diff options
author | Ingo Molnar <mingo@elte.hu> | 2008-07-09 05:39:02 -0400 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2008-07-09 05:39:02 -0400 |
commit | d028203c0446c7f65ed2b22342a56f03c6c4a6c1 (patch) | |
tree | 6bd73a5c70b407491dc9d40ecb9e95b48233d004 /Documentation | |
parent | f57e91682d141ea50d8c6d42cdc251b6256a3755 (diff) | |
parent | 183fe065652dbd64953afa9f389327e23e97967f (diff) |
Merge branch 'x86/core' into x86/unify-pci
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/ABI/testing/sysfs-firmware-memmap | 71 | ||||
-rw-r--r-- | Documentation/kdump/kdump.txt | 2 | ||||
-rw-r--r-- | Documentation/kernel-parameters.txt | 37 | ||||
-rw-r--r-- | Documentation/nmi_watchdog.txt | 16 | ||||
-rw-r--r-- | Documentation/x86/i386/IO-APIC.txt (renamed from Documentation/i386/IO-APIC.txt) | 0 | ||||
-rw-r--r-- | Documentation/x86/i386/boot.txt (renamed from Documentation/i386/boot.txt) | 79 | ||||
-rw-r--r-- | Documentation/x86/i386/usb-legacy-support.txt (renamed from Documentation/i386/usb-legacy-support.txt) | 0 | ||||
-rw-r--r-- | Documentation/x86/i386/zero-page.txt (renamed from Documentation/i386/zero-page.txt) | 0 | ||||
-rw-r--r-- | Documentation/x86/x86_64/00-INDEX (renamed from Documentation/x86_64/00-INDEX) | 0 | ||||
-rw-r--r-- | Documentation/x86/x86_64/boot-options.txt (renamed from Documentation/x86_64/boot-options.txt) | 0 | ||||
-rw-r--r-- | Documentation/x86/x86_64/cpu-hotplug-spec (renamed from Documentation/x86_64/cpu-hotplug-spec) | 0 | ||||
-rw-r--r-- | Documentation/x86/x86_64/fake-numa-for-cpusets (renamed from Documentation/x86_64/fake-numa-for-cpusets) | 0 | ||||
-rw-r--r-- | Documentation/x86/x86_64/kernel-stacks (renamed from Documentation/x86_64/kernel-stacks) | 0 | ||||
-rw-r--r-- | Documentation/x86/x86_64/machinecheck (renamed from Documentation/x86_64/machinecheck) | 0 | ||||
-rw-r--r-- | Documentation/x86/x86_64/mm.txt (renamed from Documentation/x86_64/mm.txt) | 5 | ||||
-rw-r--r-- | Documentation/x86/x86_64/uefi.txt (renamed from Documentation/x86_64/uefi.txt) | 4 |
16 files changed, 168 insertions, 46 deletions
diff --git a/Documentation/ABI/testing/sysfs-firmware-memmap b/Documentation/ABI/testing/sysfs-firmware-memmap new file mode 100644 index 000000000000..0d99ee6ae02e --- /dev/null +++ b/Documentation/ABI/testing/sysfs-firmware-memmap | |||
@@ -0,0 +1,71 @@ | |||
1 | What: /sys/firmware/memmap/ | ||
2 | Date: June 2008 | ||
3 | Contact: Bernhard Walle <bwalle@suse.de> | ||
4 | Description: | ||
5 | On all platforms, the firmware provides a memory map which the | ||
6 | kernel reads. The resources from that memory map are registered | ||
7 | in the kernel resource tree and exposed to userspace via | ||
8 | /proc/iomem (together with other resources). | ||
9 | |||
10 | However, on most architectures that firmware-provided memory | ||
11 | map is modified afterwards by the kernel itself, either because | ||
12 | the kernel merges that memory map with other information or | ||
13 | just because the user overwrites that memory map via command | ||
14 | line. | ||
15 | |||
16 | kexec needs the raw firmware-provided memory map to setup the | ||
17 | parameter segment of the kernel that should be booted with | ||
18 | kexec. Also, the raw memory map is useful for debugging. For | ||
19 | that reason, /sys/firmware/memmap is an interface that provides | ||
20 | the raw memory map to userspace. | ||
21 | |||
22 | The structure is as follows: Under /sys/firmware/memmap there | ||
23 | are subdirectories with the number of the entry as their name: | ||
24 | |||
25 | /sys/firmware/memmap/0 | ||
