diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/alpha/mm |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/alpha/mm')
-rw-r--r-- | arch/alpha/mm/Makefile | 9 | ||||
-rw-r--r-- | arch/alpha/mm/extable.c | 34 | ||||
-rw-r--r-- | arch/alpha/mm/fault.c | 247 | ||||
-rw-r--r-- | arch/alpha/mm/init.c | 382 | ||||
-rw-r--r-- | arch/alpha/mm/numa.c | 395 | ||||
-rw-r--r-- | arch/alpha/mm/remap.c | 90 |
6 files changed, 1157 insertions, 0 deletions
diff --git a/arch/alpha/mm/Makefile b/arch/alpha/mm/Makefile new file mode 100644 index 000000000000..6edd9a09ea4f --- /dev/null +++ b/arch/alpha/mm/Makefile | |||
@@ -0,0 +1,9 @@ | |||
1 | # | ||
2 | # Makefile for the linux alpha-specific parts of the memory manager. | ||
3 | # | ||
4 | |||
5 | EXTRA_CFLAGS := -Werror | ||
6 | |||
7 | obj-y := init.o fault.o extable.o remap.o | ||
8 | |||
9 | obj-$(CONFIG_DISCONTIGMEM) += numa.o | ||
diff --git a/arch/alpha/mm/extable.c b/arch/alpha/mm/extable.c new file mode 100644 index 000000000000..c3849baebd57 --- /dev/null +++ b/arch/alpha/mm/extable.c | |||
@@ -0,0 +1,34 @@ | |||
1 | /* | ||
2 | * linux/arch/alpha/mm/extable.c | ||
3 | */ | ||
4 | |||
5 | #include <linux/config.h> | ||
6 | #include <linux/module.h> | ||
7 | #include <asm/uaccess.h> | ||
8 | |||
9 | void sort_extable(struct exception_table_entry *start, | ||
10 | struct exception_table_entry *finish) | ||
11 | { | ||
12 | } | ||
13 | |||
14 | const struct exception_table_entry * | ||
15 | search_extable(const struct exception_table_entry *first, | ||
16 | const struct exception_table_entry *last, | ||
17 | unsigned long value) | ||
18 | { | ||
19 | while (first <= last) { | ||
20 | const struct exception_table_entry *mid; | ||
21 | unsigned long mid_value; | ||
22 | |||
23 | mid = (last - first) / 2 + first; | ||
24 | mid_value = (unsigned long)&mid->insn + mid->insn; | ||
25 | if (mid_value == value) | ||
26 | return mid; | ||
27 | else if (mid_value < value) | ||
28 | first = mid+1; | ||
29 | else | ||
30 | last = mid-1; | ||
31 | } | ||
32 | |||
33 | return NULL; | ||
34 | } | ||
diff --git a/arch/alpha/mm/fault.c b/arch/alpha/mm/fault.c new file mode 100644 index 000000000000..64ace5a9cd3d --- /dev/null +++ b/arch/alpha/mm/fault.c | |||
@@ -0,0 +1,247 @@ | |||
1 | /* | ||
2 | * linux/arch/alpha/mm/fault.c | ||
3 | * | ||
4 | * Copyright (C) 1995 Linus Torvalds | ||
5 | */ | ||
6 | |||
7 | #include <linux/config.h> | ||
8 | #include <linux/sched.h> | ||
9 | #include <linux/kernel.h> | ||
10 | #include <linux/mm.h> | ||
11 | #include <asm/io.h> | ||
12 | |||
13 | #define __EXTERN_INLINE inline | ||
14 | #include <asm/mmu_context.h> | ||
15 | #include <asm/tlbflush.h> | ||
16 | #undef __EXTERN_INLINE | ||
17 | |||
18 | #include <linux/signal.h> | ||
19 | #include <linux/errno.h> | ||
20 | #include <linux/string.h> | ||
21 | #include <linux/types.h> | ||
22 | #include <linux/ptrace.h> | ||
23 | #include <linux/mman.h> | ||
24 | #include <linux/smp.h> | ||
25 | #include <linux/smp_lock.h> | ||
26 | #include <linux/interrupt.h> | ||
27 | #include <linux/module.h> | ||
28 | |||
29 | #include <asm/system.h> | ||
30 | #include <asm/uaccess.h> | ||
31 | |||
32 | extern void die_if_kernel(char *,struct pt_regs *,long, unsigned long *); | ||
33 | |||
34 | |||
35 | /* | ||
36 | * Force a new ASN for a task. | ||
37 | */ | ||
38 | |||
39 | #ifndef CONFIG_SMP | ||
40 | unsigned long last_asn = ASN_FIRST_VERSION; | ||
41 | #endif | ||
42 | |||
43 | void | ||
44 | __load_new_mm_context(struct mm_struct *next_mm) | ||
45 | { | ||
46 | unsigned long mmc; | ||
47 | struct pcb_struct *pcb; | ||
48 | |||
49 | mmc = __get_new_mm_context(next_mm, smp_processor_id()); | ||
50 | next_mm->context[smp_processor_id()] = mmc; | ||
51 | |||
52 | pcb = ¤t_thread_info()->pcb; | ||
53 | pcb->asn = mmc & HARDWARE_ASN_MASK; | ||
54 | pcb->ptbr = ((unsigned long) next_mm->pgd - IDENT_ADDR) >> PAGE_SHIFT; | ||
55 | |||
56 | __reload_thread(pcb); | ||
57 | } | ||
58 | |||
59 | |||
60 | /* | ||
61 | * This routine handles page faults. It determines the address, | ||
62 | * and the problem, and then passes it off to handle_mm_fault(). | ||
63 | * | ||
64 | * mmcsr: | ||
65 | * 0 = translation not valid | ||
66 | * 1 = access violation | ||
67 | * 2 = fault-on-read | ||
68 | * 3 = fault-on-execute | ||
69 | * 4 = fault-on-write | ||
70 | * | ||
71 | * cause: | ||
72 | * -1 = instruction fetch | ||
73 | * 0 = load | ||
74 | * 1 = store | ||
75 | * | ||
76 | * Registers $9 through $15 are saved in a block just prior to `regs' and | ||
77 | * are saved and restored around the call to allow exception code to | ||
78 | * modify them. | ||
79 | */ | ||
80 | |||
81 | /* Macro for exception fixup code to access integer registers. */ | ||
82 | #define dpf_reg(r) \ | ||
83 | (((unsigned long *)regs)[(r) <= 8 ? (r) : (r) <= 15 ? (r)-16 : \ | ||
84 | (r) <= 18 ? (r)+8 : (r)-10]) | ||
85 | |||
86 | asmlinkage void | ||
87 | do_page_fault(unsigned long address, unsigned long mmcsr, | ||
88 | long cause, struct pt_regs *regs) | ||
89 | { | ||
90 | struct vm_area_struct * vma; | ||
91 | struct mm_struct *mm = current->mm; | ||
92 | const struct exception_table_entry *fixup; | ||
93 | int fault, si_code = SEGV_MAPERR; | ||
94 | siginfo_t info; | ||
95 | |||
