diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2009-06-10 19:16:48 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2009-06-10 19:16:48 -0400 |
commit | 75063600fd7b27fe447112c27997f100b9e2f99b (patch) | |
tree | 9a495bc5ec6570b0eb7e0d1f77ef23d97b33656b /Documentation | |
parent | be15f9d63b97da0065187696962331de6cd9de9e (diff) | |
parent | 2070887fdeacd9c13f3e805e3f0086c9f22a4d93 (diff) |
Merge branch 'futexes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'futexes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
futex: fix restart in wait_requeue_pi
futex: fix restart for early wakeup in futex_wait_requeue_pi()
futex: cleanup error exit
futex: remove the wait queue
futex: add requeue-pi documentation
futex: remove FUTEX_REQUEUE_PI (non CMP)
futex: fix futex_wait_setup key handling
sparc64: extend TI_RESTART_BLOCK space by 8 bytes
futex: fixup unlocked requeue pi case
futex: add requeue_pi functionality
futex: split out futex value validation code
futex: distangle futex_requeue()
futex: add FUTEX_HAS_TIMEOUT flag to restart.futex.flags
rt_mutex: add proxy lock routines
futex: split out fixup owner logic from futex_lock_pi()
futex: split out atomic logic from futex_lock_pi()
futex: add helper to find the top prio waiter of a futex
futex: separate futex_wait_queue_me() logic from futex_wait()
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/futex-requeue-pi.txt | 131 |
1 files changed, 131 insertions, 0 deletions
diff --git a/Documentation/futex-requeue-pi.txt b/Documentation/futex-requeue-pi.txt new file mode 100644 index 000000000000..9dc1ff4fd536 --- /dev/null +++ b/Documentation/futex-requeue-pi.txt | |||
@@ -0,0 +1,131 @@ | |||
1 | Futex Requeue PI | ||
2 | ---------------- | ||
3 | |||
4 | Requeueing of tasks from a non-PI futex to a PI futex requires | ||
5 | special handling in order to ensure the underlying rt_mutex is never | ||
6 | left without an owner if it has waiters; doing so would break the PI | ||
7 | boosting logic [see rt-mutex-desgin.txt] For the purposes of | ||
8 | brevity, this action will be referred to as "requeue_pi" throughout | ||
9 | this document. Priority inheritance is abbreviated throughout as | ||
10 | "PI". | ||
11 | |||
12 | Motivation | ||
13 | ---------- | ||
14 | |||
15 | Without requeue_pi, the glibc implementation of | ||
16 | pthread_cond_broadcast() must resort to waking all the tasks waiting | ||
17 | on a pthread_condvar and letting them try to sort out which task | ||
18 | gets to run first in classic thundering-herd formation. An ideal | ||
19 | implementation would wake the highest-priority waiter, and leave the | ||
20 | rest to the natural wakeup inherent in unlocking the mutex | ||
21 | associated with the condvar. | ||
22 | |||
23 | Consider the simplified glibc calls: | ||
24 | |||
25 | /* caller must lock mutex */ | ||
26 | pthread_cond_wait(cond, mutex) | ||
27 | { | ||
28 | lock(cond->__data.__lock); | ||
29 | unlock(mutex); | ||
30 | do { | ||
31 | unlock(cond->__data.__lock); | ||
32 | futex_wait(cond->__data.__futex); | ||
33 | lock(cond->__data.__lock); | ||
34 | } while(...) | ||
35 | unlock(cond->__data.__lock); | ||
36 | lock(mutex); | ||
37 | } | ||
38 | |||
39 | pthread_cond_broadcast(cond) | ||
40 | { | ||
41 | lock(cond->__data.__lock); | ||
42 | unlock(cond->__data.__lock); | ||
43 | futex_requeue(cond->data.__futex, cond->mutex); | ||
44 | } | ||
45 | |||
46 | Once pthread_cond_broadcast() requeues the tasks, the cond->mutex | ||
47 | has waiters. Note that pthread_cond_wait() attempts to lock the | ||
48 | mutex only after it has returned to user space. This will leave the | ||
49 | underlying rt_mutex with waiters, and no owner, breaking the | ||
50 | previously mentioned PI-boosting algorithms. | ||
51 | |||
52 | In order to support PI-aware pthread_condvar's, the kernel needs to | ||
53 | be able to requeue tasks to PI futexes. This support implies that | ||
54 | upon a successful futex_wait system call, the caller would return to | ||