26 | /sys/firmware/memmap/1 | ||
27 | /sys/firmware/memmap/2 | ||
28 | /sys/firmware/memmap/3 | ||
29 | ... | ||
30 | |||
31 | The maximum depends on the number of memory map entries provided | ||
32 | by the firmware. The order is just the order that the firmware | ||
33 | provides. | ||
34 | |||
35 | Each directory contains three files: | ||
36 | |||
37 | start : The start address (as hexadecimal number with the | ||
38 | '0x' prefix). | ||
39 | end : The end address, inclusive (regardless whether the | ||
40 | firmware provides inclusive or exclusive ranges). | ||
41 | type : Type of the entry as string. See below for a list of | ||
42 | valid types. | ||
43 | |||
44 | So, for example: | ||
45 | |||
46 | /sys/firmware/memmap/0/start | ||
47 | /sys/firmware/memmap/0/end | ||
48 | /sys/firmware/memmap/0/type | ||
49 | /sys/firmware/memmap/1/start | ||
50 | ... | ||
51 | |||
52 | Currently following types exist: | ||
53 | |||
54 | - System RAM | ||
55 | - ACPI Tables | ||
56 | - ACPI Non-volatile Storage | ||
57 | - reserved | ||
58 | |||
59 | Following shell snippet can be used to display that memory | ||
60 | map in a human-readable format: | ||
61 | |||
62 | -------------------- 8< ---------------------------------------- | ||
63 | #!/bin/bash | ||
64 | cd /sys/firmware/memmap | ||
65 | for dir in * ; do | ||
66 | start=$(cat $dir/start) | ||
67 | end=$(cat $dir/end) | ||
68 | type=$(cat $dir/type) | ||
69 | printf "%016x-%016x (%s)\n" $start $[ $end +1] "$type" | ||
70 | done | ||
71 | -------------------- >8 ---------------------------------------- | ||
diff --git a/Documentation/kdump/kdump.txt b/Documentation/kdump/kdump.txt index b8e52c0355d3..9691c7f5166c 100644 --- a/Documentation/kdump/kdump.txt +++ b/Documentation/kdump/kdump.txt | |||
@@ -109,7 +109,7 @@ There are two possible methods of using Kdump. | |||
109 | 2) Or use the system kernel binary itself as dump-capture kernel and there is | 109 | 2) Or use the system kernel binary itself as dump-capture kernel and there is |
110 | no need to build a separate dump-capture kernel. This is possible | 110 | no need to build a separate dump-capture kernel. This is possible |
111 | only with the architecutres which support a relocatable kernel. As | 111 | only with the architecutres which support a relocatable kernel. As |
112 | of today i386 and ia64 architectures support relocatable kernel. | 112 | of today, i386, x86_64 and ia64 architectures support relocatable kernel. |
113 | 113 | ||
114 | Building a relocatable kernel is advantageous from the point of view that | 114 | Building a relocatable kernel is advantageous from the point of view that |
115 | one does not have to build a second kernel for capturing the dump. But | 115 | one does not have to build a second kernel for capturing the dump. But |
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index b52f47d588b4..795c487af8e4 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt | |||
@@ -271,6 +271,17 @@ and is between 256 and 4096 characters. It is defined in the file | |||
271 | aic79xx= [HW,SCSI] | 271 | aic79xx= [HW,SCSI] |
272 | See Documentation/scsi/aic79xx.txt. | 272 | See Documentation/scsi/aic79xx.txt. |
273 | 273 | ||
274 | amd_iommu= [HW,X86-84] | ||
275 | Pass parameters to the AMD IOMMU driver in the system. | ||
276 | Possible values are: | ||
277 | isolate - enable device isolation (each device, as far | ||
278 | as possible, will get its own protection | ||
279 | domain) | ||
280 | amd_iommu_size= [HW,X86-64] | ||
281 | Define the size of the aperture for the AMD IOMMU | ||
282 | driver. Possible values are: | ||
