcr p15, 0, %0, c9, c12, 3" : : "r" (val));
1826
1827 return val;
1828}
1829
1830#ifdef DEBUG
1831static void armv7_pmnc_dump_regs(void)
1832{
1833 u32 val;
1834 unsigned int cnt;
1835
1836 printk(KERN_INFO "PMNC registers dump:\n");
1837
1838 asm volatile("mrc p15, 0, %0, c9, c12, 0" : "=r" (val));
1839 printk(KERN_INFO "PMNC =0x%08x\n", val);
1840
1841 asm volatile("mrc p15, 0, %0, c9, c12, 1" : "=r" (val));
1842 printk(KERN_INFO "CNTENS=0x%08x\n", val);
1843
1844 asm volatile("mrc p15, 0, %0, c9, c14, 1" : "=r" (val));
1845 printk(KERN_INFO "INTENS=0x%08x\n", val);
1846
1847 asm volatile("mrc p15, 0, %0, c9, c12, 3" : "=r" (val));
1848 printk(KERN_INFO "FLAGS =0x%08x\n", val);
1849
1850 asm volatile("mrc p15, 0, %0, c9, c12, 5" : "=r" (val));
1851 printk(KERN_INFO "SELECT=0x%08x\n", val);
1852
1853 asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r" (val));
1854 printk(KERN_INFO "CCNT =0x%08x\n", val);
1855
1856 for (cnt = ARMV7_COUNTER0; cnt < ARMV7_COUNTER_LAST; cnt++) {
1857 armv7_pmnc_select_counter(cnt);
1858 asm volatile("mrc p15, 0, %0, c9, c13, 2" : "=r" (val));
1859 printk(KERN_INFO "CNT[%d] count =0x%08x\n",
1860 cnt-ARMV7_EVENT_CNT_TO_CNTx, val);
1861 asm volatile("mrc p15, 0, %0, c9, c13, 1" : "=r" (val));
1862 printk(KERN_INFO "CNT[%d] evtsel=0x%08x\n",
1863 cnt-ARMV7_EVENT_CNT_TO_CNTx, val);
1864 }
1865}
1866#endif
1867
1868void armv7pmu_enable_event(struct hw_perf_event *hwc, int idx)
1869{
1870 unsigned long flags;
1871
1872 /*
1873 * Enable counter and interrupt, and set the counter to count
1874 * the event that we're interested in.
1875 */
1876 spin_lock_irqsave(&pmu_lock, flags);
1877
1878 /*
1879 * Disable counter
1880 */
1881 armv7_pmnc_disable_counter(idx);
1882
1883 /*
1884 * Set event (if destined for PMNx counters)
1885 * We don't need to set the event if it's a cycle count
1886 */
1887 if (idx != ARMV7_CYCLE_COUNTER)
1888 armv7_pmnc_write_evtsel(idx, hwc->config_base);
1889
1890 /*
1891 * Enable interrupt for this counter
1892 */
1893 armv7_pmnc_enable_intens(idx);
1894
1895 /*
1896 * Enable counter
1897 */
1898 armv7_pmnc_enable_counter(idx);
1899
1900 spin_unlock_irqrestore(&pmu_lock, flags);
1901}
1902
1903static void armv7pmu_disable_event(struct hw_perf_event *hwc, int idx)
1904{
1905 unsigned long flags;
1906
1907 /*
1908 * Disable counter and interrupt
1909 */
1910 spin_lock_irqsave(&pmu_lock, flags);
1911
1912 /*
1913 * Disable counter
1914 */
1915 armv7_pmnc_disable_counter(idx);
1916
1917 /*
1918 * Disable interrupt for this counter
1919 */
1920 armv7_pmnc_disable_intens(idx);
1921
1922 spin_unlock_irqrestore(&pmu_lock, flags);
1923}
1924
1925static irqreturn_t armv7pmu_handle_irq(int irq_num, void *dev)
1926{
1927 unsigned long pmnc;
1928 struct perf_sample_data data;
1929 struct cpu_hw_events *cpuc;
1930 struct pt_regs *regs;
1931 int idx;
1932
1933 /*
1934 * Get and reset the IRQ flags
1935 */
1936 pmnc = armv7_pmnc_getreset_flags();
1937
1938 /*
1939 * Did an overflow occur?
1940 */
1941 if (!armv7_pmnc_has_overflowed(pmnc))
1942 return IRQ_NONE;
1943
1944 /*
1945 * Handle the counter(s) overflow(s)
1946 */
1947 regs = get_irq_regs();
1948
1949 perf_sample_data_init(&data, 0);
1950
1951 cpuc = &__get_cpu_var(cpu_hw_events);
1952 for (idx = 0; idx <= armpmu->num_events; ++idx) {
1953 struct perf_event *event = cpuc->events[idx];
1954 struct hw_perf_event *hwc;
1955
1956 if (!test_bit(idx, cpuc->active_mask))
1957 continue;
1958
1959 /*
1960 * We have a single interrupt for all counters. Check that
1961 * each counter has overflowed before we process it.
1962 */
1963 if (!armv7_pmnc_counter_has_overflowed(pmnc, idx))
1964 continue;
1965
1966 hwc = &event->hw;
1967 armpmu_event_update(event, hwc, idx);
1968 data.period = event->hw.last_period;
1969 if (!armpmu_event_set_period(event, hwc, idx))
1970 continue;
1971
1972 if (perf_event_overflow(event, 0, &data, regs))
1973 armpmu->disable(hwc, idx);
1974 }
1975
1976 /*
1977 * Handle the pending perf events.
1978 *
1979 * Note: this call *must* be run with interrupts enabled. For
1980 * platforms that can have the PMU interrupts raised as a PMI, this
1981 * will not work.
