diff options
author | Mark Rutland <mark.rutland@arm.com> | 2012-11-12 09:33:44 -0500 |
---|---|---|
committer | Mark Rutland <mark.rutland@arm.com> | 2013-01-31 10:51:49 -0500 |
commit | 8a4da6e36c582ff746191eca85b6c1c068dbfbd6 (patch) | |
tree | 9c4be7e6853d33f35580e6f7c64c3d410dfe4aaf /arch/arm/kernel/arch_timer.c | |
parent | b2deabe3ba664a1ec47400c0ca285e951874e0cc (diff) |
arm: arch_timer: move core to drivers/clocksource
The core functionality of the arch_timer driver is not directly tied to
anything under arch/arm, and can be split out.
This patch factors out the core of the arch_timer driver, so it can be
shared with other architectures. A couple of functions are added so
that architecture-specific code can interact with the driver without
needing to touch its internals.
The ARM_ARCH_TIMER config variable is moved out to
drivers/clocksource/Kconfig, existing uses in arch/arm are replaced with
HAVE_ARM_ARCH_TIMER, which selects it.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Diffstat (limited to 'arch/arm/kernel/arch_timer.c')
-rw-r--r-- | arch/arm/kernel/arch_timer.c | 386 |
1 files changed, 18 insertions, 368 deletions
diff --git a/arch/arm/kernel/arch_timer.c b/arch/arm/kernel/arch_timer.c index 94f503394c5c..36ebcf4b516f 100644 --- a/arch/arm/kernel/arch_timer.c +++ b/arch/arm/kernel/arch_timer.c | |||
@@ -9,402 +9,52 @@ | |||
9 | * published by the Free Software Foundation. | 9 | * published by the Free Software Foundation. |
10 | */ | 10 | */ |
11 | #include <linux/init.h> | 11 | #include <linux/init.h> |
12 | #include <linux/kernel.h> | 12 | #include <linux/types.h> |
13 | #include <linux/delay.h> | ||
14 | #include <linux/device.h> | ||
15 | #include <linux/smp.h> | ||
16 | #include <linux/cpu.h> | ||
17 | #include <linux/jiffies.h> | ||
18 | #include <linux/clockchips.h> | ||
19 | #include <linux/interrupt.h> | ||
20 | #include <linux/of_irq.h> | ||
21 | #include <linux/io.h> | ||
22 | 13 | ||
23 | #include <asm/delay.h> | 14 | #include <asm/delay.h> |
24 | #include <asm/arch_timer.h> | ||
25 | #include <asm/sched_clock.h> | 15 | #include <asm/sched_clock.h> |
26 | 16 | ||
27 | static u32 arch_timer_rate; | 17 | #include <clocksource/arm_arch_timer.h> |
28 | 18 | ||
29 | enum ppi_nr { | 19 | static unsigned long arch_timer_read_counter_long(void) |
30 | PHYS_SECURE_PPI, | ||
31 | PHYS_NONSECURE_PPI, | ||
32 | VIRT_PPI, | ||
33 | HYP_PPI, | ||
34 | MAX_TIMER_PPI | ||
35 | }; | ||
36 | |||
37 | static int arch_timer_ppi[MAX_TIMER_PPI]; | ||
38 | |||
39 | static struct clock_event_device __percpu *arch_timer_evt; | ||
40 | static struct delay_timer arch_delay_timer; | ||
41 | |||
42 | static bool arch_timer_use_virtual = true; | ||
43 | |||
44 | /* | ||
45 | * Architected system timer support. | ||
46 | */ | ||
47 | |||
48 | static irqreturn_t inline timer_handler(const int access, | ||
49 | struct clock_event_device *evt) | ||
50 | { | ||
51 | unsigned long ctrl; | ||
52 | ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL); | ||
53 | if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { | ||
54 | ctrl |= ARCH_TIMER_CTRL_IT_MASK; | ||
55 | arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); | ||
56 | evt->event_handler(evt); | ||
57 | return IRQ_HANDLED; | ||
58 | } | ||
59 | |||