283 | '32M', '64M' (default), '128M', '256M', '512M', '1G' | ||
284 | |||
274 | amijoy.map= [HW,JOY] Amiga joystick support | 285 | amijoy.map= [HW,JOY] Amiga joystick support |
275 | Map of devices attached to JOY0DAT and JOY1DAT | 286 | Map of devices attached to JOY0DAT and JOY1DAT |
276 | Format: <a>,<b> | 287 | Format: <a>,<b> |
@@ -599,6 +610,29 @@ and is between 256 and 4096 characters. It is defined in the file | |||
599 | See drivers/char/README.epca and | 610 | See drivers/char/README.epca and |
600 | Documentation/digiepca.txt. | 611 | Documentation/digiepca.txt. |
601 | 612 | ||
613 | disable_mtrr_cleanup [X86] | ||
614 | enable_mtrr_cleanup [X86] | ||
615 | The kernel tries to adjust MTRR layout from continuous | ||
616 | to discrete, to make X server driver able to add WB | ||
617 | entry later. This parameter enables/disables that. | ||
618 | |||
619 | mtrr_chunk_size=nn[KMG] [X86] | ||
620 | used for mtrr cleanup. It is largest continous chunk | ||
621 | that could hold holes aka. UC entries. | ||
622 | |||
623 | mtrr_gran_size=nn[KMG] [X86] | ||
624 | Used for mtrr cleanup. It is granularity of mtrr block. | ||
625 | Default is 1. | ||
626 | Large value could prevent small alignment from | ||
627 | using up MTRRs. | ||
628 | |||
629 | mtrr_spare_reg_nr=n [X86] | ||
630 | Format: <integer> | ||
631 | Range: 0,7 : spare reg number | ||
632 | Default : 1 | ||
633 | Used for mtrr cleanup. It is spare mtrr entries number. | ||
634 | Set to 2 or more if your graphical card needs more. | ||
635 | |||
602 | disable_mtrr_trim [X86, Intel and AMD only] | 636 | disable_mtrr_trim [X86, Intel and AMD only] |
603 | By default the kernel will trim any uncacheable | 637 | By default the kernel will trim any uncacheable |
604 | memory out of your available memory pool based on | 638 | memory out of your available memory pool based on |
@@ -2116,6 +2150,9 @@ and is between 256 and 4096 characters. It is defined in the file | |||
2116 | usbhid.mousepoll= | 2150 | usbhid.mousepoll= |
2117 | [USBHID] The interval which mice are to be polled at. | 2151 | [USBHID] The interval which mice are to be polled at. |
2118 | 2152 | ||
2153 | add_efi_memmap [EFI; x86-32,X86-64] Include EFI memory map in | ||
2154 | kernel's map of available physical RAM. | ||
2155 | |||
2119 | vdso= [X86-32,SH,x86-64] | 2156 | vdso= [X86-32,SH,x86-64] |
2120 | vdso=2: enable compat VDSO (default with COMPAT_VDSO) | 2157 | vdso=2: enable compat VDSO (default with COMPAT_VDSO) |
2121 | vdso=1: enable VDSO (default) | 2158 | vdso=1: enable VDSO (default) |
diff --git a/Documentation/nmi_watchdog.txt b/Documentation/nmi_watchdog.txt index 757c729ee42e..90aa4531cb67 100644 --- a/Documentation/nmi_watchdog.txt +++ b/Documentation/nmi_watchdog.txt | |||
@@ -10,7 +10,7 @@ us to generate 'watchdog NMI interrupts'. (NMI: Non Maskable Interrupt | |||
10 | which get executed even if the system is otherwise locked up hard). | 10 | which get executed even if the system is otherwise locked up hard). |
11 | This can be used to debug hard kernel lockups. By executing periodic | 11 | This can be used to debug hard kernel lockups. By executing periodic |
12 | NMI interrupts, the kernel can monitor whether any CPU has locked up, | 12 | NMI interrupts, the kernel can monitor whether any CPU has locked up, |
13 | and print out debugging messages if so. | 13 | and print out debugging messages if so. |
14 | 14 | ||
15 | In order to use the NMI watchdog, you need to have APIC support in your | 15 | In order to use the NMI watchdog, you need to have APIC support in your |