1982 */
1983 perf_event_do_pending();
1984
1985 return IRQ_HANDLED;
1986}
1987
1988static void armv7pmu_start(void)
1989{
1990 unsigned long flags;
1991
1992 spin_lock_irqsave(&pmu_lock, flags);
1993 /* Enable all counters */
1994 armv7_pmnc_write(armv7_pmnc_read() | ARMV7_PMNC_E);
1995 spin_unlock_irqrestore(&pmu_lock, flags);
1996}
1997
1998static void armv7pmu_stop(void)
1999{
2000 unsigned long flags;
2001
2002 spin_lock_irqsave(&pmu_lock, flags);
2003 /* Disable all counters */
2004 armv7_pmnc_write(armv7_pmnc_read() & ~ARMV7_PMNC_E);
2005 spin_unlock_irqrestore(&pmu_lock, flags);
2006}
2007
2008static inline int armv7_a8_pmu_event_map(int config)
2009{
2010 int mapping = armv7_a8_perf_map[config];
2011 if (HW_OP_UNSUPPORTED == mapping)
2012 mapping = -EOPNOTSUPP;
2013 return mapping;
2014}
2015
2016static inline int armv7_a9_pmu_event_map(int config)
2017{
2018 int mapping = armv7_a9_perf_map[config];
2019 if (HW_OP_UNSUPPORTED == mapping)
2020 mapping = -EOPNOTSUPP;
2021 return mapping;
2022}
2023
2024static u64 armv7pmu_raw_event(u64 config)
2025{
2026 return config & 0xff;
2027}
2028
2029static int armv7pmu_get_event_idx(struct cpu_hw_events *cpuc,
2030 struct hw_perf_event *event)
2031{
2032 int idx;
2033
2034 /* Always place a cycle counter into the cycle counter. */
2035 if (event->config_base == ARMV7_PERFCTR_CPU_CYCLES) {
2036 if (test_and_set_bit(ARMV7_CYCLE_COUNTER, cpuc->used_mask))
2037 return -EAGAIN;
2038
2039 return ARMV7_CYCLE_COUNTER;
2040 } else {
2041 /*
2042 * For anything other than a cycle counter, try and use
2043 * the events counters
2044 */
2045 for (idx = ARMV7_COUNTER0; idx <= armpmu->num_events; ++idx) {
2046 if (!test_and_set_bit(idx, cpuc->used_mask))
2047 return idx;
2048 }
2049
2050 /* The counters are all in use. */
2051 return -EAGAIN;
2052 }
2053}
2054
2055static struct arm_pmu armv7pmu = {
2056 .handle_irq = armv7pmu_handle_irq,
2057 .enable = armv7pmu_enable_event,
2058 .disable = armv7pmu_disable_event,
2059 .raw_event = armv7pmu_raw_event,
2060 .read_counter = armv7pmu_read_counter,
2061 .write_counter = armv7pmu_write_counter,
2062 .get_event_idx = armv7pmu_get_event_idx,
2063 .start = armv7pmu_start,
2064 .stop = armv7pmu_stop,
2065 .max_period = (1LLU << 32) - 1,
2066};
2067
2068static u32 __init armv7_reset_read_pmnc(void)
2069{
2070 u32 nb_cnt;
2071
2072 /* Initialize & Reset PMNC: C and P bits */
2073 armv7_pmnc_write(ARMV7_PMNC_P | ARMV7_PMNC_C);
2074
2075 /* Read the nb of CNTx counters supported from PMNC */
2076 nb_cnt = (armv7_pmnc_read() >> ARMV7_PMNC_N_SHIFT) & ARMV7_PMNC_N_MASK;
2077
2078 /* Add the CPU cycles counter and return */
2079 return nb_cnt + 1;
2080}
2081
2082static int __init
2083init_hw_perf_events(void)
2084{
2085 unsigned long cpuid = read_cpuid_id();
2086 unsigned long implementor = (cpuid & 0xFF000000) >> 24;
2087 unsigned long part_number = (cpuid & 0xFFF0);
2088
2089 /* We only support ARM CPUs implemented by ARM at the moment. */
2090 if (0x41 == implementor) {
2091 switch (part_number) {
2092 case 0xB360: /* ARM1136 */
2093 case 0xB560: /* ARM1156 */
2094 case 0xB760: /* ARM1176 */
2095 armpmu = &armv6pmu;
2096 memcpy(armpmu_perf_cache_map, armv6_perf_cache_map,
2097 sizeof(armv6_perf_cache_map));
2098 perf_max_events = armv6pmu.num_events;
2099 break;
2100 case 0xB020: /* ARM11mpcore */
2101 armpmu = &armv6mpcore_pmu;
2102 memcpy(armpmu_perf_cache_map,
2103 armv6mpcore_perf_cache_map,
2104 sizeof(armv6mpcore_perf_cache_map));
2105 perf_max_events = armv6mpcore_pmu.num_events;
2106 break;
2107 case 0xC080: /* Cortex-A8 */
2108 armv7pmu.name = ARMV7_PMU_CORTEX_A8_NAME;
2109 memcpy(armpmu_perf_cache_map, armv7_a8_perf_cache_map,
2110 sizeof(armv7_a8_perf_cache_map));
2111 armv7pmu.event_map = armv7_a8_pmu_event_map;
2112 armpmu = &armv7pmu;
2113
2114 /* Reset PMNC and read the nb of CNTx counters
2115 supported */
2116 armv7pmu.num_events = armv7_reset_read_pmnc();
2117 perf_max_events = armv7pmu.num_events;
2118 break;
2119 case 0xC090: /* Cortex-A9 */
2120 armv7pmu.name = ARMV7_PMU_CORTEX_A9_NAME;
2121 memcpy(armpmu_perf_cache_map, armv7_a9_perf_cache_map,
2122 sizeof(armv7_a9_perf_cache_map));
2123 armv7pmu.event_map = armv7_a9_pmu_event_map;
2124 armpmu = &armv7pmu;
2125
2126 /* Reset PMNC and read the nb of CNTx counters
2127 supported */
2128 armv7pmu.num_events = armv7_reset_read_pmnc();
2129 perf_max_events = armv7pmu.num_events;
2130 break;
2131 default:
2132 pr_info("no hardware support available\n");
2133 perf_max_events = -1;
2134 }
2135 }
2136
2137 if (armpmu)
2138 pr_info("enabled with %s PMU driver, %d counters available\n",
2139 armpmu->name, armpmu->num_events);
2140
2141 return 0;
2142}
2143arch_initcall(init_hw_perf_events);
2144
2145/*
2146 * Callchain handling code.
2147 */
2148static inline void
2149callchain_store(struct perf_callchain_entry *entry,
2150 u64 ip)
2151{
2152 if (entry->nr < PERF_MAX_STACK_DEPTH)
2153 entry->ip[entry->nr++] = ip;
2154}
2155
2156/*
2157 * The registers we're interested in are at the end of the variable
2158 * length saved register structure. The fp points at the end of this
2159 * structure so the address of this struct is:
2160 * (struct frame_tail *)(xxx->fp)-1
2161 *
2162 * This code has been adapted from the ARM OProfile support.
2163 */
2164struct frame_tail {
2165 struct frame_tail *fp;
2166 unsigned long sp;
2167 unsigned long lr;
2168} __attribute__((packed));
2169
2170/*
2171 * Get the return address for a single stackframe and return a pointer to the
2172 * next frame tail.
2173 */
2174static struct frame_tail *
2175user_backtrace(struct frame_tail *tail,
2176 struct perf_callchain_entry *entry)
2177{
2178 struct frame_tail buftail;
2179
2180 /* Also check accessibility of one struct frame_tail beyond */
2181 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
2182 return NULL;
2183 if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
2184 return NULL;
2185
2186 callchain_store(entry, buftail.lr);
2187
2188 /*
2189 * Frame pointers should strictly progress back up the stack
2190 * (towards higher addresses).
2191 */
2192 if (tail >= buftail.fp)
2193 return NULL;
2194
2195 return buftail.fp - 1;
2196}
2197
2198static void
2199perf_callchain_user(struct pt_regs *regs,
2200 struct perf_callchain_entry *entry)
2201{
2202 struct frame_tail *tail;
2203
2204 callchain_store(entry, PERF_CONTEXT_USER);
2205
2206 if (!user_mode(regs))
2207 regs = task_pt_regs(current);
2208
2209 tail = (struct frame_tail *)regs->ARM_fp - 1;
2210
2211 while (tail && !((unsigned long)tail & 0x3))
2212 tail = user_backtrace(tail, entry);
2213}
2214
2215/*
2216 * Gets called by walk_stackframe() for every stackframe. This will be called
2217 * whist unwinding the stackframe and is like a subroutine return so we use
2218 * the PC.