96 | /* As of EV6, a load into $31/$f31 is a prefetch, and never faults | ||
97 | (or is suppressed by the PALcode). Support that for older CPUs | ||
98 | by ignoring such an instruction. */ | ||
99 | if (cause == 0) { | ||
100 | unsigned int insn; | ||
101 | __get_user(insn, (unsigned int __user *)regs->pc); | ||
102 | if ((insn >> 21 & 0x1f) == 0x1f && | ||
103 | /* ldq ldl ldt lds ldg ldf ldwu ldbu */ | ||
104 | (1ul << (insn >> 26) & 0x30f00001400ul)) { | ||
105 | regs->pc += 4; | ||
106 | return; | ||
107 | } | ||
108 | } | ||
109 | |||
110 | /* If we're in an interrupt context, or have no user context, | ||
111 | we must not take the fault. */ | ||
112 | if (!mm || in_interrupt()) | ||
113 | goto no_context; | ||
114 | |||
115 | #ifdef CONFIG_ALPHA_LARGE_VMALLOC | ||
116 | if (address >= TASK_SIZE) | ||
117 | goto vmalloc_fault; | ||
118 | #endif | ||
119 | |||
120 | down_read(&mm->mmap_sem); | ||
121 | vma = find_vma(mm, address); | ||
122 | if (!vma) | ||
123 | goto bad_area; | ||
124 | if (vma->vm_start <= address) | ||
125 | goto good_area; | ||
126 | if (!(vma->vm_flags & VM_GROWSDOWN)) | ||
127 | goto bad_area; | ||
128 | if (expand_stack(vma, address)) | ||
129 | goto bad_area; | ||
130 | |||
131 | /* Ok, we have a good vm_area for this memory access, so | ||
132 | we can handle it. */ | ||
133 | good_area: | ||
134 | si_code = SEGV_ACCERR; | ||
135 | if (cause < 0) { | ||
136 | if (!(vma->vm_flags & VM_EXEC)) | ||
137 | goto bad_area; | ||
138 | } else if (!cause) { | ||
139 | /* Allow reads even for write-only mappings */ | ||
140 | if (!(vma->vm_flags & (VM_READ | VM_WRITE))) | ||
141 | goto bad_area; | ||
142 | } else { | ||
143 | if (!(vma->vm_flags & VM_WRITE)) | ||
144 | goto bad_area; | ||
145 | } | ||
146 | |||
147 | survive: | ||
148 | /* If for any reason at all we couldn't handle the fault, | ||
149 | make sure we exit gracefully rather than endlessly redo | ||
150 | the fault. */ | ||
151 | fault = handle_mm_fault(mm, vma, address, cause > 0); | ||
152 | up_read(&mm->mmap_sem); | ||
153 | |||
154 | switch (fault) { | ||
155 | case VM_FAULT_MINOR: | ||
156 | current->min_flt++; | ||
157 | break; | ||
158 | case VM_FAULT_MAJOR: | ||
159 | current->maj_flt++; | ||
160 | break; | ||
161 | case VM_FAULT_SIGBUS: | ||
162 | goto do_sigbus; | ||
163 | case VM_FAULT_OOM: | ||
164 | goto out_of_memory; | ||
165 | default: | ||
166 | BUG(); | ||
167 | } | ||
168 | return; | ||
169 | |||
170 | /* Something tried to access memory that isn't in our memory map. | ||
171 | Fix it, but check if it's kernel or user first. */ | ||
172 | bad_area: | ||
173 | up_read(&mm->mmap_sem); | ||
174 | |||
175 | if (user_mode(regs)) | ||
176 | goto do_sigsegv; | ||
177 | |||
178 | no_context: | ||
179 | /* Are we prepared to handle this fault as an exception? */ | ||
180 | if ((fixup = search_exception_tables(regs->pc)) != 0) { | ||
181 | unsigned long newpc; | ||
182 | newpc = fixup_exception(dpf_reg, fixup, regs->pc); | ||
183 | regs->pc = newpc; | ||
184 | return; | ||
185 | } | ||
186 | |||
187 | /* Oops. The kernel tried to access some bad page. We'll have to | ||
188 | terminate things with extreme prejudice. */ | ||
189 | printk(KERN_ALERT "Unable to handle kernel paging request at " | ||
190 | "virtual address %016lx\n", address); | ||
191 | die_if_kernel("Oops", regs, cause, (unsigned long*)regs - 16); | ||
192 | do_exit(SIGKILL); | ||
193 | |||
194 | /* We ran out of memory, or some other thing happened to us that | ||
195 | made us unable to handle the page fault gracefully. */ | ||
196 | out_of_memory: | ||
197 | if (current->pid == 1) { | ||
198 | yield(); | ||
199 | down_read(&mm->mmap_sem); | ||
200 | goto survive; | ||
201 | } | ||
202 | printk(KERN_ALERT "VM: killing process %s(%d)\n", | ||
203 | current->comm, current->pid); | ||
204 | if (!user_mode(regs)) | ||
205 | goto no_context; | ||
206 | do_exit(SIGKILL); | ||
207 | |||
208 | do_sigbus: | ||
209 | /* Send a sigbus, regardless of whether we were in kernel | ||
210 | or user mode. */ | ||
211 | info.si_signo = SIGBUS; | ||
212 | info.si_errno = 0; | ||
213 | info.si_code = BUS_ADRERR; | ||
214 | info.si_addr = (void __user *) address; | ||
215 | force_sig_info(SIGBUS, &info, current); | ||
216 | if (!user_mode(regs)) | ||
217 | goto no_context; | ||
218 | return; | ||
219 | |||
220 | do_sigsegv: | ||
221 | info.si_signo = SIGSEGV; | ||
222 | info.si_errno = 0; | ||
223 | info.si_code = si_code; | ||
224 | info.si_addr = (void __user *) address; | ||
225 | force_sig_info(SIGSEGV, &info, current); | ||
226 | return; | ||
227 | |||
228 | #ifdef CONFIG_ALPHA_LARGE_VMALLOC | ||
229 | vmalloc_fault: | ||
230 | if (user_mode(regs)) | ||
231 | goto do_sigsegv; | ||
232 | else { | ||
233 | /* Synchronize this task's top level page-table | ||
234 | with the "reference" page table from init. */ | ||
235 | long index = pgd_index(address); | ||
236 | pgd_t *pgd, *pgd_k; | ||
237 | |||
238 | pgd = current->active_mm->pgd + index; | ||
239 | pgd_k = swapper_pg_dir + index; | ||
240 | if (!pgd_present(*pgd) && pgd_present(*pgd_k)) { | ||
241 | pgd_val(*pgd) = pgd_val(*pgd_k); | ||
242 | return; | ||
243 | } | ||
244 | goto no_context; | ||
245 | } | ||
246 | #endif | ||
247 | } | ||
diff --git a/arch/alpha/mm/init.c b/arch/alpha/mm/init.c new file mode 100644 index 000000000000..90752f6d8867 --- /dev/null +++ b/arch/alpha/mm/init.c | |||