16 | kernel. For SMP kernels, APIC support gets compiled in automatically. For | 16 | kernel. For SMP kernels, APIC support gets compiled in automatically. For |
@@ -22,8 +22,7 @@ CONFIG_X86_UP_IOAPIC is for uniprocessor with an IO-APIC. [Note: certain | |||
22 | kernel debugging options, such as Kernel Stack Meter or Kernel Tracer, | 22 | kernel debugging options, such as Kernel Stack Meter or Kernel Tracer, |
23 | may implicitly disable the NMI watchdog.] | 23 | may implicitly disable the NMI watchdog.] |
24 | 24 | ||
25 | For x86-64, the needed APIC is always compiled in, and the NMI watchdog is | 25 | For x86-64, the needed APIC is always compiled in. |
26 | always enabled with I/O-APIC mode (nmi_watchdog=1). | ||
27 | 26 | ||
28 | Using local APIC (nmi_watchdog=2) needs the first performance register, so | 27 | Using local APIC (nmi_watchdog=2) needs the first performance register, so |
29 | you can't use it for other purposes (such as high precision performance | 28 | you can't use it for other purposes (such as high precision performance |
@@ -63,16 +62,15 @@ when the system is idle), but if your system locks up on anything but the | |||
63 | "hlt", then you are out of luck -- the event will not happen at all and the | 62 | "hlt", then you are out of luck -- the event will not happen at all and the |
64 | watchdog won't trigger. This is a shortcoming of the local APIC watchdog | 63 | watchdog won't trigger. This is a shortcoming of the local APIC watchdog |
65 | -- unfortunately there is no "clock ticks" event that would work all the | 64 | -- unfortunately there is no "clock ticks" event that would work all the |
66 | time. The I/O APIC watchdog is driven externally and has no such shortcoming. | 65 | time. The I/O APIC watchdog is driven externally and has no such shortcoming. |
67 | But its NMI frequency is much higher, resulting in a more significant hit | 66 | But its NMI frequency is much higher, resulting in a more significant hit |
68 | to the overall system performance. | 67 | to the overall system performance. |
69 | 68 | ||
70 | NOTE: starting with 2.4.2-ac18 the NMI-oopser is disabled by default, | 69 | On x86 nmi_watchdog is disabled by default so you have to enable it with |
71 | you have to enable it with a boot time parameter. Prior to 2.4.2-ac18 | 70 | a boot time parameter. |
72 | the NMI-oopser is enabled unconditionally on x86 SMP boxes. | ||
73 | 71 | ||
74 | On x86-64 the NMI oopser is on by default. On 64bit Intel CPUs | 72 | NOTE: In kernels prior to 2.4.2-ac18 the NMI-oopser is enabled unconditionally |
75 | it uses IO-APIC by default and on AMD it uses local APIC. | 73 | on x86 SMP boxes. |
76 | 74 | ||
77 | [ feel free to send bug reports, suggestions and patches to | 75 | [ feel free to send bug reports, suggestions and patches to |
78 | Ingo Molnar <mingo@redhat.com> or the Linux SMP mailing | 76 | Ingo Molnar <mingo@redhat.com> or the Linux SMP mailing |
diff --git a/Documentation/i386/IO-APIC.txt b/Documentation/x86/i386/IO-APIC.txt index 30b4c714fbe1..30b4c714fbe1 100644 --- a/Documentation/i386/IO-APIC.txt +++ b/Documentation/x86/i386/IO-APIC.txt | |||
diff --git a/Documentation/i386/boot.txt b/Documentation/x86/i386/boot.txt index 95ad15c3b01f..147bfe511cdd 100644 --- a/Documentation/i386/boot.txt +++ b/Documentation/x86/i386/boot.txt | |||
@@ -1,17 +1,14 @@ | |||
1 | THE LINUX/I386 BOOT PROTOCOL | 1 | THE LINUX/x86 BOOT PROTOCOL |
2 | ---------------------------- | 2 | --------------------------- |
3 | 3 | ||
4 | H. Peter Anvin <hpa@zytor.com> | 4 | On the x86 platform, the Linux kernel uses a rather complicated boot |
5 | Last update 2007-05-23 | ||