60 | return IRQ_NONE; | ||
61 | } | ||
62 | |||
63 | static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) | ||
64 | { | ||
65 | struct clock_event_device *evt = dev_id; | ||
66 | |||
67 | return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); | ||
68 | } | ||
69 | |||
70 | static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) | ||
71 | { | ||
72 | struct clock_event_device *evt = dev_id; | ||
73 | |||
74 | return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); | ||
75 | } | ||
76 | |||
77 | static inline void timer_set_mode(const int access, int mode) | ||
78 | { | ||
79 | unsigned long ctrl; | ||
80 | switch (mode) { | ||
81 | case CLOCK_EVT_MODE_UNUSED: | ||
82 | case CLOCK_EVT_MODE_SHUTDOWN: | ||
83 | ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL); | ||
84 | ctrl &= ~ARCH_TIMER_CTRL_ENABLE; | ||
85 | arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); | ||
86 | break; | ||
87 | default: | ||
88 | break; | ||
89 | } | ||
90 | } | ||
91 | |||
92 | static void arch_timer_set_mode_virt(enum clock_event_mode mode, | ||
93 | struct clock_event_device *clk) | ||
94 | { | ||
95 | timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode); | ||
96 | } | ||
97 | |||
98 | static void arch_timer_set_mode_phys(enum clock_event_mode mode, | ||
99 | struct clock_event_device *clk) | ||
100 | { | ||
101 | timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode); | ||
102 | } | ||
103 | |||
104 | static inline void set_next_event(const int access, unsigned long evt) | ||
105 | { | ||
106 | unsigned long ctrl; | ||
107 | ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL); | ||
108 | ctrl |= ARCH_TIMER_CTRL_ENABLE; | ||
109 | ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; | ||
110 | arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt); | ||
111 | arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); | ||
112 | } | ||
113 | |||
114 | static int arch_timer_set_next_event_virt(unsigned long evt, | ||
115 | struct clock_event_device *unused) | ||
116 | { | ||
117 | set_next_event(ARCH_TIMER_VIRT_ACCESS, evt); | ||
118 | return 0; | ||
119 | } | ||
120 | |||
121 | static int arch_timer_set_next_event_phys(unsigned long evt, | ||
122 | struct clock_event_device *unused) | ||
123 | { | ||
124 | set_next_event(ARCH_TIMER_PHYS_ACCESS, evt); | ||
125 | return 0; | ||
126 | } | ||
127 | |||
128 | static int __cpuinit arch_timer_setup(struct clock_event_device *clk) | ||
129 | { | ||
130 | clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP; | ||
131 | clk->name = "arch_sys_timer"; | ||
132 | clk->rating = 450; | ||
133 | if (arch_timer_use_virtual) { | ||
134 | clk->irq = arch_timer_ppi[VIRT_PPI]; | ||
135 | clk->set_mode = arch_timer_set_mode_virt; | ||
136 | clk->set_next_event = arch_timer_set_next_event_virt; | ||
137 | } else { | ||
138 | clk->irq = arch_timer_ppi[PHYS_SECURE_PPI]; | ||
139 | clk->set_mode = arch_timer_set_mode_phys; | ||
140 | clk->set_next_event = arch_timer_set_next_event_phys; | ||
141 | } | ||
142 | |||
143 | clk->cpumask = cpumask_of(smp_processor_id()); | ||
144 | |||
145 | clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL); | ||
146 | |||
147 | clockevents_config_and_register(clk, arch_timer_rate, | ||
148 | 0xf, 0x7fffffff); | ||