@@ -0,0 +1,382 @@ | |||
1 | /* | ||
2 | * linux/arch/alpha/mm/init.c | ||
3 | * | ||
4 | * Copyright (C) 1995 Linus Torvalds | ||
5 | */ | ||
6 | |||
7 | /* 2.3.x zone allocator, 1999 Andrea Arcangeli <andrea@suse.de> */ | ||
8 | |||
9 | #include <linux/config.h> | ||
10 | #include <linux/signal.h> | ||
11 | #include <linux/sched.h> | ||
12 | #include <linux/kernel.h> | ||
13 | #include <linux/errno.h> | ||
14 | #include <linux/string.h> | ||
15 | #include <linux/types.h> | ||
16 | #include <linux/ptrace.h> | ||
17 | #include <linux/mman.h> | ||
18 | #include <linux/mm.h> | ||
19 | #include <linux/swap.h> | ||
20 | #include <linux/init.h> | ||
21 | #include <linux/bootmem.h> /* max_low_pfn */ | ||
22 | #include <linux/vmalloc.h> | ||
23 | |||
24 | #include <asm/system.h> | ||
25 | #include <asm/uaccess.h> | ||
26 | #include <asm/pgtable.h> | ||
27 | #include <asm/pgalloc.h> | ||
28 | #include <asm/hwrpb.h> | ||
29 | #include <asm/dma.h> | ||
30 | #include <asm/mmu_context.h> | ||
31 | #include <asm/console.h> | ||
32 | #include <asm/tlb.h> | ||
33 | |||
34 | DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); | ||
35 | |||
36 | extern void die_if_kernel(char *,struct pt_regs *,long); | ||
37 | |||
38 | static struct pcb_struct original_pcb; | ||
39 | |||
40 | pgd_t * | ||
41 | pgd_alloc(struct mm_struct *mm) | ||
42 | { | ||
43 | pgd_t *ret, *init; | ||
44 | |||
45 | ret = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); | ||
46 | init = pgd_offset(&init_mm, 0UL); | ||
47 | if (ret) { | ||
48 | #ifdef CONFIG_ALPHA_LARGE_VMALLOC | ||
49 | memcpy (ret + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, | ||
50 | (PTRS_PER_PGD - USER_PTRS_PER_PGD - 1)*sizeof(pgd_t)); | ||
51 | #else | ||
52 | pgd_val(ret[PTRS_PER_PGD-2]) = pgd_val(init[PTRS_PER_PGD-2]); | ||
53 | #endif | ||
54 | |||
55 | /* The last PGD entry is the VPTB self-map. */ | ||
56 | pgd_val(ret[PTRS_PER_PGD-1]) | ||
57 | = pte_val(mk_pte(virt_to_page(ret), PAGE_KERNEL)); | ||
58 | } | ||
59 | return ret; | ||
60 | } | ||
61 | |||
62 | pte_t * | ||
63 | pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) | ||
64 | { | ||
65 | pte_t *pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO); | ||
66 | return pte; | ||
67 | } | ||
68 | |||
69 | |||
70 | /* | ||
71 | * BAD_PAGE is the page that is used for page faults when linux | ||
72 | * is out-of-memory. Older versions of linux just did a | ||
73 | * do_exit(), but using this instead means there is less risk | ||
74 | * for a process dying in kernel mode, possibly leaving an inode | ||
75 | * unused etc.. | ||
76 | * | ||
77 | * BAD_PAGETABLE is the accompanying page-table: it is initialized | ||
78 | * to point to BAD_PAGE entries. | ||
79 | * | ||
80 | * ZERO_PAGE is a special page that is used for zero-initialized | ||
81 | * data and COW. | ||
82 | */ | ||
83 | pmd_t * | ||
84 | __bad_pagetable(void) | ||
85 | { | ||
86 | memset((void *) EMPTY_PGT, 0, PAGE_SIZE); | ||
87 | return (pmd_t *) EMPTY_PGT; | ||
88 | } | ||
89 | |||
90 | pte_t | ||
91 | __bad_page(void) | ||
92 | { | ||
93 | memset((void *) EMPTY_PGE, 0, PAGE_SIZE); | ||
94 | return pte_mkdirty(mk_pte(virt_to_page(EMPTY_PGE), PAGE_SHARED)); | ||
95 | } | ||
96 | |||
97 | #ifndef CONFIG_DISCONTIGMEM | ||
98 | void | ||
99 | show_mem(void) | ||
100 | { | ||
101 | long i,free = 0,total = 0,reserved = 0; | ||
102 | long shared = 0, cached = 0; | ||
103 | |||
104 | printk("\nMem-info:\n"); | ||
105 | show_free_areas(); | ||
106 | printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); | ||
107 | i = max_mapnr; | ||
108 | while (i-- > 0) { | ||
109 | total++; | ||
110 | if (PageReserved(mem_map+i)) | ||
111 | reserved++; | ||
112 | else if (PageSwapCache(mem_map+i)) | ||
113 | cached++; | ||
114 | else if (!page_count(mem_map+i)) | ||
115 | free++; | ||
116 | else | ||
117 | shared += page_count(mem_map + i) - 1; | ||
118 | } | ||
119 | printk("%ld pages of RAM\n",total); | ||
120 | printk("%ld free pages\n",free); | ||
121 | printk("%ld reserved pages\n",reserved); | ||
122 | printk("%ld pages shared\n",shared); | ||
123 | printk("%ld pages swap cached\n",cached); | ||
124 | } | ||
125 | #endif | ||
126 | |||
127 | static inline unsigned long | ||
128 | load_PCB(struct pcb_struct *pcb) | ||
129 | { | ||
130 | register unsigned long sp __asm__("$30"); | ||
131 | pcb->ksp = sp; | ||
132 | return __reload_thread(pcb); | ||
133 | } | ||
134 | |||
135 | /* Set up initial PCB, VPTB, and other such nicities. */ | ||
136 | |||
137 | static inline void | ||
138 | switch_to_system_map(void) | ||
139 | { | ||
140 | unsigned long newptbr; | ||
141 | unsigned long original_pcb_ptr; | ||
142 | |||
143 | /* Initialize the kernel's page tables. Linux puts the vptb in | ||
144 | the last slot of the L1 page table. */ | ||
145 | memset(swapper_pg_dir, 0, PAGE_SIZE); | ||
146 | newptbr = ((unsigned long) swapper_pg_dir - PAGE_OFFSET) >> PAGE_SHIFT; | ||
147 | pgd_val(swapper_pg_dir[1023]) = | ||
148 | (newptbr << 32) | pgprot_val(PAGE_KERNEL); | ||
149 | |||
150 | /* Set the vptb. This is often done by the bootloader, but | ||
151 | shouldn't be required. */ | ||
152 | if (hwrpb->vptb != 0xfffffffe00000000UL) { | ||
153 | wrvptptr(0xfffffffe00000000UL); | ||
