aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2008-09-22 07:08:57 -0400
committerIngo Molnar <mingo@elte.hu>2008-09-22 07:08:57 -0400
commit0b88641f1bafdbd087d5e63987a30cc0eadd63b9 (patch)
tree81dcf756db373444140bb2623584710c628e3048 /Documentation
parentfbdbf709938d155c719c76b9894d28342632c797 (diff)
parent72d31053f62c4bc464c2783974926969614a8649 (diff)
Merge commit 'v2.6.27-rc7' into x86/debug
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/00-INDEX4
-rw-r--r--Documentation/ABI/testing/sysfs-class-regulator315
-rw-r--r--Documentation/ABI/testing/sysfs-devices-memory24
-rw-r--r--Documentation/ABI/testing/sysfs-firmware-sgi_uv27
-rw-r--r--Documentation/ABI/testing/sysfs-gpio26
-rw-r--r--Documentation/ABI/testing/sysfs-kernel-mm6
-rw-r--r--Documentation/ABI/testing/sysfs-kernel-mm-hugepages15
-rw-r--r--Documentation/CodingStyle42
-rw-r--r--Documentation/DMA-API.txt4
-rw-r--r--Documentation/DocBook/Makefile9
-rw-r--r--Documentation/DocBook/kernel-locking.tmpl57
-rw-r--r--Documentation/DocBook/kgdb.tmpl18
-rw-r--r--Documentation/DocBook/procfs-guide.tmpl4
-rw-r--r--Documentation/DocBook/procfs_example.c4
-rw-r--r--Documentation/DocBook/s390-drivers.tmpl8
-rw-r--r--Documentation/DocBook/sh.tmpl105
-rw-r--r--Documentation/DocBook/videobook.tmpl2
-rw-r--r--Documentation/DocBook/z8530book.tmpl38
-rw-r--r--Documentation/Intel-IOMMU.txt4
-rw-r--r--Documentation/Makefile3
-rw-r--r--Documentation/SubmittingPatches26
-rw-r--r--Documentation/accounting/Makefile10
-rw-r--r--Documentation/accounting/delay-accounting.txt11
-rw-r--r--Documentation/accounting/getdelays.c29
-rw-r--r--Documentation/accounting/taskstats-struct.txt9
-rw-r--r--Documentation/arm/IXP4xx2
-rw-r--r--Documentation/arm/Interrupts12
-rw-r--r--Documentation/arm/README4
-rw-r--r--Documentation/arm/Samsung-S3C24XX/GPIO.txt23
-rw-r--r--Documentation/arm/Samsung-S3C24XX/Overview.txt37
-rw-r--r--Documentation/arm/Samsung-S3C24XX/USB-Host.txt2
-rw-r--r--Documentation/auxdisplay/Makefile10
-rw-r--r--Documentation/bt8xxgpio.txt67
-rw-r--r--Documentation/cciss.txt21
-rw-r--r--Documentation/cli-sti-removal.txt133
-rw-r--r--Documentation/connector/Makefile11
-rw-r--r--Documentation/controllers/memory.txt3
-rw-r--r--Documentation/cpu-freq/governors.txt2
-rw-r--r--Documentation/cpu-hotplug.txt5
-rw-r--r--Documentation/cpusets.txt18
-rw-r--r--Documentation/devices.txt3
-rw-r--r--Documentation/dontdiff2
-rw-r--r--Documentation/edac.txt153
-rw-r--r--Documentation/fb/sh7760fb.txt131
-rw-r--r--Documentation/fb/tridentfb.txt46
-rw-r--r--Documentation/feature-removal-schedule.txt80
-rw-r--r--Documentation/filesystems/Locking22
-rw-r--r--Documentation/filesystems/configfs/Makefile3
-rw-r--r--Documentation/filesystems/configfs/configfs.txt17
-rw-r--r--Documentation/filesystems/configfs/configfs_example_explicit.c (renamed from Documentation/filesystems/configfs/configfs_example.c)18
-rw-r--r--Documentation/filesystems/configfs/configfs_example_macros.c448
-rw-r--r--Documentation/filesystems/ext4.txt6
-rw-r--r--Documentation/filesystems/ntfs.txt4
-rw-r--r--Documentation/filesystems/omfs.txt106
-rw-r--r--Documentation/filesystems/proc.txt69
-rw-r--r--Documentation/filesystems/quota.txt22
-rw-r--r--Documentation/filesystems/relay.txt10
-rw-r--r--Documentation/filesystems/ubifs.txt2
-rw-r--r--Documentation/filesystems/vfat.txt8
-rw-r--r--Documentation/filesystems/vfs.txt6
-rw-r--r--Documentation/ftrace.txt1
-rw-r--r--Documentation/gpio.txt135
-rw-r--r--Documentation/hwmon/dme173757
-rw-r--r--Documentation/hwmon/ibmaem33
-rw-r--r--Documentation/hwmon/it8713
-rw-r--r--Documentation/hwmon/lm8511
-rw-r--r--Documentation/hwmon/w83627hf4
-rw-r--r--Documentation/hwmon/w83791d6
-rw-r--r--Documentation/i2c/upgrading-clients281
-rw-r--r--Documentation/ia64/Makefile8
-rw-r--r--Documentation/ia64/kvm.txt8
-rw-r--r--Documentation/input/cs461x.txt2
-rw-r--r--Documentation/ioctl-number.txt1
-rw-r--r--Documentation/ioctl/ioctl-decoding.txt4
-rw-r--r--Documentation/iostats.txt2
-rw-r--r--Documentation/isdn/README.mISDN6
-rw-r--r--Documentation/ja_JP/HOWTO67
-rw-r--r--Documentation/ja_JP/SubmitChecklist111
-rw-r--r--Documentation/kdump/kdump.txt20
-rw-r--r--Documentation/kernel-parameters.txt51
-rw-r--r--Documentation/keys.txt2
-rw-r--r--Documentation/laptops/thinkpad-acpi.txt37
-rw-r--r--Documentation/leds-class.txt2
-rw-r--r--Documentation/lguest/lguest.c522
-rw-r--r--Documentation/local_ops.txt2
-rw-r--r--Documentation/moxa-smartio392
-rw-r--r--Documentation/networking/Makefile8
-rw-r--r--Documentation/networking/bonding.txt2
-rw-r--r--Documentation/networking/can.txt4
-rw-r--r--Documentation/networking/ifenslave.c2
-rw-r--r--Documentation/networking/packet_mmap.txt2
-rw-r--r--Documentation/networking/tc-actions-env-rules.txt15
-rw-r--r--Documentation/pcmcia/Makefile10
-rw-r--r--Documentation/pcmcia/crc32hash.c2
-rw-r--r--Documentation/power/00-INDEX4
-rw-r--r--Documentation/power/apm-acpi.txt32
-rw-r--r--Documentation/power/pm.txt257
-rw-r--r--Documentation/power/pm_qos_interface.txt7
-rw-r--r--Documentation/power/power_supply_class.txt4
-rw-r--r--Documentation/power/regulator/consumer.txt182
-rw-r--r--Documentation/power/regulator/machine.txt101
-rw-r--r--Documentation/power/regulator/overview.txt171
-rw-r--r--Documentation/power/regulator/regulator.txt30
-rw-r--r--Documentation/powerpc/00-INDEX2
-rw-r--r--Documentation/powerpc/SBC8260_memory_mapping.txt197
-rw-r--r--Documentation/powerpc/booting-without-of.txt69
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/cpm_qe/serial.txt11
-rw-r--r--Documentation/powerpc/eeh-pci-error-recovery.txt2
-rw-r--r--Documentation/powerpc/qe_firmware.txt2
-rw-r--r--Documentation/rfkill.txt25
-rw-r--r--Documentation/s390/driver-model.txt2
-rw-r--r--Documentation/scsi/ChangeLog.megaraid_sas23
-rw-r--r--Documentation/scsi/ibmmca.txt6
-rw-r--r--Documentation/scsi/lpfc.txt2
-rw-r--r--Documentation/scsi/scsi_fc_transport.txt6
-rw-r--r--Documentation/sh/clk.txt2
-rw-r--r--Documentation/sound/alsa/ALSA-Configuration.txt11
-rw-r--r--Documentation/sound/alsa/Audiophile-Usb.txt10
-rw-r--r--Documentation/sound/alsa/hda_codec.txt2
-rw-r--r--Documentation/sound/alsa/soc/dapm.txt2
-rw-r--r--Documentation/sparse.txt8
-rw-r--r--Documentation/spi/Makefile11
-rw-r--r--Documentation/spi/pxa2xx4
-rw-r--r--Documentation/spi/spi-summary4
-rw-r--r--Documentation/sysctl/vm.txt2
-rw-r--r--Documentation/timers/highres.txt2
-rw-r--r--Documentation/unaligned-memory-access.txt32
-rw-r--r--Documentation/usb/auerswald.txt30
-rw-r--r--Documentation/usb/authorization.txt2
-rw-r--r--Documentation/usb/power-management.txt7
-rw-r--r--Documentation/video4linux/CARDLIST.au08282
-rw-r--r--Documentation/video4linux/CARDLIST.em28xx45
-rw-r--r--Documentation/video4linux/Makefile8
-rw-r--r--Documentation/video4linux/gspca.txt32
-rw-r--r--Documentation/video4linux/sn9c102.txt2
-rw-r--r--Documentation/vm/Makefile8
-rw-r--r--Documentation/vm/hugetlbpage.txt25
-rw-r--r--Documentation/vm/numa_memory_policy.txt4
-rw-r--r--Documentation/vm/page_migration9
-rw-r--r--Documentation/volatile-considered-harmful.txt2
-rw-r--r--Documentation/watchdog/src/Makefile8
141 files changed, 4073 insertions, 1465 deletions
diff --git a/Documentation/00-INDEX b/Documentation/00-INDEX
index 1977fab38656..5b5aba404aac 100644
--- a/Documentation/00-INDEX
+++ b/Documentation/00-INDEX
@@ -89,8 +89,6 @@ cciss.txt
89 - info, major/minor #'s for Compaq's SMART Array Controllers. 89 - info, major/minor #'s for Compaq's SMART Array Controllers.
90cdrom/ 90cdrom/
91 - directory with information on the CD-ROM drivers that Linux has. 91 - directory with information on the CD-ROM drivers that Linux has.
92cli-sti-removal.txt
93 - cli()/sti() removal guide.
94computone.txt 92computone.txt
95 - info on Computone Intelliport II/Plus Multiport Serial Driver. 93 - info on Computone Intelliport II/Plus Multiport Serial Driver.
96connector/ 94connector/
@@ -361,8 +359,6 @@ telephony/
361 - directory with info on telephony (e.g. voice over IP) support. 359 - directory with info on telephony (e.g. voice over IP) support.
362time_interpolators.txt 360time_interpolators.txt
363 - info on time interpolators. 361 - info on time interpolators.
364tipar.txt
365 - information about Parallel link cable for Texas Instruments handhelds.
366tty.txt 362tty.txt
367 - guide to the locking policies of the tty layer. 363 - guide to the locking policies of the tty layer.
368uml/ 364uml/
diff --git a/Documentation/ABI/testing/sysfs-class-regulator b/Documentation/ABI/testing/sysfs-class-regulator
new file mode 100644
index 000000000000..79a4a75b2d2c
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-class-regulator
@@ -0,0 +1,315 @@
1What: /sys/class/regulator/.../state
2Date: April 2008
3KernelVersion: 2.6.26
4Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
5Description:
6 Each regulator directory will contain a field called
7 state. This holds the regulator output state.
8
9 This will be one of the following strings:
10
11 'enabled'
12 'disabled'
13 'unknown'
14
15 'enabled' means the regulator output is ON and is supplying
16 power to the system.
17
18 'disabled' means the regulator output is OFF and is not
19 supplying power to the system..
20
21 'unknown' means software cannot determine the state.
22
23 NOTE: this field can be used in conjunction with microvolts
24 and microamps to determine regulator output levels.
25
26
27What: /sys/class/regulator/.../type
28Date: April 2008
29KernelVersion: 2.6.26
30Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
31Description:
32 Each regulator directory will contain a field called
33 type. This holds the regulator type.
34
35 This will be one of the following strings:
36
37 'voltage'
38 'current'
39 'unknown'
40
41 'voltage' means the regulator output voltage can be controlled
42 by software.
43
44 'current' means the regulator output current limit can be
45 controlled by software.
46
47 'unknown' means software cannot control either voltage or
48 current limit.
49
50
51What: /sys/class/regulator/.../microvolts
52Date: April 2008
53KernelVersion: 2.6.26
54Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
55Description:
56 Each regulator directory will contain a field called
57 microvolts. This holds the regulator output voltage setting
58 measured in microvolts (i.e. E-6 Volts).
59
60 NOTE: This value should not be used to determine the regulator
61 output voltage level as this value is the same regardless of
62 whether the regulator is enabled or disabled.
63
64
65What: /sys/class/regulator/.../microamps
66Date: April 2008
67KernelVersion: 2.6.26
68Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
69Description:
70 Each regulator directory will contain a field called
71 microamps. This holds the regulator output current limit
72 setting measured in microamps (i.e. E-6 Amps).
73
74 NOTE: This value should not be used to determine the regulator
75 output current level as this value is the same regardless of
76 whether the regulator is enabled or disabled.
77
78
79What: /sys/class/regulator/.../opmode
80Date: April 2008
81KernelVersion: 2.6.26
82Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
83Description:
84 Each regulator directory will contain a field called
85 opmode. This holds the regulator operating mode setting.
86
87 The opmode value can be one of the following strings:
88
89 'fast'
90 'normal'
91 'idle'
92 'standby'
93 'unknown'
94
95 The modes are described in include/linux/regulator/regulator.h
96
97 NOTE: This value should not be used to determine the regulator
98 output operating mode as this value is the same regardless of
99 whether the regulator is enabled or disabled.
100
101
102What: /sys/class/regulator/.../min_microvolts
103Date: April 2008
104KernelVersion: 2.6.26
105Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
106Description:
107 Each regulator directory will contain a field called
108 min_microvolts. This holds the minimum safe working regulator
109 output voltage setting for this domain measured in microvolts.
110
111 NOTE: this will return the string 'constraint not defined' if
112 the power domain has no min microvolts constraint defined by
113 platform code.
114
115
116What: /sys/class/regulator/.../max_microvolts
117Date: April 2008
118KernelVersion: 2.6.26
119Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
120Description:
121 Each regulator directory will contain a field called
122 max_microvolts. This holds the maximum safe working regulator
123 output voltage setting for this domain measured in microvolts.
124
125 NOTE: this will return the string 'constraint not defined' if
126 the power domain has no max microvolts constraint defined by
127 platform code.
128
129
130What: /sys/class/regulator/.../min_microamps
131Date: April 2008
132KernelVersion: 2.6.26
133Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
134Description:
135 Each regulator directory will contain a field called
136 min_microamps. This holds the minimum safe working regulator
137 output current limit setting for this domain measured in
138 microamps.
139
140 NOTE: this will return the string 'constraint not defined' if
141 the power domain has no min microamps constraint defined by
142 platform code.
143
144
145What: /sys/class/regulator/.../max_microamps
146Date: April 2008
147KernelVersion: 2.6.26
148Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
149Description:
150 Each regulator directory will contain a field called
151 max_microamps. This holds the maximum safe working regulator
152 output current limit setting for this domain measured in
153 microamps.
154
155 NOTE: this will return the string 'constraint not defined' if
156 the power domain has no max microamps constraint defined by
157 platform code.
158
159
160What: /sys/class/regulator/.../num_users
161Date: April 2008
162KernelVersion: 2.6.26
163Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
164Description:
165 Each regulator directory will contain a field called
166 num_users. This holds the number of consumer devices that
167 have called regulator_enable() on this regulator.
168
169
170What: /sys/class/regulator/.../requested_microamps
171Date: April 2008
172KernelVersion: 2.6.26
173Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
174Description:
175 Each regulator directory will contain a field called
176 requested_microamps. This holds the total requested load
177 current in microamps for this regulator from all its consumer
178 devices.
179
180
181What: /sys/class/regulator/.../parent
182Date: April 2008
183KernelVersion: 2.6.26
184Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
185Description:
186 Some regulator directories will contain a link called parent.
187 This points to the parent or supply regulator if one exists.
188
189What: /sys/class/regulator/.../suspend_mem_microvolts
190Date: May 2008
191KernelVersion: 2.6.26
192Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
193Description:
194 Each regulator directory will contain a field called
195 suspend_mem_microvolts. This holds the regulator output
196 voltage setting for this domain measured in microvolts when
197 the system is suspended to memory.
198
199 NOTE: this will return the string 'not defined' if
200 the power domain has no suspend to memory voltage defined by
201 platform code.
202
203What: /sys/class/regulator/.../suspend_disk_microvolts
204Date: May 2008
205KernelVersion: 2.6.26
206Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
207Description:
208 Each regulator directory will contain a field called
209 suspend_disk_microvolts. This holds the regulator output
210 voltage setting for this domain measured in microvolts when
211 the system is suspended to disk.
212
213 NOTE: this will return the string 'not defined' if
214 the power domain has no suspend to disk voltage defined by
215 platform code.
216
217What: /sys/class/regulator/.../suspend_standby_microvolts
218Date: May 2008
219KernelVersion: 2.6.26
220Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
221Description:
222 Each regulator directory will contain a field called
223 suspend_standby_microvolts. This holds the regulator output
224 voltage setting for this domain measured in microvolts when
225 the system is suspended to standby.
226
227 NOTE: this will return the string 'not defined' if
228 the power domain has no suspend to standby voltage defined by
229 platform code.
230
231What: /sys/class/regulator/.../suspend_mem_mode
232Date: May 2008
233KernelVersion: 2.6.26
234Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
235Description:
236 Each regulator directory will contain a field called
237 suspend_mem_mode. This holds the regulator operating mode
238 setting for this domain when the system is suspended to
239 memory.
240
241 NOTE: this will return the string 'not defined' if
242 the power domain has no suspend to memory mode defined by
243 platform code.
244
245What: /sys/class/regulator/.../suspend_disk_mode
246Date: May 2008
247KernelVersion: 2.6.26
248Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
249Description:
250 Each regulator directory will contain a field called
251 suspend_disk_mode. This holds the regulator operating mode
252 setting for this domain when the system is suspended to disk.
253
254 NOTE: this will return the string 'not defined' if
255 the power domain has no suspend to disk mode defined by
256 platform code.
257
258What: /sys/class/regulator/.../suspend_standby_mode
259Date: May 2008
260KernelVersion: 2.6.26
261Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
262Description:
263 Each regulator directory will contain a field called
264 suspend_standby_mode. This holds the regulator operating mode
265 setting for this domain when the system is suspended to
266 standby.
267
268 NOTE: this will return the string 'not defined' if
269 the power domain has no suspend to standby mode defined by
270 platform code.
271
272What: /sys/class/regulator/.../suspend_mem_state
273Date: May 2008
274KernelVersion: 2.6.26
275Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
276Description:
277 Each regulator directory will contain a field called
278 suspend_mem_state. This holds the regulator operating state
279 when suspended to memory.
280
281 This will be one of the following strings:
282
283 'enabled'
284 'disabled'
285 'not defined'
286
287What: /sys/class/regulator/.../suspend_disk_state
288Date: May 2008
289KernelVersion: 2.6.26
290Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
291Description:
292 Each regulator directory will contain a field called
293 suspend_disk_state. This holds the regulator operating state
294 when suspended to disk.
295
296 This will be one of the following strings:
297
298 'enabled'
299 'disabled'
300 'not defined'
301
302What: /sys/class/regulator/.../suspend_standby_state
303Date: May 2008
304KernelVersion: 2.6.26
305Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
306Description:
307 Each regulator directory will contain a field called
308 suspend_standby_state. This holds the regulator operating
309 state when suspended to standby.
310
311 This will be one of the following strings:
312
313 'enabled'
314 'disabled'
315 'not defined'
diff --git a/Documentation/ABI/testing/sysfs-devices-memory b/Documentation/ABI/testing/sysfs-devices-memory
new file mode 100644
index 000000000000..7a16fe1e2270
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-devices-memory
@@ -0,0 +1,24 @@
1What: /sys/devices/system/memory
2Date: June 2008
3Contact: Badari Pulavarty <pbadari@us.ibm.com>
4Description:
5 The /sys/devices/system/memory contains a snapshot of the
6 internal state of the kernel memory blocks. Files could be
7 added or removed dynamically to represent hot-add/remove
8 operations.
9
10Users: hotplug memory add/remove tools
11 https://w3.opensource.ibm.com/projects/powerpc-utils/
12
13What: /sys/devices/system/memory/memoryX/removable
14Date: June 2008
15Contact: Badari Pulavarty <pbadari@us.ibm.com>
16Description:
17 The file /sys/devices/system/memory/memoryX/removable
18 indicates whether this memory block is removable or not.
19 This is useful for a user-level agent to determine
20 identify removable sections of the memory before attempting
21 potentially expensive hot-remove memory operation
22
23Users: hotplug memory remove tools
24 https://w3.opensource.ibm.com/projects/powerpc-utils/
diff --git a/Documentation/ABI/testing/sysfs-firmware-sgi_uv b/Documentation/ABI/testing/sysfs-firmware-sgi_uv
new file mode 100644
index 000000000000..4573fd4b7876
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-firmware-sgi_uv
@@ -0,0 +1,27 @@
1What: /sys/firmware/sgi_uv/
2Date: August 2008
3Contact: Russ Anderson <rja@sgi.com>
4Description:
5 The /sys/firmware/sgi_uv directory contains information
6 about the SGI UV platform.
7
8 Under that directory are a number of files:
9
10 partition_id
11 coherence_id
12
13 The partition_id entry contains the partition id.
14 SGI UV systems can be partitioned into multiple physical
15 machines, which each partition running a unique copy
16 of the operating system. Each partition will have a unique
17 partition id. To display the partition id, use the command:
18
19 cat /sys/firmware/sgi_uv/partition_id
20
21 The coherence_id entry contains the coherence id.
22 A partitioned SGI UV system can have one or more coherence
23 domain. The coherence id indicates which coherence domain
24 this partition is in. To display the coherence id, use the
25 command:
26
27 cat /sys/firmware/sgi_uv/coherence_id
diff --git a/Documentation/ABI/testing/sysfs-gpio b/Documentation/ABI/testing/sysfs-gpio
new file mode 100644
index 000000000000..8aab8092ad35
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-gpio
@@ -0,0 +1,26 @@
1What: /sys/class/gpio/
2Date: July 2008
3KernelVersion: 2.6.27
4Contact: David Brownell <dbrownell@users.sourceforge.net>
5Description:
6
7 As a Kconfig option, individual GPIO signals may be accessed from
8 userspace. GPIOs are only made available to userspace by an explicit
9 "export" operation. If a given GPIO is not claimed for use by
10 kernel code, it may be exported by userspace (and unexported later).
11 Kernel code may export it for complete or partial access.
12
13 GPIOs are identified as they are inside the kernel, using integers in
14 the range 0..INT_MAX. See Documentation/gpio.txt for more information.
15
16 /sys/class/gpio
17 /export ... asks the kernel to export a GPIO to userspace
18 /unexport ... to return a GPIO to the kernel
19 /gpioN ... for each exported GPIO #N
20 /value ... always readable, writes fail for input GPIOs
21 /direction ... r/w as: in, out (default low); write: high, low
22 /gpiochipN ... for each gpiochip; #N is its first GPIO
23 /base ... (r/o) same as N
24 /label ... (r/o) descriptive, not necessarily unique
25 /ngpio ... (r/o) number of GPIOs; numbered N to N + (ngpio - 1)
26
diff --git a/Documentation/ABI/testing/sysfs-kernel-mm b/Documentation/ABI/testing/sysfs-kernel-mm
new file mode 100644
index 000000000000..190d523ac159
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-kernel-mm
@@ -0,0 +1,6 @@
1What: /sys/kernel/mm
2Date: July 2008
3Contact: Nishanth Aravamudan <nacc@us.ibm.com>, VM maintainers
4Description:
5 /sys/kernel/mm/ should contain any and all VM
6 related information in /sys/kernel/.
diff --git a/Documentation/ABI/testing/sysfs-kernel-mm-hugepages b/Documentation/ABI/testing/sysfs-kernel-mm-hugepages
new file mode 100644
index 000000000000..e21c00571cf4
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-kernel-mm-hugepages
@@ -0,0 +1,15 @@
1What: /sys/kernel/mm/hugepages/
2Date: June 2008
3Contact: Nishanth Aravamudan <nacc@us.ibm.com>, hugetlb maintainers
4Description:
5 /sys/kernel/mm/hugepages/ contains a number of subdirectories
6 of the form hugepages-<size>kB, where <size> is the page size
7 of the hugepages supported by the kernel/CPU combination.
8
9 Under these directories are a number of files:
10 nr_hugepages
11 nr_overcommit_hugepages
12 free_hugepages
13 surplus_hugepages
14 resv_hugepages
15 See Documentation/vm/hugetlbpage.txt for details.
diff --git a/Documentation/CodingStyle b/Documentation/CodingStyle
index 6caa14615578..1875e502f872 100644
--- a/Documentation/CodingStyle
+++ b/Documentation/CodingStyle
@@ -474,25 +474,29 @@ make a good program).
474So, you can either get rid of GNU emacs, or change it to use saner 474So, you can either get rid of GNU emacs, or change it to use saner
475values. To do the latter, you can stick the following in your .emacs file: 475values. To do the latter, you can stick the following in your .emacs file:
476 476
477(defun linux-c-mode () 477(defun c-lineup-arglist-tabs-only (ignored)
478 "C mode with adjusted defaults for use with the Linux kernel." 478 "Line up argument lists by tabs, not spaces"
479 (interactive) 479 (let* ((anchor (c-langelem-pos c-syntactic-element))
480 (c-mode) 480 (column (c-langelem-2nd-pos c-syntactic-element))
481 (c-set-style "K&R") 481 (offset (- (1+ column) anchor))
482 (setq tab-width 8) 482 (steps (floor offset c-basic-offset)))
483 (setq indent-tabs-mode t) 483 (* (max steps 1)
484 (setq c-basic-offset 8)) 484 c-basic-offset)))
485 485
486This will define the M-x linux-c-mode command. When hacking on a 486(add-hook 'c-mode-hook
487module, if you put the string -*- linux-c -*- somewhere on the first 487 (lambda ()
488two lines, this mode will be automatically invoked. Also, you may want 488 (let ((filename (buffer-file-name)))
489to add 489 ;; Enable kernel mode for the appropriate files
490 490 (when (and filename
491(setq auto-mode-alist (cons '("/usr/src/linux.*/.*\\.[ch]$" . linux-c-mode) 491 (string-match "~/src/linux-trees" filename))
492 auto-mode-alist)) 492 (setq indent-tabs-mode t)
493 493 (c-set-style "linux")
494to your .emacs file if you want to have linux-c-mode switched on 494 (c-set-offset 'arglist-cont-nonempty
495automagically when you edit source files under /usr/src/linux. 495 '(c-lineup-gcc-asm-reg
496 c-lineup-arglist-tabs-only))))))
497
498This will make emacs go better with the kernel coding style for C
499files below ~/src/linux-trees.
496 500
497But even if you fail in getting emacs to do sane formatting, not 501But even if you fail in getting emacs to do sane formatting, not
498everything is lost: use "indent". 502everything is lost: use "indent".
diff --git a/Documentation/DMA-API.txt b/Documentation/DMA-API.txt
index 80d150458c80..d8b63d164e41 100644
--- a/Documentation/DMA-API.txt
+++ b/Documentation/DMA-API.txt
@@ -298,10 +298,10 @@ recommended that you never use these unless you really know what the
298cache width is. 298cache width is.
299 299
300int 300int
301dma_mapping_error(dma_addr_t dma_addr) 301dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
302 302
303int 303int
304pci_dma_mapping_error(dma_addr_t dma_addr) 304pci_dma_mapping_error(struct pci_dev *hwdev, dma_addr_t dma_addr)
305 305
306In some circumstances dma_map_single and dma_map_page will fail to create 306In some circumstances dma_map_single and dma_map_page will fail to create
307a mapping. A driver can check for these errors by testing the returned 307a mapping. A driver can check for these errors by testing the returned
diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile
index 0eb0d027eb32..1615350b7b53 100644
--- a/Documentation/DocBook/Makefile
+++ b/Documentation/DocBook/Makefile
@@ -12,7 +12,7 @@ DOCBOOKS := wanbook.xml z8530book.xml mcabook.xml videobook.xml \
12 kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \ 12 kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \
13 gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \ 13 gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \
14 genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \ 14 genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \
15 mac80211.xml debugobjects.xml 15 mac80211.xml debugobjects.xml sh.xml
16 16
17### 17###
18# The build process is as follows (targets): 18# The build process is as follows (targets):
@@ -102,6 +102,13 @@ C-procfs-example = procfs_example.xml
102C-procfs-example2 = $(addprefix $(obj)/,$(C-procfs-example)) 102C-procfs-example2 = $(addprefix $(obj)/,$(C-procfs-example))
103$(obj)/procfs-guide.xml: $(C-procfs-example2) 103$(obj)/procfs-guide.xml: $(C-procfs-example2)
104 104
105# List of programs to build
106##oops, this is a kernel module::hostprogs-y := procfs_example
107obj-m += procfs_example.o
108
109# Tell kbuild to always build the programs
110always := $(hostprogs-y)
111
105notfoundtemplate = echo "*** You have to install docbook-utils or xmlto ***"; \ 112notfoundtemplate = echo "*** You have to install docbook-utils or xmlto ***"; \
106 exit 1 113 exit 1
107db2xtemplate = db2TYPE -o $(dir $@) $< 114db2xtemplate = db2TYPE -o $(dir $@) $<
diff --git a/Documentation/DocBook/kernel-locking.tmpl b/Documentation/DocBook/kernel-locking.tmpl
index 2510763295d0..084f6ad7b7a0 100644
--- a/Documentation/DocBook/kernel-locking.tmpl
+++ b/Documentation/DocBook/kernel-locking.tmpl
@@ -219,10 +219,10 @@
219 </para> 219 </para>
220 220
221 <sect1 id="lock-intro"> 221 <sect1 id="lock-intro">
222 <title>Three Main Types of Kernel Locks: Spinlocks, Mutexes and Semaphores</title> 222 <title>Two Main Types of Kernel Locks: Spinlocks and Mutexes</title>
223 223
224 <para> 224 <para>
225 There are three main types of kernel locks. The fundamental type 225 There are two main types of kernel locks. The fundamental type
226 is the spinlock 226 is the spinlock
227 (<filename class="headerfile">include/asm/spinlock.h</filename>), 227 (<filename class="headerfile">include/asm/spinlock.h</filename>),
228 which is a very simple single-holder lock: if you can't get the 228 which is a very simple single-holder lock: if you can't get the
@@ -240,14 +240,6 @@
240 use a spinlock instead. 240 use a spinlock instead.
241 </para> 241 </para>
242 <para> 242 <para>
243 The third type is a semaphore
244 (<filename class="headerfile">include/linux/semaphore.h</filename>): it
245 can have more than one holder at any time (the number decided at
246 initialization time), although it is most commonly used as a
247 single-holder lock (a mutex). If you can't get a semaphore, your
248 task will be suspended and later on woken up - just like for mutexes.
249 </para>
250 <para>
251 Neither type of lock is recursive: see 243 Neither type of lock is recursive: see
252 <xref linkend="deadlock"/>. 244 <xref linkend="deadlock"/>.
253 </para> 245 </para>
@@ -278,7 +270,7 @@
278 </para> 270 </para>
279 271
280 <para> 272 <para>
281 Semaphores still exist, because they are required for 273 Mutexes still exist, because they are required for
282 synchronization between <firstterm linkend="gloss-usercontext">user 274 synchronization between <firstterm linkend="gloss-usercontext">user
283 contexts</firstterm>, as we will see below. 275 contexts</firstterm>, as we will see below.
284 </para> 276 </para>
@@ -289,18 +281,17 @@
289 281
290 <para> 282 <para>
291 If you have a data structure which is only ever accessed from 283 If you have a data structure which is only ever accessed from
292 user context, then you can use a simple semaphore 284 user context, then you can use a simple mutex
293 (<filename>linux/linux/semaphore.h</filename>) to protect it. This 285 (<filename>include/linux/mutex.h</filename>) to protect it. This
294 is the most trivial case: you initialize the semaphore to the number 286 is the most trivial case: you initialize the mutex. Then you can
295 of resources available (usually 1), and call 287 call <function>mutex_lock_interruptible()</function> to grab the mutex,
296 <function>down_interruptible()</function> to grab the semaphore, and 288 and <function>mutex_unlock()</function> to release it. There is also a
297 <function>up()</function> to release it. There is also a 289 <function>mutex_lock()</function>, which should be avoided, because it
298 <function>down()</function>, which should be avoided, because it
299 will not return if a signal is received. 290 will not return if a signal is received.
300 </para> 291 </para>
301 292
302 <para> 293 <para>
303 Example: <filename>linux/net/core/netfilter.c</filename> allows 294 Example: <filename>net/netfilter/nf_sockopt.c</filename> allows
304 registration of new <function>setsockopt()</function> and 295 registration of new <function>setsockopt()</function> and
305 <function>getsockopt()</function> calls, with 296 <function>getsockopt()</function> calls, with
306 <function>nf_register_sockopt()</function>. Registration and 297 <function>nf_register_sockopt()</function>. Registration and
@@ -515,7 +506,7 @@
515 <listitem> 506 <listitem>
516 <para> 507 <para>
517 If you are in a process context (any syscall) and want to 508 If you are in a process context (any syscall) and want to
518 lock other process out, use a semaphore. You can take a semaphore 509 lock other process out, use a mutex. You can take a mutex
519 and sleep (<function>copy_from_user*(</function> or 510 and sleep (<function>copy_from_user*(</function> or
520 <function>kmalloc(x,GFP_KERNEL)</function>). 511 <function>kmalloc(x,GFP_KERNEL)</function>).
521 </para> 512 </para>
@@ -662,7 +653,7 @@
662<entry>SLBH</entry> 653<entry>SLBH</entry>
663<entry>SLBH</entry> 654<entry>SLBH</entry>
664<entry>SLBH</entry> 655<entry>SLBH</entry>
665<entry>DI</entry> 656<entry>MLI</entry>
666<entry>None</entry> 657<entry>None</entry>
667</row> 658</row>
668 659
@@ -692,8 +683,8 @@
692<entry>spin_lock_bh</entry> 683<entry>spin_lock_bh</entry>
693</row> 684</row>
694<row> 685<row>
695<entry>DI</entry> 686<entry>MLI</entry>
696<entry>down_interruptible</entry> 687<entry>mutex_lock_interruptible</entry>
697</row> 688</row>
698 689
699</tbody> 690</tbody>
@@ -1310,7 +1301,7 @@ as Alan Cox says, <quote>Lock data, not code</quote>.
1310 <para> 1301 <para>
1311 There is a coding bug where a piece of code tries to grab a 1302 There is a coding bug where a piece of code tries to grab a
1312 spinlock twice: it will spin forever, waiting for the lock to 1303 spinlock twice: it will spin forever, waiting for the lock to
1313 be released (spinlocks, rwlocks and semaphores are not 1304 be released (spinlocks, rwlocks and mutexes are not
1314 recursive in Linux). This is trivial to diagnose: not a 1305 recursive in Linux). This is trivial to diagnose: not a
1315 stay-up-five-nights-talk-to-fluffy-code-bunnies kind of 1306 stay-up-five-nights-talk-to-fluffy-code-bunnies kind of
1316 problem. 1307 problem.
@@ -1335,7 +1326,7 @@ as Alan Cox says, <quote>Lock data, not code</quote>.
1335 1326
1336 <para> 1327 <para>
1337 This complete lockup is easy to diagnose: on SMP boxes the 1328 This complete lockup is easy to diagnose: on SMP boxes the
1338 watchdog timer or compiling with <symbol>DEBUG_SPINLOCKS</symbol> set 1329 watchdog timer or compiling with <symbol>DEBUG_SPINLOCK</symbol> set
1339 (<filename>include/linux/spinlock.h</filename>) will show this up 1330 (<filename>include/linux/spinlock.h</filename>) will show this up
1340 immediately when it happens. 1331 immediately when it happens.
1341 </para> 1332 </para>
@@ -1558,7 +1549,7 @@ the amount of locking which needs to be done.
1558 <title>Read/Write Lock Variants</title> 1549 <title>Read/Write Lock Variants</title>
1559 1550
1560 <para> 1551 <para>
1561 Both spinlocks and semaphores have read/write variants: 1552 Both spinlocks and mutexes have read/write variants:
1562 <type>rwlock_t</type> and <structname>struct rw_semaphore</structname>. 1553 <type>rwlock_t</type> and <structname>struct rw_semaphore</structname>.
1563 These divide users into two classes: the readers and the writers. If 1554 These divide users into two classes: the readers and the writers. If
1564 you are only reading the data, you can get a read lock, but to write to 1555 you are only reading the data, you can get a read lock, but to write to
@@ -1681,7 +1672,7 @@ the amount of locking which needs to be done.
1681 #include &lt;linux/slab.h&gt; 1672 #include &lt;linux/slab.h&gt;
1682 #include &lt;linux/string.h&gt; 1673 #include &lt;linux/string.h&gt;
1683+#include &lt;linux/rcupdate.h&gt; 1674+#include &lt;linux/rcupdate.h&gt;
1684 #include &lt;linux/semaphore.h&gt; 1675 #include &lt;linux/mutex.h&gt;
1685 #include &lt;asm/errno.h&gt; 1676 #include &lt;asm/errno.h&gt;
1686 1677
1687 struct object 1678 struct object
@@ -1913,7 +1904,7 @@ machines due to caching.
1913 </listitem> 1904 </listitem>
1914 <listitem> 1905 <listitem>
1915 <para> 1906 <para>
1916 <function> put_user()</function> 1907 <function>put_user()</function>
1917 </para> 1908 </para>
1918 </listitem> 1909 </listitem>
1919 </itemizedlist> 1910 </itemizedlist>
@@ -1927,13 +1918,13 @@ machines due to caching.
1927 1918
1928 <listitem> 1919 <listitem>
1929 <para> 1920 <para>
1930 <function>down_interruptible()</function> and 1921 <function>mutex_lock_interruptible()</function> and
1931 <function>down()</function> 1922 <function>mutex_lock()</function>
1932 </para> 1923 </para>
1933 <para> 1924 <para>
1934 There is a <function>down_trylock()</function> which can be 1925 There is a <function>mutex_trylock()</function> which can be
1935 used inside interrupt context, as it will not sleep. 1926 used inside interrupt context, as it will not sleep.
1936 <function>up()</function> will also never sleep. 1927 <function>mutex_unlock()</function> will also never sleep.
1937 </para> 1928 </para>
1938 </listitem> 1929 </listitem>
1939 </itemizedlist> 1930 </itemizedlist>
@@ -2023,7 +2014,7 @@ machines due to caching.
2023 <para> 2014 <para>
2024 Prior to 2.5, or when <symbol>CONFIG_PREEMPT</symbol> is 2015 Prior to 2.5, or when <symbol>CONFIG_PREEMPT</symbol> is
2025 unset, processes in user context inside the kernel would not 2016 unset, processes in user context inside the kernel would not
2026 preempt each other (ie. you had that CPU until you have it up, 2017 preempt each other (ie. you had that CPU until you gave it up,
2027 except for interrupts). With the addition of 2018 except for interrupts). With the addition of
2028 <symbol>CONFIG_PREEMPT</symbol> in 2.5.4, this changed: when 2019 <symbol>CONFIG_PREEMPT</symbol> in 2.5.4, this changed: when
2029 in user context, higher priority tasks can "cut in": spinlocks 2020 in user context, higher priority tasks can "cut in": spinlocks
diff --git a/Documentation/DocBook/kgdb.tmpl b/Documentation/DocBook/kgdb.tmpl
index e8acd1f03456..372dec20c8da 100644
--- a/Documentation/DocBook/kgdb.tmpl
+++ b/Documentation/DocBook/kgdb.tmpl
@@ -98,6 +98,24 @@
98 "Kernel debugging" select "KGDB: kernel debugging with remote gdb". 98 "Kernel debugging" select "KGDB: kernel debugging with remote gdb".
99 </para> 99 </para>
100 <para> 100 <para>
101 It is advised, but not required that you turn on the
102 CONFIG_FRAME_POINTER kernel option. This option inserts code to
103 into the compiled executable which saves the frame information in
104 registers or on the stack at different points which will allow a
105 debugger such as gdb to more accurately construct stack back traces
106 while debugging the kernel.
107 </para>
108 <para>
109 If the architecture that you are using supports the kernel option
110 CONFIG_DEBUG_RODATA, you should consider turning it off. This
111 option will prevent the use of software breakpoints because it
112 marks certain regions of the kernel's memory space as read-only.
113 If kgdb supports it for the architecture you are using, you can
114 use hardware breakpoints if you desire to run with the
115 CONFIG_DEBUG_RODATA option turned on, else you need to turn off
116 this option.