2219 */
2220static int
2221callchain_trace(struct stackframe *fr,
2222 void *data)
2223{
2224 struct perf_callchain_entry *entry = data;
2225 callchain_store(entry, fr->pc);
2226 return 0;
2227}
2228
2229static void
2230perf_callchain_kernel(struct pt_regs *regs,
2231 struct perf_callchain_entry *entry)
2232{
2233 struct stackframe fr;
2234
2235 callchain_store(entry, PERF_CONTEXT_KERNEL);
2236 fr.fp = regs->ARM_fp;
2237 fr.sp = regs->ARM_sp;
2238 fr.lr = regs->ARM_lr;
2239 fr.pc = regs->ARM_pc;
2240 walk_stackframe(&fr, callchain_trace, entry);
2241}
2242
2243static void
2244perf_do_callchain(struct pt_regs *regs,
2245 struct perf_callchain_entry *entry)
2246{
2247 int is_user;
2248
2249 if (!regs)
2250 return;
2251
2252 is_user = user_mode(regs);
2253
2254 if (!current || !current->pid)
2255 return;
2256
2257 if (is_user && current->state != TASK_RUNNING)
2258 return;
2259
2260 if (!is_user)
2261 perf_callchain_kernel(regs, entry);
2262
2263 if (current->mm)
2264 perf_callchain_user(regs, entry);
2265}
2266
2267static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
2268
2269struct perf_callchain_entry *
2270perf_callchain(struct pt_regs *regs)
2271{
2272 struct perf_callchain_entry *entry = &__get_cpu_var(pmc_irq_entry);
2273
2274 entry->nr = 0;
2275 perf_do_callchain(regs, entry);
2276 return entry;
2277}
diff --git a/arch/arm/kernel/pmu.c b/arch/arm/kernel/pmu.c
new file mode 100644
index 000000000000..a124312e343f
--- /dev/null
+++ b/arch/arm/kernel/pmu.c
@@ -0,0 +1,103 @@
1/*
2 * linux/arch/arm/kernel/pmu.c
3 *
4 * Copyright (C) 2009 picoChip Designs Ltd, Jamie Iles
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 */
11
12#include <linux/cpumask.h>
13#include <linux/err.h>
14#include <linux/interrupt.h>
15#include <linux/kernel.h>
16#include <linux/module.h>
17
18#include <asm/pmu.h>
19
20/*
21 * Define the IRQs for the system. We could use something like a platform
22 * device but that seems fairly heavyweight for this. Also, the performance
23 * counters can't be removed or hotplugged.
24 *
25 * Ordering is important: init_pmu() will use the ordering to set the affinity
26 * to the corresponding core. e.g. the first interrupt will go to cpu 0, the
27 * second goes to cpu 1 etc.
28 */
29static const int irqs[] = {
30#if defined(CONFIG_ARCH_OMAP2)
31 3,
32#elif defined(CONFIG_ARCH_BCMRING)
33 IRQ_PMUIRQ,
34#elif defined(CONFIG_MACH_REALVIEW_EB)
35 IRQ_EB11MP_PMU_CPU0,
36 IRQ_EB11MP_PMU_CPU1,
37 IRQ_EB11MP_PMU_CPU2,
38 IRQ_EB11MP_PMU_CPU3,
39#elif defined(CONFIG_ARCH_OMAP3)
40 INT_34XX_BENCH_MPU_EMUL,
41#elif defined(CONFIG_ARCH_IOP32X)
42 IRQ_IOP32X_CORE_PMU,
43#elif defined(CONFIG_ARCH_IOP33X)
44 IRQ_IOP33X_CORE_PMU,
45#elif defined(CONFIG_ARCH_PXA)
46 IRQ_PMU,
47#endif
48};
49
50static const struct pmu_irqs pmu_irqs = {
51 .irqs = irqs,
52 .num_irqs = ARRAY_SIZE(irqs),
53};
54
55static volatile long pmu_lock;
56
57const struct pmu_irqs *
58reserve_pmu(void)
59{
60 return test_and_set_bit_lock(0, &pmu_lock) ? ERR_PTR(-EBUSY) :
61 &pmu_irqs;
62}
63EXPORT_SYMBOL_GPL(reserve_pmu);
64
65int
66release_pmu(const struct pmu_irqs *irqs)
67{
68 if (WARN_ON(irqs != &pmu_irqs))
69 return -EINVAL;
70 clear_bit_unlock(0, &pmu_lock);
71 return 0;
72}
73EXPORT_SYMBOL_GPL(release_pmu);
74
75static int
76set_irq_affinity(int irq,
77 unsigned int cpu)
78{
79#ifdef CONFIG_SMP
80 int err = irq_set_affinity(irq, cpumask_of(cpu));
81 if (err)
82 pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
83 irq, cpu);
84 return err;
85#else
86 return 0;
87#endif
88}
89
90int
91init_pmu(void)
92{
93 int i, err = 0;
94
95 for (i = 0; i < pmu_irqs.num_irqs; ++i) {
96 err = set_irq_affinity(pmu_irqs.irqs[i], i);
97 if (err)
98 break;
99 }
100
101 return err;
102}
103EXPORT_SYMBOL_GPL(init_pmu);
diff --git a/arch/arm/kernel/process.c b/arch/arm/kernel/process.c
index 67304138a2ca..0e12e0acbf26 100644
--- a/arch/arm/kernel/process.c
+++ b/arch/arm/kernel/process.c
@@ -16,7 +16,6 @@
16#include <linux/mm.h> 16#include <linux/mm.h>
17#include <linux/stddef.h> 17#include <linux/stddef.h>
18#include <linux/unistd.h> 18#include <linux/unistd.h>
19#include <linux/slab.h>
20#include <linux/user.h> 19#include <linux/user.h>
21#include <linux/delay.h> 20#include <linux/delay.h>
22#include <linux/reboot.h> 21#include <linux/reboot.h>
@@ -212,7 +211,8 @@ void __show_regs(struct pt_regs *regs)
212 char buf[64]; 211 char buf[64];
213 212
214 printk("CPU: %d %s (%s %.*s)\n", 213 printk("CPU: %d %s (%s %.*s)\n",
215 smp_processor_id(), print_tainted(), init_utsname()->release, 214 raw_smp_processor_id(), print_tainted(),
215 init_utsname()->release,
216 (int)strcspn(init_utsname()->version, " "), 216 (int)strcspn(init_utsname()->version, " "),
217 init_utsname()->version); 217 init_utsname()->version);
218 print_symbol("PC is at %s\n", instruction_pointer(regs)); 218 print_symbol("PC is at %s\n", instruction_pointer(regs));
diff --git a/arch/arm/kernel/ptrace.c b/arch/arm/kernel/ptrace.c
index a2ea3854cb3c..3f562a7c0a99 100644
--- a/arch/arm/kernel/ptrace.c
+++ b/arch/arm/kernel/ptrace.c
@@ -452,12 +452,23 @@ void ptrace_cancel_bpt(struct task_struct *child)
452 clear_breakpoint(child, &child->thread.debug.bp[i]); 452 clear_breakpoint(child, &child->thread.debug.bp[i]);
453} 453}
454 454
455void user_disable_single_step(struct task_struct *task)
456{
457 task->ptrace &= ~PT_SINGLESTEP;
458 ptrace_cancel_bpt(task);
459}
460
461void user_enable_single_step(struct task_struct *task)
462{
463 task->ptrace |= PT_SINGLESTEP;
464}
465
455/* 466/*
456 * Called by kernel/ptrace.c when detaching.. 467 * Called by kernel/ptrace.c when detaching..