6 | |||
7 | On the i386 platform, the Linux kernel uses a rather complicated boot | ||
8 | convention. This has evolved partially due to historical aspects, as | 5 | convention. This has evolved partially due to historical aspects, as |
9 | well as the desire in the early days to have the kernel itself be a | 6 | well as the desire in the early days to have the kernel itself be a |
10 | bootable image, the complicated PC memory model and due to changed | 7 | bootable image, the complicated PC memory model and due to changed |
11 | expectations in the PC industry caused by the effective demise of | 8 | expectations in the PC industry caused by the effective demise of |
12 | real-mode DOS as a mainstream operating system. | 9 | real-mode DOS as a mainstream operating system. |
13 | 10 | ||
14 | Currently, the following versions of the Linux/i386 boot protocol exist. | 11 | Currently, the following versions of the Linux/x86 boot protocol exist. |
15 | 12 | ||
16 | Old kernels: zImage/Image support only. Some very early kernels | 13 | Old kernels: zImage/Image support only. Some very early kernels |
17 | may not even support a command line. | 14 | may not even support a command line. |
@@ -372,10 +369,17 @@ Protocol: 2.00+ | |||
372 | - If 0, the protected-mode code is loaded at 0x10000. | 369 | - If 0, the protected-mode code is loaded at 0x10000. |
373 | - If 1, the protected-mode code is loaded at 0x100000. | 370 | - If 1, the protected-mode code is loaded at 0x100000. |
374 | 371 | ||
372 | Bit 5 (write): QUIET_FLAG | ||
373 | - If 0, print early messages. | ||
374 | - If 1, suppress early messages. | ||
375 | This requests to the kernel (decompressor and early | ||
376 | kernel) to not write early messages that require | ||
377 | accessing the display hardware directly. | ||
378 | |||
375 | Bit 6 (write): KEEP_SEGMENTS | 379 | Bit 6 (write): KEEP_SEGMENTS |
376 | Protocol: 2.07+ | 380 | Protocol: 2.07+ |
377 | - if 0, reload the segment registers in the 32bit entry point. | 381 | - If 0, reload the segment registers in the 32bit entry point. |
378 | - if 1, do not reload the segment registers in the 32bit entry point. | 382 | - If 1, do not reload the segment registers in the 32bit entry point. |
379 | Assume that %cs %ds %ss %es are all set to flat segments with | 383 | Assume that %cs %ds %ss %es are all set to flat segments with |
380 | a base of 0 (or the equivalent for their environment). | 384 | a base of 0 (or the equivalent for their environment). |
381 | 385 | ||
@@ -504,7 +508,7 @@ Protocol: 2.06+ | |||
504 | maximum size was 255. | 508 | maximum size was 255. |
505 | 509 | ||
506 | Field name: hardware_subarch | 510 | Field name: hardware_subarch |
507 | Type: write | 511 | Type: write (optional, defaults to x86/PC) |
508 | Offset/size: 0x23c/4 | 512 | Offset/size: 0x23c/4 |
509 | Protocol: 2.07+ | 513 | Protocol: 2.07+ |
510 | 514 | ||
@@ -520,11 +524,13 @@ Protocol: 2.07+ | |||
520 | 0x00000002 Xen | 524 | 0x00000002 Xen |
521 | 525 | ||
522 | Field name: hardware_subarch_data | 526 | Field name: hardware_subarch_data |
523 | Type: write | 527 | Type: write (subarch-dependent) |
524 | Offset/size: 0x240/8 | 528 | Offset/size: 0x240/8 |
525 | Protocol: 2.07+ | 529 | Protocol: 2.07+ |
526 | 530 | ||
527 | A pointer to data that is specific to hardware subarch | 531 | A pointer to data that is specific to hardware subarch |
532 | This field is currently unused for the default x86/PC environment, | ||
533 | do not modify. | ||
528 | 534 | ||
529 | Field name: payload_offset | 535 | Field name: payload_offset |
530 | Type: read | 536 | Type: read |