55 | user space already holding the PI futex. The glibc implementation | ||
56 | would be modified as follows: | ||
57 | |||
58 | |||
59 | /* caller must lock mutex */ | ||
60 | pthread_cond_wait_pi(cond, mutex) | ||
61 | { | ||
62 | lock(cond->__data.__lock); | ||
63 | unlock(mutex); | ||
64 | do { | ||
65 | unlock(cond->__data.__lock); | ||
66 | futex_wait_requeue_pi(cond->__data.__futex); | ||
67 | lock(cond->__data.__lock); | ||
68 | } while(...) | ||
69 | unlock(cond->__data.__lock); | ||
70 | /* the kernel acquired the the mutex for us */ | ||
71 | } | ||
72 | |||
73 | pthread_cond_broadcast_pi(cond) | ||
74 | { | ||
75 | lock(cond->__data.__lock); | ||
76 | unlock(cond->__data.__lock); | ||
77 | futex_requeue_pi(cond->data.__futex, cond->mutex); | ||
78 | } | ||
79 | |||
80 | The actual glibc implementation will likely test for PI and make the | ||
81 | necessary changes inside the existing calls rather than creating new | ||
82 | calls for the PI cases. Similar changes are needed for | ||
83 | pthread_cond_timedwait() and pthread_cond_signal(). | ||
84 | |||
85 | Implementation | ||
86 | -------------- | ||
87 | |||
88 | In order to ensure the rt_mutex has an owner if it has waiters, it | ||
89 | is necessary for both the requeue code, as well as the waiting code, | ||
90 | to be able to acquire the rt_mutex before returning to user space. | ||
91 | The requeue code cannot simply wake the waiter and leave it to | ||
92 | acquire the rt_mutex as it would open a race window between the | ||
93 | requeue call returning to user space and the waiter waking and | ||
94 | starting to run. This is especially true in the uncontended case. | ||
95 | |||
96 | The solution involves two new rt_mutex helper routines, | ||
97 | rt_mutex_start_proxy_lock() and rt_mutex_finish_proxy_lock(), which | ||
98 | allow the requeue code to acquire an uncontended rt_mutex on behalf | ||
99 | of the waiter and to enqueue the waiter on a contended rt_mutex. | ||
100 | Two new system calls provide the kernel<->user interface to | ||
101 | requeue_pi: FUTEX_WAIT_REQUEUE_PI and FUTEX_REQUEUE_CMP_PI. | ||
102 | |||
103 | FUTEX_WAIT_REQUEUE_PI is called by the waiter (pthread_cond_wait() | ||
104 | and pthread_cond_timedwait()) to block on the initial futex and wait | ||
105 | to be requeued to a PI-aware futex. The implementation is the | ||
106 | result of a high-speed collision between futex_wait() and | ||
107 | futex_lock_pi(), with some extra logic to check for the additional | ||
108 | wake-up scenarios. | ||
109 | |||
110 | FUTEX_REQUEUE_CMP_PI is called by the waker | ||
111 | (pthread_cond_broadcast() and pthread_cond_signal()) to requeue and | ||
112 | possibly wake the waiting tasks. Internally, this system call is | ||
113 | still handled by futex_requeue (by passing requeue_pi=1). Before | ||
114 | requeueing, futex_requeue() attempts to acquire the requeue target | ||
115 | PI futex on behalf of the top waiter. If it can, this waiter is | ||
116 | woken. futex_requeue() then proceeds to requeue the remaining | ||
117 | nr_wake+nr_requeue tasks to the PI futex, calling | ||
118 | rt_mutex_start_proxy_lock() prior to each requeue to prepare the | ||
119 | task as a waiter on the underlying rt_mutex. It is possible that | ||
120 | the lock can be acquired at this stage as well, if so, the next | ||
121 | waiter is woken to finish the acquisition of the lock. | ||
122 | |||
123 | FUTEX_REQUEUE_PI accepts nr_wake and nr_requeue as arguments, but | ||
124 | their sum is all that really matters. futex_requeue() will wake or | ||
125 | requeue up to nr_wake + nr_requeue tasks. It will wake only as many | ||
126 | tasks as it can acquire the lock for, which in the majority of cases | ||
127 | should be 0 as good programming practice dictates that the caller of | ||
128 | either pthread_cond_broadcast() or pthread_cond_signal() acquire the | ||
129 | mutex prior to making the call. FUTEX_REQUEUE_PI requires that | ||
130 | nr_wake=1. nr_requeue should be INT_MAX for broadcast and 0 for | ||
131 | signal. | ||