457 */ 468 */
458void ptrace_disable(struct task_struct *child) 469void ptrace_disable(struct task_struct *child)
459{ 470{
460 single_step_disable(child); 471 user_disable_single_step(child);
461} 472}
462 473
463/* 474/*
@@ -499,10 +510,41 @@ static struct undef_hook thumb_break_hook = {
499 .fn = break_trap, 510 .fn = break_trap,
500}; 511};
501 512
513static int thumb2_break_trap(struct pt_regs *regs, unsigned int instr)
514{
515 unsigned int instr2;
516 void __user *pc;
517
518 /* Check the second half of the instruction. */
519 pc = (void __user *)(instruction_pointer(regs) + 2);
520
521 if (processor_mode(regs) == SVC_MODE) {
522 instr2 = *(u16 *) pc;
523 } else {
524 get_user(instr2, (u16 __user *)pc);
525 }
526
527 if (instr2 == 0xa000) {
528 ptrace_break(current, regs);
529 return 0;
530 } else {
531 return 1;
532 }
533}
534
535static struct undef_hook thumb2_break_hook = {
536 .instr_mask = 0xffff,
537 .instr_val = 0xf7f0,
538 .cpsr_mask = PSR_T_BIT,
539 .cpsr_val = PSR_T_BIT,
540 .fn = thumb2_break_trap,
541};
542
502static int __init ptrace_break_init(void) 543static int __init ptrace_break_init(void)
503{ 544{
504 register_undef_hook(&arm_break_hook); 545 register_undef_hook(&arm_break_hook);
505 register_undef_hook(&thumb_break_hook); 546 register_undef_hook(&thumb_break_hook);
547 register_undef_hook(&thumb2_break_hook);
506 return 0; 548 return 0;
507} 549}
508 550
@@ -669,7 +711,7 @@ static int ptrace_getvfpregs(struct task_struct *tsk, void __user *data)
669 union vfp_state *vfp = &thread->vfpstate; 711 union vfp_state *vfp = &thread->vfpstate;
670 struct user_vfp __user *ufp = data; 712 struct user_vfp __user *ufp = data;
671 713
672 vfp_sync_state(thread); 714 vfp_sync_hwstate(thread);
673 715
674 /* copy the floating point registers */ 716 /* copy the floating point registers */
675 if (copy_to_user(&ufp->fpregs, &vfp->hard.fpregs, 717 if (copy_to_user(&ufp->fpregs, &vfp->hard.fpregs,
@@ -692,7 +734,7 @@ static int ptrace_setvfpregs(struct task_struct *tsk, void __user *data)
692 union vfp_state *vfp = &thread->vfpstate; 734 union vfp_state *vfp = &thread->vfpstate;
693 struct user_vfp __user *ufp = data; 735 struct user_vfp __user *ufp = data;
694 736
695 vfp_sync_state(thread); 737 vfp_sync_hwstate(thread);
696 738
697 /* copy the floating point registers */ 739 /* copy the floating point registers */
698 if (copy_from_user(&vfp->hard.fpregs, &ufp->fpregs, 740 if (copy_from_user(&vfp->hard.fpregs, &ufp->fpregs,
@@ -703,6 +745,8 @@ static int ptrace_setvfpregs(struct task_struct *tsk, void __user *data)
703 if (get_user(vfp->hard.fpscr, &ufp->fpscr)) 745 if (get_user(vfp->hard.fpscr, &ufp->fpscr))
704 return -EFAULT; 746 return -EFAULT;
705 747
748 vfp_flush_hwstate(thread);
749
706 return 0; 750 return 0;
707} 751}
708#endif 752#endif
@@ -712,77 +756,14 @@ long arch_ptrace(struct task_struct *child, long request, long addr, long data)
712 int ret; 756 int ret;
713 757
714 switch (request) { 758 switch (request) {
715 /*
716 * read word at location "addr" in the child process.
717 */
718 case PTRACE_PEEKTEXT:
719 case PTRACE_PEEKDATA:
720 ret = generic_ptrace_peekdata(child, addr, data);
721 break;
722
723 case PTRACE_PEEKUSR: 759 case PTRACE_PEEKUSR:
724 ret = ptrace_read_user(child, addr, (unsigned long __user *)data); 760 ret = ptrace_read_user(child, addr, (unsigned long __user *)data);
725 break; 761 break;
726 762
727 /*
728 * write the word at location addr.
729 */
730 case PTRACE_POKETEXT:
731 case PTRACE_POKEDATA:
732 ret = generic_ptrace_pokedata(child, addr, data);
733 break;
734
735 case PTRACE_POKEUSR: 763 case PTRACE_POKEUSR:
736 ret = ptrace_write_user(child, addr, data); 764 ret = ptrace_write_user(child, addr, data);
737 break; 765 break;
738 766
739 /*
740 * continue/restart and stop at next (return from) syscall
741 */
742 case PTRACE_SYSCALL:
743 case PTRACE_CONT:
744 ret = -EIO;
745 if (!valid_signal(data))
746 break;
747 if (request == PTRACE_SYSCALL)
748 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
749 else
750 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
751 child->exit_code = data;
752 single_step_disable(child);
753 wake_up_process(child);
754 ret = 0;
755 break;
756
757 /*
758 * make the child exit. Best I can do is send it a sigkill.
759 * perhaps it should be put in the status that it wants to
760 * exit.
761 */
762 case PTRACE_KILL:
763 single_step_disable(child);
764 if (child->exit_state != EXIT_ZOMBIE) {
765 child->exit_code = SIGKILL;
766 wake_up_process(child);
767 }
768 ret = 0;
769 break;
770
771 /*
772 * execute single instruction.
773 */
774 case PTRACE_SINGLESTEP:
775 ret = -EIO;
776 if (!valid_signal(data))
777 break;
778 single_step_enable(child);
779 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
780 child->exit_code = data;
781 /* give it a chance to run. */
782 wake_up_process(child);
783 ret = 0;
784 break;
785
786 case PTRACE_GETREGS: 767 case PTRACE_GETREGS:
787 ret = ptrace_getregs(child, (void __user *)data); 768 ret = ptrace_getregs(child, (void __user *)data);
788 break; 769 break;
diff --git a/arch/arm/kernel/ptrace.h b/arch/arm/kernel/ptrace.h
index def3b6184a79..3926605b82ea 100644
--- a/arch/arm/kernel/ptrace.h
+++ b/arch/arm/kernel/ptrace.h
@@ -14,20 +14,6 @@ extern void ptrace_set_bpt(struct task_struct *);
14extern void ptrace_break(struct task_struct *, struct pt_regs *); 14extern void ptrace_break(struct task_struct *, struct pt_regs *);
15 15
16/* 16/*
17 * make sure single-step breakpoint is gone.
18 */
19static inline void single_step_disable(struct task_struct *task)
20{
21 task->ptrace &= ~PT_SINGLESTEP;
22 ptrace_cancel_bpt(task);
23}
24
25static inline void single_step_enable(struct task_struct *task)
26{
27 task->ptrace |= PT_SINGLESTEP;
28}
29
30/*
31 * Send SIGTRAP if we're single-stepping 17 * Send SIGTRAP if we're single-stepping
32 */ 18 */
33static inline void single_step_trap(struct task_struct *task) 19static inline void single_step_trap(struct task_struct *task)
diff --git a/arch/arm/kernel/setup.c b/arch/arm/kernel/setup.c
index c6c57b640b6b..c91c77b54dea 100644
--- a/arch/arm/kernel/setup.c
+++ b/arch/arm/kernel/setup.c
@@ -24,6 +24,7 @@
24#include <linux/interrupt.h> 24#include <linux/interrupt.h>
25#include <linux/smp.h> 25#include <linux/smp.h>
26#include <linux/fs.h> 26#include <linux/fs.h>
27#include <linux/proc_fs.h>
27 28
28#include <asm/unified.h> 29#include <asm/unified.h>
29#include <asm/cpu.h> 30#include <asm/cpu.h>
@@ -102,6 +103,7 @@ struct cpu_cache_fns cpu_cache;
102#endif 103#endif
103#ifdef CONFIG_OUTER_CACHE 104#ifdef CONFIG_OUTER_CACHE
104struct outer_cache_fns outer_cache; 105struct outer_cache_fns outer_cache;
106EXPORT_SYMBOL(outer_cache);
105#endif 107#endif
106 108
107struct stack { 109struct stack {
@@ -117,7 +119,7 @@ EXPORT_SYMBOL(elf_platform);
117 119
118static const char *cpu_name; 120static const char *cpu_name;
119static const char *machine_name; 121static const char *machine_name;
120static char __initdata command_line[COMMAND_LINE_SIZE]; 122static char __initdata cmd_line[COMMAND_LINE_SIZE];
121 123
122static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE; 124static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
123static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } }; 125static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
@@ -417,10 +419,11 @@ static int __init arm_add_memory(unsigned long start, unsigned long size)
417 * Pick out the memory size. We look for mem=size@start, 419 * Pick out the memory size. We look for mem=size@start,
418 * where start and size are "size[KkMm]" 420 * where start and size are "size[KkMm]"
419 */ 421 */
420static void __init early_mem(char **p) 422static int __init early_mem(char *p)
421{ 423{
422 static int usermem __initdata = 0; 424 static int usermem __initdata = 0;
423 unsigned long size, start; 425 unsigned long size, start;
426 char *endp;
424 427
425 /* 428 /*
426 * If the user specifies memory size, we 429 * If the user specifies memory size, we
@@ -433,52 +436,15 @@ static void __init early_mem(char **p)
433 } 436 }
434 437
435 start = PHYS_OFFSET; 438 start = PHYS_OFFSET;
436 size = memparse(*p, p); 439 size = memparse(p, &endp);
437 if (**p == '@') 440 if (*endp == '@')
438 start = memparse(*p + 1, p); 441 start = memparse(endp + 1, NULL);
439 442
440 arm_add_memory(start, size); 443 arm_add_memory(start, size);
441}
442__early_param("mem=", early_mem);
443 444
444/* 445 return 0;
445 * Initial parsing of the command line.