154 | hwrpb->vptb = 0xfffffffe00000000UL; | ||
155 | hwrpb_update_checksum(hwrpb); | ||
156 | } | ||
157 | |||
158 | /* Also set up the real kernel PCB while we're at it. */ | ||
159 | init_thread_info.pcb.ptbr = newptbr; | ||
160 | init_thread_info.pcb.flags = 1; /* set FEN, clear everything else */ | ||
161 | original_pcb_ptr = load_PCB(&init_thread_info.pcb); | ||
162 | tbia(); | ||
163 | |||
164 | /* Save off the contents of the original PCB so that we can | ||
165 | restore the original console's page tables for a clean reboot. | ||
166 | |||
167 | Note that the PCB is supposed to be a physical address, but | ||
168 | since KSEG values also happen to work, folks get confused. | ||
169 | Check this here. */ | ||
170 | |||
171 | if (original_pcb_ptr < PAGE_OFFSET) { | ||
172 | original_pcb_ptr = (unsigned long) | ||
173 | phys_to_virt(original_pcb_ptr); | ||
174 | } | ||
175 | original_pcb = *(struct pcb_struct *) original_pcb_ptr; | ||
176 | } | ||
177 | |||
178 | int callback_init_done; | ||
179 | |||
180 | void * __init | ||
181 | callback_init(void * kernel_end) | ||
182 | { | ||
183 | struct crb_struct * crb; | ||
184 | pgd_t *pgd; | ||
185 | pmd_t *pmd; | ||
186 | void *two_pages; | ||
187 | |||
188 | /* Starting at the HWRPB, locate the CRB. */ | ||
189 | crb = (struct crb_struct *)((char *)hwrpb + hwrpb->crb_offset); | ||
190 | |||
191 | if (alpha_using_srm) { | ||
192 | /* Tell the console whither it is to be remapped. */ | ||
193 | if (srm_fixup(VMALLOC_START, (unsigned long)hwrpb)) | ||
194 | __halt(); /* "We're boned." --Bender */ | ||
195 | |||
196 | /* Edit the procedure descriptors for DISPATCH and FIXUP. */ | ||
197 | crb->dispatch_va = (struct procdesc_struct *) | ||
198 | (VMALLOC_START + (unsigned long)crb->dispatch_va | ||
199 | - crb->map[0].va); | ||
200 | crb->fixup_va = (struct procdesc_struct *) | ||
201 | (VMALLOC_START + (unsigned long)crb->fixup_va | ||
202 | - crb->map[0].va); | ||
203 | } | ||
204 | |||
205 | switch_to_system_map(); | ||
206 | |||
207 | /* Allocate one PGD and one PMD. In the case of SRM, we'll need | ||
208 | these to actually remap the console. There is an assumption | ||
209 | here that only one of each is needed, and this allows for 8MB. | ||
210 | On systems with larger consoles, additional pages will be | ||
211 | allocated as needed during the mapping process. | ||
212 | |||
213 | In the case of not SRM, but not CONFIG_ALPHA_LARGE_VMALLOC, | ||
214 | we need to allocate the PGD we use for vmalloc before we start | ||
215 | forking other tasks. */ | ||
216 | |||
217 | two_pages = (void *) | ||
218 | (((unsigned long)kernel_end + ~PAGE_MASK) & PAGE_MASK); | ||
219 | kernel_end = two_pages + 2*PAGE_SIZE; | ||
220 | memset(two_pages, 0, 2*PAGE_SIZE); | ||
221 | |||
222 | pgd = pgd_offset_k(VMALLOC_START); | ||
223 | pgd_set(pgd, (pmd_t *)two_pages); | ||
224 | pmd = pmd_offset(pgd, VMALLOC_START); | ||
225 | pmd_set(pmd, (pte_t *)(two_pages + PAGE_SIZE)); | ||
226 | |||
227 | if (alpha_using_srm) { | ||
228 | static struct vm_struct console_remap_vm; | ||
229 | unsigned long vaddr = VMALLOC_START; | ||
230 | unsigned long i, j; | ||
231 | |||
232 | /* Set up the third level PTEs and update the virtual | ||
233 | addresses of the CRB entries. */ | ||
234 | for (i = 0; i < crb->map_entries; ++i) { | ||
235 | unsigned long pfn = crb->map[i].pa >> PAGE_SHIFT; | ||
236 | crb->map[i].va = vaddr; | ||
237 | for (j = 0; j < crb->map[i].count; ++j) { | ||
238 | /* Newer console's (especially on larger | ||
239 | systems) may require more pages of | ||
240 | PTEs. Grab additional pages as needed. */ | ||
241 | if (pmd != pmd_offset(pgd, vaddr)) { | ||
242 | memset(kernel_end, 0, PAGE_SIZE); | ||
243 | pmd = pmd_offset(pgd, vaddr); | ||
244 | pmd_set(pmd, (pte_t *)kernel_end); | ||
245 | kernel_end += PAGE_SIZE; | ||
246 | } | ||
247 | set_pte(pte_offset_kernel(pmd, vaddr), | ||
248 | pfn_pte(pfn, PAGE_KERNEL)); | ||
249 | pfn++; | ||
250 | vaddr += PAGE_SIZE; | ||
251 | } | ||
252 | } | ||
253 | |||
254 | /* Let vmalloc know that we've allocated some space. */ | ||
255 | console_remap_vm.flags = VM_ALLOC; | ||
256 | console_remap_vm.addr = (void *) VMALLOC_START; | ||
257 | console_remap_vm.size = vaddr - VMALLOC_START; | ||
258 | vmlist = &console_remap_vm; | ||
259 | } | ||
260 | |||
261 | callback_init_done = 1; | ||
262 | return kernel_end; | ||
263 | } | ||
264 | |||
265 | |||
266 | #ifndef CONFIG_DISCONTIGMEM | ||
267 | /* | ||
268 | * paging_init() sets up the memory map. | ||
269 | */ | ||
270 | void | ||
271 | paging_init(void) | ||
272 | { | ||
273 | unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0}; | ||
274 | unsigned long dma_pfn, high_pfn; | ||
275 | |||
276 | dma_pfn = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT; | ||
277 | high_pfn = max_pfn = max_low_pfn; | ||
278 | |||
279 | if (dma_pfn >= high_pfn) | ||
280 | zones_size[ZONE_DMA] = high_pfn; | ||
281 | else { | ||
282 | zones_size[ZONE_DMA] = dma_pfn; | ||
283 | zones_size[ZONE_NORMAL] = high_pfn - dma_pfn; | ||
284 | } | ||
285 | |||
286 | /* Initialize mem_map[]. */ | ||
287 | free_area_init(zones_size); | ||
288 | |||
289 | /* Initialize the kernel's ZERO_PGE. */ | ||
290 | memset((void *)ZERO_PGE, 0, PAGE_SIZE); | ||
291 | } | ||
292 | #endif /* CONFIG_DISCONTIGMEM */ | ||