117 </para>
118 <para>
101 Next you should choose one of more I/O drivers to interconnect debugging 119 Next you should choose one of more I/O drivers to interconnect debugging
102 host and debugged target. Early boot debugging requires a KGDB 120 host and debugged target. Early boot debugging requires a KGDB
103 I/O driver that supports early debugging and the driver must be 121 I/O driver that supports early debugging and the driver must be
diff --git a/Documentation/DocBook/procfs-guide.tmpl b/Documentation/DocBook/procfs-guide.tmpl
index 1fd6a1ec7591..8a5dc6e021ff 100644
--- a/Documentation/DocBook/procfs-guide.tmpl
+++ b/Documentation/DocBook/procfs-guide.tmpl
@@ -29,12 +29,12 @@
29 29
30 <revhistory> 30 <revhistory>
31 <revision> 31 <revision>
32 <revnumber>1.0&nbsp;</revnumber> 32 <revnumber>1.0</revnumber>
33 <date>May 30, 2001</date> 33 <date>May 30, 2001</date>
34 <revremark>Initial revision posted to linux-kernel</revremark> 34 <revremark>Initial revision posted to linux-kernel</revremark>
35 </revision> 35 </revision>
36 <revision> 36 <revision>
37 <revnumber>1.1&nbsp;</revnumber> 37 <revnumber>1.1</revnumber>
38 <date>June 3, 2001</date> 38 <date>June 3, 2001</date>
39 <revremark>Revised after comments from linux-kernel</revremark> 39 <revremark>Revised after comments from linux-kernel</revremark>
40 </revision> 40 </revision>
diff --git a/Documentation/DocBook/procfs_example.c b/Documentation/DocBook/procfs_example.c
index 7064084c1c5e..2f3de0fb8365 100644
--- a/Documentation/DocBook/procfs_example.c
+++ b/Documentation/DocBook/procfs_example.c
@@ -189,8 +189,6 @@ static int __init init_procfs_example(void)
189 return 0; 189 return 0;
190 190
191no_symlink: 191no_symlink:
192 remove_proc_entry("tty", example_dir);
193no_tty:
194 remove_proc_entry("bar", example_dir); 192 remove_proc_entry("bar", example_dir);
195no_bar: 193no_bar:
196 remove_proc_entry("foo", example_dir); 194 remove_proc_entry("foo", example_dir);
@@ -206,7 +204,6 @@ out:
206static void __exit cleanup_procfs_example(void) 204static void __exit cleanup_procfs_example(void)
207{ 205{
208 remove_proc_entry("jiffies_too", example_dir); 206 remove_proc_entry("jiffies_too", example_dir);
209 remove_proc_entry("tty", example_dir);
210 remove_proc_entry("bar", example_dir); 207 remove_proc_entry("bar", example_dir);
211 remove_proc_entry("foo", example_dir); 208 remove_proc_entry("foo", example_dir);
212 remove_proc_entry("jiffies", example_dir); 209 remove_proc_entry("jiffies", example_dir);
@@ -222,3 +219,4 @@ module_exit(cleanup_procfs_example);
222 219
223MODULE_AUTHOR("Erik Mouw"); 220MODULE_AUTHOR("Erik Mouw");
224MODULE_DESCRIPTION("procfs examples"); 221MODULE_DESCRIPTION("procfs examples");
222MODULE_LICENSE("GPL");
diff --git a/Documentation/DocBook/s390-drivers.tmpl b/Documentation/DocBook/s390-drivers.tmpl
index 4acc73240a6d..95bfc12e5439 100644
--- a/Documentation/DocBook/s390-drivers.tmpl
+++ b/Documentation/DocBook/s390-drivers.tmpl
@@ -100,7 +100,7 @@
100 the hardware structures represented here, please consult the Principles 100 the hardware structures represented here, please consult the Principles
101 of Operation. 101 of Operation.
102 </para> 102 </para>
103!Iinclude/asm-s390/cio.h 103!Iarch/s390/include/asm/cio.h
104 </sect1> 104 </sect1>
105 <sect1 id="ccwdev"> 105 <sect1 id="ccwdev">
106 <title>ccw devices</title> 106 <title>ccw devices</title>
@@ -114,7 +114,7 @@
114 ccw device structure. Device drivers must not bypass those functions 114 ccw device structure. Device drivers must not bypass those functions
115 or strange side effects may happen. 115 or strange side effects may happen.
116 </para> 116 </para>
117!Iinclude/asm-s390/ccwdev.h 117!Iarch/s390/include/asm/ccwdev.h
118!Edrivers/s390/cio/device.c 118!Edrivers/s390/cio/device.c
119!Edrivers/s390/cio/device_ops.c 119!Edrivers/s390/cio/device_ops.c
120 </sect1> 120 </sect1>
@@ -125,7 +125,7 @@
125 measurement data which is made available by the channel subsystem 125 measurement data which is made available by the channel subsystem
126 for each channel attached device. 126 for each channel attached device.
127 </para> 127 </para>
128!Iinclude/asm-s390/cmb.h 128!Iarch/s390/include/asm/cmb.h
129!Edrivers/s390/cio/cmf.c 129!Edrivers/s390/cio/cmf.c
130 </sect1> 130 </sect1>
131 </chapter> 131 </chapter>
@@ -142,7 +142,7 @@
142 </para> 142 </para>
143 <sect1 id="ccwgroupdevices"> 143 <sect1 id="ccwgroupdevices">
144 <title>ccw group devices</title> 144 <title>ccw group devices</title>
145!Iinclude/asm-s390/ccwgroup.h 145!Iarch/s390/include/asm/ccwgroup.h
146!Edrivers/s390/cio/ccwgroup.c 146!Edrivers/s390/cio/ccwgroup.c
147 </sect1> 147 </sect1>
148 </chapter> 148 </chapter>
diff --git a/Documentation/DocBook/sh.tmpl b/Documentation/DocBook/sh.tmpl
new file mode 100644
index 000000000000..0c3dc4c69dd1
--- /dev/null
+++ b/Documentation/DocBook/sh.tmpl
@@ -0,0 +1,105 @@
1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4
5<book id="sh-drivers">
6 <bookinfo>
7 <title>SuperH Interfaces Guide</title>
8
9 <authorgroup>
10 <author>
11 <firstname>Paul</firstname>
12 <surname>Mundt</surname>
13 <affiliation>
14 <address>
15 <email>lethal@linux-sh.org</email>
16 </address>
17 </affiliation>
18 </author>
19 </authorgroup>
20
21 <copyright>
22 <year>2008</year>
23 <holder>Paul Mundt</holder>
24 </copyright>
25 <copyright>
26 <year>2008</year>
27 <holder>Renesas Technology Corp.</holder>
28 </copyright>
29
30 <legalnotice>
31 <para>
32 This documentation is free software; you can redistribute
33 it and/or modify it under the terms of the GNU General Public
34 License version 2 as published by the Free Software Foundation.
35 </para>
36
37 <para>
38 This program is distributed in the hope that it will be
39 useful, but WITHOUT ANY WARRANTY; without even the implied
40 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
41 See the GNU General Public License for more details.
42 </para>
43
44 <para>
45 You should have received a copy of the GNU General Public
46 License along with this program; if not, write to the Free
47 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
48 MA 02111-1307 USA
49 </para>
50
51 <para>
52 For more details see the file COPYING in the source
53 distribution of Linux.
54 </para>
55 </legalnotice>
56 </bookinfo>
57
58<toc></toc>
59
60 <chapter id="mm">
61 <title>Memory Management</title>
62 <sect1 id="sh4">
63 <title>SH-4</title>
64 <sect2 id="sq">
65 <title>Store Queue API</title>
66!Earch/sh/kernel/cpu/sh4/sq.c
67 </sect2>
68 </sect1>
69 <sect1 id="sh5">
70 <title>SH-5</title>
71 <sect2 id="tlb">
72 <title>TLB Interfaces</title>
73!Iarch/sh/mm/tlb-sh5.c
74!Iarch/sh/include/asm/tlb_64.h
75 </sect2>
76 </sect1>
77 </chapter>
78 <chapter id="clk">
79 <title>Clock Framework Extensions</title>
80!Iarch/sh/include/asm/clock.h
81 </chapter>
82 <chapter id="mach">
83 <title>Machine Specific Interfaces</title>
84 <sect1 id="dreamcast">
85 <title>mach-dreamcast</title>
86!Iarch/sh/boards/mach-dreamcast/rtc.c
87 </sect1>
88 <sect1 id="x3proto">
89 <title>mach-x3proto</title>
90!Earch/sh/boards/mach-x3proto/ilsel.c
91 </sect1>
92 </chapter>
93 <chapter id="busses">
94 <title>Busses</title>
95 <sect1 id="superhyway">
96 <title>SuperHyway</title>
97!Edrivers/sh/superhyway/superhyway.c
98 </sect1>
99
100 <sect1 id="maple">
101 <title>Maple</title>
102!Edrivers/sh/maple/maple.c
103 </sect1>
104 </chapter>
105</book>
diff --git a/Documentation/DocBook/videobook.tmpl b/Documentation/DocBook/videobook.tmpl
index 89817795e668..0bc25949b668 100644
--- a/Documentation/DocBook/videobook.tmpl
+++ b/Documentation/DocBook/videobook.tmpl
@@ -1648,7 +1648,7 @@ static struct video_buffer capture_fb;
1648 1648
1649 <chapter id="pubfunctions"> 1649 <chapter id="pubfunctions">
1650 <title>Public Functions Provided</title> 1650 <title>Public Functions Provided</title>
1651!Edrivers/media/video/videodev.c 1651!Edrivers/media/video/v4l2-dev.c
1652 </chapter> 1652 </chapter>
1653 1653
1654</book> 1654</book>
diff --git a/Documentation/DocBook/z8530book.tmpl b/Documentation/DocBook/z8530book.tmpl
index 42c75ba71ba2..a42a8a4c7689 100644
--- a/Documentation/DocBook/z8530book.tmpl
+++ b/Documentation/DocBook/z8530book.tmpl
@@ -69,12 +69,6 @@
69 device to be used as both a tty interface and as a synchronous 69 device to be used as both a tty interface and as a synchronous
70 controller is a project for Linux post the 2.4 release 70 controller is a project for Linux post the 2.4 release
71 </para> 71 </para>
72 <para>
73 The support code handles most common card configurations and
74 supports running both Cisco HDLC and Synchronous PPP. With extra
75 glue the frame relay and X.25 protocols can also be used with this
76 driver.
77 </para>
78 </chapter> 72 </chapter>
79 73
80 <chapter id="Driver_Modes"> 74 <chapter id="Driver_Modes">
@@ -179,35 +173,27 @@
179 <para> 173 <para>
180 If you wish to use the network interface facilities of the driver, 174 If you wish to use the network interface facilities of the driver,
181 then you need to attach a network device to each channel that is 175 then you need to attach a network device to each channel that is
182 present and in use. In addition to use the SyncPPP and Cisco HDLC 176 present and in use. In addition to use the generic HDLC
183 you need to follow some additional plumbing rules. They may seem 177 you need to follow some additional plumbing rules. They may seem
184 complex but a look at the example hostess_sv11 driver should 178 complex but a look at the example hostess_sv11 driver should
185 reassure you. 179 reassure you.
186 </para> 180 </para>
187 <para> 181 <para>
188 The network device used for each channel should be pointed to by 182 The network device used for each channel should be pointed to by
189 the netdevice field of each channel. The dev-&gt; priv field of the 183 the netdevice field of each channel. The hdlc-&gt; priv field of the
190 network device points to your private data - you will need to be 184 network device points to your private data - you will need to be
191 able to find your ppp device from this. In addition to use the 185 able to find your private data from this.
192 sync ppp layer the private data must start with a void * pointer
193 to the syncppp structures.
194 </para> 186 </para>
195 <para> 187 <para>
196 The way most drivers approach this particular problem is to 188 The way most drivers approach this particular problem is to
197 create a structure holding the Z8530 device definition and 189 create a structure holding the Z8530 device definition and
198 put that and the syncppp pointer into the private field of 190 put that into the private field of the network device. The
199 the network device. The network device fields of the channels 191 network device fields of the channels then point back to the
200 then point back to the network devices. The ppp_device can also 192 network devices.
201 be put in the private structure conveniently.
202 </para> 193 </para>
203 <para> 194 <para>
204 If you wish to use the synchronous ppp then you need to attach 195 If you wish to use the generic HDLC then you need to register
205 the syncppp layer to the network device. You should do this before 196 the HDLC device.
206 you register the network device. The
207 <function>sppp_attach</function> requires that the first void *
208 pointer in your private data is pointing to an empty struct
209 ppp_device. The function fills in the initial data for the
210 ppp/hdlc layer.
211 </para> 197 </para>
212 <para> 198 <para>
213 Before you register your network device you will also need to 199 Before you register your network device you will also need to
@@ -314,10 +300,10 @@
314 buffer in sk_buff format and queues it for transmission. The 300 buffer in sk_buff format and queues it for transmission. The
315 caller must provide the entire packet with the exception of the 301 caller must provide the entire packet with the exception of the
316 bitstuffing and CRC. This is normally done by the caller via 302 bitstuffing and CRC. This is normally done by the caller via
317 the syncppp interface layer. It returns 0 if the buffer has been 303 the generic HDLC interface layer. It returns 0 if the buffer has been
318 queued and non zero values for queue full. If the function accepts 304 queued and non zero values for queue full. If the function accepts
319 the buffer it becomes property of the Z8530 layer and the caller 305 the buffer it becomes property of the Z8530 layer and the caller
320 should not free it. 306 should not free it.
321 </para> 307 </para>
322 <para> 308 <para>
323 The function <function>z8530_get_stats</function> returns a pointer 309 The function <function>z8530_get_stats</function> returns a pointer
diff --git a/Documentation/Intel-IOMMU.txt b/Documentation/Intel-IOMMU.txt
index c2321903aa09..21bc416d887e 100644
--- a/Documentation/Intel-IOMMU.txt
+++ b/Documentation/Intel-IOMMU.txt
@@ -48,7 +48,7 @@ IOVA generation is pretty generic. We used the same technique as vmalloc()
48but these are not global address spaces, but separate for each domain. 48but these are not global address spaces, but separate for each domain.
49Different DMA engines may support different number of domains. 49Different DMA engines may support different number of domains.
50 50
51We also allocate gaurd pages with each mapping, so we can attempt to catch 51We also allocate guard pages with each mapping, so we can attempt to catch
52any overflow that might happen. 52any overflow that might happen.
53 53
54 54
@@ -112,4 +112,4 @@ TBD
112 112
113- For compatibility testing, could use unity map domain for all devices, just 113- For compatibility testing, could use unity map domain for all devices, just
114 provide a 1-1 for all useful memory under a single domain for all devices. 114 provide a 1-1 for all useful memory under a single domain for all devices.
115- API for paravirt ops for abstracting functionlity for VMM folks. 115- API for paravirt ops for abstracting functionality for VMM folks.
diff --git a/Documentation/Makefile b/Documentation/Makefile
new file mode 100644
index 000000000000..94b945733534
--- /dev/null
+++ b/Documentation/Makefile
@@ -0,0 +1,3 @@
1obj-m := DocBook/ accounting/ auxdisplay/ connector/ \
2 filesystems/configfs/ ia64/ networking/ \
3 pcmcia/ spi/ video4linux/ vm/ watchdog/src/
diff --git a/Documentation/SubmittingPatches b/Documentation/SubmittingPatches
index 118ca6e9404f..f79ad9ff6031 100644
--- a/Documentation/SubmittingPatches
+++ b/Documentation/SubmittingPatches
@@ -528,7 +528,33 @@ See more details on the proper patch format in the following
528references. 528references.
529 529
530 530
53116) Sending "git pull" requests (from Linus emails)
531 532
533Please write the git repo address and branch name alone on the same line
534so that I can't even by mistake pull from the wrong branch, and so
535that a triple-click just selects the whole thing.
536
537So the proper format is something along the lines of:
538
539 "Please pull from
540
541 git://jdelvare.pck.nerim.net/jdelvare-2.6 i2c-for-linus
542
543 to get these changes:"
544
545so that I don't have to hunt-and-peck for the address and inevitably
546get it wrong (actually, I've only gotten it wrong a few times, and
547checking against the diffstat tells me when I get it wrong, but I'm
548just a lot more comfortable when I don't have to "look for" the right
549thing to pull, and double-check that I have the right branch-name).
550
551
552Please use "git diff -M --stat --summary" to generate the diffstat:
553the -M enables rename detection, and the summary enables a summary of
554new/deleted or renamed files.
555
556With rename detection, the statistics are rather different [...]
557because git will notice that a fair number of the changes are renames.
532 558
533----------------------------------- 559-----------------------------------
534SECTION 2 - HINTS, TIPS, AND TRICKS 560SECTION 2 - HINTS, TIPS, AND TRICKS
diff --git a/Documentation/accounting/Makefile b/Documentation/accounting/Makefile
new file mode 100644
index 000000000000..31929eb875b1
--- /dev/null
+++ b/Documentation/accounting/Makefile
@@ -0,0 +1,10 @@
1# kbuild trick to avoid linker error. Can be omitted if a module is built.
2obj- := dummy.o
3
4# List of programs to build
5hostprogs-y := getdelays
6
7# Tell kbuild to always build the programs
8always := $(hostprogs-y)
9
10HOSTCFLAGS_getdelays.o += -I$(objtree)/usr/include
diff --git a/Documentation/accounting/delay-accounting.txt b/Documentation/accounting/delay-accounting.txt
index 1443cd71d263..8a12f0730c94 100644
--- a/Documentation/accounting/delay-accounting.txt
+++ b/Documentation/accounting/delay-accounting.txt
@@ -11,6 +11,7 @@ the delays experienced by a task while
11a) waiting for a CPU (while being runnable) 11a) waiting for a CPU (while being runnable)
12b) completion of synchronous block I/O initiated by the task 12b) completion of synchronous block I/O initiated by the task
13c) swapping in pages 13c) swapping in pages
14d) memory reclaim
14 15
15and makes these statistics available to userspace through 16and makes these statistics available to userspace through
16the taskstats interface. 17the taskstats interface.
@@ -41,7 +42,7 @@ this structure. See
41 include/linux/taskstats.h 42 include/linux/taskstats.h
42for a description of the fields pertaining to delay accounting. 43for a description of the fields pertaining to delay accounting.
43It will generally be in the form of counters returning the cumulative 44It will generally be in the form of counters returning the cumulative
44delay seen for cpu, sync block I/O, swapin etc. 45delay seen for cpu, sync block I/O, swapin, memory reclaim etc.
45 46
46Taking the difference of two successive readings of a given 47Taking the difference of two successive readings of a given
47counter (say cpu_delay_total) for a task will give the delay 48counter (say cpu_delay_total) for a task will give the delay
@@ -94,7 +95,9 @@ CPU count real total virtual total delay total
94 7876 92005750 100000000 24001500 95 7876 92005750 100000000 24001500
95IO count delay total 96IO count delay total
96 0 0 97 0 0
97MEM count delay total 98SWAP count delay total
99 0 0
100RECLAIM count delay total
98 0 0 101 0 0
99 102
100Get delays seen in executing a given simple command 103Get delays seen in executing a given simple command
@@ -108,5 +111,7 @@ CPU count real total virtual total delay total
108 6 4000250 4000000 0 111 6 4000250 4000000 0
109IO count delay total 112IO count delay total
110 0 0 113 0 0
111MEM count delay total 114SWAP count delay total
115 0 0
116RECLAIM count delay total
112 0 0 117 0 0
diff --git a/Documentation/accounting/getdelays.c b/Documentation/accounting/getdelays.c
index 40121b5cca14..cc49400b4af8 100644
--- a/Documentation/accounting/getdelays.c
+++ b/Documentation/accounting/getdelays.c
@@ -196,14 +196,24 @@ void print_delayacct(struct taskstats *t)
196 " %15llu%15llu%15llu%15llu\n" 196 " %15llu%15llu%15llu%15llu\n"
197 "IO %15s%15s\n" 197 "IO %15s%15s\n"
198 " %15llu%15llu\n" 198 " %15llu%15llu\n"
199 "MEM %15s%15s\n" 199 "SWAP %15s%15s\n"
200 " %15llu%15llu\n"
201 "RECLAIM %12s%15s\n"
200 " %15llu%15llu\n", 202 " %15llu%15llu\n",
201 "count", "real total", "virtual total", "delay total", 203 "count", "real total", "virtual total", "delay total",
202 t->cpu_count, t->cpu_run_real_total, t->cpu_run_virtual_total, 204 (unsigned long long)t->cpu_count,
203 t->cpu_delay_total, 205 (unsigned long long)t->cpu_run_real_total,
206 (unsigned long long)t->cpu_run_virtual_total,
207 (unsigned long long)t->cpu_delay_total,
208 "count", "delay total",
209 (unsigned long long)t->blkio_count,
210 (unsigned long long)t->blkio_delay_total,
211 "count", "delay total",
212 (unsigned long long)t->swapin_count,
213 (unsigned long long)t->swapin_delay_total,
204 "count", "delay total", 214 "count", "delay total",
205 t->blkio_count, t->blkio_delay_total, 215 (unsigned long long)t->freepages_count,
206 "count", "delay total", t->swapin_count, t->swapin_delay_total); 216 (unsigned long long)t->freepages_delay_total);
207} 217}
208 218
209void task_context_switch_counts(struct taskstats *t) 219void task_context_switch_counts(struct taskstats *t)
@@ -211,14 +221,17 @@ void task_context_switch_counts(struct taskstats *t)
211 printf("\n\nTask %15s%15s\n" 221 printf("\n\nTask %15s%15s\n"
212 " %15llu%15llu\n", 222 " %15llu%15llu\n",
213 "voluntary", "nonvoluntary", 223 "voluntary", "nonvoluntary",
214 t->nvcsw, t->nivcsw); 224 (unsigned long long)t->nvcsw, (unsigned long long)t->nivcsw);
215} 225}
216 226
217void print_cgroupstats(struct cgroupstats *c) 227void print_cgroupstats(struct cgroupstats *c)
218{ 228{
219 printf("sleeping %llu, blocked %llu, running %llu, stopped %llu, " 229 printf("sleeping %llu, blocked %llu, running %llu, stopped %llu, "
220 "uninterruptible %llu\n", c->nr_sleeping, c->nr_io_wait, 230 "uninterruptible %llu\n", (unsigned long long)c->nr_sleeping,
221 c->nr_running, c->nr_stopped, c->nr_uninterruptible); 231 (unsigned long long)c->nr_io_wait,
232 (unsigned long long)c->nr_running,
233 (unsigned long long)c->nr_stopped,
234 (unsigned long long)c->nr_uninterruptible);
222} 235}
223 236
224 237
diff --git a/Documentation/accounting/taskstats-struct.txt b/Documentation/accounting/taskstats-struct.txt
index cd784f46bf8a..e7512c061c15 100644
--- a/Documentation/accounting/taskstats-struct.txt
+++ b/Documentation/accounting/taskstats-struct.txt
@@ -6,7 +6,7 @@ This document contains an explanation of the struct taskstats fields.
6There are three different groups of fields in the struct taskstats: 6There are three different groups of fields in the struct taskstats:
7 7
81) Common and basic accounting fields 81) Common and basic accounting fields
9 If CONFIG_TASKSTATS is set, the taskstats inteface is enabled and 9 If CONFIG_TASKSTATS is set, the taskstats interface is enabled and
10 the common fields and basic accounting fields are collected for 10 the common fields and basic accounting fields are collected for
11 delivery at do_exit() of a task. 11 delivery at do_exit() of a task.
122) Delay accounting fields 122) Delay accounting fields
@@ -26,6 +26,8 @@ There are three different groups of fields in the struct taskstats:
26 26
275) Time accounting for SMT machines 275) Time accounting for SMT machines
28 28
296) Extended delay accounting fields for memory reclaim
30
29Future extension should add fields to the end of the taskstats struct, and 31Future extension should add fields to the end of the taskstats struct, and
30should not change the relative position of each field within the struct. 32should not change the relative position of each field within the struct.
31 33
@@ -170,4 +172,9 @@ struct taskstats {
170 __u64 ac_utimescaled; /* utime scaled on frequency etc */ 172 __u64 ac_utimescaled; /* utime scaled on frequency etc */
171 __u64 ac_stimescaled; /* stime scaled on frequency etc */ 173 __u64 ac_stimescaled; /* stime scaled on frequency etc */
172 __u64 cpu_scaled_run_real_total; /* scaled cpu_run_real_total */ 174 __u64 cpu_scaled_run_real_total; /* scaled cpu_run_real_total */
175
1766) Extended delay accounting fields for memory reclaim
177 /* Delay waiting for memory reclaim */
178 __u64 freepages_count;
179 __u64 freepages_delay_total;
173} 180}
diff --git a/Documentation/arm/IXP4xx b/Documentation/arm/IXP4xx
index 43edb4ecf27d..72fbcc4fcab0 100644
--- a/Documentation/arm/IXP4xx
+++ b/Documentation/arm/IXP4xx
@@ -32,7 +32,7 @@ Linux currently supports the following features on the IXP4xx chips:
32- Flash access (MTD/JFFS) 32- Flash access (MTD/JFFS)
33- I2C through GPIO on IXP42x 33- I2C through GPIO on IXP42x
34- GPIO for input/output/interrupts 34- GPIO for input/output/interrupts
35 See include/asm-arm/arch-ixp4xx/platform.h for access functions. 35 See arch/arm/mach-ixp4xx/include/mach/platform.h for access functions.
36- Timers (watchdog, OS) 36- Timers (watchdog, OS)
37 37
38The following components of the chips are not supported by Linux and 38The following components of the chips are not supported by Linux and
diff --git a/Documentation/arm/Interrupts b/Documentation/arm/Interrupts
index 0d3dbf1099bc..f09ab1b90ef1 100644
--- a/Documentation/arm/Interrupts
+++ b/Documentation/arm/Interrupts
@@ -138,14 +138,8 @@ So, what's changed?
138 138
139 Set active the IRQ edge(s)/level. This replaces the 139 Set active the IRQ edge(s)/level. This replaces the
140 SA1111 INTPOL manipulation, and the set_GPIO_IRQ_edge() 140 SA1111 INTPOL manipulation, and the set_GPIO_IRQ_edge()
141 function. Type should be one of the following: 141 function. Type should be one of IRQ_TYPE_xxx defined in
142 142 <linux/irq.h>
143 #define IRQT_NOEDGE (0)
144 #define IRQT_RISING (__IRQT_RISEDGE)
145 #define IRQT_FALLING (__IRQT_FALEDGE)
146 #define IRQT_BOTHEDGE (__IRQT_RISEDGE|__IRQT_FALEDGE)
147 #define IRQT_LOW (__IRQT_LOWLVL)
148 #define IRQT_HIGH (__IRQT_HIGHLVL)
149 143
1503. set_GPIO_IRQ_edge() is obsolete, and should be replaced by set_irq_type. 1443. set_GPIO_IRQ_edge() is obsolete, and should be replaced by set_irq_type.
151 145
@@ -164,7 +158,7 @@ So, what's changed?
164 be re-checked for pending events. (see the Neponset IRQ handler for 158 be re-checked for pending events. (see the Neponset IRQ handler for
165 details). 159 details).
166 160
1677. fixup_irq() is gone, as is include/asm-arm/arch-*/irq.h 1617. fixup_irq() is gone, as is arch/arm/mach-*/include/mach/irq.h
168 162
169Please note that this will not solve all problems - some of them are 163Please note that this will not solve all problems - some of them are
170hardware based. Mixing level-based and edge-based IRQs on the same 164hardware based. Mixing level-based and edge-based IRQs on the same
diff --git a/Documentation/arm/README b/Documentation/arm/README
index 9b9c8226fdc4..d98783fbe0c7 100644
--- a/Documentation/arm/README
+++ b/Documentation/arm/README
@@ -79,7 +79,7 @@ Machine/Platform support
79 To this end, we now have arch/arm/mach-$(MACHINE) directories which are 79 To this end, we now have arch/arm/mach-$(MACHINE) directories which are
80 designed to house the non-driver files for a particular machine (eg, PCI, 80 designed to house the non-driver files for a particular machine (eg, PCI,
81 memory management, architecture definitions etc). For all future 81 memory management, architecture definitions etc). For all future
82 machines, there should be a corresponding include/asm-arm/arch-$(MACHINE) 82 machines, there should be a corresponding arch/arm/mach-$(MACHINE)/include/mach
83 directory. 83 directory.
84 84
85 85
@@ -176,7 +176,7 @@ Kernel entry (head.S)
176 class typically based around one or more system on a chip devices, and 176 class typically based around one or more system on a chip devices, and
177 acts as a natural container around the actual implementations. These 177 acts as a natural container around the actual implementations. These
178 classes are given directories - arch/arm/mach-<class> and 178 classes are given directories - arch/arm/mach-<class> and
179 include/asm-arm/arch-<class> - which contain the source files to 179 arch/arm/mach-<class> - which contain the source files to/include/mach
180 support the machine class. This directories also contain any machine 180 support the machine class. This directories also contain any machine
181 specific supporting code. 181 specific supporting code.
182 182
diff --git a/Documentation/arm/Samsung-S3C24XX/GPIO.txt b/Documentation/arm/Samsung-S3C24XX/GPIO.txt
index 8caea8c237ee..ea7ccfc4b274 100644
--- a/Documentation/arm/Samsung-S3C24XX/GPIO.txt
+++ b/Documentation/arm/Samsung-S3C24XX/GPIO.txt
@@ -13,16 +13,31 @@ Introduction
13 data-sheet/users manual to find out the complete list. 13 data-sheet/users manual to find out the complete list.
14 14
15 15
16GPIOLIB
17-------
18
19 With the event of the GPIOLIB in drivers/gpio, support for some
20 of the GPIO functions such as reading and writing a pin will
21 be removed in favour of this common access method.
22
23 Once all the extant drivers have been converted, the functions
24 listed below will be removed (they may be marked as __deprecated
25 in the near future).
26
27 - s3c2410_gpio_getpin
28 - s3c2410_gpio_setpin
29
30
16Headers 31Headers
17------- 32-------
18 33
19 See include/asm-arm/arch-s3c2410/regs-gpio.h for the list 34 See arch/arm/mach-s3c2410/include/mach/regs-gpio.h for the list
20 of GPIO pins, and the configuration values for them. This 35 of GPIO pins, and the configuration values for them. This
21 is included by using #include <asm/arch/regs-gpio.h> 36 is included by using #include <mach/regs-gpio.h>
22 37
23 The GPIO management functions are defined in the hardware 38 The GPIO management functions are defined in the hardware
24 header include/asm-arm/arch-s3c2410/hardware.h which can be 39 header arch/arm/mach-s3c2410/include/mach/hardware.h which can be
25 included by #include <asm/arch/hardware.h> 40 included by #include <mach/hardware.h>
26 41
27 A useful amount of documentation can be found in the hardware 42 A useful amount of documentation can be found in the hardware
28 header on how the GPIO functions (and others) work. 43 header on how the GPIO functions (and others) work.
diff --git a/Documentation/arm/Samsung-S3C24XX/Overview.txt b/Documentation/arm/Samsung-S3C24XX/Overview.txt
index d04e1e30c47f..cff6227b4484 100644
--- a/Documentation/arm/Samsung-S3C24XX/Overview.txt
+++ b/Documentation/arm/Samsung-S3C24XX/Overview.txt
@@ -8,9 +8,10 @@ Introduction
8 8
9 The Samsung S3C24XX range of ARM9 System-on-Chip CPUs are supported 9 The Samsung S3C24XX range of ARM9 System-on-Chip CPUs are supported
10 by the 's3c2410' architecture of ARM Linux. Currently the S3C2410, 10 by the 's3c2410' architecture of ARM Linux. Currently the S3C2410,
11 S3C2412, S3C2413, S3C2440 and S3C2442 devices are supported. 11 S3C2412, S3C2413, S3C2440, S3C2442 and S3C2443 devices are supported.
12
13 Support for the S3C2400 and S3C24A0 series are in progress.
12 14
13 Support for the S3C2400 series is in progress.
14 15
15Configuration 16Configuration
16------------- 17-------------
@@ -36,7 +37,23 @@ Layout
36 in arch/arm/mach-s3c2410 and S3C2440 in arch/arm/mach-s3c2440 37 in arch/arm/mach-s3c2410 and S3C2440 in arch/arm/mach-s3c2440
37 38
38 Register, kernel and platform data definitions are held in the 39 Register, kernel and platform data definitions are held in the
39 include/asm-arm/arch-s3c2410 directory. 40 arch/arm/mach-s3c2410 directory./include/mach
41
42arch/arm/plat-s3c24xx:
43
44 Files in here are either common to all the s3c24xx family,
45 or are common to only some of them with names to indicate this
46 status. The files that are not common to all are generally named
47 with the initial cpu they support in the series to ensure a short
48 name without any possibility of confusion with newer devices.
49
50 As an example, initially s3c244x would cover s3c2440 and s3c2442, but
51 with the s3c2443 which does not share many of the same drivers in
52 this directory, the name becomes invalid. We stick to s3c2440-<x>
53 to indicate a driver that is s3c2440 and s3c2442 compatible.
54
55 This does mean that to find the status of any given SoC, a number
56 of directories may need to be searched.
40 57
41 58
42Machines 59Machines
@@ -159,6 +176,17 @@ NAND
159 For more information see Documentation/arm/Samsung-S3C24XX/NAND.txt 176 For more information see Documentation/arm/Samsung-S3C24XX/NAND.txt
160 177
161 178
179SD/MMC
180------
181
182 The SD/MMC hardware pre S3C2443 is supported in the current
183 kernel, the driver is drivers/mmc/host/s3cmci.c and supports
184 1 and 4 bit SD or MMC cards.
185
186 The SDIO behaviour of this driver has not been fully tested. There is no
187 current support for hardware SDIO interrupts.
188
189
162Serial 190Serial
163------ 191------
164 192
@@ -178,6 +206,9 @@ GPIO
178 The core contains support for manipulating the GPIO, see the 206 The core contains support for manipulating the GPIO, see the
179 documentation in GPIO.txt in the same directory as this file. 207 documentation in GPIO.txt in the same directory as this file.
180 208
209 Newer kernels carry GPIOLIB, and support is being moved towards
210 this with some of the older support in line to be removed.
211
181 212
182Clock Management 213Clock Management
183---------------- 214----------------
diff --git a/Documentation/arm/Samsung-S3C24XX/USB-Host.txt b/Documentation/arm/Samsung-S3C24XX/USB-Host.txt
index b93b68e2b143..67671eba4231 100644
--- a/Documentation/arm/Samsung-S3C24XX/USB-Host.txt
+++ b/Documentation/arm/Samsung-S3C24XX/USB-Host.txt
@@ -49,7 +49,7 @@ Board Support
49Platform Data 49Platform Data
50------------- 50-------------
51 51
52 See linux/include/asm-arm/arch-s3c2410/usb-control.h for the 52 See arch/arm/mach-s3c2410/include/mach/usb-control.h for the
53 descriptions of the platform device data. An implementation 53 descriptions of the platform device data. An implementation
54 can be found in linux/arch/arm/mach-s3c2410/usb-simtec.c . 54 can be found in linux/arch/arm/mach-s3c2410/usb-simtec.c .
55 55
diff --git a/Documentation/auxdisplay/Makefile b/Documentation/auxdisplay/Makefile
new file mode 100644
index 000000000000..51fe23332c81
--- /dev/null
+++ b/Documentation/auxdisplay/Makefile
@@ -0,0 +1,10 @@
1# kbuild trick to avoid linker error. Can be omitted if a module is built.
2obj- := dummy.o
3
4# List of programs to build
5hostprogs-y := cfag12864b-example
6
7# Tell kbuild to always build the programs
8always := $(hostprogs-y)
9
10HOSTCFLAGS_cfag12864b-example.o += -I$(objtree)/usr/include
diff --git a/Documentation/bt8xxgpio.txt b/Documentation/bt8xxgpio.txt
new file mode 100644
index 000000000000..d8297e4ebd26
--- /dev/null
+++ b/Documentation/bt8xxgpio.txt
@@ -0,0 +1,67 @@
1===============================================================
2== BT8XXGPIO driver ==
3== ==
4== A driver for a selfmade cheap BT8xx based PCI GPIO-card ==
5== ==
6== For advanced documentation, see ==
7== http://www.bu3sch.de/btgpio.php ==
8===============================================================
9
10
11A generic digital 24-port PCI GPIO card can be built out of an ordinary
12Brooktree bt848, bt849, bt878 or bt879 based analog TV tuner card. The
13Brooktree chip is used in old analog Hauppauge WinTV PCI cards. You can easily
14find them used for low prices on the net.
15
16The bt8xx chip does have 24 digital GPIO ports.
17These ports are accessible via 24 pins on the SMD chip package.
18
19
20==============================================
21== How to physically access the GPIO pins ==
22==============================================
23
24The are several ways to access these pins. One might unsolder the whole chip
25and put it on a custom PCI board, or one might only unsolder each individual
26GPIO pin and solder that to some tiny wire. As the chip package really is tiny
27there are some advanced soldering skills needed in any case.
28
29The physical pinouts are drawn in the following ASCII art.
30The GPIO pins are marked with G00-G23
31
32 G G G G G G G G G G G G G G G G G G
33 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
34 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
35 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
36 ---------------------------------------------------------------------------
37 --| ^ ^ |--
38 --| pin 86 pin 67 |--
39 --| |--
40 --| pin 61 > |-- G18
41 --| |-- G19
42 --| |-- G20
43 --| |-- G21
44 --| |-- G22
45 --| pin 56 > |-- G23
46 --| |--
47 --| Brooktree 878/879 |--
48 --| |--
49 --| |--
50 --| |--
51 --| |--
52 --| |--
53 --| |--
54 --| |--
55 --| |--
56 --| |--
57 --| |--
58 --| |--
59 --| |--
60 --| |--
61 --| O |--
62 --| |--
63 ---------------------------------------------------------------------------
64 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
65 ^
66 This is pin 1
67
diff --git a/Documentation/cciss.txt b/Documentation/cciss.txt
index 63e59b8847c5..8244c6442faa 100644
--- a/Documentation/cciss.txt
+++ b/Documentation/cciss.txt
@@ -112,27 +112,18 @@ Hot plug support for SCSI tape drives
112 112
113Hot plugging of SCSI tape drives is supported, with some caveats. 113Hot plugging of SCSI tape drives is supported, with some caveats.
114The cciss driver must be informed that changes to the SCSI bus 114The cciss driver must be informed that changes to the SCSI bus
115have been made, in addition to and prior to informing the SCSI 115have been made. This may be done via the /proc filesystem.
116mid layer. This may be done via the /proc filesystem. For example: 116For example:
117 117
118 echo "rescan" > /proc/scsi/cciss0/1 118 echo "rescan" > /proc/scsi/cciss0/1
119 119
120This causes the adapter to query the adapter about changes to the 120This causes the driver to query the adapter about changes to the
121physical SCSI buses and/or fibre channel arbitrated loop and the 121physical SCSI buses and/or fibre channel arbitrated loop and the
122driver to make note of any new or removed sequential access devices 122driver to make note of any new or removed sequential access devices
123or medium changers. The driver will output messages indicating what 123or medium changers. The driver will output messages indicating what
124devices have been added or removed and the controller, bus, target and 124devices have been added or removed and the controller, bus, target and
125lun used to address the device. Once this is done, the SCSI mid layer 125lun used to address the device. It then notifies the SCSI mid layer
126can be informed of changes to the virtual SCSI bus which the driver 126of these changes.
127presents to it in the usual way. For example:
128
129 echo scsi add-single-device 3 2 1 0 > /proc/scsi/scsi
130
131to add a device on controller 3, bus 2, target 1, lun 0. Note that
132the driver makes an effort to preserve the devices positions
133in the virtual SCSI bus, so if you are only moving tape drives
134around on the same adapter and not adding or removing tape drives
135from the adapter, informing the SCSI mid layer may not be necessary.
136 127
137Note that the naming convention of the /proc filesystem entries 128Note that the naming convention of the /proc filesystem entries
138contains a number in addition to the driver name. (E.g. "cciss0" 129contains a number in addition to the driver name. (E.g. "cciss0"
diff --git a/Documentation/cli-sti-removal.txt b/Documentation/cli-sti-removal.txt
deleted file mode 100644
index 60932b02fcb3..000000000000
--- a/Documentation/cli-sti-removal.txt
+++ /dev/null
@@ -1,133 +0,0 @@
1
2#### cli()/sti() removal guide, started by Ingo Molnar <mingo@redhat.com>
3
4
5as of 2.5.28, five popular macros have been removed on SMP, and
6are being phased out on UP:
7
8 cli(), sti(), save_flags(flags), save_flags_cli(flags), restore_flags(flags)
9
10until now it was possible to protect driver code against interrupt
11handlers via a cli(), but from now on other, more lightweight methods
12have to be used for synchronization, such as spinlocks or semaphores.
13
14for example, driver code that used to do something like:
15
16 struct driver_data;
17
18 irq_handler (...)
19 {
20 ....
21 driver_data.finish = 1;
22 driver_data.new_work = 0;
23 ....
24 }
25
26 ...
27
28 ioctl_func (...)
29 {
30 ...
31 cli();
32 ...
33 driver_data.finish = 0;
34 driver_data.new_work = 2;
35 ...
36 sti();
37 ...
38 }
39
40was SMP-correct because the cli() function ensured that no
41interrupt handler (amongst them the above irq_handler()) function
42would execute while the cli()-ed section is executing.
43
44but from now on a more direct method of locking has to be used:
45
46 DEFINE_SPINLOCK(driver_lock);
47 struct driver_data;
48
49 irq_handler (...)
50 {
51 unsigned long flags;
52 ....
53 spin_lock_irqsave(&driver_lock, flags);
54 ....
55 driver_data.finish = 1;
56 driver_data.new_work = 0;
57 ....
58 spin_unlock_irqrestore(&driver_lock, flags);
59 ....
60 }
61
62 ...
63
64 ioctl_func (...)
65 {
66 ...
67 spin_lock_irq(&driver_lock);
68 ...
69 driver_data.finish = 0;
70 driver_data.new_work = 2;
71 ...
72 spin_unlock_irq(&driver_lock);
73 ...
74 }
75
76the above code has a number of advantages:
77
78- the locking relation is easier to understand - actual lock usage
79 pinpoints the critical sections. cli() usage is too opaque.
80 Easier to understand means it's easier to debug.
81
82- it's faster, because spinlocks are faster to acquire than the
83 potentially heavily-used IRQ lock. Furthermore, your driver does
84 not have to wait eg. for a big heavy SCSI interrupt to finish,
85 because the driver_lock spinlock is only used by your driver.
86 cli() on the other hand was used by many drivers, and extended
87 the critical section to the whole IRQ handler function - creating
88 serious lock contention.
89
90
91to make the transition easier, we've still kept the cli(), sti(),
92save_flags(), save_flags_cli() and restore_flags() macros defined
93on UP systems - but their usage will be phased out until 2.6 is
94released.
95
96drivers that want to disable local interrupts (interrupts on the
97current CPU), can use the following five macros:
98
99 local_irq_disable(), local_irq_enable(), local_save_flags(flags),
100 local_irq_save(flags), local_irq_restore(flags)
101
102but beware, their meaning and semantics are much simpler, far from
103that of the old cli(), sti(), save_flags(flags) and restore_flags(flags)
104SMP meaning:
105
106 local_irq_disable() => turn local IRQs off
107
108 local_irq_enable() => turn local IRQs on
109
110 local_save_flags(flags) => save the current IRQ state into flags. The
111 state can be on or off. (on some
112 architectures there's even more bits in it.)
113
114 local_irq_save(flags) => save the current IRQ state into flags and
115 disable interrupts.
116
117 local_irq_restore(flags) => restore the IRQ state from flags.
118
119(local_irq_save can save both irqs on and irqs off state, and
120local_irq_restore can restore into both irqs on and irqs off state.)