446 */
447static void __init parse_cmdline(char **cmdline_p, char *from)
448{
449 char c = ' ', *to = command_line;
450 int len = 0;
451
452 for (;;) {
453 if (c == ' ') {
454 extern struct early_params __early_begin, __early_end;
455 struct early_params *p;
456
457 for (p = &__early_begin; p < &__early_end; p++) {
458 int arglen = strlen(p->arg);
459
460 if (memcmp(from, p->arg, arglen) == 0) {
461 if (to != command_line)
462 to -= 1;
463 from += arglen;
464 p->fn(&from);
465
466 while (*from != ' ' && *from != '\0')
467 from++;
468 break;
469 }
470 }
471 }
472 c = *from++;
473 if (!c)
474 break;
475 if (COMMAND_LINE_SIZE <= ++len)
476 break;
477 *to++ = c;
478 }
479 *to = '\0';
480 *cmdline_p = command_line;
481} 446}
447early_param("mem", early_mem);
482 448
483static void __init 449static void __init
484setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz) 450setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
@@ -739,9 +705,15 @@ void __init setup_arch(char **cmdline_p)
739 init_mm.end_data = (unsigned long) _edata; 705 init_mm.end_data = (unsigned long) _edata;
740 init_mm.brk = (unsigned long) _end; 706 init_mm.brk = (unsigned long) _end;
741 707
742 memcpy(boot_command_line, from, COMMAND_LINE_SIZE); 708 /* parse_early_param needs a boot_command_line */
743 boot_command_line[COMMAND_LINE_SIZE-1] = '\0'; 709 strlcpy(boot_command_line, from, COMMAND_LINE_SIZE);
744 parse_cmdline(cmdline_p, from); 710
711 /* populate cmd_line too for later use, preserving boot_command_line */
712 strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
713 *cmdline_p = cmd_line;
714
715 parse_early_param();
716
745 paging_init(mdesc); 717 paging_init(mdesc);
746 request_standard_resources(&meminfo, mdesc); 718 request_standard_resources(&meminfo, mdesc);
747 719
@@ -782,9 +754,21 @@ static int __init topology_init(void)
782 754
783 return 0; 755 return 0;
784} 756}
785
786subsys_initcall(topology_init); 757subsys_initcall(topology_init);
787 758
759#ifdef CONFIG_HAVE_PROC_CPU
760static int __init proc_cpu_init(void)
761{
762 struct proc_dir_entry *res;
763
764 res = proc_mkdir("cpu", NULL);
765 if (!res)
766 return -ENOMEM;
767 return 0;
768}
769fs_initcall(proc_cpu_init);
770#endif
771
788static const char *hwcap_str[] = { 772static const char *hwcap_str[] = {
789 "swp", 773 "swp",
790 "half", 774 "half",
diff --git a/arch/arm/kernel/signal.c b/arch/arm/kernel/signal.c
index e7714f367eb8..907d5a620bca 100644
--- a/arch/arm/kernel/signal.c
+++ b/arch/arm/kernel/signal.c
@@ -18,6 +18,7 @@
18#include <asm/cacheflush.h> 18#include <asm/cacheflush.h>
19#include <asm/ucontext.h> 19#include <asm/ucontext.h>
20#include <asm/unistd.h> 20#include <asm/unistd.h>
21#include <asm/vfp.h>
21 22
22#include "ptrace.h" 23#include "ptrace.h"
23#include "signal.h" 24#include "signal.h"
@@ -175,6 +176,90 @@ static int restore_iwmmxt_context(struct iwmmxt_sigframe *frame)
175 176
176#endif 177#endif
177 178
179#ifdef CONFIG_VFP
180
181static int preserve_vfp_context(struct vfp_sigframe __user *frame)
182{
183 struct thread_info *thread = current_thread_info();
184 struct vfp_hard_struct *h = &thread->vfpstate.hard;
185 const unsigned long magic = VFP_MAGIC;
186 const unsigned long size = VFP_STORAGE_SIZE;
187 int err = 0;
188
189 vfp_sync_hwstate(thread);
190 __put_user_error(magic, &frame->magic, err);
191 __put_user_error(size, &frame->size, err);
192
193 /*
194 * Copy the floating point registers. There can be unused
195 * registers see asm/hwcap.h for details.
196 */
197 err |= __copy_to_user(&frame->ufp.fpregs, &h->fpregs,
198 sizeof(h->fpregs));
199 /*
200 * Copy the status and control register.
201 */
202 __put_user_error(h->fpscr, &frame->ufp.fpscr, err);
203
204 /*
205 * Copy the exception registers.
206 */
207 __put_user_error(h->fpexc, &frame->ufp_exc.fpexc, err);
208 __put_user_error(h->fpinst, &frame->ufp_exc.fpinst, err);
209 __put_user_error(h->fpinst2, &frame->ufp_exc.fpinst2, err);
210
211 return err ? -EFAULT : 0;
212}
213
214static int restore_vfp_context(struct vfp_sigframe __user *frame)
215{
216 struct thread_info *thread = current_thread_info();
217 struct vfp_hard_struct *h = &thread->vfpstate.hard;
218 unsigned long magic;
219 unsigned long size;
220 unsigned long fpexc;
221 int err = 0;
222
223 __get_user_error(magic, &frame->magic, err);
224 __get_user_error(size, &frame->size, err);
225
226 if (err)
227 return -EFAULT;
228 if (magic != VFP_MAGIC || size != VFP_STORAGE_SIZE)
229 return -EINVAL;
230
231 /*
232 * Copy the floating point registers. There can be unused
233 * registers see asm/hwcap.h for details.
234 */
235 err |= __copy_from_user(&h->fpregs, &frame->ufp.fpregs,
236 sizeof(h->fpregs));
237 /*
238 * Copy the status and control register.
239 */
240 __get_user_error(h->fpscr, &frame->ufp.fpscr, err);
241
242 /*
243 * Sanitise and restore the exception registers.
244 */
245 __get_user_error(fpexc, &frame->ufp_exc.fpexc, err);
246 /* Ensure the VFP is enabled. */
247 fpexc |= FPEXC_EN;
248 /* Ensure FPINST2 is invalid and the exception flag is cleared. */
249 fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
250 h->fpexc = fpexc;
251
252 __get_user_error(h->fpinst, &frame->ufp_exc.fpinst, err);
253 __get_user_error(h->fpinst2, &frame->ufp_exc.fpinst2, err);
254
255 if (!err)
256 vfp_flush_hwstate(thread);
257
258 return err ? -EFAULT : 0;
259}
260
261#endif
262
178/* 263/*
179 * Do a signal return; undo the signal stack. These are aligned to 64-bit. 264 * Do a signal return; undo the signal stack. These are aligned to 64-bit.