149 | |||
150 | if (arch_timer_use_virtual) | ||
151 | enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0); | ||
152 | else { | ||
153 | enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0); | ||
154 | if (arch_timer_ppi[PHYS_NONSECURE_PPI]) | ||
155 | enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0); | ||
156 | } | ||
157 | |||
158 | arch_counter_set_user_access(); | ||
159 | |||
160 | return 0; | ||
161 | } | ||
162 | |||
163 | static int arch_timer_available(void) | ||
164 | { | ||
165 | u32 freq; | ||
166 | |||
167 | if (arch_timer_rate == 0) { | ||
168 | freq = arch_timer_get_cntfrq(); | ||
169 | |||
170 | /* Check the timer frequency. */ | ||
171 | if (freq == 0) { | ||
172 | pr_warn("Architected timer frequency not available\n"); | ||
173 | return -EINVAL; | ||
174 | } | ||
175 | |||
176 | arch_timer_rate = freq; | ||
177 | } | ||
178 | |||
179 | pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n", | ||
180 | (unsigned long)arch_timer_rate / 1000000, | ||
181 | (unsigned long)(arch_timer_rate / 10000) % 100, | ||
182 | arch_timer_use_virtual ? "virt" : "phys"); | ||
183 | return 0; | ||
184 | } | ||
185 | |||
186 | /* | ||
187 | * Some external users of arch_timer_read_counter (e.g. sched_clock) may try to | ||
188 | * call it before it has been initialised. Rather than incur a performance | ||
189 | * penalty checking for initialisation, provide a default implementation that | ||
190 | * won't lead to time appearing to jump backwards. | ||
191 | */ | ||
192 | static u64 arch_timer_read_zero(void) | ||
193 | { | ||
194 | return 0; | ||
195 | } | ||
196 | |||
197 | u64 (*arch_timer_read_counter)(void) = arch_timer_read_zero; | ||
198 | |||
199 | static u32 arch_timer_read_counter32(void) | ||
200 | { | ||
201 | return arch_timer_read_counter(); | ||
202 | } | ||
203 | |||
204 | static cycle_t arch_counter_read(struct clocksource *cs) | ||
205 | { | 20 | { |
206 | return arch_timer_read_counter(); | 21 | return arch_timer_read_counter(); |
207 | } | 22 | } |
208 | 23 | ||
209 | static unsigned long arch_timer_read_current_timer(void) | 24 | static u32 arch_timer_read_counter_u32(void) |
210 | { | 25 | { |
211 | return arch_timer_read_counter(); | 26 | return arch_timer_read_counter(); |
212 | } | 27 | } |
213 | 28 | ||
214 | static cycle_t arch_counter_read_cc(const struct cyclecounter *cc) | 29 | static struct delay_timer arch_delay_timer; |
215 | { | ||
216 | return arch_timer_read_counter(); | ||
217 | } | ||
218 | |||
219 | static struct clocksource clocksource_counter = { | ||
220 | .name = "arch_sys_counter", | ||
221 | .rating = 400, | ||
222 | .read = arch_counter_read, | ||
223 | .mask = CLOCKSOURCE_MASK(56), | ||
224 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, | ||
225 | }; | ||
226 | |||
227 | static struct cyclecounter cyclecounter = { | ||
228 | .read = arch_counter_read_cc, | ||
229 | .mask = CLOCKSOURCE_MASK(56), | ||
230 | }; | ||
231 | |||
232 | static struct timecounter timecounter; | ||
233 | |||
234 | struct timecounter *arch_timer_get_timecounter(void) | ||
235 | { | ||
236 | return &timecounter; | ||
237 | } | ||
238 | |||
239 | static void __cpuinit arch_timer_stop(struct clock_event_device *clk) | ||
240 | { | ||