@@ -545,6 +551,34 @@ Protocol: 2.08+ | |||
545 | 551 | ||
546 | The length of the payload. | 552 | The length of the payload. |
547 | 553 | ||
554 | Field name: setup_data | ||
555 | Type: write (special) | ||
556 | Offset/size: 0x250/8 | ||
557 | Protocol: 2.09+ | ||
558 | |||
559 | The 64-bit physical pointer to NULL terminated single linked list of | ||
560 | struct setup_data. This is used to define a more extensible boot | ||
561 | parameters passing mechanism. The definition of struct setup_data is | ||
562 | as follow: | ||
563 | |||
564 | struct setup_data { | ||
565 | u64 next; | ||
566 | u32 type; | ||
567 | u32 len; | ||
568 | u8 data[0]; | ||
569 | }; | ||
570 | |||
571 | Where, the next is a 64-bit physical pointer to the next node of | ||
572 | linked list, the next field of the last node is 0; the type is used | ||
573 | to identify the contents of data; the len is the length of data | ||
574 | field; the data holds the real payload. | ||
575 | |||
576 | This list may be modified at a number of points during the bootup | ||
577 | process. Therefore, when modifying this list one should always make | ||
578 | sure to consider the case where the linked list already contains | ||
579 | entries. | ||
580 | |||
581 | |||
548 | **** THE IMAGE CHECKSUM | 582 | **** THE IMAGE CHECKSUM |
549 | 583 | ||
550 | From boot protocol version 2.08 onwards the CRC-32 is calculated over | 584 | From boot protocol version 2.08 onwards the CRC-32 is calculated over |
@@ -553,6 +587,7 @@ initial remainder of 0xffffffff. The checksum is appended to the | |||
553 | file; therefore the CRC of the file up to the limit specified in the | 587 | file; therefore the CRC of the file up to the limit specified in the |
554 | syssize field of the header is always 0. | 588 | syssize field of the header is always 0. |
555 | 589 | ||
590 | |||
556 | **** THE KERNEL COMMAND LINE | 591 | **** THE KERNEL COMMAND LINE |
557 | 592 | ||
558 | The kernel command line has become an important way for the boot | 593 | The kernel command line has become an important way for the boot |
@@ -584,28 +619,6 @@ command line is entered using the following protocol: | |||
584 | covered by setup_move_size, so you may need to adjust this | 619 | covered by setup_move_size, so you may need to adjust this |
585 | field. | 620 | field. |
586 | 621 | ||
587 | Field name: setup_data | ||
588 | Type: write (obligatory) | ||
589 | Offset/size: 0x250/8 | ||
590 | Protocol: 2.09+ | ||
591 | |||
592 | The 64-bit physical pointer to NULL terminated single linked list of | ||
593 | struct setup_data. This is used to define a more extensible boot | ||
594 | parameters passing mechanism. The definition of struct setup_data is | ||
595 | as follow: | ||
596 | |||
597 | struct setup_data { | ||
598 | u64 next; | ||
599 | u32 type; | ||
600 | u32 len; | ||
601 | u8 data[0]; | ||
602 | }; | ||
603 | |||
604 | Where, the next is a 64-bit physical pointer to the next node of | ||
605 | linked list, the next field of the last node is 0; the type is used | ||
606 | to identify the contents of data; the len is the length of data | ||
607 | field; the data holds the real payload. | ||
608 | |||
609 | 622 | ||
610 | **** MEMORY LAYOUT OF THE REAL-MODE CODE | 623 | **** MEMORY LAYOUT OF THE REAL-MODE CODE |
611 | 624 | ||
diff --git a/Documentation/i386/usb-legacy-support.txt b/Documentation/x86/i386/usb-legacy-support.txt index 1894cdfc69d9..1894cdfc69d9 100644 --- a/Documentation/i386/usb-legacy-support.txt +++ b/Documentation/x86/i386/usb-legacy-support.txt | |||