121
122another related change is that synchronize_irq() now takes a parameter:
123synchronize_irq(irq). This change too has the purpose of making SMP
124synchronization more lightweight - this way you can wait for your own
125interrupt handler to finish, no need to wait for other IRQ sources.
126
127
128why were these changes done? The main reason was the architectural burden
129of maintaining the cli()/sti() interface - it became a real problem. The
130new interrupt system is much more streamlined, easier to understand, debug,
131and it's also a bit faster - the same happened to it that will happen to
132cli()/sti() using drivers once they convert to spinlocks :-)
133
diff --git a/Documentation/connector/Makefile b/Documentation/connector/Makefile
new file mode 100644
index 000000000000..8df1a7285a06
--- /dev/null
+++ b/Documentation/connector/Makefile
@@ -0,0 +1,11 @@
1ifneq ($(CONFIG_CONNECTOR),)
2obj-m += cn_test.o
3endif
4
5# List of programs to build
6hostprogs-y := ucon
7
8# Tell kbuild to always build the programs
9always := $(hostprogs-y)
10
11HOSTCFLAGS_ucon.o += -I$(objtree)/usr/include
diff --git a/Documentation/controllers/memory.txt b/Documentation/controllers/memory.txt
index 866b9cd9a959..9b53d5827361 100644
--- a/Documentation/controllers/memory.txt
+++ b/Documentation/controllers/memory.txt
@@ -242,8 +242,7 @@ rmdir() if there are no tasks.
2421. Add support for accounting huge pages (as a separate controller) 2421. Add support for accounting huge pages (as a separate controller)
2432. Make per-cgroup scanner reclaim not-shared pages first 2432. Make per-cgroup scanner reclaim not-shared pages first
2443. Teach controller to account for shared-pages 2443. Teach controller to account for shared-pages
2454. Start reclamation when the limit is lowered 2454. Start reclamation in the background when the limit is
2465. Start reclamation in the background when the limit is
247 not yet hit but the usage is getting closer 246 not yet hit but the usage is getting closer
248 247
249Summary 248Summary
diff --git a/Documentation/cpu-freq/governors.txt b/Documentation/cpu-freq/governors.txt
index dcec0564d040..5b0cfa67aff9 100644
--- a/Documentation/cpu-freq/governors.txt
+++ b/Documentation/cpu-freq/governors.txt
@@ -122,7 +122,7 @@ around '10000' or more.
122show_sampling_rate_(min|max): the minimum and maximum sampling rates 122show_sampling_rate_(min|max): the minimum and maximum sampling rates
123available that you may set 'sampling_rate' to. 123available that you may set 'sampling_rate' to.
124 124
125up_threshold: defines what the average CPU usaged between the samplings 125up_threshold: defines what the average CPU usage between the samplings
126of 'sampling_rate' needs to be for the kernel to make a decision on 126of 'sampling_rate' needs to be for the kernel to make a decision on
127whether it should increase the frequency. For example when it is set 127whether it should increase the frequency. For example when it is set
128to its default value of '80' it means that between the checking 128to its default value of '80' it means that between the checking
diff --git a/Documentation/cpu-hotplug.txt b/Documentation/cpu-hotplug.txt
index ba0aacde94fb..94bbc27ddd4f 100644
--- a/Documentation/cpu-hotplug.txt
+++ b/Documentation/cpu-hotplug.txt
@@ -59,15 +59,10 @@ apicid values in those tables for disabled apics. In the event BIOS doesn't
59mark such hot-pluggable cpus as disabled entries, one could use this 59mark such hot-pluggable cpus as disabled entries, one could use this
60parameter "additional_cpus=x" to represent those cpus in the cpu_possible_map. 60parameter "additional_cpus=x" to represent those cpus in the cpu_possible_map.
61 61
62s390 uses the number of cpus it detects at IPL time to also the number of bits
63in cpu_possible_map. If it is desired to add additional cpus at a later time
64the number should be specified using this option or the possible_cpus option.
65
66possible_cpus=n [s390 only] use this to set hotpluggable cpus. 62possible_cpus=n [s390 only] use this to set hotpluggable cpus.
67 This option sets possible_cpus bits in 63 This option sets possible_cpus bits in
68 cpu_possible_map. Thus keeping the numbers of bits set 64 cpu_possible_map. Thus keeping the numbers of bits set
69 constant even if the machine gets rebooted. 65 constant even if the machine gets rebooted.
70 This option overrides additional_cpus.
71 66
72CPU maps and such 67CPU maps and such
73----------------- 68-----------------
diff --git a/Documentation/cpusets.txt b/Documentation/cpusets.txt
index 1f5a924d1e56..47e568a9370a 100644
--- a/Documentation/cpusets.txt
+++ b/Documentation/cpusets.txt
@@ -635,14 +635,16 @@ prior 'mems' setting, will not be moved.
635 635
636There is an exception to the above. If hotplug functionality is used 636There is an exception to the above. If hotplug functionality is used
637to remove all the CPUs that are currently assigned to a cpuset, 637to remove all the CPUs that are currently assigned to a cpuset,
638then the kernel will automatically update the cpus_allowed of all 638then all the tasks in that cpuset will be moved to the nearest ancestor
639tasks attached to CPUs in that cpuset to allow all CPUs. When memory 639with non-empty cpus. But the moving of some (or all) tasks might fail if
640hotplug functionality for removing Memory Nodes is available, a 640cpuset is bound with another cgroup subsystem which has some restrictions
641similar exception is expected to apply there as well. In general, 641on task attaching. In this failing case, those tasks will stay
642the kernel prefers to violate cpuset placement, over starving a task 642in the original cpuset, and the kernel will automatically update
643that has had all its allowed CPUs or Memory Nodes taken offline. User 643their cpus_allowed to allow all online CPUs. When memory hotplug
644code should reconfigure cpusets to only refer to online CPUs and Memory 644functionality for removing Memory Nodes is available, a similar exception
645Nodes when using hotplug to add or remove such resources. 645is expected to apply there as well. In general, the kernel prefers to
646violate cpuset placement, over starving a task that has had all
647its allowed CPUs or Memory Nodes taken offline.
646 648
647There is a second exception to the above. GFP_ATOMIC requests are 649There is a second exception to the above. GFP_ATOMIC requests are
648kernel internal allocations that must be satisfied, immediately. 650kernel internal allocations that must be satisfied, immediately.
diff --git a/Documentation/devices.txt b/Documentation/devices.txt
index e6244cde26e9..05c80645e4ee 100644
--- a/Documentation/devices.txt
+++ b/Documentation/devices.txt
@@ -2560,9 +2560,6 @@ Your cooperation is appreciated.
2560 96 = /dev/usb/hiddev0 1st USB HID device 2560 96 = /dev/usb/hiddev0 1st USB HID device
2561 ... 2561 ...
2562 111 = /dev/usb/hiddev15 16th USB HID device 2562 111 = /dev/usb/hiddev15 16th USB HID device
2563 112 = /dev/usb/auer0 1st auerswald ISDN device
2564 ...
2565 127 = /dev/usb/auer15 16th auerswald ISDN device
2566 128 = /dev/usb/brlvgr0 First Braille Voyager device 2563 128 = /dev/usb/brlvgr0 First Braille Voyager device
2567 ... 2564 ...
2568 131 = /dev/usb/brlvgr3 Fourth Braille Voyager device 2565 131 = /dev/usb/brlvgr3 Fourth Braille Voyager device
diff --git a/Documentation/dontdiff b/Documentation/dontdiff
index 881e6dd03aea..27809357da58 100644
--- a/Documentation/dontdiff
+++ b/Documentation/dontdiff
@@ -5,6 +5,8 @@
5*.css 5*.css
6*.dvi 6*.dvi
7*.eps 7*.eps
8*.fw.gen.S
9*.fw
8*.gif 10*.gif
9*.grep 11*.grep
10*.grp 12*.grp
diff --git a/Documentation/edac.txt b/Documentation/edac.txt
index a5c36842ecef..8eda3fb66416 100644
--- a/Documentation/edac.txt
+++ b/Documentation/edac.txt
@@ -222,74 +222,9 @@ both csrow2 and csrow3 are populated, this indicates a dual ranked
222set of DIMMs for channels 0 and 1. 222set of DIMMs for channels 0 and 1.
223 223
224 224
225Within each of the 'mc','mcX' and 'csrowX' directories are several 225Within each of the 'mcX' and 'csrowX' directories are several
226EDAC control and attribute files. 226EDAC control and attribute files.
227 227
228
229============================================================================
230DIRECTORY 'mc'
231
232In directory 'mc' are EDAC system overall control and attribute files:
233
234
235Panic on UE control file:
236
237 'edac_mc_panic_on_ue'
238
239 An uncorrectable error will cause a machine panic. This is usually
240 desirable. It is a bad idea to continue when an uncorrectable error
241 occurs - it is indeterminate what was uncorrected and the operating
242 system context might be so mangled that continuing will lead to further
243 corruption. If the kernel has MCE configured, then EDAC will never
244 notice the UE.
245
246 LOAD TIME: module/kernel parameter: panic_on_ue=[0|1]
247
248 RUN TIME: echo "1" >/sys/devices/system/edac/mc/edac_mc_panic_on_ue
249
250
251Log UE control file:
252
253 'edac_mc_log_ue'
254
255 Generate kernel messages describing uncorrectable errors. These errors
256 are reported through the system message log system. UE statistics
257 will be accumulated even when UE logging is disabled.
258
259 LOAD TIME: module/kernel parameter: log_ue=[0|1]
260
261 RUN TIME: echo "1" >/sys/devices/system/edac/mc/edac_mc_log_ue
262
263
264Log CE control file:
265
266 'edac_mc_log_ce'
267
268 Generate kernel messages describing correctable errors. These
269 errors are reported through the system message log system.
270 CE statistics will be accumulated even when CE logging is disabled.
271
272 LOAD TIME: module/kernel parameter: log_ce=[0|1]
273
274 RUN TIME: echo "1" >/sys/devices/system/edac/mc/edac_mc_log_ce
275
276
277Polling period control file:
278
279 'edac_mc_poll_msec'
280
281 The time period, in milliseconds, for polling for error information.
282 Too small a value wastes resources. Too large a value might delay
283 necessary handling of errors and might loose valuable information for
284 locating the error. 1000 milliseconds (once each second) is the current
285 default. Systems which require all the bandwidth they can get, may
286 increase this.
287
288 LOAD TIME: module/kernel parameter: poll_msec=[0|1]
289
290 RUN TIME: echo "1000" >/sys/devices/system/edac/mc/edac_mc_poll_msec
291
292
293============================================================================ 228============================================================================
294'mcX' DIRECTORIES 229'mcX' DIRECTORIES
295 230
@@ -392,7 +327,7 @@ Sdram memory scrubbing rate:
392 'sdram_scrub_rate' 327 'sdram_scrub_rate'
393 328
394 Read/Write attribute file that controls memory scrubbing. The scrubbing 329 Read/Write attribute file that controls memory scrubbing. The scrubbing
395 rate is set by writing a minimum bandwith in bytes/sec to the attribute 330 rate is set by writing a minimum bandwidth in bytes/sec to the attribute
396 file. The rate will be translated to an internal value that gives at 331 file. The rate will be translated to an internal value that gives at
397 least the specified rate. 332 least the specified rate.
398 333
@@ -537,7 +472,6 @@ Channel 1 DIMM Label control file:
537 motherboard specific and determination of this information 472 motherboard specific and determination of this information
538 must occur in userland at this time. 473 must occur in userland at this time.
539 474
540
541============================================================================ 475============================================================================
542SYSTEM LOGGING 476SYSTEM LOGGING
543 477
@@ -570,7 +504,6 @@ error type, a notice of "no info" and then an optional,
570driver-specific error message. 504driver-specific error message.
571 505
572 506
573
574============================================================================ 507============================================================================
575PCI Bus Parity Detection 508PCI Bus Parity Detection
576 509
@@ -604,6 +537,74 @@ Enable/Disable PCI Parity checking control file:
604 echo "0" >/sys/devices/system/edac/pci/check_pci_parity 537 echo "0" >/sys/devices/system/edac/pci/check_pci_parity
605 538
606 539
540Parity Count:
541
542 'pci_parity_count'
543
544 This attribute file will display the number of parity errors that
545 have been detected.
546
547
548============================================================================
549MODULE PARAMETERS
550
551Panic on UE control file:
552
553 'edac_mc_panic_on_ue'
554
555 An uncorrectable error will cause a machine panic. This is usually
556 desirable. It is a bad idea to continue when an uncorrectable error
557 occurs - it is indeterminate what was uncorrected and the operating
558 system context might be so mangled that continuing will lead to further
559 corruption. If the kernel has MCE configured, then EDAC will never
560 notice the UE.
561
562 LOAD TIME: module/kernel parameter: edac_mc_panic_on_ue=[0|1]
563
564 RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_panic_on_ue
565
566
567Log UE control file:
568
569 'edac_mc_log_ue'
570
571 Generate kernel messages describing uncorrectable errors. These errors
572 are reported through the system message log system. UE statistics
573 will be accumulated even when UE logging is disabled.
574
575 LOAD TIME: module/kernel parameter: edac_mc_log_ue=[0|1]
576
577 RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ue
578
579
580Log CE control file:
581
582 'edac_mc_log_ce'
583
584 Generate kernel messages describing correctable errors. These
585 errors are reported through the system message log system.
586 CE statistics will be accumulated even when CE logging is disabled.
587
588 LOAD TIME: module/kernel parameter: edac_mc_log_ce=[0|1]
589
590 RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ce
591
592
593Polling period control file:
594
595 'edac_mc_poll_msec'
596
597 The time period, in milliseconds, for polling for error information.
598 Too small a value wastes resources. Too large a value might delay
599 necessary handling of errors and might loose valuable information for
600 locating the error. 1000 milliseconds (once each second) is the current
601 default. Systems which require all the bandwidth they can get, may
602 increase this.
603
604 LOAD TIME: module/kernel parameter: edac_mc_poll_msec=[0|1]
605
606 RUN TIME: echo "1000" > /sys/module/edac_core/parameters/edac_mc_poll_msec
607
607 608
608Panic on PCI PARITY Error: 609Panic on PCI PARITY Error:
609 610
@@ -614,21 +615,13 @@ Panic on PCI PARITY Error:
614 error has been detected. 615 error has been detected.
615 616
616 617
617 module/kernel parameter: panic_on_pci_parity=[0|1] 618 module/kernel parameter: edac_panic_on_pci_pe=[0|1]
618 619
619 Enable: 620 Enable:
620 echo "1" >/sys/devices/system/edac/pci/panic_on_pci_parity 621 echo "1" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe
621 622
622 Disable: 623 Disable:
623 echo "0" >/sys/devices/system/edac/pci/panic_on_pci_parity 624 echo "0" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe
624
625
626Parity Count:
627
628 'pci_parity_count'
629
630 This attribute file will display the number of parity errors that
631 have been detected.
632 625
633 626
634 627
diff --git a/Documentation/fb/sh7760fb.txt b/Documentation/fb/sh7760fb.txt
new file mode 100644
index 000000000000..c87bfe5c630a
--- /dev/null
+++ b/Documentation/fb/sh7760fb.txt
@@ -0,0 +1,131 @@
1SH7760/SH7763 integrated LCDC Framebuffer driver
2================================================
3
40. Overwiew
5-----------
6The SH7760/SH7763 have an integrated LCD Display controller (LCDC) which
7supports (in theory) resolutions ranging from 1x1 to 1024x1024,
8with color depths ranging from 1 to 16 bits, on STN, DSTN and TFT Panels.
9
10Caveats:
11* Framebuffer memory must be a large chunk allocated at the top
12 of Area3 (HW requirement). Because of this requirement you should NOT
13 make the driver a module since at runtime it may become impossible to
14 get a large enough contiguous chunk of memory.
15
16* The driver does not support changing resolution while loaded
17 (displays aren't hotpluggable anyway)
18
19* Heavy flickering may be observed
20 a) if you're using 15/16bit color modes at >= 640x480 px resolutions,
21 b) during PCMCIA (or any other slow bus) activity.
22
23* Rotation works only 90degress clockwise, and only if horizontal
24 resolution is <= 320 pixels.
25
26files: drivers/video/sh7760fb.c
27 include/asm-sh/sh7760fb.h
28 Documentation/fb/sh7760fb.txt
29
301. Platform setup
31-----------------
32SH7760:
33 Video data is fetched via the DMABRG DMA engine, so you have to
34 configure the SH DMAC for DMABRG mode (write 0x94808080 to the
35 DMARSRA register somewhere at boot).
36
37 PFC registers PCCR and PCDR must be set to peripheral mode.
38 (write zeros to both).
39
40The driver does NOT do the above for you since board setup is, well, job
41of the board setup code.
42
432. Panel definitions
44--------------------
45The LCDC must explicitly be told about the type of LCD panel
46attached. Data must be wrapped in a "struct sh7760fb_platdata" and
47passed to the driver as platform_data.
48
49Suggest you take a closer look at the SH7760 Manual, Section 30.
50(http://documentation.renesas.com/eng/products/mpumcu/e602291_sh7760.pdf)
51
52The following code illustrates what needs to be done to
53get the framebuffer working on a 640x480 TFT:
54
55====================== cut here ======================================
56
57#include <linux/fb.h>
58#include <asm/sh7760fb.h>
59
60/*
61 * NEC NL6440bc26-01 640x480 TFT
62 * dotclock 25175 kHz
63 * Xres 640 Yres 480
64 * Htotal 800 Vtotal 525
65 * HsynStart 656 VsynStart 490
66 * HsynLenn 30 VsynLenn 2
67 *
68 * The linux framebuffer layer does not use the syncstart/synclen
69 * values but right/left/upper/lower margin values. The comments
70 * for the x_margin explain how to calculate those from given
71 * panel sync timings.
72 */
73static struct fb_videomode nl6448bc26 = {
74 .name = "NL6448BC26",
75 .refresh = 60,
76 .xres = 640,
77 .yres = 480,
78 .pixclock = 39683, /* in picoseconds! */
79 .hsync_len = 30,
80 .vsync_len = 2,
81 .left_margin = 114, /* HTOT - (HSYNSLEN + HSYNSTART) */
82 .right_margin = 16, /* HSYNSTART - XRES */
83 .upper_margin = 33, /* VTOT - (VSYNLEN + VSYNSTART) */
84 .lower_margin = 10, /* VSYNSTART - YRES */
85 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
86 .vmode = FB_VMODE_NONINTERLACED,
87 .flag = 0,
88};
89
90static struct sh7760fb_platdata sh7760fb_nl6448 = {
91 .def_mode = &nl6448bc26,
92 .ldmtr = LDMTR_TFT_COLOR_16, /* 16bit TFT panel */
93 .lddfr = LDDFR_8BPP, /* we want 8bit output */
94 .ldpmmr = 0x0070,
95 .ldpspr = 0x0500,
96 .ldaclnr = 0,
97 .ldickr = LDICKR_CLKSRC(LCDC_CLKSRC_EXTERNAL) |
98 LDICKR_CLKDIV(1),
99 .rotate = 0,
100 .novsync = 1,
101 .blank = NULL,
102};
103
104/* SH7760:
105 * 0xFE300800: 256 * 4byte xRGB palette ram
106 * 0xFE300C00: 42 bytes ctrl registers
107 */
108static struct resource sh7760_lcdc_res[] = {
109 [0] = {
110 .start = 0xFE300800,
111 .end = 0xFE300CFF,
112 .flags = IORESOURCE_MEM,
113 },
114 [1] = {
115 .start = 65,
116 .end = 65,
117 .flags = IORESOURCE_IRQ,
118 },
119};
120
121static struct platform_device sh7760_lcdc_dev = {
122 .dev = {
123 .platform_data = &sh7760fb_nl6448,
124 },
125 .name = "sh7760-lcdc",
126 .id = -1,
127 .resource = sh7760_lcdc_res,
128 .num_resources = ARRAY_SIZE(sh7760_lcdc_res),
129};
130
131====================== cut here ======================================
diff --git a/Documentation/fb/tridentfb.txt b/Documentation/fb/tridentfb.txt
index 8a6c8a43e6a3..45d9de5b13a3 100644
--- a/Documentation/fb/tridentfb.txt
+++ b/Documentation/fb/tridentfb.txt
@@ -3,11 +3,25 @@ Tridentfb is a framebuffer driver for some Trident chip based cards.
3The following list of chips is thought to be supported although not all are 3The following list of chips is thought to be supported although not all are
4tested: 4tested:
5 5
6those from the Image series with Cyber in their names - accelerated 6those from the TGUI series 9440/96XX and with Cyber in their names
7those with Blade in their names (Blade3D,CyberBlade...) - accelerated 7those from the Image series and with Cyber in their names
8the newer CyberBladeXP family - nonaccelerated 8those with Blade in their names (Blade3D,CyberBlade...)
9 9the newer CyberBladeXP family
10Only PCI/AGP based cards are supported, none of the older Tridents. 10
11All families are accelerated. Only PCI/AGP based cards are supported,
12none of the older Tridents.
13The driver supports 8, 16 and 32 bits per pixel depths.
14The TGUI family requires a line length to be power of 2 if acceleration
15is enabled. This means that range of possible resolutions and bpp is
16limited comparing to the range if acceleration is disabled (see list
17of parameters below).
18
19Known bugs:
201. The driver randomly locks up on 3DImage975 chip with acceleration
21 enabled. The same happens in X11 (Xorg).
222. The ramdac speeds require some more fine tuning. It is possible to
23 switch resolution which the chip does not support at some depths for
24 older chips.
11 25
12How to use it? 26How to use it?
13============== 27==============
@@ -17,12 +31,11 @@ video=tridentfb
17 31
18The parameters for tridentfb are concatenated with a ':' as in this example. 32The parameters for tridentfb are concatenated with a ':' as in this example.
19 33
20video=tridentfb:800x600,bpp=16,noaccel 34video=tridentfb:800x600-16@75,noaccel
21 35
22The second level parameters that tridentfb understands are: 36The second level parameters that tridentfb understands are:
23 37
24noaccel - turns off acceleration (when it doesn't work for your card) 38noaccel - turns off acceleration (when it doesn't work for your card)
25accel - force text acceleration (for boards which by default are noacceled)
26 39
27fp - use flat panel related stuff 40fp - use flat panel related stuff
28crt - assume monitor is present instead of fp 41crt - assume monitor is present instead of fp
@@ -31,21 +44,24 @@ center - for flat panels and resolutions smaller than native size center the
31 image, otherwise use 44 image, otherwise use
32stretch 45stretch
33 46
34memsize - integer value in Kb, use if your card's memory size is misdetected. 47memsize - integer value in KB, use if your card's memory size is misdetected.
35 look at the driver output to see what it says when initializing. 48 look at the driver output to see what it says when initializing.
36memdiff - integer value in Kb,should be nonzero if your card reports 49
37 more memory than it actually has.For instance mine is 192K less than 50memdiff - integer value in KB, should be nonzero if your card reports
51 more memory than it actually has. For instance mine is 192K less than
38 detection says in all three BIOS selectable situations 2M, 4M, 8M. 52 detection says in all three BIOS selectable situations 2M, 4M, 8M.
39 Only use if your video memory is taken from main memory hence of 53 Only use if your video memory is taken from main memory hence of
40 configurable size.Otherwise use memsize. 54 configurable size. Otherwise use memsize.
41 If in some modes which barely fit the memory you see garbage at the bottom 55 If in some modes which barely fit the memory you see garbage
42 this might help by not letting change to that mode anymore. 56 at the bottom this might help by not letting change to that mode
57 anymore.
43 58
44nativex - the width in pixels of the flat panel.If you know it (usually 1024 59nativex - the width in pixels of the flat panel.If you know it (usually 1024
45 800 or 1280) and it is not what the driver seems to detect use it. 60 800 or 1280) and it is not what the driver seems to detect use it.
46 61
47bpp - bits per pixel (8,16 or 32) 62bpp - bits per pixel (8,16 or 32)
48mode - a mode name like 800x600 (as described in Documentation/fb/modedb.txt) 63mode - a mode name like 800x600-8@75 as described in
64 Documentation/fb/modedb.txt
49 65
50Using insane values for the above parameters will probably result in driver 66Using insane values for the above parameters will probably result in driver
51misbehaviour so take care(for instance memsize=12345678 or memdiff=23784 or 67misbehaviour so take care(for instance memsize=12345678 or memdiff=23784 or
diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt
index 9f73587219e8..83c88cae1eda 100644
--- a/Documentation/feature-removal-schedule.txt
+++ b/Documentation/feature-removal-schedule.txt
@@ -19,15 +19,6 @@ Who: Pavel Machek <pavel@suse.cz>
19 19
20--------------------------- 20---------------------------
21 21
22What: old NCR53C9x driver
23When: October 2007
24Why: Replaced by the much better esp_scsi driver. Actual low-level
25 driver can be ported over almost trivially.
26Who: David Miller <davem@davemloft.net>
27 Christoph Hellwig <hch@lst.de>
28
29---------------------------
30
31What: Video4Linux API 1 ioctls and video_decoder.h from Video devices. 22What: Video4Linux API 1 ioctls and video_decoder.h from Video devices.
32When: December 2008 23When: December 2008
33Files: include/linux/video_decoder.h include/linux/videodev.h 24Files: include/linux/video_decoder.h include/linux/videodev.h
@@ -47,6 +38,30 @@ Who: Mauro Carvalho Chehab <mchehab@infradead.org>
47 38
48--------------------------- 39---------------------------
49 40
41What: old tuner-3036 i2c driver
42When: 2.6.28
43Why: This driver is for VERY old i2c-over-parallel port teletext receiver
44 boxes. Rather then spending effort on converting this driver to V4L2,
45 and since it is extremely unlikely that anyone still uses one of these
46 devices, it was decided to drop it.
47Who: Hans Verkuil <hverkuil@xs4all.nl>
48 Mauro Carvalho Chehab <mchehab@infradead.org>
49
50 ---------------------------
51
52What: V4L2 dpc7146 driver
53When: 2.6.28
54Why: Old driver for the dpc7146 demonstration board that is no longer
55 relevant. The last time this was tested on actual hardware was
56 probably around 2002. Since this is a driver for a demonstration
57 board the decision was made to remove it rather than spending a
58 lot of effort continually updating this driver to stay in sync
59 with the latest internal V4L2 or I2C API.
60Who: Hans Verkuil <hverkuil@xs4all.nl>
61 Mauro Carvalho Chehab <mchehab@infradead.org>
62
63---------------------------
64
50What: PCMCIA control ioctl (needed for pcmcia-cs [cardmgr, cardctl]) 65What: PCMCIA control ioctl (needed for pcmcia-cs [cardmgr, cardctl])
51When: November 2005 66When: November 2005
52Files: drivers/pcmcia/: pcmcia_ioctl.c 67Files: drivers/pcmcia/: pcmcia_ioctl.c
@@ -138,24 +153,6 @@ Who: Kay Sievers <kay.sievers@suse.de>
138 153
139--------------------------- 154---------------------------
140 155
141What: find_task_by_pid
142When: 2.6.26
143Why: With pid namespaces, calling this funciton will return the
144 wrong task when called from inside a namespace.
145
146 The best way to save a task pid and find a task by this
147 pid later, is to find this task's struct pid pointer (or get
148 it directly from the task) and call pid_task() later.
149
150 If someone really needs to get a task by its pid_t, then
151 he most likely needs the find_task_by_vpid() to get the
152 task from the same namespace as the current task is in, but
153 this may be not so in general.
154
155Who: Pavel Emelyanov <xemul@openvz.org>
156
157---------------------------
158
159What: ACPI procfs interface 156What: ACPI procfs interface
160When: July 2008 157When: July 2008
161Why: ACPI sysfs conversion should be finished by January 2008. 158Why: ACPI sysfs conversion should be finished by January 2008.
@@ -199,19 +196,6 @@ Who: Tejun Heo <htejun@gmail.com>
199 196
200--------------------------- 197---------------------------
201 198
202What: The arch/ppc and include/asm-ppc directories
203When: Jun 2008
204Why: The arch/powerpc tree is the merged architecture for ppc32 and ppc64
205 platforms. Currently there are efforts underway to port the remaining
206 arch/ppc platforms to the merged tree. New submissions to the arch/ppc
207 tree have been frozen with the 2.6.22 kernel release and that tree will
208 remain in bug-fix only mode until its scheduled removal. Platforms
209 that are not ported by June 2008 will be removed due to the lack of an
210 interested maintainer.
211Who: linuxppc-dev@ozlabs.org
212
213---------------------------
214
215What: i386/x86_64 bzImage symlinks 199What: i386/x86_64 bzImage symlinks
216When: April 2010 200When: April 2010
217 201
@@ -300,14 +284,6 @@ Who: ocfs2-devel@oss.oracle.com
300 284
301--------------------------- 285---------------------------
302 286
303What: asm/semaphore.h
304When: 2.6.26
305Why: Implementation became generic; users should now include
306 linux/semaphore.h instead.
307Who: Matthew Wilcox <willy@linux.intel.com>
308
309---------------------------
310
311What: SCTP_GET_PEER_ADDRS_NUM_OLD, SCTP_GET_PEER_ADDRS_OLD, 287What: SCTP_GET_PEER_ADDRS_NUM_OLD, SCTP_GET_PEER_ADDRS_OLD,
312 SCTP_GET_LOCAL_ADDRS_NUM_OLD, SCTP_GET_LOCAL_ADDRS_OLD 288 SCTP_GET_LOCAL_ADDRS_NUM_OLD, SCTP_GET_LOCAL_ADDRS_OLD
313When: June 2009 289When: June 2009
@@ -346,3 +322,11 @@ Why: Accounting can now be enabled/disabled without kernel recompilation.
346 controlled by a kernel/module/sysfs/sysctl parameter. 322 controlled by a kernel/module/sysfs/sysctl parameter.
347Who: Krzysztof Piotr Oledzki <ole@ans.pl> 323Who: Krzysztof Piotr Oledzki <ole@ans.pl>
348 324
325---------------------------
326
327What: ide-scsi (BLK_DEV_IDESCSI)
328When: 2.6.29
329Why: The 2.6 kernel supports direct writing to ide CD drives, which
330 eliminates the need for ide-scsi. The new method is more
331 efficient in every way.
332Who: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/Locking
index 8b22d7d8b991..8362860e21a7 100644
--- a/Documentation/filesystems/Locking
+++ b/Documentation/filesystems/Locking
@@ -144,8 +144,8 @@ prototypes:
144 void (*kill_sb) (struct super_block *); 144 void (*kill_sb) (struct super_block *);
145locking rules: 145locking rules:
146 may block BKL 146 may block BKL
147get_sb yes yes 147get_sb yes no
148kill_sb yes yes 148kill_sb yes no
149 149
150->get_sb() returns error or 0 with locked superblock attached to the vfsmount 150->get_sb() returns error or 0 with locked superblock attached to the vfsmount
151(exclusive on ->s_umount). 151(exclusive on ->s_umount).
@@ -409,12 +409,12 @@ ioctl: yes (see below)
409unlocked_ioctl: no (see below) 409unlocked_ioctl: no (see below)
410compat_ioctl: no 410compat_ioctl: no
411mmap: no 411mmap: no
412open: maybe (see below) 412open: no
413flush: no 413flush: no
414release: no 414release: no
415fsync: no (see below) 415fsync: no (see below)
416aio_fsync: no 416aio_fsync: no
417fasync: yes (see below) 417fasync: no
418lock: yes 418lock: yes
419readv: no 419readv: no
420writev: no 420writev: no
@@ -431,13 +431,6 @@ For many filesystems, it is probably safe to acquire the inode
431semaphore. Note some filesystems (i.e. remote ones) provide no 431semaphore. Note some filesystems (i.e. remote ones) provide no
432protection for i_size so you will need to use the BKL. 432protection for i_size so you will need to use the BKL.
433 433
434->open() locking is in-transit: big lock partially moved into the methods.
435The only exception is ->open() in the instances of file_operations that never
436end up in ->i_fop/->proc_fops, i.e. ones that belong to character devices
437(chrdev_open() takes lock before replacing ->f_op and calling the secondary
438method. As soon as we fix the handling of module reference counters all
439instances of ->open() will be called without the BKL.
440
441Note: ext2_release() was *the* source of contention on fs-intensive 434Note: ext2_release() was *the* source of contention on fs-intensive
442loads and dropping BKL on ->release() helps to get rid of that (we still 435loads and dropping BKL on ->release() helps to get rid of that (we still
443grab BKL for cases when we close a file that had been opened r/w, but that 436grab BKL for cases when we close a file that had been opened r/w, but that
@@ -510,6 +503,7 @@ prototypes:
510 void (*close)(struct vm_area_struct*); 503 void (*close)(struct vm_area_struct*);
511 int (*fault)(struct vm_area_struct*, struct vm_fault *); 504 int (*fault)(struct vm_area_struct*, struct vm_fault *);
512 int (*page_mkwrite)(struct vm_area_struct *, struct page *); 505 int (*page_mkwrite)(struct vm_area_struct *, struct page *);
506 int (*access)(struct vm_area_struct *, unsigned long, void*, int, int);
513 507
514locking rules: 508locking rules:
515 BKL mmap_sem PageLocked(page) 509 BKL mmap_sem PageLocked(page)
@@ -517,6 +511,7 @@ open: no yes
517close: no yes 511close: no yes
518fault: no yes 512fault: no yes
519page_mkwrite: no yes no 513page_mkwrite: no yes no
514access: no yes
520 515
521 ->page_mkwrite() is called when a previously read-only page is 516 ->page_mkwrite() is called when a previously read-only page is
522about to become writeable. The file system is responsible for 517about to become writeable. The file system is responsible for
@@ -525,6 +520,11 @@ taking to lock out truncate, the page range should be verified to be
525within i_size. The page mapping should also be checked that it is not 520within i_size. The page mapping should also be checked that it is not
526NULL. 521NULL.
527 522
523 ->access() is called when get_user_pages() fails in
524acces_process_vm(), typically used to debug a process through
525/proc/pid/mem or ptrace. This function is needed only for
526VM_IO | VM_PFNMAP VMAs.
527
528================================================================================ 528================================================================================
529 Dubious stuff 529 Dubious stuff
530 530
diff --git a/Documentation/filesystems/configfs/Makefile b/Documentation/filesystems/configfs/Makefile
new file mode 100644
index 000000000000..be7ec5e67dbc
--- /dev/null
+++ b/Documentation/filesystems/configfs/Makefile
@@ -0,0 +1,3 @@
1ifneq ($(CONFIG_CONFIGFS_FS),)
2obj-m += configfs_example_explicit.o configfs_example_macros.o
3endif
diff --git a/Documentation/filesystems/configfs/configfs.txt b/Documentation/filesystems/configfs/configfs.txt
index 44c97e6accb2..fabcb0e00f25 100644
--- a/Documentation/filesystems/configfs/configfs.txt
+++ b/Documentation/filesystems/configfs/configfs.txt
@@ -311,9 +311,20 @@ the subsystem must be ready for it.
311[An Example] 311[An Example]
312 312
313The best example of these basic concepts is the simple_children 313The best example of these basic concepts is the simple_children
314subsystem/group and the simple_child item in configfs_example.c It 314subsystem/group and the simple_child item in configfs_example_explicit.c
315shows a trivial object displaying and storing an attribute, and a simple 315and configfs_example_macros.c. It shows a trivial object displaying and
316group creating and destroying these children. 316storing an attribute, and a simple group creating and destroying these
317children.
318
319The only difference between configfs_example_explicit.c and
320configfs_example_macros.c is how the attributes of the childless item
321are defined. The childless item has extended attributes, each with
322their own show()/store() operation. This follows a convention commonly
323used in sysfs. configfs_example_explicit.c creates these attributes
324by explicitly defining the structures involved. Conversely
325configfs_example_macros.c uses some convenience macros from configfs.h
326to define the attributes. These macros are similar to their sysfs
327counterparts.
317 328
318[Hierarchy Navigation and the Subsystem Mutex] 329[Hierarchy Navigation and the Subsystem Mutex]
319 330
diff --git a/Documentation/filesystems/configfs/configfs_example.c b/Documentation/filesystems/configfs/configfs_example_explicit.c
index 039648791701..d428cc9f07f3 100644
--- a/Documentation/filesystems/configfs/configfs_example.c
+++ b/Documentation/filesystems/configfs/configfs_example_explicit.c
@@ -1,8 +1,10 @@
1/* 1/*
2 * vim: noexpandtab ts=8 sts=0 sw=8: 2 * vim: noexpandtab ts=8 sts=0 sw=8:
3 * 3 *
4 * configfs_example.c - This file is a demonstration module containing 4 * configfs_example_explicit.c - This file is a demonstration module
5 * a number of configfs subsystems. 5 * containing a number of configfs subsystems. It explicitly defines
6 * each structure without using the helper macros defined in
7 * configfs.h.
6 * 8 *
7 * This program is free software; you can redistribute it and/or 9 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public 10 * modify it under the terms of the GNU General Public
@@ -281,7 +283,6 @@ static struct config_item *simple_children_make_item(struct config_group *group,
281 if (!simple_child) 283 if (!simple_child)
282 return ERR_PTR(-ENOMEM); 284 return ERR_PTR(-ENOMEM);
283 285
284
285 config_item_init_type_name(&simple_child->item, name, 286 config_item_init_type_name(&simple_child->item, name,
286 &simple_child_type); 287 &simple_child_type);
287 288
@@ -302,8 +303,8 @@ static struct configfs_attribute *simple_children_attrs[] = {
302}; 303};
303 304
304static ssize_t simple_children_attr_show(struct config_item *item, 305static ssize_t simple_children_attr_show(struct config_item *item,
305 struct configfs_attribute *attr, 306 struct configfs_attribute *attr,
306 char *page) 307 char *page)
307{ 308{
308 return sprintf(page, 309 return sprintf(page,
309"[02-simple-children]\n" 310"[02-simple-children]\n"
@@ -318,7 +319,7 @@ static void simple_children_release(struct config_item *item)
318} 319}
319 320
320static struct configfs_item_operations simple_children_item_ops = { 321static struct configfs_item_operations simple_children_item_ops = {
321 .release = simple_children_release, 322 .release = simple_children_release,
322 .show_attribute = simple_children_attr_show, 323 .show_attribute = simple_children_attr_show,
323}; 324};
324 325
@@ -368,7 +369,6 @@ static struct config_group *group_children_make_group(struct config_group *group
368 if (!simple_children) 369 if (!simple_children)
369 return ERR_PTR(-ENOMEM); 370 return ERR_PTR(-ENOMEM);
370 371
371
372 config_group_init_type_name(&simple_children->group, name, 372 config_group_init_type_name(&simple_children->group, name,
373 &simple_children_type); 373 &simple_children_type);
374 374
@@ -387,8 +387,8 @@ static struct configfs_attribute *group_children_attrs[] = {
387}; 387};
388 388
389static ssize_t group_children_attr_show(struct config_item *item, 389static ssize_t group_children_attr_show(struct config_item *item,
390 struct configfs_attribute *attr, 390 struct configfs_attribute *attr,
391 char *page) 391 char *page)
392{ 392{
393 return sprintf(page, 393 return sprintf(page,
394"[03-group-children]\n" 394"[03-group-children]\n"
diff --git a/Documentation/filesystems/configfs/configfs_example_macros.c b/Documentation/filesystems/configfs/configfs_example_macros.c
new file mode 100644
index 000000000000..d8e30a0378aa
--- /dev/null
+++ b/Documentation/filesystems/configfs/configfs_example_macros.c
@@ -0,0 +1,448 @@
1/*
2 * vim: noexpandtab ts=8 sts=0 sw=8:
3 *
4 * configfs_example_macros.c - This file is a demonstration module
5 * containing a number of configfs subsystems. It uses the helper
6 * macros defined by configfs.h
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public
19 * License along with this program; if not, write to the
20 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21 * Boston, MA 021110-1307, USA.
22 *
23 * Based on sysfs:
24 * sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel
25 *
26 * configfs Copyright (C) 2005 Oracle. All rights reserved.
27 */
28
29#include <linux/init.h>
30#include <linux/module.h>
31#include <linux/slab.h>
32
33#include <linux/configfs.h>
34
35
36
37/*
38 * 01-childless
39 *
40 * This first example is a childless subsystem. It cannot create
41 * any config_items. It just has attributes.
42 *
43 * Note that we are enclosing the configfs_subsystem inside a container.
44 * This is not necessary if a subsystem has no attributes directly
45 * on the subsystem. See the next example, 02-simple-children, for
46 * such a subsystem.
47 */
48
49struct childless {
50 struct configfs_subsystem subsys;
51 int showme;
52 int storeme;
53};
54
55static inline struct childless *to_childless(struct config_item *item)
56{
57 return item ? container_of(to_configfs_subsystem(to_config_group(item)), struct childless, subsys) : NULL;
58}
59
60CONFIGFS_ATTR_STRUCT(childless);
61#define CHILDLESS_ATTR(_name, _mode, _show, _store) \
62struct childless_attribute childless_attr_##_name = __CONFIGFS_ATTR(_name, _mode, _show, _store)
63#define CHILDLESS_ATTR_RO(_name, _show) \
64struct childless_attribute childless_attr_##_name = __CONFIGFS_ATTR_RO(_name, _show);
65
66static ssize_t childless_showme_read(struct childless *childless,
67 char *page)
68{
69 ssize_t pos;
70
71 pos = sprintf(page, "%d\n", childless->showme);
72 childless->showme++;
73
74 return pos;
75}
76
77static ssize_t childless_storeme_read(struct childless *childless,
78 char *page)
79{
80 return sprintf(page, "%d\n", childless->storeme);
81}
82
83static ssize_t childless_storeme_write(struct childless *childless,
84 const char *page,
85 size_t count)
86{
87 unsigned long tmp;
88 char *p = (char *) page;
89
90 tmp = simple_strtoul(p, &p, 10);
91 if (!p || (*p && (*p != '\n')))
92 return -EINVAL;
93
94 if (tmp > INT_MAX)
95 return -ERANGE;
96
97 childless->storeme = tmp;
98
99 return count;
100}
101
102static ssize_t childless_description_read(struct childless *childless,
103 char *page)
104{
105 return sprintf(page,
106"[01-childless]\n"
107"\n"
108"The childless subsystem is the simplest possible subsystem in\n"
109"configfs. It does not support the creation of child config_items.\n"
110"It only has a few attributes. In fact, it isn't much different\n"
111"than a directory in /proc.\n");
112}
113
114CHILDLESS_ATTR_RO(showme, childless_showme_read);
115CHILDLESS_ATTR(storeme, S_IRUGO | S_IWUSR, childless_storeme_read,
116 childless_storeme_write);
117CHILDLESS_ATTR_RO(description, childless_description_read);
118
119static struct configfs_attribute *childless_attrs[] = {
120 &childless_attr_showme.attr,
121 &childless_attr_storeme.attr,
122 &childless_attr_description.attr,
123 NULL,
124};
125
126CONFIGFS_ATTR_OPS(childless);
127static struct configfs_item_operations childless_item_ops = {
128 .show_attribute = childless_attr_show,
129 .store_attribute = childless_attr_store,
130};
131
132static struct config_item_type childless_type = {
133 .ct_item_ops = &childless_item_ops,
134 .ct_attrs = childless_attrs,
135 .ct_owner = THIS_MODULE,
136};
137
138static struct childless childless_subsys = {
139 .subsys = {
140 .su_group = {
141 .cg_item = {
142 .ci_namebuf = "01-childless",
143 .ci_type = &childless_type,
144 },
145 },
146 },
147};
148
149
150/* ----------------------------------------------------------------- */
151
152/*
153 * 02-simple-children
154 *
155 * This example merely has a simple one-attribute child. Note that
156 * there is no extra attribute structure, as the child's attribute is
157 * known from the get-go. Also, there is no container for the
158 * subsystem, as it has no attributes of its own.