293 | |||
294 | #if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_SRM) | ||
295 | void | ||
296 | srm_paging_stop (void) | ||
297 | { | ||
298 | /* Move the vptb back to where the SRM console expects it. */ | ||
299 | swapper_pg_dir[1] = swapper_pg_dir[1023]; | ||
300 | tbia(); | ||
301 | wrvptptr(0x200000000UL); | ||
302 | hwrpb->vptb = 0x200000000UL; | ||
303 | hwrpb_update_checksum(hwrpb); | ||
304 | |||
305 | /* Reload the page tables that the console had in use. */ | ||
306 | load_PCB(&original_pcb); | ||
307 | tbia(); | ||
308 | } | ||
309 | #endif | ||
310 | |||
311 | #ifndef CONFIG_DISCONTIGMEM | ||
312 | static void __init | ||
313 | printk_memory_info(void) | ||
314 | { | ||
315 | unsigned long codesize, reservedpages, datasize, initsize, tmp; | ||
316 | extern int page_is_ram(unsigned long) __init; | ||
317 | extern char _text, _etext, _data, _edata; | ||
318 | extern char __init_begin, __init_end; | ||
319 | |||
320 | /* printk all informations */ | ||
321 | reservedpages = 0; | ||
322 | for (tmp = 0; tmp < max_low_pfn; tmp++) | ||
323 | /* | ||
324 | * Only count reserved RAM pages | ||
325 | */ | ||
326 | if (page_is_ram(tmp) && PageReserved(mem_map+tmp)) | ||
327 | reservedpages++; | ||
328 | |||
329 | codesize = (unsigned long) &_etext - (unsigned long) &_text; | ||
330 | datasize = (unsigned long) &_edata - (unsigned long) &_data; | ||
331 | initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; | ||
332 | |||
333 | printk("Memory: %luk/%luk available (%luk kernel code, %luk reserved, %luk data, %luk init)\n", | ||
334 | (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), | ||
335 | max_mapnr << (PAGE_SHIFT-10), | ||
336 | codesize >> 10, | ||
337 | reservedpages << (PAGE_SHIFT-10), | ||
338 | datasize >> 10, | ||
339 | initsize >> 10); | ||
340 | } | ||
341 | |||
342 | void __init | ||
343 | mem_init(void) | ||
344 | { | ||
345 | max_mapnr = num_physpages = max_low_pfn; | ||
346 | totalram_pages += free_all_bootmem(); | ||
347 | high_memory = (void *) __va(max_low_pfn * PAGE_SIZE); | ||
348 | |||
349 | printk_memory_info(); | ||
350 | } | ||
351 | #endif /* CONFIG_DISCONTIGMEM */ | ||
352 | |||
353 | void | ||
354 | free_reserved_mem(void *start, void *end) | ||
355 | { | ||
356 | void *__start = start; | ||
357 | for (; __start < end; __start += PAGE_SIZE) { | ||
358 | ClearPageReserved(virt_to_page(__start)); | ||
359 | set_page_count(virt_to_page(__start), 1); | ||
360 | free_page((long)__start); | ||
361 | totalram_pages++; | ||
362 | } | ||
363 | } | ||
364 | |||
365 | void | ||
366 | free_initmem(void) | ||
367 | { | ||
368 | extern char __init_begin, __init_end; | ||
369 | |||
370 | free_reserved_mem(&__init_begin, &__init_end); | ||
371 | printk ("Freeing unused kernel memory: %ldk freed\n", | ||
372 | (&__init_end - &__init_begin) >> 10); | ||
373 | } | ||
374 | |||
375 | #ifdef CONFIG_BLK_DEV_INITRD | ||
376 | void | ||
377 | free_initrd_mem(unsigned long start, unsigned long end) | ||
378 | { | ||
379 | free_reserved_mem((void *)start, (void *)end); | ||
380 | printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10); | ||
381 | } | ||
382 | #endif | ||
diff --git a/arch/alpha/mm/numa.c b/arch/alpha/mm/numa.c new file mode 100644 index 000000000000..ba81c4422aaf --- /dev/null +++ b/arch/alpha/mm/numa.c | |||
@@ -0,0 +1,395 @@ | |||
1 | /* | ||
2 | * linux/arch/alpha/mm/numa.c | ||
3 | * | ||
4 | * DISCONTIGMEM NUMA alpha support. | ||
5 | * | ||
6 | * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE | ||
7 | */ | ||
8 | |||
9 | #include <linux/config.h> | ||
10 | #include <linux/types.h> | ||
11 | #include <linux/kernel.h> | ||
12 | #include <linux/mm.h> | ||
13 | #include <linux/bootmem.h> | ||
14 | #include <linux/swap.h> | ||
15 | #include <linux/initrd.h> | ||
16 | |||
17 | #include <asm/hwrpb.h> | ||
18 | #include <asm/pgalloc.h> | ||
19 | |||
20 | pg_data_t node_data[MAX_NUMNODES]; | ||
21 | bootmem_data_t node_bdata[MAX_NUMNODES]; | ||
22 | |||
23 | #undef DEBUG_DISCONTIG | ||
24 | #ifdef DEBUG_DISCONTIG | ||
25 | #define DBGDCONT(args...) printk(args) | ||
26 | #else | ||
27 | #define DBGDCONT(args...) | ||
28 | #endif | ||
29 | |||
30 | #define PFN_UP(x) (((x) + PAGE_SIZE-1) >> PAGE_SHIFT) | ||
31 | #define PFN_DOWN(x) ((x) >> PAGE_SHIFT) | ||
32 | #define PFN_PHYS(x) ((x) << PAGE_SHIFT) | ||
33 | #define for_each_mem_cluster(memdesc, cluster, i) \ | ||
34 | for ((cluster) = (memdesc)->cluster, (i) = 0; \ | ||
35 | (i) < (memdesc)->numclusters; (i)++, (cluster)++) | ||
36 | |||
37 | static void __init show_mem_layout(void) | ||
38 | { | ||
39 | struct memclust_struct * cluster; | ||
40 | struct memdesc_struct * memdesc; | ||
41 | int i; | ||
42 | |||
43 | /* Find free clusters, and init and free the bootmem accordingly. */ | ||
44 | memdesc = (struct memdesc_struct *) | ||
45 | (hwrpb->mddt_offset + (unsigned long) hwrpb); | ||
46 | |||
47 | printk("Raw memory layout:\n"); | ||
48 | for_each_mem_cluster(memdesc, cluster, i) { | ||
49 | printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n", | ||
50 | i, cluster->usage, cluster->start_pfn, | ||
51 | cluster->start_pfn + cluster->numpages); | ||
52 | } | ||
53 | } | ||
54 | |||
55 | static void __init | ||
56 | setup_memory_node(int nid, void *kernel_end) | ||
57 | { | ||