180 */ 265 */
@@ -233,8 +318,8 @@ static int restore_sigframe(struct pt_regs *regs, struct sigframe __user *sf)
233 err |= restore_iwmmxt_context(&aux->iwmmxt); 318 err |= restore_iwmmxt_context(&aux->iwmmxt);
234#endif 319#endif
235#ifdef CONFIG_VFP 320#ifdef CONFIG_VFP
236// if (err == 0) 321 if (err == 0)
237// err |= vfp_restore_state(&sf->aux.vfp); 322 err |= restore_vfp_context(&aux->vfp);
238#endif 323#endif
239 324
240 return err; 325 return err;
@@ -348,8 +433,8 @@ setup_sigframe(struct sigframe __user *sf, struct pt_regs *regs, sigset_t *set)
348 err |= preserve_iwmmxt_context(&aux->iwmmxt); 433 err |= preserve_iwmmxt_context(&aux->iwmmxt);
349#endif 434#endif
350#ifdef CONFIG_VFP 435#ifdef CONFIG_VFP
351// if (err == 0) 436 if (err == 0)
352// err |= vfp_save_state(&sf->aux.vfp); 437 err |= preserve_vfp_context(&aux->vfp);
353#endif 438#endif
354 __put_user_error(0, &aux->end_magic, err); 439 __put_user_error(0, &aux->end_magic, err);
355 440
diff --git a/arch/arm/kernel/smp.c b/arch/arm/kernel/smp.c
index 57162af53dc9..577543f3857f 100644
--- a/arch/arm/kernel/smp.c
+++ b/arch/arm/kernel/smp.c
@@ -99,6 +99,7 @@ int __cpuinit __cpu_up(unsigned int cpu)
99 *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) | 99 *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
100 PMD_TYPE_SECT | PMD_SECT_AP_WRITE); 100 PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
101 flush_pmd_entry(pmd); 101 flush_pmd_entry(pmd);
102 outer_clean_range(__pa(pmd), __pa(pmd + 1));
102 103
103 /* 104 /*
104 * We need to tell the secondary core where to find 105 * We need to tell the secondary core where to find
@@ -106,7 +107,8 @@ int __cpuinit __cpu_up(unsigned int cpu)
106 */ 107 */
107 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 108 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
108 secondary_data.pgdir = virt_to_phys(pgd); 109 secondary_data.pgdir = virt_to_phys(pgd);
109 wmb(); 110 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
111 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
110 112
111 /* 113 /*
112 * Now bring the CPU into our world. 114 * Now bring the CPU into our world.
diff --git a/arch/arm/kernel/sys_arm.c b/arch/arm/kernel/sys_arm.c
index ae4027bd01bd..c23501842b98 100644
--- a/arch/arm/kernel/sys_arm.c
+++ b/arch/arm/kernel/sys_arm.c
@@ -15,7 +15,6 @@
15#include <linux/module.h> 15#include <linux/module.h>
16#include <linux/errno.h> 16#include <linux/errno.h>
17#include <linux/sched.h> 17#include <linux/sched.h>
18#include <linux/slab.h>
19#include <linux/mm.h> 18#include <linux/mm.h>
20#include <linux/sem.h> 19#include <linux/sem.h>
21#include <linux/msg.h> 20#include <linux/msg.h>
@@ -27,135 +26,7 @@
27#include <linux/file.h> 26#include <linux/file.h>
28#include <linux/ipc.h> 27#include <linux/ipc.h>
29#include <linux/uaccess.h> 28#include <linux/uaccess.h>
30 29#include <linux/slab.h>
31struct mmap_arg_struct {
32 unsigned long addr;
33 unsigned long len;
34 unsigned long prot;
35 unsigned long flags;
36 unsigned long fd;
37 unsigned long offset;
38};
39
40asmlinkage int old_mmap(struct mmap_arg_struct __user *arg)
41{
42 int error = -EFAULT;
43 struct mmap_arg_struct a;
44
45 if (copy_from_user(&a, arg, sizeof(a)))
46 goto out;
47
48 error = -EINVAL;
49 if (a.offset & ~PAGE_MASK)
50 goto out;
51
52 error = sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, a.offset >> PAGE_SHIFT);
53out:
54 return error;
55}
56
57/*
58 * Perform the select(nd, in, out, ex, tv) and mmap() system
59 * calls.
60 */
61
62struct sel_arg_struct {
63 unsigned long n;
64 fd_set __user *inp, *outp, *exp;
65 struct timeval __user *tvp;
66};
67
68asmlinkage int old_select(struct sel_arg_struct __user *arg)
69{
70 struct sel_arg_struct a;
71
72 if (copy_from_user(&a, arg, sizeof(a)))
73 return -EFAULT;
74 /* sys_select() does the appropriate kernel locking */
75 return sys_select(a.n, a.inp, a.outp, a.exp, a.tvp);
76}
77
78#if !defined(CONFIG_AEABI) || defined(CONFIG_OABI_COMPAT)
79/*
80 * sys_ipc() is the de-multiplexer for the SysV IPC calls..
81 *
82 * This is really horribly ugly.
83 */
84asmlinkage int sys_ipc(uint call, int first, int second, int third,
85 void __user *ptr, long fifth)
86{
87 int version, ret;
88
89 version = call >> 16; /* hack for backward compatibility */
90 call &= 0xffff;
91
92 switch (call) {
93 case SEMOP:
94 return sys_semtimedop (first, (struct sembuf __user *)ptr, second, NULL);
95 case SEMTIMEDOP:
96 return sys_semtimedop(first, (struct sembuf __user *)ptr, second,
97 (const struct timespec __user *)fifth);
98
99 case SEMGET:
100 return sys_semget (first, second, third);
101 case SEMCTL: {
102 union semun fourth;
103 if (!ptr)
104 return -EINVAL;
105 if (get_user(fourth.__pad, (void __user * __user *) ptr))
106 return -EFAULT;
107 return sys_semctl (first, second, third, fourth);
108 }
109
110 case MSGSND:
111 return sys_msgsnd(first, (struct msgbuf __user *) ptr,
112 second, third);
113 case MSGRCV:
114 switch (version) {
115 case 0: {
116 struct ipc_kludge tmp;
117 if (!ptr)
118 return -EINVAL;
119 if (copy_from_user(&tmp,(struct ipc_kludge __user *)ptr,
120 sizeof (tmp)))
121 return -EFAULT;
122 return sys_msgrcv (first, tmp.msgp, second,
123 tmp.msgtyp, third);
124 }
125 default:
126 return sys_msgrcv (first,
127 (struct msgbuf __user *) ptr,
128 second, fifth, third);
129 }
130 case MSGGET:
131 return sys_msgget ((key_t) first, second);
132 case MSGCTL:
133 return sys_msgctl(first, second, (struct msqid_ds __user *)ptr);
134
135 case SHMAT:
136 switch (version) {
137 default: {
138 ulong raddr;
139 ret = do_shmat(first, (char __user *)ptr, second, &raddr);
140 if (ret)
141 return ret;
142 return put_user(raddr, (ulong __user *)third);
143 }
144 case 1: /* Of course, we don't support iBCS2! */
145 return -EINVAL;
146 }
147 case SHMDT:
148 return sys_shmdt ((char __user *)ptr);
149 case SHMGET:
150 return sys_shmget (first, second, third);
151 case SHMCTL:
152 return sys_shmctl (first, second,
153 (struct shmid_ds __user *) ptr);
154 default:
155 return -ENOSYS;
156 }
157}
158#endif
159 30
160/* Fork a new task - this creates a new program thread. 31/* Fork a new task - this creates a new program thread.