159 */
160
161struct simple_child {
162 struct config_item item;
163 int storeme;
164};
165
166static inline struct simple_child *to_simple_child(struct config_item *item)
167{
168 return item ? container_of(item, struct simple_child, item) : NULL;
169}
170
171static struct configfs_attribute simple_child_attr_storeme = {
172 .ca_owner = THIS_MODULE,
173 .ca_name = "storeme",
174 .ca_mode = S_IRUGO | S_IWUSR,
175};
176
177static struct configfs_attribute *simple_child_attrs[] = {
178 &simple_child_attr_storeme,
179 NULL,
180};
181
182static ssize_t simple_child_attr_show(struct config_item *item,
183 struct configfs_attribute *attr,
184 char *page)
185{
186 ssize_t count;
187 struct simple_child *simple_child = to_simple_child(item);
188
189 count = sprintf(page, "%d\n", simple_child->storeme);
190
191 return count;
192}
193
194static ssize_t simple_child_attr_store(struct config_item *item,
195 struct configfs_attribute *attr,
196 const char *page, size_t count)
197{
198 struct simple_child *simple_child = to_simple_child(item);
199 unsigned long tmp;
200 char *p = (char *) page;
201
202 tmp = simple_strtoul(p, &p, 10);
203 if (!p || (*p && (*p != '\n')))
204 return -EINVAL;
205
206 if (tmp > INT_MAX)
207 return -ERANGE;
208
209 simple_child->storeme = tmp;
210
211 return count;
212}
213
214static void simple_child_release(struct config_item *item)
215{
216 kfree(to_simple_child(item));
217}
218
219static struct configfs_item_operations simple_child_item_ops = {
220 .release = simple_child_release,
221 .show_attribute = simple_child_attr_show,
222 .store_attribute = simple_child_attr_store,
223};
224
225static struct config_item_type simple_child_type = {
226 .ct_item_ops = &simple_child_item_ops,
227 .ct_attrs = simple_child_attrs,
228 .ct_owner = THIS_MODULE,
229};
230
231
232struct simple_children {
233 struct config_group group;
234};
235
236static inline struct simple_children *to_simple_children(struct config_item *item)
237{
238 return item ? container_of(to_config_group(item), struct simple_children, group) : NULL;
239}
240
241static struct config_item *simple_children_make_item(struct config_group *group, const char *name)
242{
243 struct simple_child *simple_child;
244
245 simple_child = kzalloc(sizeof(struct simple_child), GFP_KERNEL);
246 if (!simple_child)
247 return ERR_PTR(-ENOMEM);
248
249 config_item_init_type_name(&simple_child->item, name,
250 &simple_child_type);
251
252 simple_child->storeme = 0;
253
254 return &simple_child->item;
255}
256
257static struct configfs_attribute simple_children_attr_description = {
258 .ca_owner = THIS_MODULE,
259 .ca_name = "description",
260 .ca_mode = S_IRUGO,
261};
262
263static struct configfs_attribute *simple_children_attrs[] = {
264 &simple_children_attr_description,
265 NULL,
266};
267
268static ssize_t simple_children_attr_show(struct config_item *item,
269 struct configfs_attribute *attr,
270 char *page)
271{
272 return sprintf(page,
273"[02-simple-children]\n"
274"\n"
275"This subsystem allows the creation of child config_items. These\n"
276"items have only one attribute that is readable and writeable.\n");
277}
278
279static void simple_children_release(struct config_item *item)
280{
281 kfree(to_simple_children(item));
282}
283
284static struct configfs_item_operations simple_children_item_ops = {
285 .release = simple_children_release,
286 .show_attribute = simple_children_attr_show,
287};
288
289/*
290 * Note that, since no extra work is required on ->drop_item(),
291 * no ->drop_item() is provided.
292 */
293static struct configfs_group_operations simple_children_group_ops = {
294 .make_item = simple_children_make_item,
295};
296
297static struct config_item_type simple_children_type = {
298 .ct_item_ops = &simple_children_item_ops,
299 .ct_group_ops = &simple_children_group_ops,
300 .ct_attrs = simple_children_attrs,
301 .ct_owner = THIS_MODULE,
302};
303
304static struct configfs_subsystem simple_children_subsys = {
305 .su_group = {
306 .cg_item = {
307 .ci_namebuf = "02-simple-children",
308 .ci_type = &simple_children_type,
309 },
310 },
311};
312
313
314/* ----------------------------------------------------------------- */
315
316/*
317 * 03-group-children
318 *
319 * This example reuses the simple_children group from above. However,
320 * the simple_children group is not the subsystem itself, it is a
321 * child of the subsystem. Creation of a group in the subsystem creates
322 * a new simple_children group. That group can then have simple_child
323 * children of its own.
324 */
325
326static struct config_group *group_children_make_group(struct config_group *group, const char *name)
327{
328 struct simple_children *simple_children;
329
330 simple_children = kzalloc(sizeof(struct simple_children),
331 GFP_KERNEL);
332 if (!simple_children)
333 return ERR_PTR(-ENOMEM);
334
335 config_group_init_type_name(&simple_children->group, name,
336 &simple_children_type);
337
338 return &simple_children->group;
339}
340
341static struct configfs_attribute group_children_attr_description = {
342 .ca_owner = THIS_MODULE,
343 .ca_name = "description",
344 .ca_mode = S_IRUGO,
345};
346
347static struct configfs_attribute *group_children_attrs[] = {
348 &group_children_attr_description,
349 NULL,
350};
351
352static ssize_t group_children_attr_show(struct config_item *item,
353 struct configfs_attribute *attr,
354 char *page)
355{
356 return sprintf(page,
357"[03-group-children]\n"
358"\n"
359"This subsystem allows the creation of child config_groups. These\n"
360"groups are like the subsystem simple-children.\n");
361}
362
363static struct configfs_item_operations group_children_item_ops = {
364 .show_attribute = group_children_attr_show,
365};
366
367/*
368 * Note that, since no extra work is required on ->drop_item(),
369 * no ->drop_item() is provided.
370 */
371static struct configfs_group_operations group_children_group_ops = {
372 .make_group = group_children_make_group,
373};
374
375static struct config_item_type group_children_type = {
376 .ct_item_ops = &group_children_item_ops,
377 .ct_group_ops = &group_children_group_ops,
378 .ct_attrs = group_children_attrs,
379 .ct_owner = THIS_MODULE,
380};
381
382static struct configfs_subsystem group_children_subsys = {
383 .su_group = {
384 .cg_item = {
385 .ci_namebuf = "03-group-children",
386 .ci_type = &group_children_type,
387 },
388 },
389};
390
391/* ----------------------------------------------------------------- */
392
393/*
394 * We're now done with our subsystem definitions.
395 * For convenience in this module, here's a list of them all. It
396 * allows the init function to easily register them. Most modules
397 * will only have one subsystem, and will only call register_subsystem
398 * on it directly.
399 */
400static struct configfs_subsystem *example_subsys[] = {
401 &childless_subsys.subsys,
402 &simple_children_subsys,
403 &group_children_subsys,
404 NULL,
405};
406
407static int __init configfs_example_init(void)
408{
409 int ret;
410 int i;
411 struct configfs_subsystem *subsys;
412
413 for (i = 0; example_subsys[i]; i++) {
414 subsys = example_subsys[i];
415
416 config_group_init(&subsys->su_group);
417 mutex_init(&subsys->su_mutex);
418 ret = configfs_register_subsystem(subsys);
419 if (ret) {
420 printk(KERN_ERR "Error %d while registering subsystem %s\n",
421 ret,
422 subsys->su_group.cg_item.ci_namebuf);
423 goto out_unregister;
424 }
425 }
426
427 return 0;
428
429out_unregister:
430 for (; i >= 0; i--) {
431 configfs_unregister_subsystem(example_subsys[i]);
432 }
433
434 return ret;
435}
436
437static void __exit configfs_example_exit(void)
438{
439 int i;
440
441 for (i = 0; example_subsys[i]; i++) {
442 configfs_unregister_subsystem(example_subsys[i]);
443 }
444}
445
446module_init(configfs_example_init);
447module_exit(configfs_example_exit);
448MODULE_LICENSE("GPL");
diff --git a/Documentation/filesystems/ext4.txt b/Documentation/filesystems/ext4.txt
index 80e193d82e2e..0d5394920a31 100644
--- a/Documentation/filesystems/ext4.txt
+++ b/Documentation/filesystems/ext4.txt
@@ -26,6 +26,12 @@ Mailing list: linux-ext4@vger.kernel.org
26 26
27 git://git.kernel.org/pub/scm/fs/ext2/e2fsprogs.git 27 git://git.kernel.org/pub/scm/fs/ext2/e2fsprogs.git
28 28
29 - Note that it is highly important to install the mke2fs.conf file
30 that comes with the e2fsprogs 1.41.x sources in /etc/mke2fs.conf. If
31 you have edited the /etc/mke2fs.conf file installed on your system,
32 you will need to merge your changes with the version from e2fsprogs
33 1.41.x.
34
29 - Create a new filesystem using the ext4dev filesystem type: 35 - Create a new filesystem using the ext4dev filesystem type:
30 36
31 # mke2fs -t ext4dev /dev/hda1 37 # mke2fs -t ext4dev /dev/hda1
diff --git a/Documentation/filesystems/ntfs.txt b/Documentation/filesystems/ntfs.txt
index e79ee2db183a..ac2a261c5f7d 100644
--- a/Documentation/filesystems/ntfs.txt
+++ b/Documentation/filesystems/ntfs.txt
@@ -40,7 +40,7 @@ Web site
40======== 40========
41 41
42There is plenty of additional information on the linux-ntfs web site 42There is plenty of additional information on the linux-ntfs web site
43at http://linux-ntfs.sourceforge.net/ 43at http://www.linux-ntfs.org/
44 44
45The web site has a lot of additional information, such as a comprehensive 45The web site has a lot of additional information, such as a comprehensive
46FAQ, documentation on the NTFS on-disk format, information on the Linux-NTFS 46FAQ, documentation on the NTFS on-disk format, information on the Linux-NTFS
@@ -272,7 +272,7 @@ And you would know that /dev/hda2 has a size of 37768814 - 4209030 + 1 =
272For Win2k and later dynamic disks, you can for example use the ldminfo utility 272For Win2k and later dynamic disks, you can for example use the ldminfo utility
273which is part of the Linux LDM tools (the latest version at the time of 273which is part of the Linux LDM tools (the latest version at the time of
274writing is linux-ldm-0.0.8.tar.bz2). You can download it from: 274writing is linux-ldm-0.0.8.tar.bz2). You can download it from:
275 http://linux-ntfs.sourceforge.net/downloads.html 275 http://www.linux-ntfs.org/
276Simply extract the downloaded archive (tar xvjf linux-ldm-0.0.8.tar.bz2), go 276Simply extract the downloaded archive (tar xvjf linux-ldm-0.0.8.tar.bz2), go
277into it (cd linux-ldm-0.0.8) and change to the test directory (cd test). You 277into it (cd linux-ldm-0.0.8) and change to the test directory (cd test). You
278will find the precompiled (i386) ldminfo utility there. NOTE: You will not be 278will find the precompiled (i386) ldminfo utility there. NOTE: You will not be
diff --git a/Documentation/filesystems/omfs.txt b/Documentation/filesystems/omfs.txt
new file mode 100644
index 000000000000..1d0d41ff5c65
--- /dev/null
+++ b/Documentation/filesystems/omfs.txt
@@ -0,0 +1,106 @@
1Optimized MPEG Filesystem (OMFS)
2
3Overview
4========
5
6OMFS is a filesystem created by SonicBlue for use in the ReplayTV DVR
7and Rio Karma MP3 player. The filesystem is extent-based, utilizing
8block sizes from 2k to 8k, with hash-based directories. This
9filesystem driver may be used to read and write disks from these
10devices.
11
12Note, it is not recommended that this FS be used in place of a general
13filesystem for your own streaming media device. Native Linux filesystems
14will likely perform better.
15
16More information is available at:
17
18 http://linux-karma.sf.net/
19
20Various utilities, including mkomfs and omfsck, are included with
21omfsprogs, available at:
22
23 http://bobcopeland.com/karma/
24
25Instructions are included in its README.
26
27Options
28=======
29
30OMFS supports the following mount-time options:
31
32 uid=n - make all files owned by specified user
33 gid=n - make all files owned by specified group
34 umask=xxx - set permission umask to xxx
35 fmask=xxx - set umask to xxx for files
36 dmask=xxx - set umask to xxx for directories
37
38Disk format
39===========
40
41OMFS discriminates between "sysblocks" and normal data blocks. The sysblock
42group consists of super block information, file metadata, directory structures,
43and extents. Each sysblock has a header containing CRCs of the entire
44sysblock, and may be mirrored in successive blocks on the disk. A sysblock may
45have a smaller size than a data block, but since they are both addressed by the
46same 64-bit block number, any remaining space in the smaller sysblock is
47unused.
48
49Sysblock header information:
50
51struct omfs_header {
52 __be64 h_self; /* FS block where this is located */
53 __be32 h_body_size; /* size of useful data after header */
54 __be16 h_crc; /* crc-ccitt of body_size bytes */
55 char h_fill1[2];
56 u8 h_version; /* version, always 1 */
57 char h_type; /* OMFS_INODE_X */
58 u8 h_magic; /* OMFS_IMAGIC */
59 u8 h_check_xor; /* XOR of header bytes before this */
60 __be32 h_fill2;
61};
62
63Files and directories are both represented by omfs_inode:
64
65struct omfs_inode {
66 struct omfs_header i_head; /* header */
67 __be64 i_parent; /* parent containing this inode */
68 __be64 i_sibling; /* next inode in hash bucket */
69 __be64 i_ctime; /* ctime, in milliseconds */
70 char i_fill1[35];
71 char i_type; /* OMFS_[DIR,FILE] */
72 __be32 i_fill2;
73 char i_fill3[64];
74 char i_name[OMFS_NAMELEN]; /* filename */
75 __be64 i_size; /* size of file, in bytes */
76};
77
78Directories in OMFS are implemented as a large hash table. Filenames are
79hashed then prepended into the bucket list beginning at OMFS_DIR_START.
80Lookup requires hashing the filename, then seeking across i_sibling pointers
81until a match is found on i_name. Empty buckets are represented by block
82pointers with all-1s (~0).
83
84A file is an omfs_inode structure followed by an extent table beginning at
85OMFS_EXTENT_START:
86
87struct omfs_extent_entry {
88 __be64 e_cluster; /* start location of a set of blocks */
89 __be64 e_blocks; /* number of blocks after e_cluster */
90};
91
92struct omfs_extent {
93 __be64 e_next; /* next extent table location */
94 __be32 e_extent_count; /* total # extents in this table */
95 __be32 e_fill;
96 struct omfs_extent_entry e_entry; /* start of extent entries */
97};
98
99Each extent holds the block offset followed by number of blocks allocated to
100the extent. The final extent in each table is a terminator with e_cluster
101being ~0 and e_blocks being ones'-complement of the total number of blocks
102in the table.
103
104If this table overflows, a continuation inode is written and pointed to by
105e_next. These have a header but lack the rest of the inode structure.
106
diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt
index 7f268f327d75..f566ad9bcb7b 100644
--- a/Documentation/filesystems/proc.txt
+++ b/Documentation/filesystems/proc.txt
@@ -296,6 +296,7 @@ Table 1-4: Kernel info in /proc
296 uptime System uptime 296 uptime System uptime
297 version Kernel version 297 version Kernel version
298 video bttv info of video resources (2.4) 298 video bttv info of video resources (2.4)
299 vmallocinfo Show vmalloced areas
299.............................................................................. 300..............................................................................
300 301
301You can, for example, check which interrupts are currently in use and what 302You can, for example, check which interrupts are currently in use and what
@@ -557,6 +558,49 @@ VmallocTotal: total size of vmalloc memory area
557 VmallocUsed: amount of vmalloc area which is used 558 VmallocUsed: amount of vmalloc area which is used
558VmallocChunk: largest contigious block of vmalloc area which is free 559VmallocChunk: largest contigious block of vmalloc area which is free
559 560
561..............................................................................
562
563vmallocinfo:
564
565Provides information about vmalloced/vmaped areas. One line per area,
566containing the virtual address range of the area, size in bytes,
567caller information of the creator, and optional information depending
568on the kind of area :
569
570 pages=nr number of pages
571 phys=addr if a physical address was specified
572 ioremap I/O mapping (ioremap() and friends)
573 vmalloc vmalloc() area
574 vmap vmap()ed pages
575 user VM_USERMAP area
576 vpages buffer for pages pointers was vmalloced (huge area)
577 N<node>=nr (Only on NUMA kernels)
578 Number of pages allocated on memory node <node>
579
580> cat /proc/vmallocinfo
5810xffffc20000000000-0xffffc20000201000 2101248 alloc_large_system_hash+0x204 ...
582 /0x2c0 pages=512 vmalloc N0=128 N1=128 N2=128 N3=128
5830xffffc20000201000-0xffffc20000302000 1052672 alloc_large_system_hash+0x204 ...
584 /0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64
5850xffffc20000302000-0xffffc20000304000 8192 acpi_tb_verify_table+0x21/0x4f...
586 phys=7fee8000 ioremap
5870xffffc20000304000-0xffffc20000307000 12288 acpi_tb_verify_table+0x21/0x4f...
588 phys=7fee7000 ioremap
5890xffffc2000031d000-0xffffc2000031f000 8192 init_vdso_vars+0x112/0x210
5900xffffc2000031f000-0xffffc2000032b000 49152 cramfs_uncompress_init+0x2e ...
591 /0x80 pages=11 vmalloc N0=3 N1=3 N2=2 N3=3
5920xffffc2000033a000-0xffffc2000033d000 12288 sys_swapon+0x640/0xac0 ...
593 pages=2 vmalloc N1=2
5940xffffc20000347000-0xffffc2000034c000 20480 xt_alloc_table_info+0xfe ...
595 /0x130 [x_tables] pages=4 vmalloc N0=4
5960xffffffffa0000000-0xffffffffa000f000 61440 sys_init_module+0xc27/0x1d00 ...
597 pages=14 vmalloc N2=14
5980xffffffffa000f000-0xffffffffa0014000 20480 sys_init_module+0xc27/0x1d00 ...
599 pages=4 vmalloc N1=4
6000xffffffffa0014000-0xffffffffa0017000 12288 sys_init_module+0xc27/0x1d00 ...
601 pages=2 vmalloc N1=2
6020xffffffffa0017000-0xffffffffa0022000 45056 sys_init_module+0xc27/0x1d00 ...
603 pages=10 vmalloc N0=10
560 604
5611.3 IDE devices in /proc/ide 6051.3 IDE devices in /proc/ide
562---------------------------- 606----------------------------
@@ -887,7 +931,7 @@ group_prealloc max_to_scan mb_groups mb_history min_to_scan order2_req
887stats stream_req 931stats stream_req
888 932
889mb_groups: 933mb_groups:
890This file gives the details of mutiblock allocator buddy cache of free blocks 934This file gives the details of multiblock allocator buddy cache of free blocks
891 935
892mb_history: 936mb_history:
893Multiblock allocation history. 937Multiblock allocation history.
@@ -1295,6 +1339,25 @@ Enables/Disables the protection of the per-process proc entries "maps" and
1295"smaps". When enabled, the contents of these files are visible only to 1339"smaps". When enabled, the contents of these files are visible only to
1296readers that are allowed to ptrace() the given process. 1340readers that are allowed to ptrace() the given process.
1297 1341
1342msgmni
1343------
1344
1345Maximum number of message queue ids on the system.
1346This value scales to the amount of lowmem. It is automatically recomputed
1347upon memory add/remove or ipc namespace creation/removal.
1348When a value is written into this file, msgmni's value becomes fixed, i.e. it
1349is not recomputed anymore when one of the above events occurs.
1350Use auto_msgmni to change this behavior.
1351
1352auto_msgmni
1353-----------
1354
1355Enables/Disables automatic recomputing of msgmni upon memory add/remove or
1356upon ipc namespace creation/removal (see the msgmni description above).
1357Echoing "1" into this file enables msgmni automatic recomputing.
1358Echoing "0" turns it off.
1359auto_msgmni default value is 1.
1360
1298 1361
12992.4 /proc/sys/vm - The virtual memory subsystem 13622.4 /proc/sys/vm - The virtual memory subsystem
1300----------------------------------------------- 1363-----------------------------------------------
@@ -1430,7 +1493,7 @@ used because pages_free(1355) is smaller than watermark + protection[2]
1430normal page requirement. If requirement is DMA zone(index=0), protection[0] 1493normal page requirement. If requirement is DMA zone(index=0), protection[0]
1431(=0) is used. 1494(=0) is used.
1432 1495
1433zone[i]'s protection[j] is calculated by following exprssion. 1496zone[i]'s protection[j] is calculated by following expression.
1434 1497
1435(i < j): 1498(i < j):
1436 zone[i]->protection[j] 1499 zone[i]->protection[j]
@@ -2350,6 +2413,8 @@ The following 4 memory types are supported:
2350 - (bit 1) anonymous shared memory 2413 - (bit 1) anonymous shared memory
2351 - (bit 2) file-backed private memory 2414 - (bit 2) file-backed private memory
2352 - (bit 3) file-backed shared memory 2415 - (bit 3) file-backed shared memory
2416 - (bit 4) ELF header pages in file-backed private memory areas (it is
2417 effective only if the bit 2 is cleared)
2353 2418
2354 Note that MMIO pages such as frame buffer are never dumped and vDSO pages 2419 Note that MMIO pages such as frame buffer are never dumped and vDSO pages
2355 are always dumped regardless of the bitmask status. 2420 are always dumped regardless of the bitmask status.
diff --git a/Documentation/filesystems/quota.txt b/Documentation/filesystems/quota.txt
index a590c4093eff..5e8de25bf0f1 100644
--- a/Documentation/filesystems/quota.txt
+++ b/Documentation/filesystems/quota.txt
@@ -3,14 +3,14 @@ Quota subsystem
3=============== 3===============
4 4
5Quota subsystem allows system administrator to set limits on used space and 5Quota subsystem allows system administrator to set limits on used space and
6number of used inodes (inode is a filesystem structure which is associated 6number of used inodes (inode is a filesystem structure which is associated with
7with each file or directory) for users and/or groups. For both used space and 7each file or directory) for users and/or groups. For both used space and number
8number of used inodes there are actually two limits. The first one is called 8of used inodes there are actually two limits. The first one is called softlimit
9softlimit and the second one hardlimit. An user can never exceed a hardlimit 9and the second one hardlimit. An user can never exceed a hardlimit for any
10for any resource. User is allowed to exceed softlimit but only for limited 10resource (unless he has CAP_SYS_RESOURCE capability). User is allowed to exceed
11period of time. This period is called "grace period" or "grace time". When 11softlimit but only for limited period of time. This period is called "grace
12grace time is over, user is not able to allocate more space/inodes until he 12period" or "grace time". When grace time is over, user is not able to allocate
13frees enough of them to get below softlimit. 13more space/inodes until he frees enough of them to get below softlimit.
14 14
15Quota limits (and amount of grace time) are set independently for each 15Quota limits (and amount of grace time) are set independently for each
16filesystem. 16filesystem.
@@ -53,6 +53,12 @@ in parentheses):
53 QUOTA_NL_BSOFTLONGWARN - space (block) softlimit is exceeded 53 QUOTA_NL_BSOFTLONGWARN - space (block) softlimit is exceeded
54 longer than given grace period. 54 longer than given grace period.
55 QUOTA_NL_BSOFTWARN - space (block) softlimit 55 QUOTA_NL_BSOFTWARN - space (block) softlimit
56 - four warnings are also defined for the event when user stops
57 exceeding some limit:
58 QUOTA_NL_IHARDBELOW - inode hardlimit
59 QUOTA_NL_ISOFTBELOW - inode softlimit
60 QUOTA_NL_BHARDBELOW - space (block) hardlimit
61 QUOTA_NL_BSOFTBELOW - space (block) softlimit
56 QUOTA_NL_A_DEV_MAJOR (u32) 62 QUOTA_NL_A_DEV_MAJOR (u32)
57 - major number of a device with the affected filesystem 63 - major number of a device with the affected filesystem
58 QUOTA_NL_A_DEV_MINOR (u32) 64 QUOTA_NL_A_DEV_MINOR (u32)
diff --git a/Documentation/filesystems/relay.txt b/Documentation/filesystems/relay.txt
index 094f2d2f38b1..510b722667ac 100644
--- a/Documentation/filesystems/relay.txt
+++ b/Documentation/filesystems/relay.txt
@@ -294,6 +294,16 @@ user-defined data with a channel, and is immediately available
294(including in create_buf_file()) via chan->private_data or 294(including in create_buf_file()) via chan->private_data or
295buf->chan->private_data. 295buf->chan->private_data.
296 296
297Buffer-only channels
298--------------------
299
300These channels have no files associated and can be created with
301relay_open(NULL, NULL, ...). Such channels are useful in scenarios such
302as when doing early tracing in the kernel, before the VFS is up. In these
303cases, one may open a buffer-only channel and then call
304relay_late_setup_files() when the kernel is ready to handle files,
305to expose the buffered data to the userspace.
306
297Channel 'modes' 307Channel 'modes'
298--------------- 308---------------
299 309
diff --git a/Documentation/filesystems/ubifs.txt b/Documentation/filesystems/ubifs.txt
index 540e9e7f59c5..6a0d70a22f05 100644
--- a/Documentation/filesystems/ubifs.txt
+++ b/Documentation/filesystems/ubifs.txt
@@ -57,7 +57,7 @@ Similarly to JFFS2, UBIFS supports on-the-flight compression which makes
57it possible to fit quite a lot of data to the flash. 57it possible to fit quite a lot of data to the flash.
58 58
59Similarly to JFFS2, UBIFS is tolerant of unclean reboots and power-cuts. 59Similarly to JFFS2, UBIFS is tolerant of unclean reboots and power-cuts.
60It does not need stuff like ckfs.ext2. UBIFS automatically replays its 60It does not need stuff like fsck.ext2. UBIFS automatically replays its
61journal and recovers from crashes, ensuring that the on-flash data 61journal and recovers from crashes, ensuring that the on-flash data
62structures are consistent. 62structures are consistent.
63 63
diff --git a/Documentation/filesystems/vfat.txt b/Documentation/filesystems/vfat.txt
index 2d5e1e582e13..bbac4f1d9056 100644
--- a/Documentation/filesystems/vfat.txt
+++ b/Documentation/filesystems/vfat.txt
@@ -96,6 +96,14 @@ shortname=lower|win95|winnt|mixed
96 emulate the Windows 95 rule for create. 96 emulate the Windows 95 rule for create.
97 Default setting is `lower'. 97 Default setting is `lower'.
98 98
99tz=UTC -- Interpret timestamps as UTC rather than local time.
100 This option disables the conversion of timestamps
101 between local time (as used by Windows on FAT) and UTC
102 (which Linux uses internally). This is particuluarly
103 useful when mounting devices (like digital cameras)
104 that are set to UTC in order to avoid the pitfalls of
105 local time.
106
99<bool>: 0,1,yes,no,true,false 107<bool>: 0,1,yes,no,true,false
100 108
101TODO 109TODO
diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt
index b7522c6cbae3..c4d348dabe94 100644
--- a/Documentation/filesystems/vfs.txt
+++ b/Documentation/filesystems/vfs.txt
@@ -143,7 +143,7 @@ struct file_system_type {
143 143
144The get_sb() method has the following arguments: 144The get_sb() method has the following arguments:
145 145
146 struct file_system_type *fs_type: decribes the filesystem, partly initialized 146 struct file_system_type *fs_type: describes the filesystem, partly initialized
147 by the specific filesystem code 147 by the specific filesystem code
148 148
149 int flags: mount flags 149 int flags: mount flags
@@ -895,9 +895,9 @@ struct dentry_operations {
895 iput() yourself 895 iput() yourself
896 896
897 d_dname: called when the pathname of a dentry should be generated. 897 d_dname: called when the pathname of a dentry should be generated.
898 Usefull for some pseudo filesystems (sockfs, pipefs, ...) to delay 898 Useful for some pseudo filesystems (sockfs, pipefs, ...) to delay
899 pathname generation. (Instead of doing it when dentry is created, 899 pathname generation. (Instead of doing it when dentry is created,
900 its done only when the path is needed.). Real filesystems probably 900 it's done only when the path is needed.). Real filesystems probably
901 dont want to use it, because their dentries are present in global 901 dont want to use it, because their dentries are present in global
902 dcache hash, so their hash should be an invariant. As no lock is 902 dcache hash, so their hash should be an invariant. As no lock is
903 held, d_dname() should not try to modify the dentry itself, unless 903 held, d_dname() should not try to modify the dentry itself, unless
diff --git a/Documentation/ftrace.txt b/Documentation/ftrace.txt
index f218f616ff6b..d330fe3103da 100644
--- a/Documentation/ftrace.txt
+++ b/Documentation/ftrace.txt
@@ -4,6 +4,7 @@
4Copyright 2008 Red Hat Inc. 4Copyright 2008 Red Hat Inc.
5 Author: Steven Rostedt <srostedt@redhat.com> 5 Author: Steven Rostedt <srostedt@redhat.com>
6 License: The GNU Free Documentation License, Version 1.2 6 License: The GNU Free Documentation License, Version 1.2
7 (dual licensed under the GPL v2)
7Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton, 8Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton,
8 John Kacur, and David Teigland. 9 John Kacur, and David Teigland.
9 10
diff --git a/Documentation/gpio.txt b/Documentation/gpio.txt
index c35ca9e40d4c..18022e249c53 100644
--- a/Documentation/gpio.txt
+++ b/Documentation/gpio.txt
@@ -347,15 +347,12 @@ necessarily be nonportable.
347Dynamic definition of GPIOs is not currently standard; for example, as 347Dynamic definition of GPIOs is not currently standard; for example, as
348a side effect of configuring an add-on board with some GPIO expanders. 348a side effect of configuring an add-on board with some GPIO expanders.
349 349
350These calls are purely for kernel space, but a userspace API could be built
351on top of them.
352
353 350
354GPIO implementor's framework (OPTIONAL) 351GPIO implementor's framework (OPTIONAL)
355======================================= 352=======================================
356As noted earlier, there is an optional implementation framework making it 353As noted earlier, there is an optional implementation framework making it
357easier for platforms to support different kinds of GPIO controller using 354easier for platforms to support different kinds of GPIO controller using
358the same programming interface. 355the same programming interface. This framework is called "gpiolib".
359 356
360As a debugging aid, if debugfs is available a /sys/kernel/debug/gpio file 357As a debugging aid, if debugfs is available a /sys/kernel/debug/gpio file
361will be found there. That will list all the controllers registered through 358will be found there. That will list all the controllers registered through
@@ -392,11 +389,21 @@ either NULL or the label associated with that GPIO when it was requested.
392 389
393Platform Support 390Platform Support
394---------------- 391----------------
395To support this framework, a platform's Kconfig will "select HAVE_GPIO_LIB" 392To support this framework, a platform's Kconfig will "select" either
393ARCH_REQUIRE_GPIOLIB or ARCH_WANT_OPTIONAL_GPIOLIB
396and arrange that its <asm/gpio.h> includes <asm-generic/gpio.h> and defines 394and arrange that its <asm/gpio.h> includes <asm-generic/gpio.h> and defines
397three functions: gpio_get_value(), gpio_set_value(), and gpio_cansleep(). 395three functions: gpio_get_value(), gpio_set_value(), and gpio_cansleep().
398They may also want to provide a custom value for ARCH_NR_GPIOS. 396They may also want to provide a custom value for ARCH_NR_GPIOS.
399 397
398ARCH_REQUIRE_GPIOLIB means that the gpio-lib code will always get compiled
399into the kernel on that architecture.
400
401ARCH_WANT_OPTIONAL_GPIOLIB means the gpio-lib code defaults to off and the user
402can enable it and build it into the kernel optionally.
403
404If neither of these options are selected, the platform does not support
405GPIOs through GPIO-lib and the code cannot be enabled by the user.
406
400Trivial implementations of those functions can directly use framework 407Trivial implementations of those functions can directly use framework
401code, which always dispatches through the gpio_chip: 408code, which always dispatches through the gpio_chip:
402 409
@@ -439,4 +446,120 @@ becomes available. That may mean the device should not be registered until
439calls for that GPIO can work. One way to address such dependencies is for 446calls for that GPIO can work. One way to address such dependencies is for
440such gpio_chip controllers to provide setup() and teardown() callbacks to 447such gpio_chip controllers to provide setup() and teardown() callbacks to
441board specific code; those board specific callbacks would register devices 448board specific code; those board specific callbacks would register devices
442once all the necessary resources are available. 449once all the necessary resources are available, and remove them later when
450the GPIO controller device becomes unavailable.
451
452
453Sysfs Interface for Userspace (OPTIONAL)
454========================================
455Platforms which use the "gpiolib" implementors framework may choose to
456configure a sysfs user interface to GPIOs. This is different from the
457debugfs interface, since it provides control over GPIO direction and
458value instead of just showing a gpio state summary. Plus, it could be
459present on production systems without debugging support.
460
461Given approprate hardware documentation for the system, userspace could
462know for example that GPIO #23 controls the write protect line used to
463protect boot loader segments in flash memory. System upgrade procedures
464may need to temporarily remove that protection, first importing a GPIO,
465then changing its output state, then updating the code before re-enabling
466the write protection. In normal use, GPIO #23 would never be touched,
467and the kernel would have no need to know about it.
468
469Again depending on appropriate hardware documentation, on some systems
470userspace GPIO can be used to determine system configuration data that
471standard kernels won't know about. And for some tasks, simple userspace
472GPIO drivers could be all that the system really needs.
473
474Note that standard kernel drivers exist for common "LEDs and Buttons"
475GPIO tasks: "leds-gpio" and "gpio_keys", respectively. Use those
476instead of talking directly to the GPIOs; they integrate with kernel
477frameworks better than your userspace code could.
478
479
480Paths in Sysfs
481--------------
482There are three kinds of entry in /sys/class/gpio:
483
484 - Control interfaces used to get userspace control over GPIOs;
485
486 - GPIOs themselves; and
487
488 - GPIO controllers ("gpio_chip" instances).
489
490That's in addition to standard files including the "device" symlink.
491
492The control interfaces are write-only:
493
494 /sys/class/gpio/
495
496 "export" ... Userspace may ask the kernel to export control of
497 a GPIO to userspace by writing its number to this file.
498
499 Example: "echo 19 > export" will create a "gpio19" node
500 for GPIO #19, if that's not requested by kernel code.
501
502 "unexport" ... Reverses the effect of exporting to userspace.
503
504 Example: "echo 19 > unexport" will remove a "gpio19"
505 node exported using the "export" file.
506
507GPIO signals have paths like /sys/class/gpio/gpio42/ (for GPIO #42)
508and have the following read/write attributes:
509
510 /sys/class/gpio/gpioN/
511
512 "direction" ... reads as either "in" or "out". This value may
513 normally be written. Writing as "out" defaults to
514 initializing the value as low. To ensure glitch free
515 operation, values "low" and "high" may be written to
516 configure the GPIO as an output with that initial value.
517
518 Note that this attribute *will not exist* if the kernel
519 doesn't support changing the direction of a GPIO, or
520 it was exported by kernel code that didn't explicitly
521 allow userspace to reconfigure this GPIO's direction.
522
523 "value" ... reads as either 0 (low) or 1 (high). If the GPIO
524 is configured as an output, this value may be written;
525 any nonzero value is treated as high.
526
527GPIO controllers have paths like /sys/class/gpio/chipchip42/ (for the
528controller implementing GPIOs starting at #42) and have the following
529read-only attributes:
530
531 /sys/class/gpio/gpiochipN/
532
533 "base" ... same as N, the first GPIO managed by this chip
534
535 "label" ... provided for diagnostics (not always unique)
536
537 "ngpio" ... how many GPIOs this manges (N to N + ngpio - 1)
538
539Board documentation should in most cases cover what GPIOs are used for
540what purposes. However, those numbers are not always stable; GPIOs on
541a daughtercard might be different depending on the base board being used,
542or other cards in the stack. In such cases, you may need to use the
543gpiochip nodes (possibly in conjunction with schematics) to determine
544the correct GPIO number to use for a given signal.
545
546
547Exporting from Kernel code
548--------------------------
549Kernel code can explicitly manage exports of GPIOs which have already been
550requested using gpio_request():
551
552 /* export the GPIO to userspace */
553 int gpio_export(unsigned gpio, bool direction_may_change);
554
555 /* reverse gpio_export() */
556 void gpio_unexport();
557
558After a kernel driver requests a GPIO, it may only be made available in
559the sysfs interface by gpio_export(). The driver can control whether the
560signal direction may change. This helps drivers prevent userspace code
561from accidentally clobbering important system state.
562
563This explicit exporting can help with debugging (by making some kinds
564of experiments easier), or can provide an always-there interface that's
565suitable for documenting as part of a board support package.
diff --git a/Documentation/hwmon/dme1737 b/Documentation/hwmon/dme1737
index 8f446070e64a..001d2e70bc11 100644
--- a/Documentation/hwmon/dme1737
+++ b/Documentation/hwmon/dme1737
@@ -10,6 +10,10 @@ Supported chips:
10 Prefix: 'sch311x' 10 Prefix: 'sch311x'
11 Addresses scanned: none, address read from Super-I/O config space 11 Addresses scanned: none, address read from Super-I/O config space
12 Datasheet: http://www.nuhorizons.com/FeaturedProducts/Volume1/SMSC/311x.pdf 12 Datasheet: http://www.nuhorizons.com/FeaturedProducts/Volume1/SMSC/311x.pdf
13 * SMSC SCH5027
14 Prefix: 'sch5027'
15 Addresses scanned: I2C 0x2c, 0x2d, 0x2e
16 Datasheet: Provided by SMSC upon request and under NDA
13 17
14Authors: 18Authors:
15 Juerg Haefliger <juergh@gmail.com> 19 Juerg Haefliger <juergh@gmail.com>
@@ -22,34 +26,36 @@ Module Parameters
22 and PWM output control functions. Using this parameter 26 and PWM output control functions. Using this parameter
23 shouldn't be required since the BIOS usually takes care 27 shouldn't be required since the BIOS usually takes care
24 of this. 28 of this.
25 29* probe_all_addr: bool Include non-standard LPC addresses 0x162e and 0x164e
26Note that there is no need to use this parameter if the driver loads without 30 when probing for ISA devices. This is required for the
27complaining. The driver will say so if it is necessary. 31 following boards:
32 - VIA EPIA SN18000
28 33
29 34
30Description 35Description
31----------- 36-----------
32 37
33This driver implements support for the hardware monitoring capabilities of the 38This driver implements support for the hardware monitoring capabilities of the
34SMSC DME1737 and Asus A8000 (which are the same) and SMSC SCH311x Super-I/O 39SMSC DME1737 and Asus A8000 (which are the same), SMSC SCH5027, and SMSC
35chips. These chips feature monitoring of 3 temp sensors temp[1-3] (2 remote 40SCH311x Super-I/O chips. These chips feature monitoring of 3 temp sensors
36diodes and 1 internal), 7 voltages in[0-6] (6 external and 1 internal) and up 41temp[1-3] (2 remote diodes and 1 internal), 7 voltages in[0-6] (6 external and
37to 6 fan speeds fan[1-6]. Additionally, the chips implement up to 5 PWM 421 internal) and up to 6 fan speeds fan[1-6]. Additionally, the chips implement
38outputs pwm[1-3,5-6] for controlling fan speeds both manually and 43up to 5 PWM outputs pwm[1-3,5-6] for controlling fan speeds both manually and
39automatically. 44automatically.
40 45
41For the DME1737 and A8000, fan[1-2] and pwm[1-2] are always present. Fan[3-6] 46For the DME1737, A8000 and SCH5027, fan[1-2] and pwm[1-2] are always present.
42and pwm[3,5-6] are optional features and their availability depends on the 47Fan[3-6] and pwm[3,5-6] are optional features and their availability depends on
43configuration of the chip. The driver will detect which features are present 48the configuration of the chip. The driver will detect which features are
44during initialization and create the sysfs attributes accordingly. 49present during initialization and create the sysfs attributes accordingly.
45 50
46For the SCH311x, fan[1-3] and pwm[1-3] are always present and fan[4-6] and 51For the SCH311x, fan[1-3] and pwm[1-3] are always present and fan[4-6] and
47pwm[5-6] don't exist. 52pwm[5-6] don't exist.
48 53
49The hardware monitoring features of the DME1737 and A8000 are only accessible 54The hardware monitoring features of the DME1737, A8000, and SCH5027 are only
50via SMBus, while the SCH311x only provides access via the ISA bus. The driver 55accessible via SMBus, while the SCH311x only provides access via the ISA bus.
51will therefore register itself as an I2C client driver if it detects a DME1737 56The driver will therefore register itself as an I2C client driver if it detects
52or A8000 and as a platform driver if it detects a SCH311x chip. 57a DME1737, A8000, or SCH5027 and as a platform driver if it detects a SCH311x
58chip.