58 | extern unsigned long mem_size_limit; | ||
59 | struct memclust_struct * cluster; | ||
60 | struct memdesc_struct * memdesc; | ||
61 | unsigned long start_kernel_pfn, end_kernel_pfn; | ||
62 | unsigned long bootmap_size, bootmap_pages, bootmap_start; | ||
63 | unsigned long start, end; | ||
64 | unsigned long node_pfn_start, node_pfn_end; | ||
65 | unsigned long node_min_pfn, node_max_pfn; | ||
66 | int i; | ||
67 | unsigned long node_datasz = PFN_UP(sizeof(pg_data_t)); | ||
68 | int show_init = 0; | ||
69 | |||
70 | /* Find the bounds of current node */ | ||
71 | node_pfn_start = (node_mem_start(nid)) >> PAGE_SHIFT; | ||
72 | node_pfn_end = node_pfn_start + (node_mem_size(nid) >> PAGE_SHIFT); | ||
73 | |||
74 | /* Find free clusters, and init and free the bootmem accordingly. */ | ||
75 | memdesc = (struct memdesc_struct *) | ||
76 | (hwrpb->mddt_offset + (unsigned long) hwrpb); | ||
77 | |||
78 | /* find the bounds of this node (node_min_pfn/node_max_pfn) */ | ||
79 | node_min_pfn = ~0UL; | ||
80 | node_max_pfn = 0UL; | ||
81 | for_each_mem_cluster(memdesc, cluster, i) { | ||
82 | /* Bit 0 is console/PALcode reserved. Bit 1 is | ||
83 | non-volatile memory -- we might want to mark | ||
84 | this for later. */ | ||
85 | if (cluster->usage & 3) | ||
86 | continue; | ||
87 | |||
88 | start = cluster->start_pfn; | ||
89 | end = start + cluster->numpages; | ||
90 | |||
91 | if (start >= node_pfn_end || end <= node_pfn_start) | ||
92 | continue; | ||
93 | |||
94 | if (!show_init) { | ||
95 | show_init = 1; | ||
96 | printk("Initializing bootmem allocator on Node ID %d\n", nid); | ||
97 | } | ||
98 | printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n", | ||
99 | i, cluster->usage, cluster->start_pfn, | ||
100 | cluster->start_pfn + cluster->numpages); | ||
101 | |||
102 | if (start < node_pfn_start) | ||
103 | start = node_pfn_start; | ||
104 | if (end > node_pfn_end) | ||
105 | end = node_pfn_end; | ||
106 | |||
107 | if (start < node_min_pfn) | ||
108 | node_min_pfn = start; | ||
109 | if (end > node_max_pfn) | ||
110 | node_max_pfn = end; | ||
111 | } | ||
112 | |||
113 | if (mem_size_limit && node_max_pfn > mem_size_limit) { | ||
114 | static int msg_shown = 0; | ||
115 | if (!msg_shown) { | ||
116 | msg_shown = 1; | ||
117 | printk("setup: forcing memory size to %ldK (from %ldK).\n", | ||
118 | mem_size_limit << (PAGE_SHIFT - 10), | ||
119 | node_max_pfn << (PAGE_SHIFT - 10)); | ||
120 | } | ||
121 | node_max_pfn = mem_size_limit; | ||
122 | } | ||
123 | |||
124 | if (node_min_pfn >= node_max_pfn) | ||
125 | return; | ||
126 | |||
127 | /* Update global {min,max}_low_pfn from node information. */ | ||
128 | if (node_min_pfn < min_low_pfn) | ||
129 | min_low_pfn = node_min_pfn; | ||
130 | if (node_max_pfn > max_low_pfn) | ||
131 | max_pfn = max_low_pfn = node_max_pfn; | ||
132 | |||
133 | num_physpages += node_max_pfn - node_min_pfn; | ||
134 | |||
135 | #if 0 /* we'll try this one again in a little while */ | ||
136 | /* Cute trick to make sure our local node data is on local memory */ | ||
137 | node_data[nid] = (pg_data_t *)(__va(node_min_pfn << PAGE_SHIFT)); | ||
138 | #endif | ||
139 | /* Quasi-mark the pg_data_t as in-use */ | ||
140 | node_min_pfn += node_datasz; | ||
141 | if (node_min_pfn >= node_max_pfn) { | ||
142 | printk(" not enough mem to reserve NODE_DATA"); | ||
143 | return; | ||
144 | } | ||
145 | NODE_DATA(nid)->bdata = &node_bdata[nid]; | ||
146 | |||
147 | printk(" Detected node memory: start %8lu, end %8lu\n", | ||
148 | node_min_pfn, node_max_pfn); | ||
149 | |||
150 | DBGDCONT(" DISCONTIG: node_data[%d] is at 0x%p\n", nid, NODE_DATA(nid)); | ||
151 | DBGDCONT(" DISCONTIG: NODE_DATA(%d)->bdata is at 0x%p\n", nid, NODE_DATA(nid)->bdata); | ||
152 | |||
153 | /* Find the bounds of kernel memory. */ | ||
154 | start_kernel_pfn = PFN_DOWN(KERNEL_START_PHYS); | ||
155 | end_kernel_pfn = PFN_UP(virt_to_phys(kernel_end)); | ||
156 | bootmap_start = -1; | ||
157 | |||
158 | if (!nid && (node_max_pfn < end_kernel_pfn || node_min_pfn > start_kernel_pfn)) | ||
159 | panic("kernel loaded out of ram"); | ||
160 | |||
161 | /* Zone start phys-addr must be 2^(MAX_ORDER-1) aligned. | ||
162 | Note that we round this down, not up - node memory | ||
163 | has much larger alignment than 8Mb, so it's safe. */ | ||
164 | node_min_pfn &= ~((1UL << (MAX_ORDER-1))-1); | ||
165 | |||
166 | /* We need to know how many physically contiguous pages | ||
167 | we'll need for the bootmap. */ | ||
168 | bootmap_pages = bootmem_bootmap_pages(node_max_pfn-node_min_pfn); | ||
169 | |||
170 | /* Now find a good region where to allocate the bootmap. */ | ||
171 | for_each_mem_cluster(memdesc, cluster, i) { | ||
172 | if (cluster->usage & 3) | ||
173 | continue; | ||
174 | |||
175 | start = cluster->start_pfn; | ||
176 | end = start + cluster->numpages; | ||
177 | |||
178 | if (start >= node_max_pfn || end <= node_min_pfn) | ||
179 | continue; | ||
180 | |||
181 | if (end > node_max_pfn) | ||
182 | end = node_max_pfn; | ||
183 | if (start < node_min_pfn) | ||
184 | start = node_min_pfn; | ||
185 | |||
186 | if (start < start_kernel_pfn) { | ||
187 | if (end > end_kernel_pfn | ||
188 | && end - end_kernel_pfn >= bootmap_pages) { | ||
189 | bootmap_start = end_kernel_pfn; | ||
190 | break; | ||