241 | pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n", | ||
242 | clk->irq, smp_processor_id()); | ||
243 | |||
244 | if (arch_timer_use_virtual) | ||
245 | disable_percpu_irq(arch_timer_ppi[VIRT_PPI]); | ||
246 | else { | ||
247 | disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]); | ||
248 | if (arch_timer_ppi[PHYS_NONSECURE_PPI]) | ||
249 | disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]); | ||
250 | } | ||
251 | |||
252 | clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk); | ||
253 | } | ||
254 | |||
255 | static int __cpuinit arch_timer_cpu_notify(struct notifier_block *self, | ||
256 | unsigned long action, void *hcpu) | ||
257 | { | ||
258 | struct clock_event_device *evt = this_cpu_ptr(arch_timer_evt); | ||
259 | |||
260 | switch (action & ~CPU_TASKS_FROZEN) { | ||
261 | case CPU_STARTING: | ||
262 | arch_timer_setup(evt); | ||
263 | break; | ||
264 | case CPU_DYING: | ||
265 | arch_timer_stop(evt); | ||
266 | break; | ||
267 | } | ||
268 | |||
269 | return NOTIFY_OK; | ||
270 | } | ||
271 | |||
272 | static struct notifier_block arch_timer_cpu_nb __cpuinitdata = { | ||
273 | .notifier_call = arch_timer_cpu_notify, | ||
274 | }; | ||
275 | 30 | ||
276 | static int __init arch_timer_register(void) | 31 | static void __init arch_timer_delay_timer_register(void) |
277 | { | 32 | { |
278 | int err; | ||
279 | int ppi; | ||
280 | |||
281 | err = arch_timer_available(); | ||
282 | if (err) | ||
283 | goto out; | ||
284 | |||
285 | arch_timer_evt = alloc_percpu(struct clock_event_device); | ||
286 | if (!arch_timer_evt) { | ||
287 | err = -ENOMEM; | ||
288 | goto out; | ||
289 | } | ||
290 | |||
291 | clocksource_register_hz(&clocksource_counter, arch_timer_rate); | ||
292 | cyclecounter.mult = clocksource_counter.mult; | ||
293 | cyclecounter.shift = clocksource_counter.shift; | ||
294 | timecounter_init(&timecounter, &cyclecounter, | ||
295 | arch_counter_get_cntpct()); | ||
296 | |||
297 | if (arch_timer_use_virtual) { | ||
298 | ppi = arch_timer_ppi[VIRT_PPI]; | ||
299 | err = request_percpu_irq(ppi, arch_timer_handler_virt, | ||
300 | "arch_timer", arch_timer_evt); | ||
301 | } else { | ||
302 | ppi = arch_timer_ppi[PHYS_SECURE_PPI]; | ||
303 | err = request_percpu_irq(ppi, arch_timer_handler_phys, | ||
304 | "arch_timer", arch_timer_evt); | ||
305 | if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) { | ||
306 | ppi = arch_timer_ppi[PHYS_NONSECURE_PPI]; | ||
307 | err = request_percpu_irq(ppi, arch_timer_handler_phys, | ||
308 | "arch_timer", arch_timer_evt); | ||
309 | if (err) | ||
310 | free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], | ||
311 | arch_timer_evt); | ||
312 | } | ||
313 | } | ||
314 | |||
315 | if (err) { | ||
316 | pr_err("arch_timer: can't register interrupt %d (%d)\n", | ||
317 | ppi, err); | ||
318 | goto out_free; | ||
319 | } | ||
320 | |||
321 | err = register_cpu_notifier(&arch_timer_cpu_nb); | ||
322 | if (err) | ||
323 | goto out_free_irq; | ||
324 | |||
325 | /* Immediately configure the timer on the boot CPU */ | ||
326 | arch_timer_setup(this_cpu_ptr(arch_timer_evt)); | ||
327 | |||
328 | /* Use the architected timer for the delay loop. */ | 33 | /* Use the architected timer for the delay loop. */ |