53 59
54 60
55Voltage Monitoring 61Voltage Monitoring
@@ -60,6 +66,7 @@ scaling resistors. The values returned by the driver therefore reflect true
60millivolts and don't need scaling. The voltage inputs are mapped as follows 66millivolts and don't need scaling. The voltage inputs are mapped as follows
61(the last column indicates the input ranges): 67(the last column indicates the input ranges):
62 68
69DME1737, A8000:
63 in0: +5VTR (+5V standby) 0V - 6.64V 70 in0: +5VTR (+5V standby) 0V - 6.64V
64 in1: Vccp (processor core) 0V - 3V 71 in1: Vccp (processor core) 0V - 3V
65 in2: VCC (internal +3.3V) 0V - 4.38V 72 in2: VCC (internal +3.3V) 0V - 4.38V
@@ -68,6 +75,24 @@ millivolts and don't need scaling. The voltage inputs are mapped as follows
68 in5: VTR (+3.3V standby) 0V - 4.38V 75 in5: VTR (+3.3V standby) 0V - 4.38V
69 in6: Vbat (+3.0V) 0V - 4.38V 76 in6: Vbat (+3.0V) 0V - 4.38V
70 77
78SCH311x:
79 in0: +2.5V 0V - 6.64V
80 in1: Vccp (processor core) 0V - 2V
81 in2: VCC (internal +3.3V) 0V - 4.38V
82 in3: +5V 0V - 6.64V
83 in4: +12V 0V - 16V
84 in5: VTR (+3.3V standby) 0V - 4.38V
85 in6: Vbat (+3.0V) 0V - 4.38V
86
87SCH5027:
88 in0: +5VTR (+5V standby) 0V - 6.64V
89 in1: Vccp (processor core) 0V - 3V
90 in2: VCC (internal +3.3V) 0V - 4.38V
91 in3: V2_IN 0V - 1.5V
92 in4: V1_IN 0V - 1.5V
93 in5: VTR (+3.3V standby) 0V - 4.38V
94 in6: Vbat (+3.0V) 0V - 4.38V
95
71Each voltage input has associated min and max limits which trigger an alarm 96Each voltage input has associated min and max limits which trigger an alarm
72when crossed. 97when crossed.
73 98
diff --git a/Documentation/hwmon/ibmaem b/Documentation/hwmon/ibmaem
index 2fefaf582a43..e98bdfea3467 100644
--- a/Documentation/hwmon/ibmaem
+++ b/Documentation/hwmon/ibmaem
@@ -1,8 +1,11 @@
1Kernel driver ibmaem 1Kernel driver ibmaem
2====================== 2======================
3 3
4This driver talks to the IBM Systems Director Active Energy Manager, known
5henceforth as AEM.
6
4Supported systems: 7Supported systems:
5 * Any recent IBM System X server with Active Energy Manager support. 8 * Any recent IBM System X server with AEM support.
6 This includes the x3350, x3550, x3650, x3655, x3755, x3850 M2, 9 This includes the x3350, x3550, x3650, x3655, x3755, x3850 M2,
7 x3950 M2, and certain HS2x/LS2x/QS2x blades. The IPMI host interface 10 x3950 M2, and certain HS2x/LS2x/QS2x blades. The IPMI host interface
8 driver ("ipmi-si") needs to be loaded for this driver to do anything. 11 driver ("ipmi-si") needs to be loaded for this driver to do anything.
@@ -14,24 +17,22 @@ Author: Darrick J. Wong
14Description 17Description
15----------- 18-----------
16 19
17This driver implements sensor reading support for the energy and power 20This driver implements sensor reading support for the energy and power meters
18meters available on various IBM System X hardware through the BMC. All 21available on various IBM System X hardware through the BMC. All sensor banks
19sensor banks will be exported as platform devices; this driver can talk 22will be exported as platform devices; this driver can talk to both v1 and v2
20to both v1 and v2 interfaces. This driver is completely separate from the 23interfaces. This driver is completely separate from the older ibmpex driver.
21older ibmpex driver.
22 24
23The v1 AEM interface has a simple set of features to monitor energy use. 25The v1 AEM interface has a simple set of features to monitor energy use. There
24There is a register that displays an estimate of raw energy consumption 26is a register that displays an estimate of raw energy consumption since the
25since the last BMC reset, and a power sensor that returns average power 27last BMC reset, and a power sensor that returns average power use over a
26use over a configurable interval. 28configurable interval.
27 29
28The v2 AEM interface is a bit more sophisticated, being able to present 30The v2 AEM interface is a bit more sophisticated, being able to present a wider
29a wider range of energy and power use registers, the power cap as 31range of energy and power use registers, the power cap as set by the AEM
30set by the AEM software, and temperature sensors. 32software, and temperature sensors.
31 33
32Special Features 34Special Features
33---------------- 35----------------
34 36
35The "power_cap" value displays the current system power cap, as set by 37The "power_cap" value displays the current system power cap, as set by the AEM
36the Active Energy Manager software. Setting the power cap from the host 38software. Setting the power cap from the host is not currently supported.
37is not currently supported.
diff --git a/Documentation/hwmon/it87 b/Documentation/hwmon/it87
index f4ce1fdbeff6..3496b7020e7c 100644
--- a/Documentation/hwmon/it87
+++ b/Documentation/hwmon/it87
@@ -6,12 +6,14 @@ Supported chips:
6 Prefix: 'it87' 6 Prefix: 'it87'
7 Addresses scanned: from Super I/O config space (8 I/O ports) 7 Addresses scanned: from Super I/O config space (8 I/O ports)
8 Datasheet: Publicly available at the ITE website 8 Datasheet: Publicly available at the ITE website
9 http://www.ite.com.tw/ 9 http://www.ite.com.tw/product_info/file/pc/IT8705F_V.0.4.1.pdf
10 * IT8712F 10 * IT8712F
11 Prefix: 'it8712' 11 Prefix: 'it8712'
12 Addresses scanned: from Super I/O config space (8 I/O ports) 12 Addresses scanned: from Super I/O config space (8 I/O ports)
13 Datasheet: Publicly available at the ITE website 13 Datasheet: Publicly available at the ITE website
14 http://www.ite.com.tw/ 14 http://www.ite.com.tw/product_info/file/pc/IT8712F_V0.9.1.pdf
15 http://www.ite.com.tw/product_info/file/pc/Errata%20V0.1%20for%20IT8712F%20V0.9.1.pdf
16 http://www.ite.com.tw/product_info/file/pc/IT8712F_V0.9.3.pdf
15 * IT8716F/IT8726F 17 * IT8716F/IT8726F
16 Prefix: 'it8716' 18 Prefix: 'it8716'
17 Addresses scanned: from Super I/O config space (8 I/O ports) 19 Addresses scanned: from Super I/O config space (8 I/O ports)
@@ -90,14 +92,13 @@ upper VID bits share their pins with voltage inputs (in5 and in6) so you
90can't have both on a given board. 92can't have both on a given board.
91 93
92The IT8716F, IT8718F and later IT8712F revisions have support for 94The IT8716F, IT8718F and later IT8712F revisions have support for
932 additional fans. They are supported by the driver for the IT8716F and 952 additional fans. The additional fans are supported by the driver.
94IT8718F but not for the IT8712F
95 96
96The IT8716F and IT8718F, and late IT8712F and IT8705F also have optional 97The IT8716F and IT8718F, and late IT8712F and IT8705F also have optional
9716-bit tachometer counters for fans 1 to 3. This is better (no more fan 9816-bit tachometer counters for fans 1 to 3. This is better (no more fan
98clock divider mess) but not compatible with the older chips and 99clock divider mess) but not compatible with the older chips and
99revisions. For now, the driver only uses the 16-bit mode on the 100revisions. The 16-bit tachometer mode is enabled by the driver when one
100IT8716F and IT8718F. 101of the above chips is detected.
101 102
102The IT8726F is just bit enhanced IT8716F with additional hardware 103The IT8726F is just bit enhanced IT8716F with additional hardware
103for AMD power sequencing. Therefore the chip will appear as IT8716F 104for AMD power sequencing. Therefore the chip will appear as IT8716F
diff --git a/Documentation/hwmon/lm85 b/Documentation/hwmon/lm85
index 9549237530cf..6d41db7f17f8 100644
--- a/Documentation/hwmon/lm85
+++ b/Documentation/hwmon/lm85
@@ -96,11 +96,6 @@ initial testing of the ADM1027 it was 1.00 degC steps. Analog Devices has
96confirmed this "bug". The ADT7463 is reported to work as described in the 96confirmed this "bug". The ADT7463 is reported to work as described in the
97documentation. The current lm85 driver does not show the offset register. 97documentation. The current lm85 driver does not show the offset register.
98 98
99The ADT7463 has a THERM asserted counter. This counter has a 22.76ms
100resolution and a range of 5.8 seconds. The driver implements a 32-bit
101accumulator of the counter value to extend the range to over a year. The
102counter will stay at it's max value until read.
103
104See the vendor datasheets for more information. There is application note 99See the vendor datasheets for more information. There is application note
105from National (AN-1260) with some additional information about the LM85. 100from National (AN-1260) with some additional information about the LM85.
106The Analog Devices datasheet is very detailed and describes a procedure for 101The Analog Devices datasheet is very detailed and describes a procedure for
@@ -206,13 +201,15 @@ Configuration choices:
206 201
207The National LM85's have two vendor specific configuration 202The National LM85's have two vendor specific configuration
208features. Tach. mode and Spinup Control. For more details on these, 203features. Tach. mode and Spinup Control. For more details on these,
209see the LM85 datasheet or Application Note AN-1260. 204see the LM85 datasheet or Application Note AN-1260. These features
205are not currently supported by the lm85 driver.
210 206
211The Analog Devices ADM1027 has several vendor specific enhancements. 207The Analog Devices ADM1027 has several vendor specific enhancements.
212The number of pulses-per-rev of the fans can be set, Tach monitoring 208The number of pulses-per-rev of the fans can be set, Tach monitoring
213can be optimized for PWM operation, and an offset can be applied to 209can be optimized for PWM operation, and an offset can be applied to
214the temperatures to compensate for systemic errors in the 210the temperatures to compensate for systemic errors in the
215measurements. 211measurements. These features are not currently supported by the lm85
212driver.
216 213
217In addition to the ADM1027 features, the ADT7463 also has Tmin control 214In addition to the ADM1027 features, the ADT7463 also has Tmin control
218and THERM asserted counts. Automatic Tmin control acts to adjust the 215and THERM asserted counts. Automatic Tmin control acts to adjust the
diff --git a/Documentation/hwmon/w83627hf b/Documentation/hwmon/w83627hf
index 880a59f53da9..6ee36dbafd64 100644
--- a/Documentation/hwmon/w83627hf
+++ b/Documentation/hwmon/w83627hf
@@ -40,10 +40,6 @@ Module Parameters
40 (default is 1) 40 (default is 1)
41 Use 'init=0' to bypass initializing the chip. 41 Use 'init=0' to bypass initializing the chip.
42 Try this if your computer crashes when you load the module. 42 Try this if your computer crashes when you load the module.
43* reset: int
44 (default is 0)
45 The driver used to reset the chip on load, but does no more. Use
46 'reset=1' to restore the old behavior. Report if you need to do this.
47 43
48Description 44Description
49----------- 45-----------
diff --git a/Documentation/hwmon/w83791d b/Documentation/hwmon/w83791d
index f153b2f6d62c..a67d3b7a7098 100644
--- a/Documentation/hwmon/w83791d
+++ b/Documentation/hwmon/w83791d
@@ -22,6 +22,7 @@ Credits:
22 22
23Additional contributors: 23Additional contributors:
24 Sven Anders <anders@anduras.de> 24 Sven Anders <anders@anduras.de>
25 Marc Hulsman <m.hulsman@tudelft.nl>
25 26
26Module Parameters 27Module Parameters
27----------------- 28-----------------
@@ -67,9 +68,8 @@ on until the temperature falls below the Hysteresis value.
67 68
68Fan rotation speeds are reported in RPM (rotations per minute). An alarm is 69Fan rotation speeds are reported in RPM (rotations per minute). An alarm is
69triggered if the rotation speed has dropped below a programmable limit. Fan 70triggered if the rotation speed has dropped below a programmable limit. Fan
70readings can be divided by a programmable divider (1, 2, 4, 8 for fan 1/2/3 71readings can be divided by a programmable divider (1, 2, 4, 8, 16,
71and 1, 2, 4, 8, 16, 32, 64 or 128 for fan 4/5) to give the readings more 7232, 64 or 128 for all fans) to give the readings more range or accuracy.
72range or accuracy.
73 73
74Voltage sensors (also known as IN sensors) report their values in millivolts. 74Voltage sensors (also known as IN sensors) report their values in millivolts.
75An alarm is triggered if the voltage has crossed a programmable minimum 75An alarm is triggered if the voltage has crossed a programmable minimum
diff --git a/Documentation/i2c/upgrading-clients b/Documentation/i2c/upgrading-clients
new file mode 100644
index 000000000000..9a45f9bb6a25
--- /dev/null
+++ b/Documentation/i2c/upgrading-clients
@@ -0,0 +1,281 @@
1Upgrading I2C Drivers to the new 2.6 Driver Model
2=================================================
3
4Ben Dooks <ben-linux@fluff.org>
5
6Introduction
7------------
8
9This guide outlines how to alter existing Linux 2.6 client drivers from
10the old to the new new binding methods.
11
12
13Example old-style driver
14------------------------
15
16
17struct example_state {
18 struct i2c_client client;
19 ....
20};
21
22static struct i2c_driver example_driver;
23
24static unsigned short ignore[] = { I2C_CLIENT_END };
25static unsigned short normal_addr[] = { OUR_ADDR, I2C_CLIENT_END };
26
27I2C_CLIENT_INSMOD;
28
29static int example_attach(struct i2c_adapter *adap, int addr, int kind)
30{
31 struct example_state *state;
32 struct device *dev = &adap->dev; /* to use for dev_ reports */
33 int ret;
34
35 state = kzalloc(sizeof(struct example_state), GFP_KERNEL);
36 if (state == NULL) {
37 dev_err(dev, "failed to create our state\n");
38 return -ENOMEM;
39 }
40
41 example->client.addr = addr;
42 example->client.flags = 0;
43 example->client.adapter = adap;
44
45 i2c_set_clientdata(&state->i2c_client, state);
46 strlcpy(client->i2c_client.name, "example", I2C_NAME_SIZE);
47
48 ret = i2c_attach_client(&state->i2c_client);
49 if (ret < 0) {
50 dev_err(dev, "failed to attach client\n");
51 kfree(state);
52 return ret;
53 }
54
55 dev = &state->i2c_client.dev;
56
57 /* rest of the initialisation goes here. */
58
59 dev_info(dev, "example client created\n");
60
61 return 0;
62}
63
64static int __devexit example_detach(struct i2c_client *client)
65{
66 struct example_state *state = i2c_get_clientdata(client);
67
68 i2c_detach_client(client);
69 kfree(state);
70 return 0;
71}
72
73static int example_attach_adapter(struct i2c_adapter *adap)
74{
75 return i2c_probe(adap, &addr_data, example_attach);
76}
77
78static struct i2c_driver example_driver = {
79 .driver = {
80 .owner = THIS_MODULE,
81 .name = "example",
82 },
83 .attach_adapter = example_attach_adapter,
84 .detach_client = __devexit_p(example_detach),
85 .suspend = example_suspend,
86 .resume = example_resume,
87};
88
89
90Updating the client
91-------------------
92
93The new style binding model will check against a list of supported
94devices and their associated address supplied by the code registering
95the busses. This means that the driver .attach_adapter and
96.detach_adapter methods can be removed, along with the addr_data,
97as follows:
98
99- static struct i2c_driver example_driver;
100
101- static unsigned short ignore[] = { I2C_CLIENT_END };
102- static unsigned short normal_addr[] = { OUR_ADDR, I2C_CLIENT_END };
103
104- I2C_CLIENT_INSMOD;
105
106- static int example_attach_adapter(struct i2c_adapter *adap)
107- {
108- return i2c_probe(adap, &addr_data, example_attach);
109- }
110
111 static struct i2c_driver example_driver = {
112- .attach_adapter = example_attach_adapter,
113- .detach_client = __devexit_p(example_detach),
114 }
115
116Add the probe and remove methods to the i2c_driver, as so:
117
118 static struct i2c_driver example_driver = {
119+ .probe = example_probe,
120+ .remove = __devexit_p(example_remove),
121 }
122
123Change the example_attach method to accept the new parameters
124which include the i2c_client that it will be working with:
125
126- static int example_attach(struct i2c_adapter *adap, int addr, int kind)
127+ static int example_probe(struct i2c_client *client,
128+ const struct i2c_device_id *id)
129
130Change the name of example_attach to example_probe to align it with the
131i2c_driver entry names. The rest of the probe routine will now need to be
132changed as the i2c_client has already been setup for use.
133
134The necessary client fields have already been setup before
135the probe function is called, so the following client setup
136can be removed:
137
138- example->client.addr = addr;
139- example->client.flags = 0;
140- example->client.adapter = adap;
141-
142- strlcpy(client->i2c_client.name, "example", I2C_NAME_SIZE);
143
144The i2c_set_clientdata is now:
145
146- i2c_set_clientdata(&state->client, state);
147+ i2c_set_clientdata(client, state);
148
149The call to i2c_attach_client is no longer needed, if the probe
150routine exits successfully, then the driver will be automatically
151attached by the core. Change the probe routine as so:
152
153- ret = i2c_attach_client(&state->i2c_client);
154- if (ret < 0) {
155- dev_err(dev, "failed to attach client\n");
156- kfree(state);
157- return ret;
158- }
159
160
161Remove the storage of 'struct i2c_client' from the 'struct example_state'
162as we are provided with the i2c_client in our example_probe. Instead we
163store a pointer to it for when it is needed.
164
165struct example_state {
166- struct i2c_client client;
167+ struct i2c_client *client;
168
169the new i2c client as so:
170
171- struct device *dev = &adap->dev; /* to use for dev_ reports */
172+ struct device *dev = &i2c_client->dev; /* to use for dev_ reports */
173
174And remove the change after our client is attached, as the driver no
175longer needs to register a new client structure with the core:
176
177- dev = &state->i2c_client.dev;
178
179In the probe routine, ensure that the new state has the client stored
180in it:
181
182static int example_probe(struct i2c_client *i2c_client,
183 const struct i2c_device_id *id)
184{
185 struct example_state *state;
186 struct device *dev = &i2c_client->dev;
187 int ret;
188
189 state = kzalloc(sizeof(struct example_state), GFP_KERNEL);
190 if (state == NULL) {
191 dev_err(dev, "failed to create our state\n");
192 return -ENOMEM;
193 }
194
195+ state->client = i2c_client;
196
197Update the detach method, by changing the name to _remove and
198to delete the i2c_detach_client call. It is possible that you
199can also remove the ret variable as it is not not needed for
200any of the core functions.
201
202- static int __devexit example_detach(struct i2c_client *client)
203+ static int __devexit example_remove(struct i2c_client *client)
204{
205 struct example_state *state = i2c_get_clientdata(client);
206
207- i2c_detach_client(client);
208
209And finally ensure that we have the correct ID table for the i2c-core
210and other utilities:
211
212+ struct i2c_device_id example_idtable[] = {
213+ { "example", 0 },
214+ { }
215+};
216+
217+MODULE_DEVICE_TABLE(i2c, example_idtable);
218
219static struct i2c_driver example_driver = {
220 .driver = {
221 .owner = THIS_MODULE,
222 .name = "example",
223 },
224+ .id_table = example_ids,
225
226
227Our driver should now look like this:
228
229struct example_state {
230 struct i2c_client *client;
231 ....
232};
233
234static int example_probe(struct i2c_client *client,
235 const struct i2c_device_id *id)
236{
237 struct example_state *state;
238 struct device *dev = &client->dev;
239
240 state = kzalloc(sizeof(struct example_state), GFP_KERNEL);
241 if (state == NULL) {
242 dev_err(dev, "failed to create our state\n");
243 return -ENOMEM;
244 }
245
246 state->client = client;
247 i2c_set_clientdata(client, state);
248
249 /* rest of the initialisation goes here. */
250
251 dev_info(dev, "example client created\n");
252
253 return 0;
254}
255
256static int __devexit example_remove(struct i2c_client *client)
257{
258 struct example_state *state = i2c_get_clientdata(client);
259
260 kfree(state);
261 return 0;
262}
263
264static struct i2c_device_id example_idtable[] = {
265 { "example", 0 },
266 { }
267};
268
269MODULE_DEVICE_TABLE(i2c, example_idtable);
270
271static struct i2c_driver example_driver = {
272 .driver = {
273 .owner = THIS_MODULE,
274 .name = "example",
275 },
276 .id_table = example_idtable,
277 .probe = example_probe,
278 .remove = __devexit_p(example_remove),
279 .suspend = example_suspend,
280 .resume = example_resume,
281};
diff --git a/Documentation/ia64/Makefile b/Documentation/ia64/Makefile
new file mode 100644
index 000000000000..b75db69ec483
--- /dev/null
+++ b/Documentation/ia64/Makefile
@@ -0,0 +1,8 @@
1# kbuild trick to avoid linker error. Can be omitted if a module is built.
2obj- := dummy.o
3
4# List of programs to build
5hostprogs-y := aliasing-test
6
7# Tell kbuild to always build the programs
8always := $(hostprogs-y)
diff --git a/Documentation/ia64/kvm.txt b/Documentation/ia64/kvm.txt
index bec9d815da33..914d07f49268 100644
--- a/Documentation/ia64/kvm.txt
+++ b/Documentation/ia64/kvm.txt
@@ -50,9 +50,9 @@ Note: For step 2, please make sure that host page size == TARGET_PAGE_SIZE of qe
50 /usr/local/bin/qemu-system-ia64 -smp xx -m 512 -hda $your_image 50 /usr/local/bin/qemu-system-ia64 -smp xx -m 512 -hda $your_image
51 (xx is the number of virtual processors for the guest, now the maximum value is 4) 51 (xx is the number of virtual processors for the guest, now the maximum value is 4)
52 52
535. Known possibile issue on some platforms with old Firmware. 535. Known possible issue on some platforms with old Firmware.
54 54
55If meet strange host crashe issues, try to solve it through either of the following ways: 55In the event of strange host crash issues, try to solve it through either of the following ways:
56 56
57(1): Upgrade your Firmware to the latest one. 57(1): Upgrade your Firmware to the latest one.
58 58
@@ -65,8 +65,8 @@ index 0b53344..f02b0f7 100644
65 mov ar.pfs = loc1 65 mov ar.pfs = loc1
66 mov rp = loc0 66 mov rp = loc0
67 ;; 67 ;;
68- srlz.d // seralize restoration of psr.l 68- srlz.d // serialize restoration of psr.l
69+ srlz.i // seralize restoration of psr.l 69+ srlz.i // serialize restoration of psr.l
70+ ;; 70+ ;;
71 br.ret.sptk.many b0 71 br.ret.sptk.many b0
72 END(ia64_pal_call_static) 72 END(ia64_pal_call_static)
diff --git a/Documentation/input/cs461x.txt b/Documentation/input/cs461x.txt
index afe0d6543e09..202e9dbacec3 100644
--- a/Documentation/input/cs461x.txt
+++ b/Documentation/input/cs461x.txt
@@ -31,7 +31,7 @@ The driver works with ALSA drivers simultaneously. For example, the xracer
31uses joystick as input device and PCM device as sound output in one time. 31uses joystick as input device and PCM device as sound output in one time.
32There are no sound or input collisions detected. The source code have 32There are no sound or input collisions detected. The source code have
33comments about them; but I've found the joystick can be initialized 33comments about them; but I've found the joystick can be initialized
34separately of ALSA modules. So, you canm use only one joystick driver 34separately of ALSA modules. So, you can use only one joystick driver
35without ALSA drivers. The ALSA drivers are not needed to compile or 35without ALSA drivers. The ALSA drivers are not needed to compile or
36run this driver. 36run this driver.
37 37
diff --git a/Documentation/ioctl-number.txt b/Documentation/ioctl-number.txt
index 3bb5f466a90d..1c6b545635a2 100644
--- a/Documentation/ioctl-number.txt
+++ b/Documentation/ioctl-number.txt
@@ -105,7 +105,6 @@ Code Seq# Include File Comments
105'T' all linux/soundcard.h conflict! 105'T' all linux/soundcard.h conflict!
106'T' all asm-i386/ioctls.h conflict! 106'T' all asm-i386/ioctls.h conflict!
107'U' 00-EF linux/drivers/usb/usb.h 107'U' 00-EF linux/drivers/usb/usb.h
108'U' F0-FF drivers/usb/auerswald.c
109'V' all linux/vt.h 108'V' all linux/vt.h
110'W' 00-1F linux/watchdog.h conflict! 109'W' 00-1F linux/watchdog.h conflict!
111'W' 00-1F linux/wanrouter.h conflict! 110'W' 00-1F linux/wanrouter.h conflict!
diff --git a/Documentation/ioctl/ioctl-decoding.txt b/Documentation/ioctl/ioctl-decoding.txt
index bfdf7f3ee4f0..e35efb0cec2e 100644
--- a/Documentation/ioctl/ioctl-decoding.txt
+++ b/Documentation/ioctl/ioctl-decoding.txt
@@ -1,6 +1,6 @@
1To decode a hex IOCTL code: 1To decode a hex IOCTL code:
2 2
3Most architecures use this generic format, but check 3Most architectures use this generic format, but check
4include/ARCH/ioctl.h for specifics, e.g. powerpc 4include/ARCH/ioctl.h for specifics, e.g. powerpc
5uses 3 bits to encode read/write and 13 bits for size. 5uses 3 bits to encode read/write and 13 bits for size.
6 6
@@ -18,7 +18,7 @@ uses 3 bits to encode read/write and 13 bits for size.
18 7-0 function # 18 7-0 function #
19 19
20 20
21 So for example 0x82187201 is a read with arg length of 0x218, 21So for example 0x82187201 is a read with arg length of 0x218,
22character 'r' function 1. Grepping the source reveals this is: 22character 'r' function 1. Grepping the source reveals this is:
23 23
24#define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct dirent [2]) 24#define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct dirent [2])
diff --git a/Documentation/iostats.txt b/Documentation/iostats.txt
index 5925c3cd030d..59a69ec67c40 100644
--- a/Documentation/iostats.txt
+++ b/Documentation/iostats.txt
@@ -143,7 +143,7 @@ disk and partition statistics are consistent again. Since we still don't
143keep record of the partition-relative address, an operation is attributed to 143keep record of the partition-relative address, an operation is attributed to
144the partition which contains the first sector of the request after the 144the partition which contains the first sector of the request after the
145eventual merges. As requests can be merged across partition, this could lead 145eventual merges. As requests can be merged across partition, this could lead
146to some (probably insignificant) innacuracy. 146to some (probably insignificant) inaccuracy.
147 147
148Additional notes 148Additional notes
149---------------- 149----------------
diff --git a/Documentation/isdn/README.mISDN b/Documentation/isdn/README.mISDN
new file mode 100644
index 000000000000..cd8bf920e77b
--- /dev/null
+++ b/Documentation/isdn/README.mISDN
@@ -0,0 +1,6 @@
1mISDN is a new modular ISDN driver, in the long term it should replace
2the old I4L driver architecture for passiv ISDN cards.
3It was designed to allow a broad range of applications and interfaces
4but only have the basic function in kernel, the interface to the user
5space is based on sockets with a own address family AF_ISDN.
6
diff --git a/Documentation/ja_JP/HOWTO b/Documentation/ja_JP/HOWTO
index 488c77fa3aae..0775cf4798b2 100644
--- a/Documentation/ja_JP/HOWTO
+++ b/Documentation/ja_JP/HOWTO
@@ -11,14 +11,14 @@ for non English (read: Japanese) speakers and is not intended as a
11fork. So if you have any comments or updates for this file, please try 11fork. So if you have any comments or updates for this file, please try
12to update the original English file first. 12to update the original English file first.
13 13
14Last Updated: 2007/11/16 14Last Updated: 2008/08/21
15================================== 15==================================
16ã“ã‚Œã¯ã€ 16ã“ã‚Œã¯ã€
17linux-2.6.24/Documentation/HOWTO 17linux-2.6.27/Documentation/HOWTO
18ã®å’Œè¨³ã§ã™ã€‚ 18ã®å’Œè¨³ã§ã™ã€‚
19 19
20翻訳団体: JF プロジェクト < http://www.linux.or.jp/JF/ > 20翻訳団体: JF プロジェクト < http://www.linux.or.jp/JF/ >
21翻訳日: 2007/11/10 21翻訳日: 2008/8/5
22翻訳者: Tsugikazu Shibata <tshibata at ab dot jp dot nec dot com> 22翻訳者: Tsugikazu Shibata <tshibata at ab dot jp dot nec dot com>
23校正者: æ¾å€‰ã•ã‚“ <nbh--mats at nifty dot com> 23校正者: æ¾å€‰ã•ã‚“ <nbh--mats at nifty dot com>
24 å°æž— é›…å…¸ã•ã‚“ (Masanori Kobayasi) <zap03216 at nifty dot ne dot jp> 24 å°æž— é›…å…¸ã•ã‚“ (Masanori Kobayasi) <zap03216 at nifty dot ne dot jp>
@@ -287,13 +287,15 @@ Linux カーãƒãƒ«ã®é–‹ç™ºãƒ—ロセスã¯ç¾åœ¨å¹¾ã¤ã‹ã®ç•°ãªã‚‹ãƒ¡ã‚¤ãƒ³ã‚
287 ã«å®‰å®šã—ãŸçŠ¶æ…‹ã«ã‚ã‚‹ã¨åˆ¤æ–­ã—ãŸã¨ãã«ãƒªãƒªãƒ¼ã‚¹ã•ã‚Œã¾ã™ã€‚目標ã¯æ¯Žé€±æ–° 287 ã«å®‰å®šã—ãŸçŠ¶æ…‹ã«ã‚ã‚‹ã¨åˆ¤æ–­ã—ãŸã¨ãã«ãƒªãƒªãƒ¼ã‚¹ã•ã‚Œã¾ã™ã€‚目標ã¯æ¯Žé€±æ–°
288 ã—ã„ -rc カーãƒãƒ«ã‚’リリースã™ã‚‹ã“ã¨ã§ã™ã€‚ 288 ã—ã„ -rc カーãƒãƒ«ã‚’リリースã™ã‚‹ã“ã¨ã§ã™ã€‚
289 289
290 - 以下㮠URL ã§å„ -rc リリースã«å­˜åœ¨ã™ã‚‹æ—¢çŸ¥ã®å¾Œæˆ»ã‚Šå•é¡Œã®ãƒªã‚¹ãƒˆ
291 ãŒè¿½è·¡ã•ã‚Œã¾ã™-
292 http://kernelnewbies.org/known_regressions
293
294 - ã“ã®ãƒ—ロセスã¯ã‚«ãƒ¼ãƒãƒ«ãŒ 「準備ãŒã§ããŸã€ã¨è€ƒãˆã‚‰ã‚Œã‚‹ã¾ã§ç¶™ç¶šã—ã¾ 290 - ã“ã®ãƒ—ロセスã¯ã‚«ãƒ¼ãƒãƒ«ãŒ 「準備ãŒã§ããŸã€ã¨è€ƒãˆã‚‰ã‚Œã‚‹ã¾ã§ç¶™ç¶šã—ã¾
295 ã™ã€‚ã“ã®ãƒ—ロセスã¯ã ã„ãŸã„ 6週間継続ã—ã¾ã™ã€‚ 291 ã™ã€‚ã“ã®ãƒ—ロセスã¯ã ã„ãŸã„ 6週間継続ã—ã¾ã™ã€‚
296 292
293 - å„リリースã§ã®æ—¢çŸ¥ã®å¾Œæˆ»ã‚Šå•é¡Œ(regression: ã“ã®ãƒªãƒªãƒ¼ã‚¹ã®ä¸­ã§æ–°è¦
294 ã«ä½œã‚Šè¾¼ã¾ã‚ŒãŸå•é¡Œã‚’指ã™) ã¯ãã®éƒ½åº¦ Linux-kernel メーリングリスト
295 ã«æŠ•ç¨¿ã•ã‚Œã¾ã™ã€‚ゴールã¨ã—ã¦ã¯ã€ã‚«ãƒ¼ãƒãƒ«ãŒ 「準備ãŒã§ããŸã€ã¨å®£è¨€
296 ã™ã‚‹å‰ã«ã“ã®ãƒªã‚¹ãƒˆã®é•·ã•ã‚’ゼロã«æ¸›ã‚‰ã™ã“ã¨ã§ã™ãŒã€ç¾å®Ÿã«ã¯ã€æ•°å€‹ã®
297 後戻りå•é¡ŒãŒãƒªãƒªãƒ¼ã‚¹æ™‚ã«ãŸã³ãŸã³æ®‹ã£ã¦ã—ã¾ã„ã¾ã™ã€‚
298
297Andrew Morton ㌠Linux-kernel メーリングリストã«ã‚«ãƒ¼ãƒãƒ«ãƒªãƒªãƒ¼ã‚¹ã«ã¤ã„ 299Andrew Morton ㌠Linux-kernel メーリングリストã«ã‚«ãƒ¼ãƒãƒ«ãƒªãƒªãƒ¼ã‚¹ã«ã¤ã„
298ã¦æ›¸ã„ãŸã“ã¨ã‚’ã“ã“ã§è¨€ã£ã¦ãŠãã“ã¨ã¯ä¾¡å€¤ãŒã‚ã‚Šã¾ã™- 300ã¦æ›¸ã„ãŸã“ã¨ã‚’ã“ã“ã§è¨€ã£ã¦ãŠãã“ã¨ã¯ä¾¡å€¤ãŒã‚ã‚Šã¾ã™-
299 「カーãƒãƒ«ãŒã„ã¤ãƒªãƒªãƒ¼ã‚¹ã•ã‚Œã‚‹ã‹ã¯èª°ã‚‚知りã¾ã›ã‚“。ãªãœãªã‚‰ã€ã“ã‚Œã¯ç¾ 301 「カーãƒãƒ«ãŒã„ã¤ãƒªãƒªãƒ¼ã‚¹ã•ã‚Œã‚‹ã‹ã¯èª°ã‚‚知りã¾ã›ã‚“。ãªãœãªã‚‰ã€ã“ã‚Œã¯ç¾
@@ -303,18 +305,20 @@ Andrew Morton ㌠Linux-kernel メーリングリストã«ã‚«ãƒ¼ãƒãƒ«ãƒªãƒªãƒ¼ã
3032.6.x.y -stable カーãƒãƒ«ãƒ„リー 3052.6.x.y -stable カーãƒãƒ«ãƒ„リー
304--------------------------- 306---------------------------
305 307
306ãƒãƒ¼ã‚¸ãƒ§ãƒ³ã«4ã¤ç›®ã®æ•°å­—ãŒã¤ã„ãŸã‚«ãƒ¼ãƒãƒ«ã¯ -stable カーãƒãƒ«ã§ã™ã€‚ã“れ㫠308ãƒãƒ¼ã‚¸ãƒ§ãƒ³ç•ªå·ãŒ4ã¤ã®æ•°å­—ã«åˆ†ã‹ã‚Œã¦ã„るカーãƒãƒ«ã¯ -stable カーãƒãƒ«ã§ã™ã€‚
307ã¯ã€2.6.x カーãƒãƒ«ã§è¦‹ã¤ã‹ã£ãŸã‚»ã‚­ãƒ¥ãƒªãƒ†ã‚£å•é¡Œã‚„é‡å¤§ãªå¾Œæˆ»ã‚Šã«å¯¾ã™ã‚‹æ¯” 309ã“ã‚Œã«ã¯ã€2.6.x カーãƒãƒ«ã§è¦‹ã¤ã‹ã£ãŸã‚»ã‚­ãƒ¥ãƒªãƒ†ã‚£å•é¡Œã‚„é‡å¤§ãªå¾Œæˆ»ã‚Šã«å¯¾
308較的å°ã•ã„é‡è¦ãªä¿®æ­£ãŒå«ã¾ã‚Œã¾ã™ã€‚ 310ã™ã‚‹æ¯”較的å°ã•ã„é‡è¦ãªä¿®æ­£ãŒå«ã¾ã‚Œã¾ã™ã€‚
309 311
310ã“ã‚Œã¯ã€é–‹ç™º/実験的ãƒãƒ¼ã‚¸ãƒ§ãƒ³ã®ãƒ†ã‚¹ãƒˆã«å”力ã™ã‚‹ã“ã¨ã«èˆˆå‘³ãŒç„¡ã〠312ã“ã‚Œã¯ã€é–‹ç™º/実験的ãƒãƒ¼ã‚¸ãƒ§ãƒ³ã®ãƒ†ã‚¹ãƒˆã«å”力ã™ã‚‹ã“ã¨ã«èˆˆå‘³ãŒç„¡ãã€
311最新ã®å®‰å®šã—ãŸã‚«ãƒ¼ãƒãƒ«ã‚’使ã„ãŸã„ユーザã«æŽ¨å¥¨ã™ã‚‹ãƒ–ランãƒã§ã™ã€‚ 313最新ã®å®‰å®šã—ãŸã‚«ãƒ¼ãƒãƒ«ã‚’使ã„ãŸã„ユーザã«æŽ¨å¥¨ã™ã‚‹ãƒ–ランãƒã§ã™ã€‚
312 314
313ã‚‚ã—ã€2.6.x.y カーãƒãƒ«ãŒå­˜åœ¨ã—ãªã„å ´åˆã«ã¯ã€ç•ªå·ãŒä¸€ç•ªå¤§ãã„ 2.6.x 315ã‚‚ã—ã€2.6.x.y カーãƒãƒ«ãŒå­˜åœ¨ã—ãªã„å ´åˆã«ã¯ã€ç•ªå·ãŒä¸€ç•ªå¤§ãã„ 2.6.x ãŒ
314ãŒæœ€æ–°ã®å®‰å®šç‰ˆã‚«ãƒ¼ãƒãƒ«ã§ã™ã€‚ 316最新ã®å®‰å®šç‰ˆã‚«ãƒ¼ãƒãƒ«ã§ã™ã€‚
315 317
3162.6.x.y 㯠"stable" ãƒãƒ¼ãƒ  <stable@kernel.org> ã§ãƒ¡ãƒ³ãƒ†ã•ã‚Œã¦ãŠã‚Šã€ã  3182.6.x.y 㯠"stable" ãƒãƒ¼ãƒ  <stable@kernel.org> ã§ãƒ¡ãƒ³ãƒ†ã•ã‚Œã¦ãŠã‚Šã€å¿…
317ã„ãŸã„隔週ã§ãƒªãƒªãƒ¼ã‚¹ã•ã‚Œã¦ã„ã¾ã™ã€‚ 319è¦ã«å¿œã˜ã¦ãƒªãƒªãƒ¼ã‚¹ã•ã‚Œã¾ã™ã€‚通常ã®ãƒªãƒªãƒ¼ã‚¹æœŸé–“㯠2週間毎ã§ã™ãŒã€å·®ã—è¿«ã£
320ãŸå•é¡ŒãŒãªã‘ã‚Œã°ã‚‚ã†å°‘ã—é•·ããªã‚‹ã“ã¨ã‚‚ã‚ã‚Šã¾ã™ã€‚セキュリティ関連ã®å•é¡Œ
321ã®å ´åˆã¯ã“ã‚Œã«å¯¾ã—ã¦ã ã„ãŸã„ã®å ´åˆã€ã™ãã«ãƒªãƒªãƒ¼ã‚¹ãŒã•ã‚Œã¾ã™ã€‚
318 322
319カーãƒãƒ«ãƒ„リーã«å…¥ã£ã¦ã„ã‚‹ã€Documentation/stable_kernel_rules.txt ファ 323カーãƒãƒ«ãƒ„リーã«å…¥ã£ã¦ã„ã‚‹ã€Documentation/stable_kernel_rules.txt ファ
320イルã«ã¯ã©ã®ã‚ˆã†ãªç¨®é¡žã®å¤‰æ›´ãŒ -stable ツリーã«å—ã‘入れå¯èƒ½ã‹ã€ã¾ãŸãƒª 324イルã«ã¯ã©ã®ã‚ˆã†ãªç¨®é¡žã®å¤‰æ›´ãŒ -stable ツリーã«å—ã‘入れå¯èƒ½ã‹ã€ã¾ãŸãƒª
@@ -341,7 +345,9 @@ linux-kernel メーリングリストã§åŽé›†ã•ã‚ŒãŸå¤šæ•°ã®ãƒ‘ッãƒã¨åŒæ
341メインラインã¸å…¥ã‚Œã‚‹ã‚ˆã†ã« Linus ã«ãƒ—ッシュã—ã¾ã™ã€‚ 345メインラインã¸å…¥ã‚Œã‚‹ã‚ˆã†ã« Linus ã«ãƒ—ッシュã—ã¾ã™ã€‚
342 346
343メインカーãƒãƒ«ãƒ„リーã«å«ã‚ã‚‹ãŸã‚ã« Linus ã«é€ã‚‹å‰ã«ã€ã™ã¹ã¦ã®æ–°ã—ã„パッ 347メインカーãƒãƒ«ãƒ„リーã«å«ã‚ã‚‹ãŸã‚ã« Linus ã«é€ã‚‹å‰ã«ã€ã™ã¹ã¦ã®æ–°ã—ã„パッ
344ãƒãŒ -mm ツリーã§ãƒ†ã‚¹ãƒˆã•ã‚Œã‚‹ã“ã¨ãŒå¼·ã推奨ã•ã‚Œã¾ã™ã€‚ 348ãƒãŒ -mm ツリーã§ãƒ†ã‚¹ãƒˆã•ã‚Œã‚‹ã“ã¨ãŒå¼·ã推奨ã•ã‚Œã¦ã„ã¾ã™ã€‚マージウィン
349ドウãŒé–‹ãå‰ã« -mm ツリーã«ç¾ã‚Œãªã‹ã£ãŸãƒ‘ッãƒã¯ãƒ¡ã‚¤ãƒ³ãƒ©ã‚¤ãƒ³ã«ãƒžãƒ¼ã‚¸ã•
350れるã“ã¨ã¯å›°é›£ã«ãªã‚Šã¾ã™ã€‚
345 351
346ã“れらã®ã‚«ãƒ¼ãƒãƒ«ã¯å®‰å®šã—ã¦å‹•ä½œã™ã¹ãシステムã¨ã—ã¦ä½¿ã†ã®ã«ã¯é©åˆ‡ã§ã¯ã‚ 352ã“れらã®ã‚«ãƒ¼ãƒãƒ«ã¯å®‰å®šã—ã¦å‹•ä½œã™ã¹ãシステムã¨ã—ã¦ä½¿ã†ã®ã«ã¯é©åˆ‡ã§ã¯ã‚
347ã‚Šã¾ã›ã‚“ã—ã€ã‚«ãƒ¼ãƒãƒ«ãƒ–ランãƒã®ä¸­ã§ã‚‚ã‚‚ã£ã¨ã‚‚動作ã«ãƒªã‚¹ã‚¯ãŒé«˜ã„ã‚‚ã®ã§ã™ã€‚ 353ã‚Šã¾ã›ã‚“ã—ã€ã‚«ãƒ¼ãƒãƒ«ãƒ–ランãƒã®ä¸­ã§ã‚‚ã‚‚ã£ã¨ã‚‚動作ã«ãƒªã‚¹ã‚¯ãŒé«˜ã„ã‚‚ã®ã§ã™ã€‚
@@ -395,13 +401,15 @@ linux-kernel メーリングリストã§åŽé›†ã•ã‚ŒãŸå¤šæ•°ã®ãƒ‘ッãƒã¨åŒæ
395 - pcmcia, Dominik Brodowski <linux@dominikbrodowski.net> 401 - pcmcia, Dominik Brodowski <linux@dominikbrodowski.net>
396 git.kernel.org:/pub/scm/linux/kernel/git/brodo/pcmcia-2.6.git 402 git.kernel.org:/pub/scm/linux/kernel/git/brodo/pcmcia-2.6.git
397 403
398 - SCSI, James Bottomley <James.Bottomley@SteelEye.com> 404 - SCSI, James Bottomley <James.Bottomley@hansenpartnership.com>
399 git.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6.git 405 git.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6.git
400 406
407 - x86, Ingo Molnar <mingo@elte.hu>
408 git://git.kernel.org/pub/scm/linux/kernel/git/x86/linux-2.6-x86.git
409
401 quilt ツリー- 410 quilt ツリー-
402 - USB, PCI ドライãƒã‚³ã‚¢ã¨ I2C, Greg Kroah-Hartman <gregkh@suse.de> 411 - USB, ドライãƒã‚³ã‚¢ã¨ I2C, Greg Kroah-Hartman <gregkh@suse.de>
403 kernel.org/pub/linux/kernel/people/gregkh/gregkh-2.6/ 412 kernel.org/pub/linux/kernel/people/gregkh/gregkh-2.6/
404 - x86-64 㨠i386 ã®ä»²é–“ Andi Kleen <ak@suse.de>
405 413
406 ãã®ä»–ã®ã‚«ãƒ¼ãƒãƒ«ãƒ„リー㯠http://git.kernel.org/ 㨠MAINTAINERS ファ 414 ãã®ä»–ã®ã‚«ãƒ¼ãƒãƒ«ãƒ„リー㯠http://git.kernel.org/ 㨠MAINTAINERS ファ
407 イルã«ä¸€è¦§è¡¨ãŒã‚ã‚Šã¾ã™ã€‚ 415 イルã«ä¸€è¦§è¡¨ãŒã‚ã‚Šã¾ã™ã€‚
@@ -412,13 +420,32 @@ linux-kernel メーリングリストã§åŽé›†ã•ã‚ŒãŸå¤šæ•°ã®ãƒ‘ッãƒã¨åŒæ
412bugzilla.kernel.org 㯠Linux カーãƒãƒ«é–‹ç™ºè€…ãŒã‚«ãƒ¼ãƒãƒ«ã®ãƒã‚°ã‚’追跡ã™ã‚‹ 420bugzilla.kernel.org 㯠Linux カーãƒãƒ«é–‹ç™ºè€…ãŒã‚«ãƒ¼ãƒãƒ«ã®ãƒã‚°ã‚’追跡ã™ã‚‹
413場所ã§ã™ã€‚ユーザã¯è¦‹ã¤ã‘ãŸãƒã‚°ã®å…¨ã¦ã‚’ã“ã®ãƒ„ールã§å ±å‘Šã™ã¹ãã§ã™ã€‚ 421場所ã§ã™ã€‚ユーザã¯è¦‹ã¤ã‘ãŸãƒã‚°ã®å…¨ã¦ã‚’ã“ã®ãƒ„ールã§å ±å‘Šã™ã¹ãã§ã™ã€‚
414ã©ã† kernel bugzilla を使ã†ã‹ã®è©³ç´°ã¯ã€ä»¥ä¸‹ã‚’å‚ç…§ã—ã¦ãã ã•ã„- 422ã©ã† kernel bugzilla を使ã†ã‹ã®è©³ç´°ã¯ã€ä»¥ä¸‹ã‚’å‚ç…§ã—ã¦ãã ã•ã„-
415 http://test.kernel.org/bugzilla/faq.html 423 http://bugzilla.kernel.org/page.cgi?id=faq.html
416
417メインカーãƒãƒ«ã‚½ãƒ¼ã‚¹ãƒ‡ã‚£ãƒ¬ã‚¯ãƒˆãƒªã«ã‚るファイル REPORTING-BUGS ã¯ã‚«ãƒ¼ãƒ 424メインカーãƒãƒ«ã‚½ãƒ¼ã‚¹ãƒ‡ã‚£ãƒ¬ã‚¯ãƒˆãƒªã«ã‚るファイル REPORTING-BUGS ã¯ã‚«ãƒ¼ãƒ
418ルãƒã‚°ã‚‰ã—ã„ã‚‚ã®ã«ã¤ã„ã¦ã©ã†ãƒ¬ãƒãƒ¼ãƒˆã™ã‚‹ã‹ã®è‰¯ã„テンプレートã§ã‚ã‚Šã€å• 425ルãƒã‚°ã‚‰ã—ã„ã‚‚ã®ã«ã¤ã„ã¦ã©ã†ãƒ¬ãƒãƒ¼ãƒˆã™ã‚‹ã‹ã®è‰¯ã„テンプレートã§ã‚ã‚Šã€å•
419é¡Œã®è¿½è·¡ã‚’助ã‘ã‚‹ãŸã‚ã«ã‚«ãƒ¼ãƒãƒ«é–‹ç™ºè€…ã«ã¨ã£ã¦ã©ã‚“ãªæƒ…å ±ãŒå¿…è¦ãªã®ã‹ã®è©³ 426é¡Œã®è¿½è·¡ã‚’助ã‘ã‚‹ãŸã‚ã«ã‚«ãƒ¼ãƒãƒ«é–‹ç™ºè€…ã«ã¨ã£ã¦ã©ã‚“ãªæƒ…å ±ãŒå¿…è¦ãªã®ã‹ã®è©³
420ç´°ãŒæ›¸ã‹ã‚Œã¦ã„ã¾ã™ã€‚ 427ç´°ãŒæ›¸ã‹ã‚Œã¦ã„ã¾ã™ã€‚
421 428
429ãƒã‚°ãƒ¬ãƒãƒ¼ãƒˆã®ç®¡ç†
430-------------------
431
432ã‚ãªãŸã®ãƒãƒƒã‚­ãƒ³ã‚°ã®ã‚¹ã‚­ãƒ«ã‚’訓練ã™ã‚‹æœ€é«˜ã®æ–¹æ³•ã®ã²ã¨ã¤ã«ã€ä»–人ãŒãƒ¬ãƒãƒ¼
433トã—ãŸãƒã‚°ã‚’修正ã™ã‚‹ã“ã¨ãŒã‚ã‚Šã¾ã™ã€‚ã‚ãªãŸãŒã‚«ãƒ¼ãƒãƒ«ã‚’より安定化ã•ã›ã‚‹
434ã“ã«å¯„与ã™ã‚‹ã¨ã„ã†ã“ã¨ã ã‘ã§ãªãã€ã‚ãªãŸã¯ ç¾å®Ÿã®å•é¡Œã‚’修正ã™ã‚‹ã“ã¨ã‚’
435å­¦ã³ã€è‡ªåˆ†ã®ã‚¹ã‚­ãƒ«ã‚‚強化ã§ãã€ã¾ãŸä»–ã®é–‹ç™ºè€…ãŒã‚ãªãŸã®å­˜åœ¨ã«æ°—ãŒã¤ã
436ã¾ã™ã€‚ãƒã‚°ã‚’修正ã™ã‚‹ã“ã¨ã¯ã€å¤šãã®é–‹ç™ºè€…ã®ä¸­ã‹ã‚‰è‡ªåˆ†ãŒåŠŸç¸¾ã‚’ã‚ã’る最善
437ã®é“ã§ã™ã€ãªãœãªã‚‰å¤šãã®äººã¯ä»–人ã®ãƒã‚°ã®ä¿®æ­£ã«æ™‚間を浪費ã™ã‚‹ã“ã¨ã‚’好ã¾
438ãªã„ã‹ã‚‰ã§ã™ã€‚
439
440ã™ã§ã«ãƒ¬ãƒãƒ¼ãƒˆã•ã‚ŒãŸãƒã‚°ã®ãŸã‚ã«ä»•äº‹ã‚’ã™ã‚‹ãŸã‚ã«ã¯ã€
441http://bugzilla.kernel.org ã«è¡Œã£ã¦ãã ã•ã„。もã—今後ã®ãƒã‚°ãƒ¬ãƒãƒ¼ãƒˆã«
442ã¤ã„ã¦ã‚¢ãƒ‰ãƒã‚¤ã‚¹ã‚’å—ã‘ãŸã„ã®ã§ã‚ã‚Œã°ã€bugme-new メーリングリスト(æ–°ã—
443ã„ãƒã‚°ãƒ¬ãƒãƒ¼ãƒˆã ã‘ãŒã“ã“ã«ãƒ¡ãƒ¼ãƒ«ã•ã‚Œã‚‹) ã¾ãŸã¯ bugme-janitor メーリン
444グリスト(bugzilla ã®å¤‰æ›´æ¯Žã«ã“ã“ã«ãƒ¡ãƒ¼ãƒ«ã•ã‚Œã‚‹)を購読ã§ãã¾ã™ã€‚
445
446 http://lists.linux-foundation.org/mailman/listinfo/bugme-new
447 http://lists.linux-foundation.org/mailman/listinfo/bugme-janitors
448
422メーリングリスト 449メーリングリスト
423------------- 450-------------
424 451
diff --git a/Documentation/ja_JP/SubmitChecklist b/Documentation/ja_JP/SubmitChecklist
new file mode 100644
index 000000000000..6c42e071d723
--- /dev/null
+++ b/Documentation/ja_JP/SubmitChecklist
@@ -0,0 +1,111 @@
1NOTE:
2This is a version of Documentation/SubmitChecklist into Japanese.