191 | } else if (end > start_kernel_pfn) | ||
192 | end = start_kernel_pfn; | ||
193 | } else if (start < end_kernel_pfn) | ||
194 | start = end_kernel_pfn; | ||
195 | if (end - start >= bootmap_pages) { | ||
196 | bootmap_start = start; | ||
197 | break; | ||
198 | } | ||
199 | } | ||
200 | |||
201 | if (bootmap_start == -1) | ||
202 | panic("couldn't find a contigous place for the bootmap"); | ||
203 | |||
204 | /* Allocate the bootmap and mark the whole MM as reserved. */ | ||
205 | bootmap_size = init_bootmem_node(NODE_DATA(nid), bootmap_start, | ||
206 | node_min_pfn, node_max_pfn); | ||
207 | DBGDCONT(" bootmap_start %lu, bootmap_size %lu, bootmap_pages %lu\n", | ||
208 | bootmap_start, bootmap_size, bootmap_pages); | ||
209 | |||
210 | /* Mark the free regions. */ | ||
211 | for_each_mem_cluster(memdesc, cluster, i) { | ||
212 | if (cluster->usage & 3) | ||
213 | continue; | ||
214 | |||
215 | start = cluster->start_pfn; | ||
216 | end = cluster->start_pfn + cluster->numpages; | ||
217 | |||
218 | if (start >= node_max_pfn || end <= node_min_pfn) | ||
219 | continue; | ||
220 | |||
221 | if (end > node_max_pfn) | ||
222 | end = node_max_pfn; | ||
223 | if (start < node_min_pfn) | ||
224 | start = node_min_pfn; | ||
225 | |||
226 | if (start < start_kernel_pfn) { | ||
227 | if (end > end_kernel_pfn) { | ||
228 | free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start), | ||
229 | (PFN_PHYS(start_kernel_pfn) | ||
230 | - PFN_PHYS(start))); | ||
231 | printk(" freeing pages %ld:%ld\n", | ||
232 | start, start_kernel_pfn); | ||
233 | start = end_kernel_pfn; | ||
234 | } else if (end > start_kernel_pfn) | ||
235 | end = start_kernel_pfn; | ||
236 | } else if (start < end_kernel_pfn) | ||
237 | start = end_kernel_pfn; | ||
238 | if (start >= end) | ||
239 | continue; | ||
240 | |||
241 | free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start), PFN_PHYS(end) - PFN_PHYS(start)); | ||
242 | printk(" freeing pages %ld:%ld\n", start, end); | ||
243 | } | ||
244 | |||
245 | /* Reserve the bootmap memory. */ | ||
246 | reserve_bootmem_node(NODE_DATA(nid), PFN_PHYS(bootmap_start), bootmap_size); | ||
247 | printk(" reserving pages %ld:%ld\n", bootmap_start, bootmap_start+PFN_UP(bootmap_size)); | ||
248 | |||
249 | node_set_online(nid); | ||
250 | } | ||
251 | |||
252 | void __init | ||
253 | setup_memory(void *kernel_end) | ||
254 | { | ||
255 | int nid; | ||
256 | |||
257 | show_mem_layout(); | ||
258 | |||
259 | nodes_clear(node_online_map); | ||
260 | |||
261 | min_low_pfn = ~0UL; | ||
262 | max_low_pfn = 0UL; | ||
263 | for (nid = 0; nid < MAX_NUMNODES; nid++) | ||
264 | setup_memory_node(nid, kernel_end); | ||
265 | |||
266 | #ifdef CONFIG_BLK_DEV_INITRD | ||
267 | initrd_start = INITRD_START; | ||
268 | if (initrd_start) { | ||
269 | extern void *move_initrd(unsigned long); | ||
270 | |||
271 | initrd_end = initrd_start+INITRD_SIZE; | ||
272 | printk("Initial ramdisk at: 0x%p (%lu bytes)\n", | ||
273 | (void *) initrd_start, INITRD_SIZE); | ||
274 | |||
275 | if ((void *)initrd_end > phys_to_virt(PFN_PHYS(max_low_pfn))) { | ||
276 | if (!move_initrd(PFN_PHYS(max_low_pfn))) | ||
277 | printk("initrd extends beyond end of memory " | ||
278 | "(0x%08lx > 0x%p)\ndisabling initrd\n", | ||
279 | initrd_end, | ||
280 | phys_to_virt(PFN_PHYS(max_low_pfn))); | ||
281 | } else { | ||
282 | nid = kvaddr_to_nid(initrd_start); | ||
283 | reserve_bootmem_node(NODE_DATA(nid), | ||
284 | virt_to_phys((void *)initrd_start), | ||
285 | INITRD_SIZE); | ||
286 | } | ||
287 | } | ||
288 | #endif /* CONFIG_BLK_DEV_INITRD */ | ||
289 | } | ||
290 | |||
291 | void __init paging_init(void) | ||
292 | { | ||
293 | unsigned int nid; | ||
294 | unsigned long zones_size[MAX_NR_ZONES] = {0, }; | ||
295 | unsigned long dma_local_pfn; | ||
296 | |||
297 | /* | ||
298 | * The old global MAX_DMA_ADDRESS per-arch API doesn't fit | ||
299 | * in the NUMA model, for now we convert it to a pfn and | ||
300 | * we interpret this pfn as a local per-node information. | ||
301 | * This issue isn't very important since none of these machines | ||
302 | * have legacy ISA slots anyways. | ||
303 | */ | ||
304 | dma_local_pfn = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT; | ||
305 | |||
306 | for_each_online_node(nid) { | ||
307 | unsigned long start_pfn = node_bdata[nid].node_boot_start >> PAGE_SHIFT; | ||
308 | unsigned long end_pfn = node_bdata[nid].node_low_pfn; | ||
309 | |||
310 | if (dma_local_pfn >= end_pfn - start_pfn) | ||
311 | zones_size[ZONE_DMA] = end_pfn - start_pfn; | ||
312 | else { | ||
313 | zones_size[ZONE_DMA] = dma_local_pfn; | ||
314 | zones_size[ZONE_NORMAL] = (end_pfn - start_pfn) - dma_local_pfn; | ||
315 | } | ||
316 | free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn, NULL); | ||
317 | } | ||
318 | |||
319 | /* Initialize the kernel's ZERO_PGE. */ | ||
320 | memset((void *)ZERO_PGE, 0, PAGE_SIZE); | ||
321 | } | ||
322 | |||
323 | void __init mem_init(void) | ||
324 | { | ||
325 | unsigned long codesize, reservedpages, datasize, initsize, pfn; | ||
326 | extern int page_is_ram(unsigned long) __init; | ||
327 | extern char _text, _etext, _data, _edata; | ||
328 | extern char __init_begin, __init_end; | ||
329 | unsigned long nid, i; | ||
330 | struct page * lmem_map; | ||
331 | |||