161 * This is called indirectly via a small wrapper 32 * This is called indirectly via a small wrapper
diff --git a/arch/arm/kernel/sys_oabi-compat.c b/arch/arm/kernel/sys_oabi-compat.c
index d59a0cd537f0..33ff678e32f2 100644
--- a/arch/arm/kernel/sys_oabi-compat.c
+++ b/arch/arm/kernel/sys_oabi-compat.c
@@ -346,9 +346,6 @@ asmlinkage long sys_oabi_semop(int semid, struct oabi_sembuf __user *tsops,
346 return sys_oabi_semtimedop(semid, tsops, nsops, NULL); 346 return sys_oabi_semtimedop(semid, tsops, nsops, NULL);
347} 347}
348 348
349extern asmlinkage int sys_ipc(uint call, int first, int second, int third,
350 void __user *ptr, long fifth);
351
352asmlinkage int sys_oabi_ipc(uint call, int first, int second, int third, 349asmlinkage int sys_oabi_ipc(uint call, int first, int second, int third,
353 void __user *ptr, long fifth) 350 void __user *ptr, long fifth)
354{ 351{
diff --git a/arch/arm/kernel/time.c b/arch/arm/kernel/time.c
index d38cdf2c8276..28753805d2d1 100644
--- a/arch/arm/kernel/time.c
+++ b/arch/arm/kernel/time.c
@@ -10,11 +10,6 @@
10 * 10 *
11 * This file contains the ARM-specific time handling details: 11 * This file contains the ARM-specific time handling details:
12 * reading the RTC at bootup, etc... 12 * reading the RTC at bootup, etc...
13 *
14 * 1994-07-02 Alan Modra
15 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
16 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
17 * "A Kernel Model for Precision Timekeeping" by Dave Mills
18 */ 13 */
19#include <linux/module.h> 14#include <linux/module.h>
20#include <linux/kernel.h> 15#include <linux/kernel.h>
@@ -77,11 +72,6 @@ unsigned long profile_pc(struct pt_regs *regs)
77EXPORT_SYMBOL(profile_pc); 72EXPORT_SYMBOL(profile_pc);
78#endif 73#endif
79 74
80/*
81 * hook for setting the RTC's idea of the current time.
82 */
83int (*set_rtc)(void);
84
85#ifndef CONFIG_GENERIC_TIME 75#ifndef CONFIG_GENERIC_TIME
86static unsigned long dummy_gettimeoffset(void) 76static unsigned long dummy_gettimeoffset(void)
87{ 77{
@@ -89,140 +79,6 @@ static unsigned long dummy_gettimeoffset(void)
89} 79}
90#endif 80#endif
91 81
92static unsigned long next_rtc_update;
93
94/*
95 * If we have an externally synchronized linux clock, then update
96 * CMOS clock accordingly every ~11 minutes. set_rtc() has to be
97 * called as close as possible to 500 ms before the new second
98 * starts.
99 */
100static inline void do_set_rtc(void)
101{
102 if (!ntp_synced() || set_rtc == NULL)
103 return;
104
105 if (next_rtc_update &&
106 time_before((unsigned long)xtime.tv_sec, next_rtc_update))
107 return;
108
109 if (xtime.tv_nsec < 500000000 - ((unsigned) tick_nsec >> 1) &&
110 xtime.tv_nsec >= 500000000 + ((unsigned) tick_nsec >> 1))
111 return;
112
113 if (set_rtc())
114 /*
115 * rtc update failed. Try again in 60s
116 */
117 next_rtc_update = xtime.tv_sec + 60;
118 else
119 next_rtc_update = xtime.tv_sec + 660;
120}
121
122#ifdef CONFIG_LEDS
123
124static void dummy_leds_event(led_event_t evt)
125{
126}
127
128void (*leds_event)(led_event_t) = dummy_leds_event;
129
130struct leds_evt_name {
131 const char name[8];
132 int on;
133 int off;
134};
135
136static const struct leds_evt_name evt_names[] = {
137 { "amber", led_amber_on, led_amber_off },
138 { "blue", led_blue_on, led_blue_off },
139 { "green", led_green_on, led_green_off },
140 { "red", led_red_on, led_red_off },
141};
142
143static ssize_t leds_store(struct sys_device *dev,
144 struct sysdev_attribute *attr,
145 const char *buf, size_t size)
146{
147 int ret = -EINVAL, len = strcspn(buf, " ");
148
149 if (len > 0 && buf[len] == '\0')
150 len--;
151
152 if (strncmp(buf, "claim", len) == 0) {
153 leds_event(led_claim);
154 ret = size;
155 } else if (strncmp(buf, "release", len) == 0) {
156 leds_event(led_release);
157 ret = size;
158 } else {
159 int i;
160
161 for (i = 0; i < ARRAY_SIZE(evt_names); i++) {
162 if (strlen(evt_names[i].name) != len ||
163 strncmp(buf, evt_names[i].name, len) != 0)
164 continue;
165 if (strncmp(buf+len, " on", 3) == 0) {
166 leds_event(evt_names[i].on);
167 ret = size;
168 } else if (strncmp(buf+len, " off", 4) == 0) {
169 leds_event(evt_names[i].off);
170 ret = size;
171 }
172 break;
173 }
174 }
175 return ret;
176}
177
178static SYSDEV_ATTR(event, 0200, NULL, leds_store);
179
180static int leds_suspend(struct sys_device *dev, pm_message_t state)
181{
182 leds_event(led_stop);
183 return 0;
184}
185
186static int leds_resume(struct sys_device *dev)
187{
188 leds_event(led_start);
189 return 0;
190}
191
192static int leds_shutdown(struct sys_device *dev)
193{
194 leds_event(led_halted);
195 return 0;
196}
197
198static struct sysdev_class leds_sysclass = {
199 .name = "leds",
200 .shutdown = leds_shutdown,
201 .suspend = leds_suspend,
202 .resume = leds_resume,
203};
204
205static struct sys_device leds_device = {
206 .id = 0,
207 .cls = &leds_sysclass,
208};
209
210static int __init leds_init(void)
211{
212 int ret;
213 ret = sysdev_class_register(&leds_sysclass);
214 if (ret == 0)
215 ret = sysdev_register(&leds_device);
216 if (ret == 0)
217 ret = sysdev_create_file(&leds_device, &attr_event);
218 return ret;
219}
220
221device_initcall(leds_init);
222
223EXPORT_SYMBOL(leds_event);
224#endif
225
226#ifdef CONFIG_LEDS_TIMER 82#ifdef CONFIG_LEDS_TIMER
227static inline void do_leds(void) 83static inline void do_leds(void)
228{ 84{
@@ -295,39 +151,6 @@ int do_settimeofday(struct timespec *tv)
295EXPORT_SYMBOL(do_settimeofday); 151EXPORT_SYMBOL(do_settimeofday);
296#endif /* !CONFIG_GENERIC_TIME */ 152#endif /* !CONFIG_GENERIC_TIME */
297 153
298/**
299 * save_time_delta - Save the offset between system time and RTC time
300 * @delta: pointer to timespec to store delta
301 * @rtc: pointer to timespec for current RTC time
302 *
303 * Return a delta between the system time and the RTC time, such
304 * that system time can be restored later with restore_time_delta()
305 */
306void save_time_delta(struct timespec *delta, struct timespec *rtc)
307{
308 set_normalized_timespec(delta,
309 xtime.tv_sec - rtc->tv_sec,
310 xtime.tv_nsec - rtc->tv_nsec);
311}
312EXPORT_SYMBOL(save_time_delta);
313
314/**
315 * restore_time_delta - Restore the current system time
316 * @delta: delta returned by save_time_delta()
317 * @rtc: pointer to timespec for current RTC time
318 */
319void restore_time_delta(struct timespec *delta, struct timespec *rtc)
320{
321 struct timespec ts;
322
323 set_normalized_timespec(&ts,
324 delta->tv_sec + rtc->tv_sec,
325 delta->tv_nsec + rtc->tv_nsec);
326
327 do_settimeofday(&ts);
328}
329EXPORT_SYMBOL(restore_time_delta);
330
331#ifndef CONFIG_GENERIC_CLOCKEVENTS 154#ifndef CONFIG_GENERIC_CLOCKEVENTS
332/* 155/*
333 * Kernel system timer support. 156 * Kernel system timer support.