329 | arch_delay_timer.read_current_timer = &arch_timer_read_current_timer; | 34 | arch_delay_timer.read_current_timer = arch_timer_read_counter_long; |
330 | arch_delay_timer.freq = arch_timer_rate; | 35 | arch_delay_timer.freq = arch_timer_get_rate(); |
331 | register_current_timer_delay(&arch_delay_timer); | 36 | register_current_timer_delay(&arch_delay_timer); |
332 | return 0; | ||
333 | |||
334 | out_free_irq: | ||
335 | if (arch_timer_use_virtual) | ||
336 | free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt); | ||
337 | else { | ||
338 | free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], | ||
339 | arch_timer_evt); | ||
340 | if (arch_timer_ppi[PHYS_NONSECURE_PPI]) | ||
341 | free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], | ||
342 | arch_timer_evt); | ||
343 | } | ||
344 | |||
345 | out_free: | ||
346 | free_percpu(arch_timer_evt); | ||
347 | out: | ||
348 | return err; | ||
349 | } | 37 | } |
350 | 38 | ||
351 | static const struct of_device_id arch_timer_of_match[] __initconst = { | ||
352 | { .compatible = "arm,armv7-timer", }, | ||
353 | {}, | ||
354 | }; | ||
355 | |||
356 | int __init arch_timer_of_register(void) | 39 | int __init arch_timer_of_register(void) |
357 | { | 40 | { |
358 | struct device_node *np; | 41 | int ret; |
359 | u32 freq; | ||
360 | int i; | ||
361 | |||
362 | np = of_find_matching_node(NULL, arch_timer_of_match); | ||
363 | if (!np) { | ||
364 | pr_err("arch_timer: can't find DT node\n"); | ||
365 | return -ENODEV; | ||
366 | } | ||
367 | 42 | ||
368 | /* Try to determine the frequency from the device tree or CNTFRQ */ | 43 | ret = arch_timer_init(); |
369 | if (!of_property_read_u32(np, "clock-frequency", &freq)) | 44 | if (ret) |
370 | arch_timer_rate = freq; | 45 | return ret; |
371 | 46 | ||
372 | for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++) | 47 | arch_timer_delay_timer_register(); |
373 | arch_timer_ppi[i] = irq_of_parse_and_map(np, i); | ||
374 | 48 | ||
375 | of_node_put(np); | 49 | return 0; |
376 | |||
377 | /* | ||
378 | * If no interrupt provided for virtual timer, we'll have to | ||
379 | * stick to the physical timer. It'd better be accessible... | ||
380 | */ | ||
381 | if (!arch_timer_ppi[VIRT_PPI]) { | ||
382 | arch_timer_use_virtual = false; | ||
383 | |||
384 | if (!arch_timer_ppi[PHYS_SECURE_PPI] || | ||
385 | !arch_timer_ppi[PHYS_NONSECURE_PPI]) { | ||
386 | pr_warn("arch_timer: No interrupt available, giving up\n"); | ||
387 | return -EINVAL; | ||
388 | } | ||
389 | } | ||
390 | |||
391 | if (arch_timer_use_virtual) | ||
392 | arch_timer_read_counter = arch_counter_get_cntvct; | ||
393 | else | ||
394 | arch_timer_read_counter = arch_counter_get_cntpct; | ||
395 | |||
396 | return arch_timer_register(); | ||
397 | } | 50 | } |
398 | 51 | ||
399 | int __init arch_timer_sched_clock_init(void) | 52 | int __init arch_timer_sched_clock_init(void) |
400 | { | 53 | { |
401 | int err; | 54 | if (arch_timer_get_rate() == 0) |
402 | 55 | return -ENXIO; | |
403 | err = arch_timer_available(); | ||
404 | if (err) | ||
405 | return err; | ||
406 | 56 | ||
407 | setup_sched_clock(arch_timer_read_counter32, | 57 | setup_sched_clock(arch_timer_read_counter_u32, |
408 | 32, arch_timer_rate); | 58 | 32, arch_timer_get_rate()); |
409 | return 0; | 59 | return 0; |
410 | } | 60 | } |