3This document is maintained by Takenori Nagano <t-nagano@ah.jp.nec.com>
4and the JF Project team <http://www.linux.or.jp/JF/>.
5If you find any difference between this document and the original file
6or a problem with the translation,
7please contact the maintainer of this file or JF project.
8
9Please also note that the purpose of this file is to be easier to read
10for non English (read: Japanese) speakers and is not intended as a
11fork. So if you have any comments or updates of this file, please try
12to update the original English file first.
13
14Last Updated: 2008/07/14
15==================================
16ã“ã‚Œã¯ã€
17linux-2.6.26/Documentation/SubmitChecklist ã®å’Œè¨³ã§ã™ã€‚
18
19翻訳団体: JF プロジェクト < http://www.linux.or.jp/JF/ >
20翻訳日: 2008/07/14
21翻訳者: Takenori Nagano <t-nagano at ah dot jp dot nec dot com>
22校正者: Masanori Kobayashi ã•ã‚“ <zap03216 at nifty dot ne dot jp>
23==================================
24
25
26Linux カーãƒãƒ«ãƒ‘ッãƒæŠ•ç¨¿è€…å‘ã‘ãƒã‚§ãƒƒã‚¯ãƒªã‚¹ãƒˆ
27~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28
29本書ã§ã¯ã€ãƒ‘ッãƒã‚’より素早ãå–り込んã§ã‚‚らã„ãŸã„開発者ãŒå®Ÿè·µã™ã¹ã基本的ãªäº‹æŸ„
30ã‚’ã„ãã¤ã‹ç´¹ä»‹ã—ã¾ã™ã€‚ã“ã“ã«ã‚ã‚‹å…¨ã¦ã®äº‹æŸ„ã¯ã€Documentation/SubmittingPatches
31ãªã©ã®Linuxカーãƒãƒ«ãƒ‘ッãƒæŠ•ç¨¿ã«éš›ã—ã¦ã®å¿ƒå¾—を補足ã™ã‚‹ã‚‚ã®ã§ã™ã€‚
32
33 1: 妥当ãªCONFIGオプションや変更ã•ã‚ŒãŸCONFIGオプションã€ã¤ã¾ã‚Š =y, =m, =n
34 å…¨ã¦ã§æ­£ã—ãビルドã§ãã‚‹ã“ã¨ã‚’確èªã—ã¦ãã ã•ã„。ãã®éš›ã€gccåŠã³ãƒªãƒ³ã‚«ãŒ
35 warningã‚„errorを出ã—ã¦ã„ãªã„ã“ã¨ã‚‚確èªã—ã¦ãã ã•ã„。
36
37 2: allnoconfig, allmodconfig オプションを用ã„ã¦æ­£ã—ãビルドã§ãã‚‹ã“ã¨ã‚’
38 確èªã—ã¦ãã ã•ã„。
39
40 3: 手許ã®ã‚¯ãƒ­ã‚¹ã‚³ãƒ³ãƒ‘イルツールやOSDLã®PLMã®ã‚ˆã†ãªã‚‚ã®ã‚’用ã„ã¦ã€è¤‡æ•°ã®
41 アーキテクãƒãƒ£ã«ãŠã„ã¦ã‚‚æ­£ã—ãビルドã§ãã‚‹ã“ã¨ã‚’確èªã—ã¦ãã ã•ã„。
42
43 4: 64bité•·ã®'unsigned long'を使用ã—ã¦ã„ã‚‹ppc64ã¯ã€ã‚¯ãƒ­ã‚¹ã‚³ãƒ³ãƒ‘イルã§ã®
44 ãƒã‚§ãƒƒã‚¯ã«é©å½“ãªã‚¢ãƒ¼ã‚­ãƒ†ã‚¯ãƒãƒ£ã§ã™ã€‚
45
46 5: カーãƒãƒ«ã‚³ãƒ¼ãƒ‡ã‚£ãƒ³ã‚°ã‚¹ã‚¿ã‚¤ãƒ«ã«æº–æ‹ ã—ã¦ã„ã‚‹ã‹ã©ã†ã‹ç¢ºèªã—ã¦ãã ã•ã„(!)
47
48 6: CONFIGオプションã®è¿½åŠ ãƒ»å¤‰æ›´ã‚’ã—ãŸå ´åˆã«ã¯ã€CONFIGメニューãŒå£Šã‚Œã¦ã„ãªã„
49 ã“ã¨ã‚’確èªã—ã¦ãã ã•ã„。
50
51 7: æ–°ã—ãKconfigã®ã‚ªãƒ—ションを追加ã™ã‚‹éš›ã«ã¯ã€å¿…ãšãã®helpも記述ã—ã¦ãã ã•ã„。
52
53 8: é©åˆ‡ãªKconfigã®ä¾å­˜é–¢ä¿‚を考ãˆãªãŒã‚‰æ…Žé‡ã«ãƒã‚§ãƒƒã‚¯ã—ã¦ãã ã•ã„。
54 ãŸã ã—ã€ã“ã®ä½œæ¥­ã¯ãƒžã‚·ãƒ³ã‚’使ã£ãŸãƒ†ã‚¹ãƒˆã§ãã¡ã‚“ã¨è¡Œã†ã®ãŒã¨ã¦ã‚‚困難ã§ã™ã€‚
55 ã†ã¾ãã‚„ã‚‹ã«ã¯ã€è‡ªåˆ†ã®é ­ã§è€ƒãˆã‚‹ã“ã¨ã§ã™ã€‚
56
57 9: sparseを利用ã—ã¦ã¡ã‚ƒã‚“ã¨ã—ãŸã‚³ãƒ¼ãƒ‰ãƒã‚§ãƒƒã‚¯ã‚’ã—ã¦ãã ã•ã„。
58
5910: 'make checkstack' 㨠'make namespacecheck' を利用ã—ã€å•é¡ŒãŒç™ºè¦‹ã•ã‚ŒãŸã‚‰
60 修正ã—ã¦ãã ã•ã„。'make checkstack' ã¯æ˜Žç¤ºçš„ã«å•é¡Œã‚’示ã—ã¾ã›ã‚“ãŒã€ã©ã‚Œã‹
61 1ã¤ã®é–¢æ•°ãŒ512ãƒã‚¤ãƒˆã‚ˆã‚Šå¤§ãã„スタックを使ã£ã¦ã„ã‚Œã°ã€ä¿®æ­£ã™ã¹ã候補ã¨
62 ãªã‚Šã¾ã™ã€‚
63
6411: グローãƒãƒ«ãªkernel API を説明ã™ã‚‹ kernel-doc をソースã®ä¸­ã«å«ã‚ã¦ãã ã•ã„。
65 ( staticãªé–¢æ•°ã«ãŠã„ã¦ã¯å¿…é ˆã§ã¯ã‚ã‚Šã¾ã›ã‚“ãŒã€å«ã‚ã¦ã‚‚らã£ã¦ã‚‚çµæ§‹ã§ã™ )
66 ãã—ã¦ã€'make htmldocs' ã‚‚ã—ã㯠'make mandocs' を利用ã—ã¦è¿½è¨˜ã—ãŸ
67 ドキュメントã®ãƒã‚§ãƒƒã‚¯ã‚’è¡Œã„ã€å•é¡ŒãŒè¦‹ã¤ã‹ã£ãŸå ´åˆã«ã¯ä¿®æ­£ã‚’è¡Œã£ã¦ãã ã•ã„。
68
6912: CONFIG_PREEMPT, CONFIG_DEBUG_PREEMPT, CONFIG_DEBUG_SLAB,
70 CONFIG_DEBUG_PAGEALLOC, CONFIG_DEBUG_MUTEXES, CONFIG_DEBUG_SPINLOCK,
71 CONFIG_DEBUG_SPINLOCK_SLEEP ã“れら全ã¦ã‚’åŒæ™‚ã«æœ‰åŠ¹ã«ã—ã¦å‹•ä½œç¢ºèªã‚’
72 è¡Œã£ã¦ãã ã•ã„。
73
7413: CONFIG_SMP, CONFIG_PREEMPT を有効ã«ã—ãŸå ´åˆã¨ç„¡åŠ¹ã«ã—ãŸå ´åˆã®ä¸¡æ–¹ã§
75 ビルドã—ãŸä¸Šã€å‹•ä½œç¢ºèªã‚’è¡Œã£ã¦ãã ã•ã„。
76
7714: ã‚‚ã—パッãƒãŒãƒ‡ã‚£ã‚¹ã‚¯ã®I/O性能ãªã©ã«å½±éŸ¿ã‚’与ãˆã‚‹ã‚ˆã†ã§ã‚ã‚Œã°ã€
78 'CONFIG_LBD'オプションを有効ã«ã—ãŸå ´åˆã¨ç„¡åŠ¹ã«ã—ãŸå ´åˆã®ä¸¡æ–¹ã§
79 テストを実施ã—ã¦ã¿ã¦ãã ã•ã„。
80
8115: lockdepã®æ©Ÿèƒ½ã‚’å…¨ã¦æœ‰åŠ¹ã«ã—ãŸä¸Šã§ã€å…¨ã¦ã®ã‚³ãƒ¼ãƒ‰ãƒ‘スを評価ã—ã¦ãã ã•ã„。
82
8316: /proc ã«æ–°ã—ã„エントリを追加ã—ãŸå ´åˆã«ã¯ã€Documentation/ é…下ã«
84 å¿…ãšãƒ‰ã‚­ãƒ¥ãƒ¡ãƒ³ãƒˆã‚’追加ã—ã¦ãã ã•ã„。
85
8617: æ–°ã—ã„ブートパラメータを追加ã—ãŸå ´åˆã«ã¯ã€
87 å¿…ãšDocumentation/kernel-parameters.txt ã«èª¬æ˜Žã‚’追加ã—ã¦ãã ã•ã„。
88
8918: æ–°ã—ãmoduleã«ãƒ‘ラメータを追加ã—ãŸå ´åˆã«ã¯ã€MODULE_PARM_DESC()ã‚’
90 利用ã—ã¦å¿…ãšãã®èª¬æ˜Žã‚’記述ã—ã¦ãã ã•ã„。
91
9219: æ–°ã—ã„userspaceインタフェースを作æˆã—ãŸå ´åˆã«ã¯ã€Documentation/ABI/ ã«
93 Documentation/ABI/README ã‚’å‚考ã«ã—ã¦å¿…ãšãƒ‰ã‚­ãƒ¥ãƒ¡ãƒ³ãƒˆã‚’追加ã—ã¦ãã ã•ã„。
94
9520: 'make headers_check'を実行ã—ã¦å…¨ãå•é¡ŒãŒãªã„ã“ã¨ã‚’確èªã—ã¦ãã ã•ã„。
96
9721: å°‘ãªãã¨ã‚‚slabアロケーションã¨pageアロケーションã«å¤±æ•—ã—ãŸå ´åˆã®
98 挙動ã«ã¤ã„ã¦ã€fault-injectionを利用ã—ã¦ç¢ºèªã—ã¦ãã ã•ã„。
99 Documentation/fault-injection/ ã‚’å‚ç…§ã—ã¦ãã ã•ã„。
100
101 追加ã—ãŸã‚³ãƒ¼ãƒ‰ãŒã‹ãªã‚Šã®é‡ã§ã‚ã£ãŸãªã‚‰ã°ã€ã‚µãƒ–システム特有ã®
102 fault-injectionを追加ã—ãŸã»ã†ãŒè‰¯ã„ã‹ã‚‚ã—ã‚Œã¾ã›ã‚“。
103
10422: æ–°ãŸã«è¿½åŠ ã—ãŸã‚³ãƒ¼ãƒ‰ã¯ã€`gcc -W'ã§ã‚³ãƒ³ãƒ‘イルã—ã¦ãã ã•ã„。
105 ã“ã®ã‚ªãƒ—ションã¯å¤§é‡ã®ä¸è¦ãªãƒ¡ãƒƒã‚»ãƒ¼ã‚¸ã‚’出力ã—ã¾ã™ãŒã€
106 "warning: comparison between signed and unsigned" ã®ã‚ˆã†ãªãƒ¡ãƒƒã‚»ãƒ¼ã‚¸ã¯ã€
107 ãƒã‚°ã‚’見ã¤ã‘ã‚‹ã®ã«å½¹ã«ç«‹ã¡ã¾ã™ã€‚
108
10923: 投稿ã—ãŸãƒ‘ッãƒãŒ -mm パッãƒã‚»ãƒƒãƒˆã«ãƒžãƒ¼ã‚¸ã•ã‚ŒãŸå¾Œã€å…¨ã¦ã®æ—¢å­˜ã®ãƒ‘ッãƒã‚„
110 VM, VFS ãŠã‚ˆã³ãã®ä»–ã®ã‚µãƒ–システムã«é–¢ã™ã‚‹æ§˜ã€…ãªå¤‰æ›´ã¨ã€ç¾æ™‚点ã§ã‚‚共存
111 ã§ãã‚‹ã“ã¨ã‚’確èªã™ã‚‹ãƒ†ã‚¹ãƒˆã‚’è¡Œã£ã¦ãã ã•ã„。
diff --git a/Documentation/kdump/kdump.txt b/Documentation/kdump/kdump.txt
index 9691c7f5166c..0705040531a5 100644
--- a/Documentation/kdump/kdump.txt
+++ b/Documentation/kdump/kdump.txt
@@ -65,26 +65,26 @@ Install kexec-tools
65 65
662) Download the kexec-tools user-space package from the following URL: 662) Download the kexec-tools user-space package from the following URL:
67 67
68http://www.kernel.org/pub/linux/kernel/people/horms/kexec-tools/kexec-tools-testing.tar.gz 68http://www.kernel.org/pub/linux/kernel/people/horms/kexec-tools/kexec-tools.tar.gz
69 69
70This is a symlink to the latest version, which at the time of writing is 70This is a symlink to the latest version.
7120061214, the only release of kexec-tools-testing so far. As other versions
72are released, the older ones will remain available at
73http://www.kernel.org/pub/linux/kernel/people/horms/kexec-tools/
74 71
75Note: Latest kexec-tools-testing git tree is available at 72The latest kexec-tools git tree is available at:
76 73
77git://git.kernel.org/pub/scm/linux/kernel/git/horms/kexec-tools-testing.git 74git://git.kernel.org/pub/scm/linux/kernel/git/horms/kexec-tools.git
78or 75or
79http://www.kernel.org/git/?p=linux/kernel/git/horms/kexec-tools-testing.git;a=summary 76http://www.kernel.org/git/?p=linux/kernel/git/horms/kexec-tools.git
77
78More information about kexec-tools can be found at
79http://www.kernel.org/pub/linux/kernel/people/horms/kexec-tools/README.html
80 80
813) Unpack the tarball with the tar command, as follows: 813) Unpack the tarball with the tar command, as follows:
82 82
83 tar xvpzf kexec-tools-testing.tar.gz 83 tar xvpzf kexec-tools.tar.gz
84 84
854) Change to the kexec-tools directory, as follows: 854) Change to the kexec-tools directory, as follows:
86 86
87 cd kexec-tools-testing-VERSION 87 cd kexec-tools-VERSION
88 88
895) Configure the package, as follows: 895) Configure the package, as follows:
90 90
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index 8679e80b9fc4..82a079d40970 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -87,7 +87,8 @@ parameter is applicable:
87 SH SuperH architecture is enabled. 87 SH SuperH architecture is enabled.
88 SMP The kernel is an SMP kernel. 88 SMP The kernel is an SMP kernel.
89 SPARC Sparc architecture is enabled. 89 SPARC Sparc architecture is enabled.
90 SWSUSP Software suspend is enabled. 90 SWSUSP Software suspend (hibernation) is enabled.
91 SUSPEND System suspend states are enabled.
91 TS Appropriate touchscreen support is enabled. 92 TS Appropriate touchscreen support is enabled.
92 USB USB support is enabled. 93 USB USB support is enabled.
93 USBHID USB Human Interface Device support is enabled. 94 USBHID USB Human Interface Device support is enabled.
@@ -147,10 +148,12 @@ and is between 256 and 4096 characters. It is defined in the file
147 default: 0 148 default: 0
148 149
149 acpi_sleep= [HW,ACPI] Sleep options 150 acpi_sleep= [HW,ACPI] Sleep options
150 Format: { s3_bios, s3_mode, s3_beep, old_ordering } 151 Format: { s3_bios, s3_mode, s3_beep, s4_nohwsig, old_ordering }
151 See Documentation/power/video.txt for s3_bios and s3_mode. 152 See Documentation/power/video.txt for s3_bios and s3_mode.
152 s3_beep is for debugging; it makes the PC's speaker beep 153 s3_beep is for debugging; it makes the PC's speaker beep
153 as soon as the kernel's real-mode entry point is called. 154 as soon as the kernel's real-mode entry point is called.
155 s4_nohwsig prevents ACPI hardware signature from being
156 used during resume from hibernation.
154 old_ordering causes the ACPI 1.0 ordering of the _PTS 157 old_ordering causes the ACPI 1.0 ordering of the _PTS
155 control method, wrt putting devices into low power 158 control method, wrt putting devices into low power
156 states, to be enforced (the ACPI 2.0 ordering of _PTS is 159 states, to be enforced (the ACPI 2.0 ordering of _PTS is
@@ -362,6 +365,8 @@ and is between 256 and 4096 characters. It is defined in the file
362 no delay (0). 365 no delay (0).
363 Format: integer 366 Format: integer
364 367
368 bootmem_debug [KNL] Enable bootmem allocator debug messages.
369
365 bttv.card= [HW,V4L] bttv (bt848 + bt878 based grabber cards) 370 bttv.card= [HW,V4L] bttv (bt848 + bt878 based grabber cards)
366 bttv.radio= Most important insmod options are available as 371 bttv.radio= Most important insmod options are available as
367 kernel args too. 372 kernel args too.
@@ -774,8 +779,22 @@ and is between 256 and 4096 characters. It is defined in the file
774 hisax= [HW,ISDN] 779 hisax= [HW,ISDN]
775 See Documentation/isdn/README.HiSax. 780 See Documentation/isdn/README.HiSax.
776 781
777 hugepages= [HW,X86-32,IA-64] Maximal number of HugeTLB pages. 782 hugepages= [HW,X86-32,IA-64] HugeTLB pages to allocate at boot.
778 hugepagesz= [HW,IA-64,PPC] The size of the HugeTLB pages. 783 hugepagesz= [HW,IA-64,PPC,X86-64] The size of the HugeTLB pages.
784 On x86-64 and powerpc, this option can be specified
785 multiple times interleaved with hugepages= to reserve
786 huge pages of different sizes. Valid pages sizes on
787 x86-64 are 2M (when the CPU supports "pse") and 1G
788 (when the CPU supports the "pdpe1gb" cpuinfo flag)
789 Note that 1GB pages can only be allocated at boot time
790 using hugepages= and not freed afterwards.
791 default_hugepagesz=
792 [same as hugepagesz=] The size of the default
793 HugeTLB page size. This is the size represented by
794 the legacy /proc/ hugepages APIs, used for SHM, and
795 default size when mounting hugetlbfs filesystems.
796 Defaults to the default architecture's huge page size
797 if not specified.
779 798
780 i8042.direct [HW] Put keyboard port into non-translated mode 799 i8042.direct [HW] Put keyboard port into non-translated mode
781 i8042.dumbkbd [HW] Pretend that controller can only read data from 800 i8042.dumbkbd [HW] Pretend that controller can only read data from
@@ -1055,6 +1074,9 @@ and is between 256 and 4096 characters. It is defined in the file
1055 1074
1056 * [no]ncq: Turn on or off NCQ. 1075 * [no]ncq: Turn on or off NCQ.
1057 1076
1077 * nohrst, nosrst, norst: suppress hard, soft
1078 and both resets.
1079
1058 If there are multiple matching configurations changing 1080 If there are multiple matching configurations changing
1059 the same attribute, the last one is used. 1081 the same attribute, the last one is used.
1060 1082
@@ -1225,6 +1247,14 @@ and is between 256 and 4096 characters. It is defined in the file
1225 1247
1226 mga= [HW,DRM] 1248 mga= [HW,DRM]
1227 1249
1250 mminit_loglevel=
1251 [KNL] When CONFIG_DEBUG_MEMORY_INIT is set, this
1252 parameter allows control of the logging verbosity for
1253 the additional memory initialisation checks. A value
1254 of 0 disables mminit logging and a level of 4 will
1255 log everything. Information is printed at KERN_DEBUG
1256 so loglevel=8 may also need to be specified.
1257
1228 mousedev.tap_time= 1258 mousedev.tap_time=
1229 [MOUSE] Maximum time between finger touching and 1259 [MOUSE] Maximum time between finger touching and
1230 leaving touchpad surface for touch to be considered 1260 leaving touchpad surface for touch to be considered
@@ -2107,6 +2137,12 @@ and is between 256 and 4096 characters. It is defined in the file
2107 2137
2108 tdfx= [HW,DRM] 2138 tdfx= [HW,DRM]
2109 2139
2140 test_suspend= [SUSPEND]
2141 Specify "mem" (for Suspend-to-RAM) or "standby" (for
2142 standby suspend) as the system sleep state to briefly
2143 enter during system startup. The system is woken from
2144 this state using a wakeup-capable RTC alarm.
2145
2110 thash_entries= [KNL,NET] 2146 thash_entries= [KNL,NET]
2111 Set number of hash buckets for TCP connection 2147 Set number of hash buckets for TCP connection
2112 2148
@@ -2134,13 +2170,6 @@ and is between 256 and 4096 characters. It is defined in the file
2134 <deci-seconds>: poll all this frequency 2170 <deci-seconds>: poll all this frequency
2135 0: no polling (default) 2171 0: no polling (default)
2136 2172
2137 tipar.timeout= [HW,PPT]
2138 Set communications timeout in tenths of a second
2139 (default 15).
2140
2141 tipar.delay= [HW,PPT]
2142 Set inter-bit delay in microseconds (default 10).
2143
2144 tmscsim= [HW,SCSI] 2173 tmscsim= [HW,SCSI]
2145 See comment before function dc390_setup() in 2174 See comment before function dc390_setup() in
2146 drivers/scsi/tmscsim.c. 2175 drivers/scsi/tmscsim.c.
diff --git a/Documentation/keys.txt b/Documentation/keys.txt
index d5c7a57d1700..b56aacc1fff8 100644
--- a/Documentation/keys.txt
+++ b/Documentation/keys.txt
@@ -864,7 +864,7 @@ payload contents" for more information.
864 request_key_with_auxdata() respectively. 864 request_key_with_auxdata() respectively.
865 865
866 These two functions return with the key potentially still under 866 These two functions return with the key potentially still under
867 construction. To wait for contruction completion, the following should be 867 construction. To wait for construction completion, the following should be
868 called: 868 called:
869 869
870 int wait_for_key_construction(struct key *key, bool intr); 870 int wait_for_key_construction(struct key *key, bool intr);
diff --git a/Documentation/laptops/thinkpad-acpi.txt b/Documentation/laptops/thinkpad-acpi.txt
index 64b3f146e4b0..71f0fe1fc1b0 100644
--- a/Documentation/laptops/thinkpad-acpi.txt
+++ b/Documentation/laptops/thinkpad-acpi.txt
@@ -1,7 +1,7 @@
1 ThinkPad ACPI Extras Driver 1 ThinkPad ACPI Extras Driver
2 2
3 Version 0.20 3 Version 0.21
4 April 09th, 2008 4 May 29th, 2008
5 5
6 Borislav Deianov <borislav@users.sf.net> 6 Borislav Deianov <borislav@users.sf.net>
7 Henrique de Moraes Holschuh <hmh@hmh.eng.br> 7 Henrique de Moraes Holschuh <hmh@hmh.eng.br>
@@ -44,7 +44,7 @@ detailed description):
44 - LCD brightness control 44 - LCD brightness control
45 - Volume control 45 - Volume control
46 - Fan control and monitoring: fan speed, fan enable/disable 46 - Fan control and monitoring: fan speed, fan enable/disable
47 - Experimental: WAN enable and disable 47 - WAN enable and disable
48 48
49A compatibility table by model and feature is maintained on the web 49A compatibility table by model and feature is maintained on the web
50site, http://ibm-acpi.sf.net/. I appreciate any success or failure 50site, http://ibm-acpi.sf.net/. I appreciate any success or failure
@@ -621,7 +621,8 @@ Bluetooth
621--------- 621---------
622 622
623procfs: /proc/acpi/ibm/bluetooth 623procfs: /proc/acpi/ibm/bluetooth
624sysfs device attribute: bluetooth_enable 624sysfs device attribute: bluetooth_enable (deprecated)
625sysfs rfkill class: switch "tpacpi_bluetooth_sw"
625 626
626This feature shows the presence and current state of a ThinkPad 627This feature shows the presence and current state of a ThinkPad
627Bluetooth device in the internal ThinkPad CDC slot. 628Bluetooth device in the internal ThinkPad CDC slot.
@@ -643,8 +644,12 @@ Sysfs notes:
643 0: disables Bluetooth / Bluetooth is disabled 644 0: disables Bluetooth / Bluetooth is disabled
644 1: enables Bluetooth / Bluetooth is enabled. 645 1: enables Bluetooth / Bluetooth is enabled.
645 646
646 Note: this interface will be probably be superseded by the 647 Note: this interface has been superseded by the generic rfkill
647 generic rfkill class, so it is NOT to be considered stable yet. 648 class. It has been deprecated, and it will be removed in year
649 2010.
650
651 rfkill controller switch "tpacpi_bluetooth_sw": refer to
652 Documentation/rfkill.txt for details.
648 653
649Video output control -- /proc/acpi/ibm/video 654Video output control -- /proc/acpi/ibm/video
650-------------------------------------------- 655--------------------------------------------
@@ -1370,16 +1375,12 @@ with EINVAL, try to set pwm1_enable to 1 and pwm1 to at least 128 (255
1370would be the safest choice, though). 1375would be the safest choice, though).
1371 1376
1372 1377
1373EXPERIMENTAL: WAN 1378WAN
1374----------------- 1379---
1375 1380
1376procfs: /proc/acpi/ibm/wan 1381procfs: /proc/acpi/ibm/wan
1377sysfs device attribute: wwan_enable 1382sysfs device attribute: wwan_enable (deprecated)
1378 1383sysfs rfkill class: switch "tpacpi_wwan_sw"
1379This feature is marked EXPERIMENTAL because the implementation
1380directly accesses hardware registers and may not work as expected. USE
1381WITH CAUTION! To use this feature, you need to supply the
1382experimental=1 parameter when loading the module.
1383 1384
1384This feature shows the presence and current state of a W-WAN (Sierra 1385This feature shows the presence and current state of a W-WAN (Sierra
1385Wireless EV-DO) device. 1386Wireless EV-DO) device.
@@ -1404,8 +1405,12 @@ Sysfs notes:
1404 0: disables WWAN card / WWAN card is disabled 1405 0: disables WWAN card / WWAN card is disabled
1405 1: enables WWAN card / WWAN card is enabled. 1406 1: enables WWAN card / WWAN card is enabled.
1406 1407
1407 Note: this interface will be probably be superseded by the 1408 Note: this interface has been superseded by the generic rfkill
1408 generic rfkill class, so it is NOT to be considered stable yet. 1409 class. It has been deprecated, and it will be removed in year
1410 2010.
1411
1412 rfkill controller switch "tpacpi_wwan_sw": refer to
1413 Documentation/rfkill.txt for details.
1409 1414
1410Multiple Commands, Module Parameters 1415Multiple Commands, Module Parameters
1411------------------------------------ 1416------------------------------------
diff --git a/Documentation/leds-class.txt b/Documentation/leds-class.txt
index 18860ad9935a..6399557cdab3 100644
--- a/Documentation/leds-class.txt
+++ b/Documentation/leds-class.txt
@@ -59,7 +59,7 @@ Hardware accelerated blink of LEDs
59 59
60Some LEDs can be programmed to blink without any CPU interaction. To 60Some LEDs can be programmed to blink without any CPU interaction. To
61support this feature, a LED driver can optionally implement the 61support this feature, a LED driver can optionally implement the
62blink_set() function (see <linux/leds.h>). If implemeted, triggers can 62blink_set() function (see <linux/leds.h>). If implemented, triggers can
63attempt to use it before falling back to software timers. The blink_set() 63attempt to use it before falling back to software timers. The blink_set()
64function should return 0 if the blink setting is supported, or -EINVAL 64function should return 0 if the blink setting is supported, or -EINVAL
65otherwise, which means that LED blinking will be handled by software. 65otherwise, which means that LED blinking will be handled by software.
diff --git a/Documentation/lguest/lguest.c b/Documentation/lguest/lguest.c
index 82fafe0429fe..7228369d1014 100644
--- a/Documentation/lguest/lguest.c
+++ b/Documentation/lguest/lguest.c
@@ -36,11 +36,13 @@
36#include <sched.h> 36#include <sched.h>
37#include <limits.h> 37#include <limits.h>
38#include <stddef.h> 38#include <stddef.h>
39#include <signal.h>
39#include "linux/lguest_launcher.h" 40#include "linux/lguest_launcher.h"
40#include "linux/virtio_config.h" 41#include "linux/virtio_config.h"
41#include "linux/virtio_net.h" 42#include "linux/virtio_net.h"
42#include "linux/virtio_blk.h" 43#include "linux/virtio_blk.h"
43#include "linux/virtio_console.h" 44#include "linux/virtio_console.h"
45#include "linux/virtio_rng.h"
44#include "linux/virtio_ring.h" 46#include "linux/virtio_ring.h"
45#include "asm-x86/bootparam.h" 47#include "asm-x86/bootparam.h"
46/*L:110 We can ignore the 39 include files we need for this program, but I do 48/*L:110 We can ignore the 39 include files we need for this program, but I do
@@ -64,8 +66,8 @@ typedef uint8_t u8;
64#endif 66#endif
65/* We can have up to 256 pages for devices. */ 67/* We can have up to 256 pages for devices. */
66#define DEVICE_PAGES 256 68#define DEVICE_PAGES 256
67/* This will occupy 2 pages: it must be a power of 2. */ 69/* This will occupy 3 pages: it must be a power of 2. */
68#define VIRTQUEUE_NUM 128 70#define VIRTQUEUE_NUM 256
69 71
70/*L:120 verbose is both a global flag and a macro. The C preprocessor allows 72/*L:120 verbose is both a global flag and a macro. The C preprocessor allows
71 * this, and although I wouldn't recommend it, it works quite nicely here. */ 73 * this, and although I wouldn't recommend it, it works quite nicely here. */
@@ -74,12 +76,19 @@ static bool verbose;
74 do { if (verbose) printf(args); } while(0) 76 do { if (verbose) printf(args); } while(0)
75/*:*/ 77/*:*/
76 78
77/* The pipe to send commands to the waker process */ 79/* File descriptors for the Waker. */
78static int waker_fd; 80struct {
81 int pipe[2];
82 int lguest_fd;
83} waker_fds;
84
79/* The pointer to the start of guest memory. */ 85/* The pointer to the start of guest memory. */
80static void *guest_base; 86static void *guest_base;
81/* The maximum guest physical address allowed, and maximum possible. */ 87/* The maximum guest physical address allowed, and maximum possible. */
82static unsigned long guest_limit, guest_max; 88static unsigned long guest_limit, guest_max;
89/* The pipe for signal hander to write to. */
90static int timeoutpipe[2];
91static unsigned int timeout_usec = 500;
83 92
84/* a per-cpu variable indicating whose vcpu is currently running */ 93/* a per-cpu variable indicating whose vcpu is currently running */
85static unsigned int __thread cpu_id; 94static unsigned int __thread cpu_id;
@@ -155,11 +164,14 @@ struct virtqueue
155 /* Last available index we saw. */ 164 /* Last available index we saw. */
156 u16 last_avail_idx; 165 u16 last_avail_idx;
157 166
158 /* The routine to call when the Guest pings us. */ 167 /* The routine to call when the Guest pings us, or timeout. */
159 void (*handle_output)(int fd, struct virtqueue *me); 168 void (*handle_output)(int fd, struct virtqueue *me, bool timeout);
160 169
161 /* Outstanding buffers */ 170 /* Outstanding buffers */
162 unsigned int inflight; 171 unsigned int inflight;
172
173 /* Is this blocked awaiting a timer? */
174 bool blocked;
163}; 175};
164 176
165/* Remember the arguments to the program so we can "reboot" */ 177/* Remember the arguments to the program so we can "reboot" */
@@ -190,6 +202,9 @@ static void *_convert(struct iovec *iov, size_t size, size_t align,
190 return iov->iov_base; 202 return iov->iov_base;
191} 203}
192 204
205/* Wrapper for the last available index. Makes it easier to change. */
206#define lg_last_avail(vq) ((vq)->last_avail_idx)
207
193/* The virtio configuration space is defined to be little-endian. x86 is 208/* The virtio configuration space is defined to be little-endian. x86 is
194 * little-endian too, but it's nice to be explicit so we have these helpers. */ 209 * little-endian too, but it's nice to be explicit so we have these helpers. */
195#define cpu_to_le16(v16) (v16) 210#define cpu_to_le16(v16) (v16)
@@ -199,6 +214,33 @@ static void *_convert(struct iovec *iov, size_t size, size_t align,
199#define le32_to_cpu(v32) (v32) 214#define le32_to_cpu(v32) (v32)
200#define le64_to_cpu(v64) (v64) 215#define le64_to_cpu(v64) (v64)
201 216
217/* Is this iovec empty? */
218static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
219{
220 unsigned int i;
221
222 for (i = 0; i < num_iov; i++)
223 if (iov[i].iov_len)
224 return false;
225 return true;
226}
227
228/* Take len bytes from the front of this iovec. */
229static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
230{
231 unsigned int i;
232
233 for (i = 0; i < num_iov; i++) {
234 unsigned int used;
235
236 used = iov[i].iov_len < len ? iov[i].iov_len : len;
237 iov[i].iov_base += used;
238 iov[i].iov_len -= used;
239 len -= used;
240 }
241 assert(len == 0);
242}
243
202/* The device virtqueue descriptors are followed by feature bitmasks. */ 244/* The device virtqueue descriptors are followed by feature bitmasks. */
203static u8 *get_feature_bits(struct device *dev) 245static u8 *get_feature_bits(struct device *dev)
204{ 246{
@@ -254,6 +296,7 @@ static void *map_zeroed_pages(unsigned int num)
254 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0); 296 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
255 if (addr == MAP_FAILED) 297 if (addr == MAP_FAILED)
256 err(1, "Mmaping %u pages of /dev/zero", num); 298 err(1, "Mmaping %u pages of /dev/zero", num);
299 close(fd);
257 300
258 return addr; 301 return addr;
259} 302}
@@ -540,69 +583,64 @@ static void add_device_fd(int fd)
540 * watch, but handing a file descriptor mask through to the kernel is fairly 583 * watch, but handing a file descriptor mask through to the kernel is fairly
541 * icky. 584 * icky.