332 | high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT); | ||
333 | |||
334 | reservedpages = 0; | ||
335 | for_each_online_node(nid) { | ||
336 | /* | ||
337 | * This will free up the bootmem, ie, slot 0 memory | ||
338 | */ | ||
339 | totalram_pages += free_all_bootmem_node(NODE_DATA(nid)); | ||
340 | |||
341 | lmem_map = node_mem_map(nid); | ||
342 | pfn = NODE_DATA(nid)->node_start_pfn; | ||
343 | for (i = 0; i < node_spanned_pages(nid); i++, pfn++) | ||
344 | if (page_is_ram(pfn) && PageReserved(lmem_map+i)) | ||
345 | reservedpages++; | ||
346 | } | ||
347 | |||
348 | codesize = (unsigned long) &_etext - (unsigned long) &_text; | ||
349 | datasize = (unsigned long) &_edata - (unsigned long) &_data; | ||
350 | initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; | ||
351 | |||
352 | printk("Memory: %luk/%luk available (%luk kernel code, %luk reserved, " | ||
353 | "%luk data, %luk init)\n", | ||
354 | (unsigned long)nr_free_pages() << (PAGE_SHIFT-10), | ||
355 | num_physpages << (PAGE_SHIFT-10), | ||
356 | codesize >> 10, | ||
357 | reservedpages << (PAGE_SHIFT-10), | ||
358 | datasize >> 10, | ||
359 | initsize >> 10); | ||
360 | #if 0 | ||
361 | mem_stress(); | ||
362 | #endif | ||
363 | } | ||
364 | |||
365 | void | ||
366 | show_mem(void) | ||
367 | { | ||
368 | long i,free = 0,total = 0,reserved = 0; | ||
369 | long shared = 0, cached = 0; | ||
370 | int nid; | ||
371 | |||
372 | printk("\nMem-info:\n"); | ||
373 | show_free_areas(); | ||
374 | printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); | ||
375 | for_each_online_node(nid) { | ||
376 | struct page * lmem_map = node_mem_map(nid); | ||
377 | i = node_spanned_pages(nid); | ||
378 | while (i-- > 0) { | ||
379 | total++; | ||
380 | if (PageReserved(lmem_map+i)) | ||
381 | reserved++; | ||
382 | else if (PageSwapCache(lmem_map+i)) | ||
383 | cached++; | ||
384 | else if (!page_count(lmem_map+i)) | ||
385 | free++; | ||
386 | else | ||
387 | shared += page_count(lmem_map + i) - 1; | ||
388 | } | ||
389 | } | ||
390 | printk("%ld pages of RAM\n",total); | ||
391 | printk("%ld free pages\n",free); | ||
392 | printk("%ld reserved pages\n",reserved); | ||
393 | printk("%ld pages shared\n",shared); | ||
394 | printk("%ld pages swap cached\n",cached); | ||
395 | } | ||
diff --git a/arch/alpha/mm/remap.c b/arch/alpha/mm/remap.c new file mode 100644 index 000000000000..19817ad3d89b --- /dev/null +++ b/arch/alpha/mm/remap.c | |||
@@ -0,0 +1,90 @@ | |||
1 | #include <linux/vmalloc.h> | ||
2 | #include <asm/pgalloc.h> | ||
3 | #include <asm/cacheflush.h> | ||
4 | |||
5 | /* called with the page_table_lock held */ | ||
6 | static inline void | ||
7 | remap_area_pte(pte_t * pte, unsigned long address, unsigned long size, | ||
8 | unsigned long phys_addr, unsigned long flags) | ||
9 | { | ||
10 | unsigned long end; | ||
11 | unsigned long pfn; | ||
12 | |||
13 | address &= ~PMD_MASK; | ||
14 | end = address + size; | ||
15 | if (end > PMD_SIZE) | ||
16 | end = PMD_SIZE; | ||
17 | if (address >= end) | ||
18 | BUG(); | ||
19 | pfn = phys_addr >> PAGE_SHIFT; | ||
20 | do { | ||
21 | if (!pte_none(*pte)) { | ||
22 | printk("remap_area_pte: page already exists\n"); | ||
23 | BUG(); | ||
24 | } | ||
25 | set_pte(pte, pfn_pte(pfn, | ||
26 | __pgprot(_PAGE_VALID | _PAGE_ASM | | ||
27 | _PAGE_KRE | _PAGE_KWE | flags))); | ||
28 | address += PAGE_SIZE; | ||
29 | pfn++; | ||
30 | pte++; | ||
31 | } while (address && (address < end)); | ||
32 | } | ||
33 | |||
34 | /* called with the page_table_lock held */ | ||
35 | static inline int | ||
36 | remap_area_pmd(pmd_t * pmd, unsigned long address, unsigned long size, | ||
37 | unsigned long phys_addr, unsigned long flags) | ||
38 | { | ||
39 | unsigned long end; | ||
40 | |||
41 | address &= ~PGDIR_MASK; | ||
42 | end = address + size; | ||
43 | if (end > PGDIR_SIZE) | ||
44 | end = PGDIR_SIZE; | ||
45 | phys_addr -= address; | ||
46 | if (address >= end) | ||
47 | BUG(); | ||
48 | do { | ||
49 | pte_t * pte = pte_alloc_kernel(&init_mm, pmd, address); | ||
50 | if (!pte) | ||
51 | return -ENOMEM; | ||
52 | remap_area_pte(pte, address, end - address, | ||
53 | address + phys_addr, flags); | ||
54 | address = (address + PMD_SIZE) & PMD_MASK; | ||
55 | pmd++; | ||
56 | } while (address && (address < end)); | ||
57 | return 0; | ||
58 | } | ||
59 | |||
60 | int | ||
61 | __alpha_remap_area_pages(unsigned long address, unsigned long phys_addr, | ||
62 | unsigned long size, unsigned long flags) | ||
63 | { | ||
64 | pgd_t * dir; | ||
65 | int error = 0; | ||
66 | unsigned long end = address + size; | ||
67 | |||
68 | phys_addr -= address; | ||
69 | dir = pgd_offset(&init_mm, address); | ||
70 | flush_cache_all(); | ||
71 | if (address >= end) | ||
72 | BUG(); | ||
73 | spin_lock(&init_mm.page_table_lock); | ||
74 | do { | ||
75 | pmd_t *pmd; | ||
76 | pmd = pmd_alloc(&init_mm, dir, address); | ||
77 | error = -ENOMEM; | ||
78 | if (!pmd) | ||
79 | break; | ||
80 | if (remap_area_pmd(pmd, address, end - address, | ||
81 | phys_addr + address, flags)) | ||
82 | break; | ||
83 | error = 0; | ||
84 | address = (address + PGDIR_SIZE) & PGDIR_MASK; | ||
85 | dir++; | ||
86 | } while (address && (address < end)); | ||
87 | spin_unlock(&init_mm.page_table_lock); | ||
88 | return error; | ||
89 | } | ||
90 | |||