@@ -336,7 +159,6 @@ void timer_tick(void)
336{ 159{
337 profile_tick(CPU_PROFILING); 160 profile_tick(CPU_PROFILING);
338 do_leds(); 161 do_leds();
339 do_set_rtc();
340 write_seqlock(&xtime_lock); 162 write_seqlock(&xtime_lock);
341 do_timer(1); 163 do_timer(1);
342 write_sequnlock(&xtime_lock); 164 write_sequnlock(&xtime_lock);
diff --git a/arch/arm/kernel/traps.c b/arch/arm/kernel/traps.c
index 3f361a783f43..1621e5327b2a 100644
--- a/arch/arm/kernel/traps.c
+++ b/arch/arm/kernel/traps.c
@@ -12,15 +12,17 @@
12 * 'linux/arch/arm/lib/traps.S'. Mostly a debugging aid, but will probably 12 * 'linux/arch/arm/lib/traps.S'. Mostly a debugging aid, but will probably
13 * kill the offending process. 13 * kill the offending process.
14 */ 14 */
15#include <linux/module.h>
16#include <linux/signal.h> 15#include <linux/signal.h>
17#include <linux/spinlock.h>
18#include <linux/personality.h> 16#include <linux/personality.h>
19#include <linux/kallsyms.h> 17#include <linux/kallsyms.h>
20#include <linux/delay.h> 18#include <linux/spinlock.h>
19#include <linux/uaccess.h>
21#include <linux/hardirq.h> 20#include <linux/hardirq.h>
21#include <linux/kdebug.h>
22#include <linux/module.h>
23#include <linux/kexec.h>
24#include <linux/delay.h>
22#include <linux/init.h> 25#include <linux/init.h>
23#include <linux/uaccess.h>
24 26
25#include <asm/atomic.h> 27#include <asm/atomic.h>
26#include <asm/cacheflush.h> 28#include <asm/cacheflush.h>
@@ -224,14 +226,21 @@ void show_stack(struct task_struct *tsk, unsigned long *sp)
224#define S_SMP "" 226#define S_SMP ""
225#endif 227#endif
226 228
227static void __die(const char *str, int err, struct thread_info *thread, struct pt_regs *regs) 229static int __die(const char *str, int err, struct thread_info *thread, struct pt_regs *regs)
228{ 230{
229 struct task_struct *tsk = thread->task; 231 struct task_struct *tsk = thread->task;
230 static int die_counter; 232 static int die_counter;
233 int ret;
231 234
232 printk(KERN_EMERG "Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n", 235 printk(KERN_EMERG "Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n",
233 str, err, ++die_counter); 236 str, err, ++die_counter);
234 sysfs_printk_last_file(); 237 sysfs_printk_last_file();
238
239 /* trap and error numbers are mostly meaningless on ARM */
240 ret = notify_die(DIE_OOPS, str, regs, err, tsk->thread.trap_no, SIGSEGV);
241 if (ret == NOTIFY_STOP)
242 return ret;
243
235 print_modules(); 244 print_modules();
236 __show_regs(regs); 245 __show_regs(regs);
237 printk(KERN_EMERG "Process %.*s (pid: %d, stack limit = 0x%p)\n", 246 printk(KERN_EMERG "Process %.*s (pid: %d, stack limit = 0x%p)\n",
@@ -243,6 +252,8 @@ static void __die(const char *str, int err, struct thread_info *thread, struct p
243 dump_backtrace(regs, tsk); 252 dump_backtrace(regs, tsk);
244 dump_instr(KERN_EMERG, regs); 253 dump_instr(KERN_EMERG, regs);
245 } 254 }
255
256 return ret;
246} 257}
247 258
248DEFINE_SPINLOCK(die_lock); 259DEFINE_SPINLOCK(die_lock);
@@ -250,16 +261,21 @@ DEFINE_SPINLOCK(die_lock);
250/* 261/*
251 * This function is protected against re-entrancy. 262 * This function is protected against re-entrancy.
252 */ 263 */
253NORET_TYPE void die(const char *str, struct pt_regs *regs, int err) 264void die(const char *str, struct pt_regs *regs, int err)
254{ 265{
255 struct thread_info *thread = current_thread_info(); 266 struct thread_info *thread = current_thread_info();
267 int ret;
256 268
257 oops_enter(); 269 oops_enter();
258 270
259 spin_lock_irq(&die_lock); 271 spin_lock_irq(&die_lock);
260 console_verbose(); 272 console_verbose();
261 bust_spinlocks(1); 273 bust_spinlocks(1);
262 __die(str, err, thread, regs); 274 ret = __die(str, err, thread, regs);
275
276 if (regs && kexec_should_crash(thread->task))
277 crash_kexec(regs);
278
263 bust_spinlocks(0); 279 bust_spinlocks(0);
264 add_taint(TAINT_DIE); 280 add_taint(TAINT_DIE);
265 spin_unlock_irq(&die_lock); 281 spin_unlock_irq(&die_lock);
@@ -267,11 +283,10 @@ NORET_TYPE void die(const char *str, struct pt_regs *regs, int err)
267 283
268 if (in_interrupt()) 284 if (in_interrupt())
269 panic("Fatal exception in interrupt"); 285 panic("Fatal exception in interrupt");
270
271 if (panic_on_oops) 286 if (panic_on_oops)
272 panic("Fatal exception"); 287 panic("Fatal exception");
273 288 if (ret != NOTIFY_STOP)
274 do_exit(SIGSEGV); 289 do_exit(SIGSEGV);
275} 290}
276 291
277void arm_notify_die(const char *str, struct pt_regs *regs, 292void arm_notify_die(const char *str, struct pt_regs *regs,
diff --git a/arch/arm/kernel/unwind.c b/arch/arm/kernel/unwind.c
index 786ac2b6914a..50292cd9c120 100644
--- a/arch/arm/kernel/unwind.c
+++ b/arch/arm/kernel/unwind.c
@@ -359,7 +359,9 @@ void unwind_backtrace(struct pt_regs *regs, struct task_struct *tsk)
359 frame.fp = regs->ARM_fp; 359 frame.fp = regs->ARM_fp;
360 frame.sp = regs->ARM_sp; 360 frame.sp = regs->ARM_sp;
361 frame.lr = regs->ARM_lr; 361 frame.lr = regs->ARM_lr;
362 frame.pc = regs->ARM_pc; 362 /* PC might be corrupted, use LR in that case. */
363 frame.pc = kernel_text_address(regs->ARM_pc)
364 ? regs->ARM_pc : regs->ARM_lr;
363 } else if (tsk == current) { 365 } else if (tsk == current) {
364 frame.fp = (unsigned long)__builtin_frame_address(0); 366 frame.fp = (unsigned long)__builtin_frame_address(0);
365 frame.sp = current_sp; 367 frame.sp = current_sp;
diff --git a/arch/arm/kernel/vmlinux.lds.S b/arch/arm/kernel/vmlinux.lds.S
index 4957e13ef55b..b16c07914b55 100644
--- a/arch/arm/kernel/vmlinux.lds.S
+++ b/arch/arm/kernel/vmlinux.lds.S
@@ -43,10 +43,6 @@ SECTIONS
43 43
44 INIT_SETUP(16) 44 INIT_SETUP(16)
45 45
46 __early_begin = .;
47 *(.early_param.init)
48 __early_end = .;
49
50 INIT_CALLS 46 INIT_CALLS
51 CON_INITCALL 47 CON_INITCALL
52 SECURITY_INITCALL 48 SECURITY_INITCALL