542 * 585 *
543 * Instead, we fork off a process which watches the file descriptors and writes 586 * Instead, we clone off a thread which watches the file descriptors and writes
544 * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host 587 * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
545 * stop running the Guest. This causes the Launcher to return from the 588 * stop running the Guest. This causes the Launcher to return from the
546 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset 589 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
547 * the LHREQ_BREAK and wake us up again. 590 * the LHREQ_BREAK and wake us up again.
548 * 591 *
549 * This, of course, is merely a different *kind* of icky. 592 * This, of course, is merely a different *kind* of icky.
593 *
594 * Given my well-known antipathy to threads, I'd prefer to use processes. But
595 * it's easier to share Guest memory with threads, and trivial to share the
596 * devices.infds as the Launcher changes it.
550 */ 597 */
551static void wake_parent(int pipefd, int lguest_fd) 598static int waker(void *unused)
552{ 599{
553 /* Add the pipe from the Launcher to the fdset in the device_list, so 600 /* Close the write end of the pipe: only the Launcher has it open. */
554 * we watch it, too. */ 601 close(waker_fds.pipe[1]);
555 add_device_fd(pipefd);
556 602
557 for (;;) { 603 for (;;) {
558 fd_set rfds = devices.infds; 604 fd_set rfds = devices.infds;
559 unsigned long args[] = { LHREQ_BREAK, 1 }; 605 unsigned long args[] = { LHREQ_BREAK, 1 };
606 unsigned int maxfd = devices.max_infd;
607
608 /* We also listen to the pipe from the Launcher. */
609 FD_SET(waker_fds.pipe[0], &rfds);
610 if (waker_fds.pipe[0] > maxfd)
611 maxfd = waker_fds.pipe[0];
560 612
561 /* Wait until input is ready from one of the devices. */ 613 /* Wait until input is ready from one of the devices. */
562 select(devices.max_infd+1, &rfds, NULL, NULL, NULL); 614 select(maxfd+1, &rfds, NULL, NULL, NULL);
563 /* Is it a message from the Launcher? */ 615
564 if (FD_ISSET(pipefd, &rfds)) { 616 /* Message from Launcher? */
565 int fd; 617 if (FD_ISSET(waker_fds.pipe[0], &rfds)) {
566 /* If read() returns 0, it means the Launcher has 618 char c;
567 * exited. We silently follow. */ 619 /* If this fails, then assume Launcher has exited.
568 if (read(pipefd, &fd, sizeof(fd)) == 0) 620 * Don't do anything on exit: we're just a thread! */
569 exit(0); 621 if (read(waker_fds.pipe[0], &c, 1) != 1)
570 /* Otherwise it's telling us to change what file 622 _exit(0);
571 * descriptors we're to listen to. Positive means 623 continue;
572 * listen to a new one, negative means stop 624 }
573 * listening. */ 625
574 if (fd >= 0) 626 /* Send LHREQ_BREAK command to snap the Launcher out of it. */
575 FD_SET(fd, &devices.infds); 627 pwrite(waker_fds.lguest_fd, args, sizeof(args), cpu_id);
576 else
577 FD_CLR(-fd - 1, &devices.infds);
578 } else /* Send LHREQ_BREAK command. */
579 pwrite(lguest_fd, args, sizeof(args), cpu_id);
580 } 628 }
629 return 0;
581} 630}
582 631
583/* This routine just sets up a pipe to the Waker process. */ 632/* This routine just sets up a pipe to the Waker process. */
584static int setup_waker(int lguest_fd) 633static void setup_waker(int lguest_fd)
585{ 634{
586 int pipefd[2], child; 635 /* This pipe is closed when Launcher dies, telling Waker. */
587 636 if (pipe(waker_fds.pipe) != 0)
588 /* We create a pipe to talk to the Waker, and also so it knows when the 637 err(1, "Creating pipe for Waker");
589 * Launcher dies (and closes pipe). */ 638
590 pipe(pipefd); 639 /* Waker also needs to know the lguest fd */
591 child = fork(); 640 waker_fds.lguest_fd = lguest_fd;
592 if (child == -1)
593 err(1, "forking");
594
595 if (child == 0) {
596 /* We are the Waker: close the "writing" end of our copy of the
597 * pipe and start waiting for input. */
598 close(pipefd[1]);
599 wake_parent(pipefd[0], lguest_fd);
600 }
601 /* Close the reading end of our copy of the pipe. */
602 close(pipefd[0]);
603 641
604 /* Here is the fd used to talk to the waker. */ 642 if (clone(waker, malloc(4096) + 4096, CLONE_VM | SIGCHLD, NULL) == -1)
605 return pipefd[1]; 643 err(1, "Creating Waker");
606} 644}
607 645
608/* 646/*
@@ -661,19 +699,22 @@ static unsigned get_vq_desc(struct virtqueue *vq,
661 unsigned int *out_num, unsigned int *in_num) 699 unsigned int *out_num, unsigned int *in_num)
662{ 700{
663 unsigned int i, head; 701 unsigned int i, head;
702 u16 last_avail;
664 703
665 /* Check it isn't doing very strange things with descriptor numbers. */ 704 /* Check it isn't doing very strange things with descriptor numbers. */
666 if ((u16)(vq->vring.avail->idx - vq->last_avail_idx) > vq->vring.num) 705 last_avail = lg_last_avail(vq);
706 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
667 errx(1, "Guest moved used index from %u to %u", 707 errx(1, "Guest moved used index from %u to %u",
668 vq->last_avail_idx, vq->vring.avail->idx); 708 last_avail, vq->vring.avail->idx);
669 709
670 /* If there's nothing new since last we looked, return invalid. */ 710 /* If there's nothing new since last we looked, return invalid. */
671 if (vq->vring.avail->idx == vq->last_avail_idx) 711 if (vq->vring.avail->idx == last_avail)
672 return vq->vring.num; 712 return vq->vring.num;
673 713
674 /* Grab the next descriptor number they're advertising, and increment 714 /* Grab the next descriptor number they're advertising, and increment
675 * the index we've seen. */ 715 * the index we've seen. */
676 head = vq->vring.avail->ring[vq->last_avail_idx++ % vq->vring.num]; 716 head = vq->vring.avail->ring[last_avail % vq->vring.num];
717 lg_last_avail(vq)++;
677 718
678 /* If their number is silly, that's a fatal mistake. */ 719 /* If their number is silly, that's a fatal mistake. */
679 if (head >= vq->vring.num) 720 if (head >= vq->vring.num)
@@ -821,8 +862,8 @@ static bool handle_console_input(int fd, struct device *dev)
821 unsigned long args[] = { LHREQ_BREAK, 0 }; 862 unsigned long args[] = { LHREQ_BREAK, 0 };
822 /* Close the fd so Waker will know it has to 863 /* Close the fd so Waker will know it has to
823 * exit. */ 864 * exit. */
824 close(waker_fd); 865 close(waker_fds.pipe[1]);
825 /* Just in case waker is blocked in BREAK, send 866 /* Just in case Waker is blocked in BREAK, send
826 * unbreak now. */ 867 * unbreak now. */
827 write(fd, args, sizeof(args)); 868 write(fd, args, sizeof(args));
828 exit(2); 869 exit(2);
@@ -839,7 +880,7 @@ static bool handle_console_input(int fd, struct device *dev)
839 880
840/* Handling output for console is simple: we just get all the output buffers 881/* Handling output for console is simple: we just get all the output buffers
841 * and write them to stdout. */ 882 * and write them to stdout. */
842static void handle_console_output(int fd, struct virtqueue *vq) 883static void handle_console_output(int fd, struct virtqueue *vq, bool timeout)
843{ 884{
844 unsigned int head, out, in; 885 unsigned int head, out, in;
845 int len; 886 int len;
@@ -854,6 +895,24 @@ static void handle_console_output(int fd, struct virtqueue *vq)
854 } 895 }
855} 896}
856 897
898/* This is called when we no longer want to hear about Guest changes to a
899 * virtqueue. This is more efficient in high-traffic cases, but it means we
900 * have to set a timer to check if any more changes have occurred. */
901static void block_vq(struct virtqueue *vq)
902{
903 struct itimerval itm;
904
905 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
906 vq->blocked = true;
907
908 itm.it_interval.tv_sec = 0;
909 itm.it_interval.tv_usec = 0;
910 itm.it_value.tv_sec = 0;
911 itm.it_value.tv_usec = timeout_usec;
912
913 setitimer(ITIMER_REAL, &itm, NULL);
914}
915
857/* 916/*
858 * The Network 917 * The Network
859 * 918 *
@@ -861,22 +920,39 @@ static void handle_console_output(int fd, struct virtqueue *vq)
861 * and write them (ignoring the first element) to this device's file descriptor 920 * and write them (ignoring the first element) to this device's file descriptor
862 * (/dev/net/tun). 921 * (/dev/net/tun).
863 */ 922 */
864static void handle_net_output(int fd, struct virtqueue *vq) 923static void handle_net_output(int fd, struct virtqueue *vq, bool timeout)
865{ 924{
866 unsigned int head, out, in; 925 unsigned int head, out, in, num = 0;
867 int len; 926 int len;
868 struct iovec iov[vq->vring.num]; 927 struct iovec iov[vq->vring.num];
928 static int last_timeout_num;
869 929
870 /* Keep getting output buffers from the Guest until we run out. */ 930 /* Keep getting output buffers from the Guest until we run out. */
871 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) { 931 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
872 if (in) 932 if (in)
873 errx(1, "Input buffers in output queue?"); 933 errx(1, "Input buffers in output queue?");
874 /* Check header, but otherwise ignore it (we told the Guest we 934 len = writev(vq->dev->fd, iov, out);
875 * supported no features, so it shouldn't have anything 935 if (len < 0)
876 * interesting). */ 936 err(1, "Writing network packet to tun");
877 (void)convert(&iov[0], struct virtio_net_hdr);
878 len = writev(vq->dev->fd, iov+1, out-1);
879 add_used_and_trigger(fd, vq, head, len); 937 add_used_and_trigger(fd, vq, head, len);
938 num++;
939 }
940
941 /* Block further kicks and set up a timer if we saw anything. */
942 if (!timeout && num)
943 block_vq(vq);
944
945 /* We never quite know how long should we wait before we check the
946 * queue again for more packets. We start at 500 microseconds, and if
947 * we get fewer packets than last time, we assume we made the timeout
948 * too small and increase it by 10 microseconds. Otherwise, we drop it
949 * by one microsecond every time. It seems to work well enough. */
950 if (timeout) {
951 if (num < last_timeout_num)
952 timeout_usec += 10;
953 else if (timeout_usec > 1)
954 timeout_usec--;
955 last_timeout_num = num;
880 } 956 }
881} 957}
882 958
@@ -887,7 +963,6 @@ static bool handle_tun_input(int fd, struct device *dev)
887 unsigned int head, in_num, out_num; 963 unsigned int head, in_num, out_num;
888 int len; 964 int len;
889 struct iovec iov[dev->vq->vring.num]; 965 struct iovec iov[dev->vq->vring.num];
890 struct virtio_net_hdr *hdr;
891 966
892 /* First we need a network buffer from the Guests's recv virtqueue. */ 967 /* First we need a network buffer from the Guests's recv virtqueue. */
893 head = get_vq_desc(dev->vq, iov, &out_num, &in_num); 968 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
@@ -896,25 +971,23 @@ static bool handle_tun_input(int fd, struct device *dev)
896 * early, the Guest won't be ready yet. Wait until the device 971 * early, the Guest won't be ready yet. Wait until the device
897 * status says it's ready. */ 972 * status says it's ready. */
898 /* FIXME: Actually want DRIVER_ACTIVE here. */ 973 /* FIXME: Actually want DRIVER_ACTIVE here. */
899 if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) 974
900 warn("network: no dma buffer!"); 975 /* Now tell it we want to know if new things appear. */
976 dev->vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
977 wmb();
978
901 /* We'll turn this back on if input buffers are registered. */ 979 /* We'll turn this back on if input buffers are registered. */
902 return false; 980 return false;
903 } else if (out_num) 981 } else if (out_num)
904 errx(1, "Output buffers in network recv queue?"); 982 errx(1, "Output buffers in network recv queue?");
905 983
906 /* First element is the header: we set it to 0 (no features). */
907 hdr = convert(&iov[0], struct virtio_net_hdr);
908 hdr->flags = 0;
909 hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
910
911 /* Read the packet from the device directly into the Guest's buffer. */ 984 /* Read the packet from the device directly into the Guest's buffer. */
912 len = readv(dev->fd, iov+1, in_num-1); 985 len = readv(dev->fd, iov, in_num);
913 if (len <= 0) 986 if (len <= 0)
914 err(1, "reading network"); 987 err(1, "reading network");
915 988
916 /* Tell the Guest about the new packet. */ 989 /* Tell the Guest about the new packet. */
917 add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len); 990 add_used_and_trigger(fd, dev->vq, head, len);
918 991
919 verbose("tun input packet len %i [%02x %02x] (%s)\n", len, 992 verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
920 ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1], 993 ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
@@ -927,11 +1000,18 @@ static bool handle_tun_input(int fd, struct device *dev)
927/*L:215 This is the callback attached to the network and console input 1000/*L:215 This is the callback attached to the network and console input
928 * virtqueues: it ensures we try again, in case we stopped console or net 1001 * virtqueues: it ensures we try again, in case we stopped console or net
929 * delivery because Guest didn't have any buffers. */ 1002 * delivery because Guest didn't have any buffers. */
930static void enable_fd(int fd, struct virtqueue *vq) 1003static void enable_fd(int fd, struct virtqueue *vq, bool timeout)
931{ 1004{
932 add_device_fd(vq->dev->fd); 1005 add_device_fd(vq->dev->fd);
933 /* Tell waker to listen to it again */ 1006 /* Snap the Waker out of its select loop. */
934 write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd)); 1007 write(waker_fds.pipe[1], "", 1);
1008}
1009
1010static void net_enable_fd(int fd, struct virtqueue *vq, bool timeout)
1011{
1012 /* We don't need to know again when Guest refills receive buffer. */
1013 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
1014 enable_fd(fd, vq, timeout);
935} 1015}
936 1016
937/* When the Guest tells us they updated the status field, we handle it. */ 1017/* When the Guest tells us they updated the status field, we handle it. */
@@ -951,7 +1031,7 @@ static void update_device_status(struct device *dev)
951 for (vq = dev->vq; vq; vq = vq->next) { 1031 for (vq = dev->vq; vq; vq = vq->next) {
952 memset(vq->vring.desc, 0, 1032 memset(vq->vring.desc, 0,
953 vring_size(vq->config.num, getpagesize())); 1033 vring_size(vq->config.num, getpagesize()));
954 vq->last_avail_idx = 0; 1034 lg_last_avail(vq) = 0;
955 } 1035 }
956 } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) { 1036 } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
957 warnx("Device %s configuration FAILED", dev->name); 1037 warnx("Device %s configuration FAILED", dev->name);
@@ -960,10 +1040,10 @@ static void update_device_status(struct device *dev)
960 1040
961 verbose("Device %s OK: offered", dev->name); 1041 verbose("Device %s OK: offered", dev->name);
962 for (i = 0; i < dev->desc->feature_len; i++) 1042 for (i = 0; i < dev->desc->feature_len; i++)
963 verbose(" %08x", get_feature_bits(dev)[i]); 1043 verbose(" %02x", get_feature_bits(dev)[i]);
964 verbose(", accepted"); 1044 verbose(", accepted");
965 for (i = 0; i < dev->desc->feature_len; i++) 1045 for (i = 0; i < dev->desc->feature_len; i++)
966 verbose(" %08x", get_feature_bits(dev) 1046 verbose(" %02x", get_feature_bits(dev)
967 [dev->desc->feature_len+i]); 1047 [dev->desc->feature_len+i]);
968 1048
969 if (dev->ready) 1049 if (dev->ready)
@@ -1000,7 +1080,7 @@ static void handle_output(int fd, unsigned long addr)
1000 if (strcmp(vq->dev->name, "console") != 0) 1080 if (strcmp(vq->dev->name, "console") != 0)
1001 verbose("Output to %s\n", vq->dev->name); 1081 verbose("Output to %s\n", vq->dev->name);
1002 if (vq->handle_output) 1082 if (vq->handle_output)
1003 vq->handle_output(fd, vq); 1083 vq->handle_output(fd, vq, false);
1004 return; 1084 return;
1005 } 1085 }
1006 } 1086 }
@@ -1014,6 +1094,29 @@ static void handle_output(int fd, unsigned long addr)
1014 strnlen(from_guest_phys(addr), guest_limit - addr)); 1094 strnlen(from_guest_phys(addr), guest_limit - addr));
1015} 1095}
1016 1096
1097static void handle_timeout(int fd)
1098{
1099 char buf[32];
1100 struct device *i;
1101 struct virtqueue *vq;
1102
1103 /* Clear the pipe */
1104 read(timeoutpipe[0], buf, sizeof(buf));
1105
1106 /* Check each device and virtqueue: flush blocked ones. */
1107 for (i = devices.dev; i; i = i->next) {
1108 for (vq = i->vq; vq; vq = vq->next) {
1109 if (!vq->blocked)
1110 continue;
1111
1112 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
1113 vq->blocked = false;
1114 if (vq->handle_output)
1115 vq->handle_output(fd, vq, true);
1116 }
1117 }
1118}
1119
1017/* This is called when the Waker wakes us up: check for incoming file 1120/* This is called when the Waker wakes us up: check for incoming file
1018 * descriptors. */ 1121 * descriptors. */
1019static void handle_input(int fd) 1122static void handle_input(int fd)
@@ -1024,16 +1127,20 @@ static void handle_input(int fd)
1024 for (;;) { 1127 for (;;) {
1025 struct device *i; 1128 struct device *i;
1026 fd_set fds = devices.infds; 1129 fd_set fds = devices.infds;
1130 int num;
1027 1131
1132 num = select(devices.max_infd+1, &fds, NULL, NULL, &poll);
1133 /* Could get interrupted */
1134 if (num < 0)
1135 continue;
1028 /* If nothing is ready, we're done. */ 1136 /* If nothing is ready, we're done. */
1029 if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0) 1137 if (num == 0)
1030 break; 1138 break;
1031 1139
1032 /* Otherwise, call the device(s) which have readable file 1140 /* Otherwise, call the device(s) which have readable file
1033 * descriptors and a method of handling them. */ 1141 * descriptors and a method of handling them. */
1034 for (i = devices.dev; i; i = i->next) { 1142 for (i = devices.dev; i; i = i->next) {
1035 if (i->handle_input && FD_ISSET(i->fd, &fds)) { 1143 if (i->handle_input && FD_ISSET(i->fd, &fds)) {
1036 int dev_fd;
1037 if (i->handle_input(fd, i)) 1144 if (i->handle_input(fd, i))
1038 continue; 1145 continue;
1039 1146
@@ -1043,13 +1150,12 @@ static void handle_input(int fd)
1043 * buffers to deliver into. Console also uses 1150 * buffers to deliver into. Console also uses
1044 * it when it discovers that stdin is closed. */ 1151 * it when it discovers that stdin is closed. */
1045 FD_CLR(i->fd, &devices.infds); 1152 FD_CLR(i->fd, &devices.infds);
1046 /* Tell waker to ignore it too, by sending a
1047 * negative fd number (-1, since 0 is a valid
1048 * FD number). */
1049 dev_fd = -i->fd - 1;
1050 write(waker_fd, &dev_fd, sizeof(dev_fd));
1051 } 1153 }
1052 } 1154 }
1155
1156 /* Is this the timeout fd? */
1157 if (FD_ISSET(timeoutpipe[0], &fds))
1158 handle_timeout(fd);
1053 } 1159 }
1054} 1160}
1055 1161
@@ -1098,7 +1204,7 @@ static struct lguest_device_desc *new_dev_desc(u16 type)
1098/* Each device descriptor is followed by the description of its virtqueues. We 1204/* Each device descriptor is followed by the description of its virtqueues. We
1099 * specify how many descriptors the virtqueue is to have. */ 1205 * specify how many descriptors the virtqueue is to have. */
1100static void add_virtqueue(struct device *dev, unsigned int num_descs, 1206static void add_virtqueue(struct device *dev, unsigned int num_descs,
1101 void (*handle_output)(int fd, struct virtqueue *me)) 1207 void (*handle_output)(int, struct virtqueue *, bool))
1102{ 1208{
1103 unsigned int pages; 1209 unsigned int pages;
1104 struct virtqueue **i, *vq = malloc(sizeof(*vq)); 1210 struct virtqueue **i, *vq = malloc(sizeof(*vq));
@@ -1114,6 +1220,7 @@ static void add_virtqueue(struct device *dev, unsigned int num_descs,
1114 vq->last_avail_idx = 0; 1220 vq->last_avail_idx = 0;
1115 vq->dev = dev; 1221 vq->dev = dev;
1116 vq->inflight = 0; 1222 vq->inflight = 0;
1223 vq->blocked = false;
1117 1224
1118 /* Initialize the configuration. */ 1225 /* Initialize the configuration. */
1119 vq->config.num = num_descs; 1226 vq->config.num = num_descs;
@@ -1246,6 +1353,24 @@ static void setup_console(void)
1246} 1353}
1247/*:*/ 1354/*:*/
1248 1355
1356static void timeout_alarm(int sig)
1357{
1358 write(timeoutpipe[1], "", 1);
1359}
1360
1361static void setup_timeout(void)
1362{
1363 if (pipe(timeoutpipe) != 0)
1364 err(1, "Creating timeout pipe");
1365
1366 if (fcntl(timeoutpipe[1], F_SETFL,
1367 fcntl(timeoutpipe[1], F_GETFL) | O_NONBLOCK) != 0)
1368 err(1, "Making timeout pipe nonblocking");
1369
1370 add_device_fd(timeoutpipe[0]);
1371 signal(SIGALRM, timeout_alarm);
1372}
1373
1249/*M:010 Inter-guest networking is an interesting area. Simplest is to have a 1374/*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1250 * --sharenet=<name> option which opens or creates a named pipe. This can be 1375 * --sharenet=<name> option which opens or creates a named pipe. This can be
1251 * used to send packets to another guest in a 1:1 manner. 1376 * used to send packets to another guest in a 1:1 manner.
@@ -1264,10 +1389,25 @@ static void setup_console(void)
1264 1389
1265static u32 str2ip(const char *ipaddr) 1390static u32 str2ip(const char *ipaddr)
1266{ 1391{
1267 unsigned int byte[4]; 1392 unsigned int b[4];
1393
1394 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1395 errx(1, "Failed to parse IP address '%s'", ipaddr);
1396 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1397}
1268 1398
1269 sscanf(ipaddr, "%u.%u.%u.%u", &byte[0], &byte[1], &byte[2], &byte[3]); 1399static void str2mac(const char *macaddr, unsigned char mac[6])
1270 return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3]; 1400{
1401 unsigned int m[6];
1402 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1403 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1404 errx(1, "Failed to parse mac address '%s'", macaddr);
1405 mac[0] = m[0];
1406 mac[1] = m[1];
1407 mac[2] = m[2];
1408 mac[3] = m[3];
1409 mac[4] = m[4];
1410 mac[5] = m[5];
1271} 1411}
1272 1412
1273/* This code is "adapted" from libbridge: it attaches the Host end of the 1413/* This code is "adapted" from libbridge: it attaches the Host end of the
@@ -1288,6 +1428,7 @@ static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1288 errx(1, "interface %s does not exist!", if_name); 1428 errx(1, "interface %s does not exist!", if_name);
1289 1429
1290 strncpy(ifr.ifr_name, br_name, IFNAMSIZ); 1430 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1431 ifr.ifr_name[IFNAMSIZ-1] = '\0';
1291 ifr.ifr_ifindex = ifidx; 1432 ifr.ifr_ifindex = ifidx;
1292 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0) 1433 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1293 err(1, "can't add %s to bridge %s", if_name, br_name); 1434 err(1, "can't add %s to bridge %s", if_name, br_name);
@@ -1296,64 +1437,75 @@ static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1296/* This sets up the Host end of the network device with an IP address, brings 1437/* This sets up the Host end of the network device with an IP address, brings
1297 * it up so packets will flow, the copies the MAC address into the hwaddr 1438 * it up so packets will flow, the copies the MAC address into the hwaddr
1298 * pointer. */ 1439 * pointer. */
1299static void configure_device(int fd, const char *devname, u32 ipaddr, 1440static void configure_device(int fd, const char *tapif, u32 ipaddr)
1300 unsigned char hwaddr[6])
1301{ 1441{
1302 struct ifreq ifr; 1442 struct ifreq ifr;
1303 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr; 1443 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1304 1444
1305 /* Don't read these incantations. Just cut & paste them like I did! */
1306 memset(&ifr, 0, sizeof(ifr)); 1445 memset(&ifr, 0, sizeof(ifr));
1307 strcpy(ifr.ifr_name, devname); 1446 strcpy(ifr.ifr_name, tapif);
1447
1448 /* Don't read these incantations. Just cut & paste them like I did! */
1308 sin->sin_family = AF_INET; 1449 sin->sin_family = AF_INET;
1309 sin->sin_addr.s_addr = htonl(ipaddr); 1450 sin->sin_addr.s_addr = htonl(ipaddr);
1310 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0) 1451 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1311 err(1, "Setting %s interface address", devname); 1452 err(1, "Setting %s interface address", tapif);
1312 ifr.ifr_flags = IFF_UP; 1453 ifr.ifr_flags = IFF_UP;
1313 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0) 1454 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1314 err(1, "Bringing interface %s up", devname); 1455 err(1, "Bringing interface %s up", tapif);
1315
1316 /* SIOC stands for Socket I/O Control. G means Get (vs S for Set
1317 * above). IF means Interface, and HWADDR is hardware address.
1318 * Simple! */
1319 if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
1320 err(1, "getting hw address for %s", devname);
1321 memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
1322} 1456}
1323 1457
1324/*L:195 Our network is a Host<->Guest network. This can either use bridging or 1458static int get_tun_device(char tapif[IFNAMSIZ])
1325 * routing, but the principle is the same: it uses the "tun" device to inject
1326 * packets into the Host as if they came in from a normal network card. We
1327 * just shunt packets between the Guest and the tun device. */
1328static void setup_tun_net(const char *arg)
1329{ 1459{
1330 struct device *dev;
1331 struct ifreq ifr; 1460 struct ifreq ifr;
1332 int netfd, ipfd; 1461 int netfd;
1333 u32 ip; 1462
1334 const char *br_name = NULL; 1463 /* Start with this zeroed. Messy but sure. */
1335 struct virtio_net_config conf; 1464 memset(&ifr, 0, sizeof(ifr));
1336 1465
1337 /* We open the /dev/net/tun device and tell it we want a tap device. A 1466 /* We open the /dev/net/tun device and tell it we want a tap device. A
1338 * tap device is like a tun device, only somehow different. To tell 1467 * tap device is like a tun device, only somehow different. To tell
1339 * the truth, I completely blundered my way through this code, but it 1468 * the truth, I completely blundered my way through this code, but it
1340 * works now! */ 1469 * works now! */
1341 netfd = open_or_die("/dev/net/tun", O_RDWR); 1470 netfd = open_or_die("/dev/net/tun", O_RDWR);
1342 memset(&ifr, 0, sizeof(ifr)); 1471 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
1343 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1344 strcpy(ifr.ifr_name, "tap%d"); 1472 strcpy(ifr.ifr_name, "tap%d");
1345 if (ioctl(netfd, TUNSETIFF, &ifr) != 0) 1473 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1346 err(1, "configuring /dev/net/tun"); 1474 err(1, "configuring /dev/net/tun");
1475
1476 if (ioctl(netfd, TUNSETOFFLOAD,
1477 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1478 err(1, "Could not set features for tun device");
1479
1347 /* We don't need checksums calculated for packets coming in this 1480 /* We don't need checksums calculated for packets coming in this
1348 * device: trust us! */ 1481 * device: trust us! */
1349 ioctl(netfd, TUNSETNOCSUM, 1); 1482 ioctl(netfd, TUNSETNOCSUM, 1);
1350 1483
1484 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1485 return netfd;
1486}
1487
1488/*L:195 Our network is a Host<->Guest network. This can either use bridging or
1489 * routing, but the principle is the same: it uses the "tun" device to inject
1490 * packets into the Host as if they came in from a normal network card. We
1491 * just shunt packets between the Guest and the tun device. */
1492static void setup_tun_net(char *arg)
1493{
1494 struct device *dev;
1495 int netfd, ipfd;
1496 u32 ip = INADDR_ANY;
1497 bool bridging = false;
1498 char tapif[IFNAMSIZ], *p;
1499 struct virtio_net_config conf;
1500
1501 netfd = get_tun_device(tapif);
1502
1351 /* First we create a new network device. */ 1503 /* First we create a new network device. */
1352 dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input); 1504 dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
1353 1505
1354 /* Network devices need a receive and a send queue, just like 1506 /* Network devices need a receive and a send queue, just like
1355 * console. */ 1507 * console. */
1356 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd); 1508 add_virtqueue(dev, VIRTQUEUE_NUM, net_enable_fd);
1357 add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output); 1509 add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
1358 1510
1359 /* We need a socket to perform the magic network ioctls to bring up the 1511 /* We need a socket to perform the magic network ioctls to bring up the
@@ -1364,28 +1516,50 @@ static void setup_tun_net(const char *arg)
1364 1516
1365 /* If the command line was --tunnet=bridge:<name> do bridging. */ 1517 /* If the command line was --tunnet=bridge:<name> do bridging. */
1366 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) { 1518 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1367 ip = INADDR_ANY; 1519 arg += strlen(BRIDGE_PFX);
1368 br_name = arg + strlen(BRIDGE_PFX); 1520 bridging = true;
1369 add_to_bridge(ipfd, ifr.ifr_name, br_name); 1521 }
1370 } else /* It is an IP address to set up the device with */ 1522
1523 /* A mac address may follow the bridge name or IP address */
1524 p = strchr(arg, ':');
1525 if (p) {
1526 str2mac(p+1, conf.mac);
1527 add_feature(dev, VIRTIO_NET_F_MAC);
1528 *p = '\0';
1529 }
1530
1531 /* arg is now either an IP address or a bridge name */
1532 if (bridging)
1533 add_to_bridge(ipfd, tapif, arg);
1534 else
1371 ip = str2ip(arg); 1535 ip = str2ip(arg);
1372 1536
1373 /* Set up the tun device, and get the mac address for the interface. */ 1537 /* Set up the tun device. */
1374 configure_device(ipfd, ifr.ifr_name, ip, conf.mac); 1538 configure_device(ipfd, tapif, ip);
1375 1539
1376 /* Tell Guest what MAC address to use. */
1377 add_feature(dev, VIRTIO_NET_F_MAC);
1378 add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY); 1540 add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
1541 /* Expect Guest to handle everything except UFO */
1542 add_feature(dev, VIRTIO_NET_F_CSUM);
1543 add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
1544 add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1545 add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1546 add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1547 add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1548 add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1549 add_feature(dev, VIRTIO_NET_F_HOST_ECN);
1379 set_config(dev, sizeof(conf), &conf); 1550 set_config(dev, sizeof(conf), &conf);
1380 1551
1381 /* We don't need the socket any more; setup is done. */ 1552 /* We don't need the socket any more; setup is done. */
1382 close(ipfd); 1553 close(ipfd);
1383 1554
1384 verbose("device %u: tun net %u.%u.%u.%u\n", 1555 devices.device_num++;
1385 devices.device_num++, 1556
1386 (u8)(ip>>24),(u8)(ip>>16),(u8)(ip>>8),(u8)ip); 1557 if (bridging)
1387 if (br_name) 1558 verbose("device %u: tun %s attached to bridge: %s\n",
1388 verbose("attached to bridge: %s\n", br_name); 1559 devices.device_num, tapif, arg);
1560 else
1561 verbose("device %u: tun %s: %s\n",
1562 devices.device_num, tapif, arg);
1389} 1563}
1390 1564
1391/* Our block (disk) device should be really simple: the Guest asks for a block 1565/* Our block (disk) device should be really simple: the Guest asks for a block
@@ -1550,7 +1724,7 @@ static bool handle_io_finish(int fd, struct device *dev)
1550} 1724}
1551 1725
1552/* When the Guest submits some I/O, we just need to wake the I/O thread. */ 1726/* When the Guest submits some I/O, we just need to wake the I/O thread. */
1553static void handle_virtblk_output(int fd, struct virtqueue *vq) 1727static void handle_virtblk_output(int fd, struct virtqueue *vq, bool timeout)
1554{ 1728{
1555 struct vblk_info *vblk = vq->dev->priv; 1729 struct vblk_info *vblk = vq->dev->priv;
1556 char c = 0; 1730 char c = 0;
@@ -1621,6 +1795,64 @@ static void setup_block_file(const char *filename)
1621 verbose("device %u: virtblock %llu sectors\n", 1795 verbose("device %u: virtblock %llu sectors\n",
1622 devices.device_num, le64_to_cpu(conf.capacity)); 1796 devices.device_num, le64_to_cpu(conf.capacity));
1623} 1797}
1798
1799/* Our random number generator device reads from /dev/random into the Guest's
1800 * input buffers. The usual case is that the Guest doesn't want random numbers
1801 * and so has no buffers although /dev/random is still readable, whereas
1802 * console is the reverse.
1803 *
1804 * The same logic applies, however. */
1805static bool handle_rng_input(int fd, struct device *dev)
1806{
1807 int len;
1808 unsigned int head, in_num, out_num, totlen = 0;
1809 struct iovec iov[dev->vq->vring.num];
1810
1811 /* First we need a buffer from the Guests's virtqueue. */
1812 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1813
1814 /* If they're not ready for input, stop listening to this file
1815 * descriptor. We'll start again once they add an input buffer. */
1816 if (head == dev->vq->vring.num)
1817 return false;
1818
1819 if (out_num)
1820 errx(1, "Output buffers in rng?");
1821
1822 /* This is why we convert to iovecs: the readv() call uses them, and so
1823 * it reads straight into the Guest's buffer. We loop to make sure we
1824 * fill it. */
1825 while (!iov_empty(iov, in_num)) {
1826 len = readv(dev->fd, iov, in_num);
1827 if (len <= 0)
1828 err(1, "Read from /dev/random gave %i", len);
1829 iov_consume(iov, in_num, len);
1830 totlen += len;
1831 }
1832
1833 /* Tell the Guest about the new input. */
1834 add_used_and_trigger(fd, dev->vq, head, totlen);
1835
1836 /* Everything went OK! */
1837 return true;
1838}
1839
1840/* And this creates a "hardware" random number device for the Guest. */
1841static void setup_rng(void)
1842{
1843 struct device *dev;
1844 int fd;
1845
1846 fd = open_or_die("/dev/random", O_RDONLY);
1847
1848 /* The device responds to return from I/O thread. */
1849 dev = new_device("rng", VIRTIO_ID_RNG, fd, handle_rng_input);
1850
1851 /* The device has one virtqueue, where the Guest places inbufs. */
1852 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1853
1854 verbose("device %u: rng\n", devices.device_num++);
1855}
1624/* That's the end of device setup. */ 1856/* That's the end of device setup. */
1625 1857
1626/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */ 1858/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
@@ -1628,11 +1860,12 @@ static void __attribute__((noreturn)) restart_guest(void)
1628{ 1860{
1629 unsigned int i; 1861 unsigned int i;
1630 1862
1631 /* Closing pipes causes the Waker thread and io_threads to die, and 1863 /* Since we don't track all open fds, we simply close everything beyond
1632 * closing /dev/lguest cleans up the Guest. Since we don't track all 1864 * stderr. */
1633 * open fds, we simply close everything beyond stderr. */
1634 for (i = 3; i < FD_SETSIZE; i++) 1865 for (i = 3; i < FD_SETSIZE; i++)
1635 close(i); 1866 close(i);
1867
1868 /* The exec automatically gets rid of the I/O and Waker threads. */
1636 execv(main_args[0], main_args); 1869 execv(main_args[0], main_args);
1637 err(1, "Could not exec %s", main_args[0]); 1870 err(1, "Could not exec %s", main_args[0]);
1638} 1871}
@@ -1663,7 +1896,7 @@ static void __attribute__((noreturn)) run_guest(int lguest_fd)
1663 /* ERESTART means that we need to reboot the guest */ 1896 /* ERESTART means that we need to reboot the guest */
1664 } else if (errno == ERESTART) { 1897 } else if (errno == ERESTART) {
1665 restart_guest(); 1898 restart_guest();
1666 /* EAGAIN means the Waker wanted us to look at some input. 1899 /* EAGAIN means a signal (timeout).
1667 * Anything else means a bug or incompatible change. */ 1900 * Anything else means a bug or incompatible change. */
1668 } else if (errno != EAGAIN) 1901 } else if (errno != EAGAIN)
1669 err(1, "Running guest failed"); 1902 err(1, "Running guest failed");
@@ -1691,13 +1924,14 @@ static struct option opts[] = {
1691 { "verbose", 0, NULL, 'v' }, 1924 { "verbose", 0, NULL, 'v' },
1692 { "tunnet", 1, NULL, 't' }, 1925 { "tunnet", 1, NULL, 't' },
1693 { "block", 1, NULL, 'b' }, 1926 { "block", 1, NULL, 'b' },
1927 { "rng", 0, NULL, 'r' },
1694 { "initrd", 1, NULL, 'i' }, 1928 { "initrd", 1, NULL, 'i' },
1695 { NULL }, 1929 { NULL },
1696}; 1930};
1697static void usage(void) 1931static void usage(void)
1698{ 1932{
1699 errx(1, "Usage: lguest [--verbose] " 1933 errx(1, "Usage: lguest [--verbose] "
1700 "[--tunnet=(<ipaddr>|bridge:<bridgename>)\n" 1934 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
1701 "|--block=<filename>|--initrd=<filename>]...\n" 1935 "|--block=<filename>|--initrd=<filename>]...\n"
1702 "<mem-in-mb> vmlinux [args...]"); 1936 "<mem-in-mb> vmlinux [args...]");
1703} 1937}
@@ -1765,6 +1999,9 @@ int main(int argc, char *argv[])
1765 case 'b': 1999 case 'b':
1766 setup_block_file(optarg); 2000 setup_block_file(optarg);
1767 break; 2001 break;
2002 case 'r':
2003 setup_rng();
2004 break;
1768 case 'i': 2005 case 'i':
1769 initrd_name = optarg; 2006 initrd_name = optarg;
1770 break; 2007 break;
@@ -1783,6 +2020,9 @@ int main(int argc, char *argv[])
1783 /* We always have a console device */ 2020 /* We always have a console device */
1784 setup_console(); 2021 setup_console();
1785 2022
2023 /* We can timeout waiting for Guest network transmit. */
2024 setup_timeout();
2025
1786 /* Now we load the kernel */ 2026 /* Now we load the kernel */
1787 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY)); 2027 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1788 2028
@@ -1826,10 +2066,10 @@ int main(int argc, char *argv[])
1826 * /dev/lguest file descriptor. */ 2066 * /dev/lguest file descriptor. */
1827 lguest_fd = tell_kernel(pgdir, start); 2067 lguest_fd = tell_kernel(pgdir, start);
1828 2068
1829 /* We fork off a child process, which wakes the Launcher whenever one 2069 /* We clone off a thread, which wakes the Launcher whenever one of the
1830 * of the input file descriptors needs attention. We call this the 2070 * input file descriptors needs attention. We call this the Waker, and
1831 * Waker, and we'll cover it in a moment. */ 2071 * we'll cover it in a moment. */
1832 waker_fd = setup_waker(lguest_fd); 2072 setup_waker(lguest_fd);
1833 2073
1834 /* Finally, run the Guest. This doesn't return. */ 2074 /* Finally, run the Guest. This doesn't return. */
1835 run_guest(lguest_fd); 2075 run_guest(lguest_fd);
diff --git a/Documentation/local_ops.txt b/Documentation/local_ops.txt
index 4269a1105b37..f4f8b1c6c8ba 100644
--- a/Documentation/local_ops.txt
+++ b/Documentation/local_ops.txt
@@ -36,7 +36,7 @@ It can be done by slightly modifying the standard atomic operations : only
36their UP variant must be kept. It typically means removing LOCK prefix (on 36their UP variant must be kept. It typically means removing LOCK prefix (on
37i386 and x86_64) and any SMP sychronization barrier. If the architecture does 37i386 and x86_64) and any SMP sychronization barrier. If the architecture does
38not have a different behavior between SMP and UP, including asm-generic/local.h 38not have a different behavior between SMP and UP, including asm-generic/local.h
39in your archtecture's local.h is sufficient. 39in your architecture's local.h is sufficient.