diff --git a/Documentation/i386/zero-page.txt b/Documentation/x86/i386/zero-page.txt index 169ad423a3d1..169ad423a3d1 100644 --- a/Documentation/i386/zero-page.txt +++ b/Documentation/x86/i386/zero-page.txt | |||
diff --git a/Documentation/x86_64/00-INDEX b/Documentation/x86/x86_64/00-INDEX index 92fc20ab5f0e..92fc20ab5f0e 100644 --- a/Documentation/x86_64/00-INDEX +++ b/Documentation/x86/x86_64/00-INDEX | |||
diff --git a/Documentation/x86_64/boot-options.txt b/Documentation/x86/x86_64/boot-options.txt index b0c7b6c4abda..b0c7b6c4abda 100644 --- a/Documentation/x86_64/boot-options.txt +++ b/Documentation/x86/x86_64/boot-options.txt | |||
diff --git a/Documentation/x86_64/cpu-hotplug-spec b/Documentation/x86/x86_64/cpu-hotplug-spec index 3c23e0587db3..3c23e0587db3 100644 --- a/Documentation/x86_64/cpu-hotplug-spec +++ b/Documentation/x86/x86_64/cpu-hotplug-spec | |||
diff --git a/Documentation/x86_64/fake-numa-for-cpusets b/Documentation/x86/x86_64/fake-numa-for-cpusets index d1a985c5b00a..d1a985c5b00a 100644 --- a/Documentation/x86_64/fake-numa-for-cpusets +++ b/Documentation/x86/x86_64/fake-numa-for-cpusets | |||
diff --git a/Documentation/x86_64/kernel-stacks b/Documentation/x86/x86_64/kernel-stacks index 5ad65d51fb95..5ad65d51fb95 100644 --- a/Documentation/x86_64/kernel-stacks +++ b/Documentation/x86/x86_64/kernel-stacks | |||
diff --git a/Documentation/x86_64/machinecheck b/Documentation/x86/x86_64/machinecheck index a05e58e7b159..a05e58e7b159 100644 --- a/Documentation/x86_64/machinecheck +++ b/Documentation/x86/x86_64/machinecheck | |||
diff --git a/Documentation/x86_64/mm.txt b/Documentation/x86/x86_64/mm.txt index b89b6d2bebfa..efce75097369 100644 --- a/Documentation/x86_64/mm.txt +++ b/Documentation/x86/x86_64/mm.txt | |||
@@ -11,9 +11,8 @@ ffffc10000000000 - ffffc1ffffffffff (=40 bits) hole | |||
11 | ffffc20000000000 - ffffe1ffffffffff (=45 bits) vmalloc/ioremap space | 11 | ffffc20000000000 - ffffe1ffffffffff (=45 bits) vmalloc/ioremap space |
12 | ffffe20000000000 - ffffe2ffffffffff (=40 bits) virtual memory map (1TB) | 12 | ffffe20000000000 - ffffe2ffffffffff (=40 bits) virtual memory map (1TB) |
13 | ... unused hole ... | 13 | ... unused hole ... |
14 | ffffffff80000000 - ffffffff82800000 (=40 MB) kernel text mapping, from phys 0 | 14 | ffffffff80000000 - ffffffffa0000000 (=512 MB) kernel text mapping, from phys 0 |
15 | ... unused hole ... | 15 | ffffffffa0000000 - fffffffffff00000 (=1536 MB) module mapping space |
16 | ffffffff88000000 - fffffffffff00000 (=1919 MB) module mapping space | ||
17 | 16 | ||
18 | The direct mapping covers all memory in the system up to the highest | 17 | The direct mapping covers all memory in the system up to the highest |
19 | memory address (this means in some cases it can also include PCI memory | 18 | memory address (this means in some cases it can also include PCI memory |
diff --git a/Documentation/x86_64/uefi.txt b/Documentation/x86/x86_64/uefi.txt index 7d77120a5184..a5e2b4fdb170 100644 --- a/Documentation/x86_64/uefi.txt +++ b/Documentation/x86/x86_64/uefi.txt | |||
@@ -36,3 +36,7 @@ Mechanics: | |||
36 | services. | 36 | services. |
37 | noefi turn off all EFI runtime services | 37 | noefi turn off all EFI runtime services |
38 | reboot_type=k turn off EFI reboot runtime service | 38 | reboot_type=k turn off EFI reboot runtime service |
39 | - If the EFI memory map has additional entries not in the E820 map, | ||
40 | you can include those entries in the kernels memory map of available | ||
41 | physical RAM by using the following kernel command line parameter. | ||
42 | add_efi_memmap include EFI memory map of available physical RAM | ||