40 40
41The local_t type is defined as an opaque signed long by embedding an 41The local_t type is defined as an opaque signed long by embedding an
42atomic_long_t inside a structure. This is made so a cast from this type to a 42atomic_long_t inside a structure. This is made so a cast from this type to a
diff --git a/Documentation/moxa-smartio b/Documentation/moxa-smartio
index fe24ecc6372e..5337e80a5b96 100644
--- a/Documentation/moxa-smartio
+++ b/Documentation/moxa-smartio
@@ -1,14 +1,22 @@
1============================================================================= 1=============================================================================
2 2 MOXA Smartio/Industio Family Device Driver Installation Guide
3 MOXA Smartio Family Device Driver Ver 1.1 Installation Guide 3 for Linux Kernel 2.4.x, 2.6.x
4 for Linux Kernel 2.2.x and 2.0.3x 4 Copyright (C) 2008, Moxa Inc.
5 Copyright (C) 1999, Moxa Technologies Co, Ltd.
6============================================================================= 5=============================================================================
6Date: 01/21/2008
7
7Content 8Content
8 9
91. Introduction 101. Introduction
102. System Requirement 112. System Requirement
113. Installation 123. Installation
13 3.1 Hardware installation
14 3.2 Driver files
15 3.3 Device naming convention
16 3.4 Module driver configuration
17 3.5 Static driver configuration for Linux kernel 2.4.x and 2.6.x.
18 3.6 Custom configuration
19 3.7 Verify driver installation
124. Utilities 204. Utilities
135. Setserial 215. Setserial
146. Troubleshooting 226. Troubleshooting
@@ -16,27 +24,48 @@ Content
16----------------------------------------------------------------------------- 24-----------------------------------------------------------------------------
171. Introduction 251. Introduction
18 26
19 The Smartio family Linux driver, Ver. 1.1, supports following multiport 27 The Smartio/Industio/UPCI family Linux driver supports following multiport
20 boards. 28 boards.
21 29
22 -C104P/H/HS, C104H/PCI, C104HS/PCI, CI-104J 4 port multiport board. 30 - 2 ports multiport board
23 -C168P/H/HS, C168H/PCI 8 port multiport board. 31 CP-102U, CP-102UL, CP-102UF
24 32 CP-132U-I, CP-132UL,
25 This driver has been modified a little and cleaned up from the Moxa 33 CP-132, CP-132I, CP132S, CP-132IS,
26 contributed driver code and merged into Linux 2.2.14pre. In particular 34 CI-132, CI-132I, CI-132IS,
27 official major/minor numbers have been assigned which are different to 35 (C102H, C102HI, C102HIS, C102P, CP-102, CP-102S)
28 those the original Moxa supplied driver used. 36
37 - 4 ports multiport board
38 CP-104EL,
39 CP-104UL, CP-104JU,
40 CP-134U, CP-134U-I,
41 C104H/PCI, C104HS/PCI,
42 CP-114, CP-114I, CP-114S, CP-114IS, CP-114UL,
43 C104H, C104HS,
44 CI-104J, CI-104JS,
45 CI-134, CI-134I, CI-134IS,
46 (C114HI, CT-114I, C104P)
47 POS-104UL,
48 CB-114,
49 CB-134I
50
51 - 8 ports multiport board
52 CP-118EL, CP-168EL,
53 CP-118U, CP-168U,
54 C168H/PCI,
55 C168H, C168HS,
56 (C168P),
57 CB-108
29 58
30 This driver and installation procedure have been developed upon Linux Kernel 59 This driver and installation procedure have been developed upon Linux Kernel
31 2.2.5 and backward compatible to 2.0.3x. This driver supports Intel x86 and 60 2.4.x and 2.6.x. This driver supports Intel x86 hardware platform. In order
32 Alpha hardware platform. In order to maintain compatibility, this version 61 to maintain compatibility, this version has also been properly tested with
33 has also been properly tested with RedHat, OpenLinux, TurboLinux and 62 RedHat, Mandrake, Fedora and S.u.S.E Linux. However, if compatibility problem
34 S.u.S.E Linux. However, if compatibility problem occurs, please contact 63 occurs, please contact Moxa at support@moxa.com.tw.
35 Moxa at support@moxa.com.tw.
36 64
37 In addition to device driver, useful utilities are also provided in this 65 In addition to device driver, useful utilities are also provided in this
38 version. They are 66 version. They are
39 - msdiag Diagnostic program for detecting installed Moxa Smartio boards. 67 - msdiag Diagnostic program for displaying installed Moxa
68 Smartio/Industio boards.
40 - msmon Monitor program to observe data count and line status signals. 69 - msmon Monitor program to observe data count and line status signals.
41 - msterm A simple terminal program which is useful in testing serial 70 - msterm A simple terminal program which is useful in testing serial
42 ports. 71 ports.
@@ -47,8 +76,7 @@ Content
47 GNU General Public License in this version. Please refer to GNU General 76 GNU General Public License in this version. Please refer to GNU General
48 Public License announcement in each source code file for more detail. 77 Public License announcement in each source code file for more detail.
49 78
50 In Moxa's ftp sites, you may always find latest driver at 79 In Moxa's Web sites, you may always find latest driver at http://web.moxa.com.
51 ftp://ftp.moxa.com or ftp://ftp.moxa.com.tw.
52 80
53 This version of driver can be installed as Loadable Module (Module driver) 81 This version of driver can be installed as Loadable Module (Module driver)
54 or built-in into kernel (Static driver). You may refer to following 82 or built-in into kernel (Static driver). You may refer to following
@@ -61,8 +89,8 @@ Content
61 89
62----------------------------------------------------------------------------- 90-----------------------------------------------------------------------------
632. System Requirement 912. System Requirement
64 - Hardware platform: Intel x86 or Alpha machine 92 - Hardware platform: Intel x86 machine
65 - Kernel version: 2.0.3x or 2.2.x 93 - Kernel version: 2.4.x or 2.6.x
66 - gcc version 2.72 or later 94 - gcc version 2.72 or later
67 - Maximum 4 boards can be installed in combination 95 - Maximum 4 boards can be installed in combination
68 96
@@ -70,9 +98,18 @@ Content
703. Installation 983. Installation
71 99
72 3.1 Hardware installation 100 3.1 Hardware installation
101 3.2 Driver files
102 3.3 Device naming convention
103 3.4 Module driver configuration
104 3.5 Static driver configuration for Linux kernel 2.4.x, 2.6.x.
105 3.6 Custom configuration
106 3.7 Verify driver installation
107
108
109 3.1 Hardware installation
73 110
74 There are two types of buses, ISA and PCI, for Smartio family multiport 111 There are two types of buses, ISA and PCI, for Smartio/Industio
75 board. 112 family multiport board.
76 113
77 ISA board 114 ISA board
78 --------- 115 ---------
@@ -81,47 +118,57 @@ Content
81 installation procedure in User's Manual before proceed any further. 118 installation procedure in User's Manual before proceed any further.
82 Please make sure the JP1 is open after the ISA board is set properly. 119 Please make sure the JP1 is open after the ISA board is set properly.
83 120
84 PCI board 121 PCI/UPCI board
85 --------- 122 --------------
86 You may need to adjust IRQ usage in BIOS to avoid from IRQ conflict 123 You may need to adjust IRQ usage in BIOS to avoid from IRQ conflict
87 with other ISA devices. Please refer to hardware installation 124 with other ISA devices. Please refer to hardware installation
88 procedure in User's Manual in advance. 125 procedure in User's Manual in advance.
89 126
90 IRQ Sharing 127 PCI IRQ Sharing
91 ----------- 128 -----------
92 Each port within the same multiport board shares the same IRQ. Up to 129 Each port within the same multiport board shares the same IRQ. Up to
93 4 Moxa Smartio Family multiport boards can be installed together on 130 4 Moxa Smartio/Industio PCI Family multiport boards can be installed
94 one system and they can share the same IRQ. 131 together on one system and they can share the same IRQ.
132
95 133
96 3.2 Driver files and device naming convention 134 3.2 Driver files
97 135
98 The driver file may be obtained from ftp, CD-ROM or floppy disk. The 136 The driver file may be obtained from ftp, CD-ROM or floppy disk. The
99 first step, anyway, is to copy driver file "mxser.tgz" into specified 137 first step, anyway, is to copy driver file "mxser.tgz" into specified
100 directory. e.g. /moxa. The execute commands as below. 138 directory. e.g. /moxa. The execute commands as below.
101 139
140 # cd /
141 # mkdir moxa
102 # cd /moxa 142 # cd /moxa
103 # tar xvf /dev/fd0 143 # tar xvf /dev/fd0
144
104 or 145 or
146
147 # cd /
148 # mkdir moxa
105 # cd /moxa 149 # cd /moxa
106 # cp /mnt/cdrom/<driver directory>/mxser.tgz . 150 # cp /mnt/cdrom/<driver directory>/mxser.tgz .
107 # tar xvfz mxser.tgz 151 # tar xvfz mxser.tgz
108 152
153
154 3.3 Device naming convention
155
109 You may find all the driver and utilities files in /moxa/mxser. 156 You may find all the driver and utilities files in /moxa/mxser.
110 Following installation procedure depends on the model you'd like to 157 Following installation procedure depends on the model you'd like to
111 run the driver. If you prefer module driver, please refer to 3.3. 158 run the driver. If you prefer module driver, please refer to 3.4.
112 If static driver is required, please refer to 3.4. 159 If static driver is required, please refer to 3.5.
113 160
114 Dialin and callout port 161 Dialin and callout port
115 ----------------------- 162 -----------------------
116 This driver remains traditional serial device properties. There're 163 This driver remains traditional serial device properties. There are
117 two special file name for each serial port. One is dial-in port 164 two special file name for each serial port. One is dial-in port
118 which is named "ttyMxx". For callout port, the naming convention 165 which is named "ttyMxx". For callout port, the naming convention
119 is "cumxx". 166 is "cumxx".
120 167
121 Device naming when more than 2 boards installed 168 Device naming when more than 2 boards installed
122 ----------------------------------------------- 169 -----------------------------------------------
123 Naming convention for each Smartio multiport board is pre-defined 170 Naming convention for each Smartio/Industio multiport board is
124 as below. 171 pre-defined as below.
125 172
126 Board Num. Dial-in Port Callout port 173 Board Num. Dial-in Port Callout port
127 1st board ttyM0 - ttyM7 cum0 - cum7 174 1st board ttyM0 - ttyM7 cum0 - cum7
@@ -129,6 +176,12 @@ Content
129 3rd board ttyM16 - ttyM23 cum16 - cum23 176 3rd board ttyM16 - ttyM23 cum16 - cum23
130 4th board ttyM24 - ttym31 cum24 - cum31 177 4th board ttyM24 - ttym31 cum24 - cum31
131 178
179
180 !!!!!!!!!!!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
181 Under Kernel 2.6 the cum Device is Obsolete. So use ttyM*
182 device instead.
183 !!!!!!!!!!!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
184
132 Board sequence 185 Board sequence
133 -------------- 186 --------------
134 This driver will activate ISA boards according to the parameter set 187 This driver will activate ISA boards according to the parameter set
@@ -138,69 +191,131 @@ Content
138 For PCI boards, their sequence will be after ISA boards and C168H/PCI 191 For PCI boards, their sequence will be after ISA boards and C168H/PCI
139 has higher priority than C104H/PCI boards. 192 has higher priority than C104H/PCI boards.
140 193
141 3.3 Module driver configuration 194 3.4 Module driver configuration
142 Module driver is easiest way to install. If you prefer static driver 195 Module driver is easiest way to install. If you prefer static driver
143 installation, please skip this paragraph. 196 installation, please skip this paragraph.
144 1. Find "Makefile" in /moxa/mxser, then run
145 197
146 # make install 198
199 ------------- Prepare to use the MOXA driver--------------------
200 3.4.1 Create tty device with correct major number
201 Before using MOXA driver, your system must have the tty devices
202 which are created with driver's major number. We offer one shell
203 script "msmknod" to simplify the procedure.
204 This step is only needed to be executed once. But you still
205 need to do this procedure when:
206 a. You change the driver's major number. Please refer the "3.7"
207 section.
208 b. Your total installed MOXA boards number is changed. Maybe you
209 add/delete one MOXA board.
210 c. You want to change the tty name. This needs to modify the
211 shell script "msmknod"
212
213 The procedure is:
214 # cd /moxa/mxser/driver
215 # ./msmknod
216
217 This shell script will require the major number for dial-in
218 device and callout device to create tty device. You also need
219 to specify the total installed MOXA board number. Default major
220 numbers for dial-in device and callout device are 30, 35. If
221 you need to change to other number, please refer section "3.7"
222 for more detailed procedure.
223 Msmknod will delete any special files occupying the same device
224 naming.
225
226 3.4.2 Build the MOXA driver and utilities
227 Before using the MOXA driver and utilities, you need compile the
228 all the source code. This step is only need to be executed once.
229 But you still re-compile the source code if you modify the source
230 code. For example, if you change the driver's major number (see
231 "3.7" section), then you need to do this step again.
232
233 Find "Makefile" in /moxa/mxser, then run
234
235 # make clean; make install
236
237 !!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!
238 For Red Hat 9, Red Hat Enterprise Linux AS3/ES3/WS3 & Fedora Core1:
239 # make clean; make installsp1
240
241 For Red Hat Enterprise Linux AS4/ES4/WS4:
242 # make clean; make installsp2
243 !!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!
147 244
148 The driver files "mxser.o" and utilities will be properly compiled 245 The driver files "mxser.o" and utilities will be properly compiled
149 and copied to system directories respectively.Then run 246 and copied to system directories respectively.
150 247
151 # insmod mxser 248 ------------- Load MOXA driver--------------------
249 3.4.3 Load the MOXA driver
152 250
153 to activate the modular driver. You may run "lsmod" to check 251 # modprobe mxser <argument>
154 if "mxser.o" is activated.
155 252
156 2. Create special files by executing "msmknod". 253 will activate the module driver. You may run "lsmod" to check
157 # cd /moxa/mxser/driver 254 if "mxser" is activated. If the MOXA board is ISA board, the
158 # ./msmknod 255 <argument> is needed. Please refer to section "3.4.5" for more
256 information.
257
258
259 ------------- Load MOXA driver on boot --------------------
260 3.4.4 For the above description, you may manually execute
261 "modprobe mxser" to activate this driver and run
262 "rmmod mxser" to remove it.
263 However, it's better to have a boot time configuration to
264 eliminate manual operation. Boot time configuration can be
265 achieved by rc file. We offer one "rc.mxser" file to simplify
266 the procedure under "moxa/mxser/driver".
159 267
160 Default major numbers for dial-in device and callout device are 268 But if you use ISA board, please modify the "modprobe ..." command
161 174, 175. Msmknod will delete any special files occupying the same 269 to add the argument (see "3.4.5" section). After modifying the
162 device naming. 270 rc.mxser, please try to execute "/moxa/mxser/driver/rc.mxser"
271 manually to make sure the modification is ok. If any error
272 encountered, please try to modify again. If the modification is
273 completed, follow the below step.
163 274
164 3. Up to now, you may manually execute "insmod mxser" to activate 275 Run following command for setting rc files.
165 this driver and run "rmmod mxser" to remove it. However, it's
166 better to have a boot time configuration to eliminate manual
167 operation.
168 Boot time configuration can be achieved by rc file. Run following
169 command for setting rc files.
170 276
171 # cd /moxa/mxser/driver 277 # cd /moxa/mxser/driver
172 # cp ./rc.mxser /etc/rc.d 278 # cp ./rc.mxser /etc/rc.d
173 # cd /etc/rc.d 279 # cd /etc/rc.d
174 280
175 You may have to modify part of the content in rc.mxser to specify 281 Check "rc.serial" is existed or not. If "rc.serial" doesn't exist,
176 parameters for ISA board. Please refer to rc.mxser for more detail. 282 create it by vi, run "chmod 755 rc.serial" to change the permission.
177 Find "rc.serial". If "rc.serial" doesn't exist, create it by vi. 283 Add "/etc/rc.d/rc.mxser" in last line,
178 Add "rc.mxser" in last line. Next, open rc.local by vi
179 and append following content.
180 284
181 if [ -f /etc/rc.d/rc.serial ]; then 285 Reboot and check if moxa.o activated by "lsmod" command.
182 sh /etc/rc.d/rc.serial
183 fi
184 286
185 4. Reboot and check if mxser.o activated by "lsmod" command. 287 3.4.5. If you'd like to drive Smartio/Industio ISA boards in the system,
186 5. If you'd like to drive Smartio ISA boards in the system, you'll 288 you'll have to add parameter to specify CAP address of given
187 have to add parameter to specify CAP address of given board while 289 board while activating "mxser.o". The format for parameters are
188 activating "mxser.o". The format for parameters are as follows. 290 as follows.
189 291
190 insmod mxser ioaddr=0x???,0x???,0x???,0x??? 292 modprobe mxser ioaddr=0x???,0x???,0x???,0x???
191 | | | | 293 | | | |
192 | | | +- 4th ISA board 294 | | | +- 4th ISA board
193 | | +------ 3rd ISA board 295 | | +------ 3rd ISA board
194 | +------------ 2nd ISA board 296 | +------------ 2nd ISA board
195 +------------------- 1st ISA board 297 +------------------- 1st ISA board
196 298
197 3.4 Static driver configuration 299 3.5 Static driver configuration for Linux kernel 2.4.x and 2.6.x
300
301 Note: To use static driver, you must install the linux kernel
302 source package.
303
304 3.5.1 Backup the built-in driver in the kernel.
305 # cd /usr/src/linux/drivers/char
306 # mv mxser.c mxser.c.old
307
308 For Red Hat 7.x user, you need to create link:
309 # cd /usr/src
310 # ln -s linux-2.4 linux
198 311
199 1. Create link 312 3.5.2 Create link
200 # cd /usr/src/linux/drivers/char 313 # cd /usr/src/linux/drivers/char
201 # ln -s /moxa/mxser/driver/mxser.c mxser.c 314 # ln -s /moxa/mxser/driver/mxser.c mxser.c
202 315
203 2. Add CAP address list for ISA boards 316 3.5.3 Add CAP address list for ISA boards. For PCI boards user,
317 please skip this step.
318
204 In module mode, the CAP address for ISA board is given by 319 In module mode, the CAP address for ISA board is given by
205 parameter. In static driver configuration, you'll have to 320 parameter. In static driver configuration, you'll have to
206 assign it within driver's source code. If you will not 321 assign it within driver's source code. If you will not
@@ -222,73 +337,55 @@ Content
222 static int mxserBoardCAP[] 337 static int mxserBoardCAP[]
223 = {0x280, 0x180, 0x00, 0x00}; 338 = {0x280, 0x180, 0x00, 0x00};
224 339
225 3. Modify tty_io.c 340 3.5.4 Setup kernel configuration
226 # cd /usr/src/linux/drivers/char/
227 # vi tty_io.c
228 Find pty_init(), insert "mxser_init()" as
229 341
230 pty_init(); 342 Configure the kernel:
231 mxser_init();
232 343
233 4. Modify tty.h 344 # cd /usr/src/linux
234 # cd /usr/src/linux/include/linux 345 # make menuconfig
235 # vi tty.h
236 Find extern int tty_init(void), insert "mxser_init()" as
237 346
238 extern int tty_init(void); 347 You will go into a menu-driven system. Please select [Character
239 extern int mxser_init(void); 348 devices][Non-standard serial port support], enable the [Moxa
240 349 SmartIO support] driver with "[*]" for built-in (not "[M]"), then
241 5. Modify Makefile 350 select [Exit] to exit this program.
242 # cd /usr/src/linux/drivers/char
243 # vi Makefile
244 Find L_OBJS := tty_io.o ...... random.o, add
245 "mxser.o" at last of this line as
246 L_OBJS := tty_io.o ....... mxser.o
247 351
248 6. Rebuild kernel 352 3.5.5 Rebuild kernel
249 The following are for Linux kernel rebuilding,for your reference only. 353 The following are for Linux kernel rebuilding, for your
354 reference only.
250 For appropriate details, please refer to the Linux document. 355 For appropriate details, please refer to the Linux document.
251 356
252 If 'lilo' utility is installed, please use 'make zlilo' to rebuild
253 kernel. If 'lilo' is not installed, please follow the following steps.
254
255 a. cd /usr/src/linux 357 a. cd /usr/src/linux
256 b. make clean /* take a few minutes */ 358 b. make clean /* take a few minutes */
257 c. make bzImage /* take probably 10-20 minutes */ 359 c. make dep /* take a few minutes */
258 d. Backup original boot kernel. /* optional step */ 360 d. make bzImage /* take probably 10-20 minutes */
259 e. cp /usr/src/linux/arch/i386/boot/bzImage /boot/vmlinuz 361 e. make install /* copy boot image to correct position */
260 f. Please make sure the boot kernel (vmlinuz) is in the 362 f. Please make sure the boot kernel (vmlinuz) is in the
261 correct position. If you use 'lilo' utility, you should 363 correct position.
262 check /etc/lilo.conf 'image' item specified the path 364 g. If you use 'lilo' utility, you should check /etc/lilo.conf
263 which is the 'vmlinuz' path, or you will load wrong 365 'image' item specified the path which is the 'vmlinuz' path,
264 (or old) boot kernel image (vmlinuz). 366 or you will load wrong (or old) boot kernel image (vmlinuz).
265 g. chmod 400 /vmlinuz 367 After checking /etc/lilo.conf, please run "lilo".
266 h. lilo 368
267 i. rdev -R /vmlinuz 1 369 Note that if the result of "make bzImage" is ERROR, then you have to
268 j. sync 370 go back to Linux configuration Setup. Type "make menuconfig" in
269 371 directory /usr/src/linux.
270 Note that if the result of "make zImage" is ERROR, then you have to 372
271 go back to Linux configuration Setup. Type "make config" in directory 373
272 /usr/src/linux or "setup". 374 3.5.6 Make tty device and special file
273
274 Since system include file, /usr/src/linux/include/linux/interrupt.h,
275 is modified each time the MOXA driver is installed, kernel rebuilding
276 is inevitable. And it takes about 10 to 20 minutes depends on the
277 machine.
278
279 7. Make utility
280 # cd /moxa/mxser/utility
281 # make install
282
283 8. Make special file
284 # cd /moxa/mxser/driver 375 # cd /moxa/mxser/driver
285 # ./msmknod 376 # ./msmknod
286 377
287 9. Reboot 378 3.5.7 Make utility
379 # cd /moxa/mxser/utility
380 # make clean; make install
381
382 3.5.8 Reboot
288 383
289 3.5 Custom configuration 384
385
386 3.6 Custom configuration
290 Although this driver already provides you default configuration, you 387 Although this driver already provides you default configuration, you
291 still can change the device name and major number.The instruction to 388 still can change the device name and major number. The instruction to
292 change these parameters are shown as below. 389 change these parameters are shown as below.
293 390
294 Change Device name 391 Change Device name
@@ -306,33 +403,37 @@ Content
306 2 free major numbers for this driver. There are 3 steps to change 403 2 free major numbers for this driver. There are 3 steps to change
307 major numbers. 404 major numbers.
308 405
309 1. Find free major numbers 406 3.6.1 Find free major numbers
310 In /proc/devices, you may find all the major numbers occupied 407 In /proc/devices, you may find all the major numbers occupied
311 in the system. Please select 2 major numbers that are available. 408 in the system. Please select 2 major numbers that are available.
312 e.g. 40, 45. 409 e.g. 40, 45.
313 2. Create special files 410 3.6.2 Create special files
314 Run /moxa/mxser/driver/msmknod to create special files with 411 Run /moxa/mxser/driver/msmknod to create special files with
315 specified major numbers. 412 specified major numbers.
316 3. Modify driver with new major number 413 3.6.3 Modify driver with new major number
317 Run vi to open /moxa/mxser/driver/mxser.c. Locate the line 414 Run vi to open /moxa/mxser/driver/mxser.c. Locate the line
318 contains "MXSERMAJOR". Change the content as below. 415 contains "MXSERMAJOR". Change the content as below.
319 #define MXSERMAJOR 40 416 #define MXSERMAJOR 40
320 #define MXSERCUMAJOR 45 417 #define MXSERCUMAJOR 45
321 4. Run # make install in /moxa/mxser/driver. 418 3.6.4 Run "make clean; make install" in /moxa/mxser/driver.
322 419
323 3.6 Verify driver installation 420 3.7 Verify driver installation
324 You may refer to /var/log/messages to check the latest status 421 You may refer to /var/log/messages to check the latest status
325 log reported by this driver whenever it's activated. 422 log reported by this driver whenever it's activated.
423
326----------------------------------------------------------------------------- 424-----------------------------------------------------------------------------
3274. Utilities 4254. Utilities
328 There are 3 utilities contained in this driver. They are msdiag, msmon and 426 There are 3 utilities contained in this driver. They are msdiag, msmon and
329 msterm. These 3 utilities are released in form of source code. They should 427 msterm. These 3 utilities are released in form of source code. They should
330 be compiled into executable file and copied into /usr/bin. 428 be compiled into executable file and copied into /usr/bin.
331 429
430 Before using these utilities, please load driver (refer 3.4 & 3.5) and
431 make sure you had run the "msmknod" utility.
432
332 msdiag - Diagnostic 433 msdiag - Diagnostic
333 -------------------- 434 --------------------
334 This utility provides the function to detect what Moxa Smartio multiport 435 This utility provides the function to display what Moxa Smartio/Industio
335 board exists in the system. 436 board found by driver in the system.
336 437
337 msmon - Port Monitoring 438 msmon - Port Monitoring
338 ----------------------- 439 -----------------------
@@ -353,12 +454,13 @@ Content
353 application, for example, sending AT command to a modem connected to the 454 application, for example, sending AT command to a modem connected to the
354 port or used as a terminal for login purpose. Note that this is only a 455 port or used as a terminal for login purpose. Note that this is only a
355 dumb terminal emulation without handling full screen operation. 456 dumb terminal emulation without handling full screen operation.
457
356----------------------------------------------------------------------------- 458-----------------------------------------------------------------------------
3575. Setserial 4595. Setserial
358 460
359 Supported Setserial parameters are listed as below. 461 Supported Setserial parameters are listed as below.
360 462
361 uart set UART type(16450-->disable FIFO, 16550A-->enable FIFO) 463 uart set UART type(16450-->disable FIFO, 16550A-->enable FIFO)
362 close_delay set the amount of time(in 1/100 of a second) that DTR 464 close_delay set the amount of time(in 1/100 of a second) that DTR
363 should be kept low while being closed. 465 should be kept low while being closed.
364 closing_wait set the amount of time(in 1/100 of a second) that the 466 closing_wait set the amount of time(in 1/100 of a second) that the
@@ -366,7 +468,13 @@ Content
366 being closed, before the receiver is disable. 468 being closed, before the receiver is disable.
367 spd_hi Use 57.6kb when the application requests 38.4kb. 469 spd_hi Use 57.6kb when the application requests 38.4kb.
368 spd_vhi Use 115.2kb when the application requests 38.4kb. 470 spd_vhi Use 115.2kb when the application requests 38.4kb.
471 spd_shi Use 230.4kb when the application requests 38.4kb.
472 spd_warp Use 460.8kb when the application requests 38.4kb.
369 spd_normal Use 38.4kb when the application requests 38.4kb. 473 spd_normal Use 38.4kb when the application requests 38.4kb.
474 spd_cust Use the custom divisor to set the speed when the
475 application requests 38.4kb.
476 divisor This option set the custom divison.
477 baud_base This option set the base baud rate.
370 478
371----------------------------------------------------------------------------- 479-----------------------------------------------------------------------------
3726. Troubleshooting 4806. Troubleshooting
@@ -375,8 +483,9 @@ Content
375 possible. If all the possible solutions fail, please contact our technical 483 possible. If all the possible solutions fail, please contact our technical
376 support team to get more help. 484 support team to get more help.
377 485
378 Error msg: More than 4 Moxa Smartio family boards found. Fifth board and 486
379 after are ignored. 487 Error msg: More than 4 Moxa Smartio/Industio family boards found. Fifth board
488 and after are ignored.
380 Solution: 489 Solution:
381 To avoid this problem, please unplug fifth and after board, because Moxa 490 To avoid this problem, please unplug fifth and after board, because Moxa
382 driver supports up to 4 boards. 491 driver supports up to 4 boards.
@@ -384,7 +493,7 @@ Content
384 Error msg: Request_irq fail, IRQ(?) may be conflict with another device. 493 Error msg: Request_irq fail, IRQ(?) may be conflict with another device.
385 Solution: 494 Solution:
386 Other PCI or ISA devices occupy the assigned IRQ. If you are not sure 495 Other PCI or ISA devices occupy the assigned IRQ. If you are not sure
387 which device causes the situation,please check /proc/interrupts to find 496 which device causes the situation, please check /proc/interrupts to find
388 free IRQ and simply change another free IRQ for Moxa board. 497 free IRQ and simply change another free IRQ for Moxa board.
389 498
390 Error msg: Board #: C1xx Series(CAP=xxx) interrupt number invalid. 499 Error msg: Board #: C1xx Series(CAP=xxx) interrupt number invalid.
@@ -397,15 +506,18 @@ Content
397 Moxa ISA board needs an interrupt vector.Please refer to user's manual 506 Moxa ISA board needs an interrupt vector.Please refer to user's manual
398 "Hardware Installation" chapter to set interrupt vector. 507 "Hardware Installation" chapter to set interrupt vector.
399 508
400 Error msg: Couldn't install MOXA Smartio family driver! 509 Error msg: Couldn't install MOXA Smartio/Industio family driver!
401 Solution: 510 Solution:
402 Load Moxa driver fail, the major number may conflict with other devices. 511 Load Moxa driver fail, the major number may conflict with other devices.
403 Please refer to previous section 3.5 to change a free major number for 512 Please refer to previous section 3.7 to change a free major number for
404 Moxa driver. 513 Moxa driver.
405 514
406 Error msg: Couldn't install MOXA Smartio family callout driver! 515 Error msg: Couldn't install MOXA Smartio/Industio family callout driver!
407 Solution: 516 Solution:
408 Load Moxa callout driver fail, the callout device major number may 517 Load Moxa callout driver fail, the callout device major number may
409 conflict with other devices. Please refer to previous section 3.5 to 518 conflict with other devices. Please refer to previous section 3.7 to
410 change a free callout device major number for Moxa driver. 519 change a free callout device major number for Moxa driver.
520
521
411----------------------------------------------------------------------------- 522-----------------------------------------------------------------------------
523
diff --git a/Documentation/networking/Makefile b/Documentation/networking/Makefile
new file mode 100644
index 000000000000..6d8af1ac56c4
--- /dev/null
+++ b/Documentation/networking/Makefile
@@ -0,0 +1,8 @@
1# kbuild trick to avoid linker error. Can be omitted if a module is built.
2obj- := dummy.o
3
4# List of programs to build
5hostprogs-y := ifenslave
6
7# Tell kbuild to always build the programs
8always := $(hostprogs-y)
diff --git a/Documentation/networking/bonding.txt b/Documentation/networking/bonding.txt
index 7fa7fe71d7a8..688dfe1e6b70 100644
--- a/Documentation/networking/bonding.txt
+++ b/Documentation/networking/bonding.txt
@@ -631,7 +631,7 @@ xmit_hash_policy
631 in environments where a layer3 gateway device is 631 in environments where a layer3 gateway device is
632 required to reach most destinations. 632 required to reach most destinations.
633 633
634 This algorithm is 802.3ad complient. 634 This algorithm is 802.3ad compliant.
635 635
636 layer3+4 636 layer3+4
637 637
diff --git a/Documentation/networking/can.txt b/Documentation/networking/can.txt
index 641d2afacffa..297ba7b1ccaf 100644
--- a/Documentation/networking/can.txt
+++ b/Documentation/networking/can.txt
@@ -186,7 +186,7 @@ solution for a couple of reasons:
186 186
187 The Linux network devices (by default) just can handle the 187 The Linux network devices (by default) just can handle the
188 transmission and reception of media dependent frames. Due to the 188 transmission and reception of media dependent frames. Due to the
189 arbritration on the CAN bus the transmission of a low prio CAN-ID 189 arbitration on the CAN bus the transmission of a low prio CAN-ID
190 may be delayed by the reception of a high prio CAN frame. To 190 may be delayed by the reception of a high prio CAN frame. To
191 reflect the correct* traffic on the node the loopback of the sent 191 reflect the correct* traffic on the node the loopback of the sent
192 data has to be performed right after a successful transmission. If 192 data has to be performed right after a successful transmission. If
@@ -481,7 +481,7 @@ solution for a couple of reasons:
481 - stats_timer: To calculate the Socket CAN core statistics 481 - stats_timer: To calculate the Socket CAN core statistics
482 (e.g. current/maximum frames per second) this 1 second timer is 482 (e.g. current/maximum frames per second) this 1 second timer is
483 invoked at can.ko module start time by default. This timer can be 483 invoked at can.ko module start time by default. This timer can be
484 disabled by using stattimer=0 on the module comandline. 484 disabled by using stattimer=0 on the module commandline.
485 485
486 - debug: (removed since SocketCAN SVN r546) 486 - debug: (removed since SocketCAN SVN r546)
487 487
diff --git a/Documentation/networking/ifenslave.c b/Documentation/networking/ifenslave.c
index a12059886755..1b96ccda3836 100644
--- a/Documentation/networking/ifenslave.c
+++ b/Documentation/networking/ifenslave.c
@@ -1081,7 +1081,7 @@ static int set_if_addr(char *master_ifname, char *slave_ifname)
1081 1081
1082 } 1082 }
1083 1083
1084 ipaddr = ifr.ifr_addr.sa_data; 1084 ipaddr = (unsigned char *)ifr.ifr_addr.sa_data;
1085 v_print("Interface '%s': set IP %s to %d.%d.%d.%d\n", 1085 v_print("Interface '%s': set IP %s to %d.%d.%d.%d\n",
1086 slave_ifname, ifra[i].desc, 1086 slave_ifname, ifra[i].desc,
1087 ipaddr[0], ipaddr[1], ipaddr[2], ipaddr[3]); 1087 ipaddr[0], ipaddr[1], ipaddr[2], ipaddr[3]);
diff --git a/Documentation/networking/packet_mmap.txt b/Documentation/networking/packet_mmap.txt
index db0cd5169581..07c53d596035 100644
--- a/Documentation/networking/packet_mmap.txt
+++ b/Documentation/networking/packet_mmap.txt
@@ -326,7 +326,7 @@ just one call to mmap is needed:
326 mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); 326 mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
327 327
328If tp_frame_size is a divisor of tp_block_size frames will be 328If tp_frame_size is a divisor of tp_block_size frames will be
329contiguosly spaced by tp_frame_size bytes. If not, each 329contiguously spaced by tp_frame_size bytes. If not, each
330tp_block_size/tp_frame_size frames there will be a gap between 330tp_block_size/tp_frame_size frames there will be a gap between
331the frames. This is because a frame cannot be spawn across two 331the frames. This is because a frame cannot be spawn across two
332blocks. 332blocks.
diff --git a/Documentation/networking/tc-actions-env-rules.txt b/Documentation/networking/tc-actions-env-rules.txt
index 01e716d185f4..dcadf6f88e34 100644
--- a/Documentation/networking/tc-actions-env-rules.txt
+++ b/Documentation/networking/tc-actions-env-rules.txt
@@ -4,26 +4,27 @@ The "enviromental" rules for authors of any new tc actions are:
41) If you stealeth or borroweth any packet thou shalt be branching 41) If you stealeth or borroweth any packet thou shalt be branching
5from the righteous path and thou shalt cloneth. 5from the righteous path and thou shalt cloneth.
6 6
7For example if your action queues a packet to be processed later 7For example if your action queues a packet to be processed later,
8or intentionaly branches by redirecting a packet then you need to 8or intentionally branches by redirecting a packet, then you need to
9clone the packet. 9clone the packet.
10
10There are certain fields in the skb tc_verd that need to be reset so we 11There are certain fields in the skb tc_verd that need to be reset so we
11avoid loops etc. A few are generic enough so much so that skb_act_clone() 12avoid loops, etc. A few are generic enough that skb_act_clone()
12resets them for you. So invoke skb_act_clone() rather than skb_clone() 13resets them for you, so invoke skb_act_clone() rather than skb_clone().
13 14
142) If you munge any packet thou shalt call pskb_expand_head in the case 152) If you munge any packet thou shalt call pskb_expand_head in the case
15someone else is referencing the skb. After that you "own" the skb. 16someone else is referencing the skb. After that you "own" the skb.
16You must also tell us if it is ok to munge the packet (TC_OK2MUNGE), 17You must also tell us if it is ok to munge the packet (TC_OK2MUNGE),
17this way any action downstream can stomp on the packet. 18this way any action downstream can stomp on the packet.
18 19
193) dropping packets you dont own is a nono. You simply return 203) Dropping packets you don't own is a no-no. You simply return
20TC_ACT_SHOT to the caller and they will drop it. 21TC_ACT_SHOT to the caller and they will drop it.
21 22
22The "enviromental" rules for callers of actions (qdiscs etc) are: 23The "enviromental" rules for callers of actions (qdiscs etc) are:
23 24
24*) thou art responsible for freeing anything returned as being 25*) Thou art responsible for freeing anything returned as being
25TC_ACT_SHOT/STOLEN/QUEUED. If none of TC_ACT_SHOT/STOLEN/QUEUED is 26TC_ACT_SHOT/STOLEN/QUEUED. If none of TC_ACT_SHOT/STOLEN/QUEUED is
26returned then all is great and you dont need to do anything. 27returned, then all is great and you don't need to do anything.
27 28
28Post on netdev if something is unclear. 29Post on netdev if something is unclear.
29 30
diff --git a/Documentation/pcmcia/Makefile b/Documentation/pcmcia/Makefile
new file mode 100644
index 000000000000..accde871ae77
--- /dev/null
+++ b/Documentation/pcmcia/Makefile
@@ -0,0 +1,10 @@
1# kbuild trick to avoid linker error. Can be omitted if a module is built.
2obj- := dummy.o
3
4# List of programs to build
5hostprogs-y := crc32hash
6
7# Tell kbuild to always build the programs
8always := $(hostprogs-y)
9
10HOSTCFLAGS_crc32hash.o += -I$(objtree)/usr/include
diff --git a/Documentation/pcmcia/crc32hash.c b/Documentation/pcmcia/crc32hash.c
index cbc36d299af8..4210e5abab8a 100644
--- a/Documentation/pcmcia/crc32hash.c
+++ b/Documentation/pcmcia/crc32hash.c
@@ -26,7 +26,7 @@ int main(int argc, char **argv) {
26 printf("no string passed as argument\n"); 26 printf("no string passed as argument\n");
27 return -1; 27 return -1;
28 } 28 }
29 result = crc32(argv[1], strlen(argv[1])); 29 result = crc32((unsigned char const *)argv[1], strlen(argv[1]));
30 printf("0x%x\n", result); 30 printf("0x%x\n", result);
31 return 0; 31 return 0;
32} 32}
diff --git a/Documentation/power/00-INDEX b/Documentation/power/00-INDEX
index a55d7f1c836d..fb742c213c9e 100644
--- a/Documentation/power/00-INDEX
+++ b/Documentation/power/00-INDEX
@@ -1,5 +1,7 @@
100-INDEX 100-INDEX
2 - This file 2 - This file
3apm-acpi.txt
4 - basic info about the APM and ACPI support.
3basic-pm-debugging.txt 5basic-pm-debugging.txt
4 - Debugging suspend and resume 6 - Debugging suspend and resume
5devices.txt 7devices.txt
@@ -14,8 +16,6 @@ notifiers.txt
14 - Registering suspend notifiers in device drivers 16 - Registering suspend notifiers in device drivers
15pci.txt 17pci.txt
16 - How the PCI Subsystem Does Power Management 18 - How the PCI Subsystem Does Power Management
17pm.txt
18 - info on Linux power management support.
19pm_qos_interface.txt 19pm_qos_interface.txt
20 - info on Linux PM Quality of Service interface 20 - info on Linux PM Quality of Service interface
21power_supply_class.txt 21power_supply_class.txt
diff --git a/Documentation/power/apm-acpi.txt b/Documentation/power/apm-acpi.txt
new file mode 100644
index 000000000000..1bd799dc17e8
--- /dev/null
+++ b/Documentation/power/apm-acpi.txt
@@ -0,0 +1,32 @@
1APM or ACPI?
2------------
3If you have a relatively recent x86 mobile, desktop, or server system,
4odds are it supports either Advanced Power Management (APM) or
5Advanced Configuration and Power Interface (ACPI). ACPI is the newer
6of the two technologies and puts power management in the hands of the
7operating system, allowing for more intelligent power management than
8is possible with BIOS controlled APM.
9
10The best way to determine which, if either, your system supports is to
11build a kernel with both ACPI and APM enabled (as of 2.3.x ACPI is
12enabled by default). If a working ACPI implementation is found, the
13ACPI driver will override and disable APM, otherwise the APM driver
14will be used.
15
16No, sorry, you cannot have both ACPI and APM enabled and running at
17once. Some people with broken ACPI or broken APM implementations
18would like to use both to get a full set of working features, but you
19simply cannot mix and match the two. Only one power management
20interface can be in control of the machine at once. Think about it..
21
22User-space Daemons
23------------------
24Both APM and ACPI rely on user-space daemons, apmd and acpid
25respectively, to be completely functional. Obtain both of these
26daemons from your Linux distribution or from the Internet (see below)
27and be sure that they are started sometime in the system boot process.
28Go ahead and start both. If ACPI or APM is not available on your
29system the associated daemon will exit gracefully.
30
31 apmd: http://worldvisions.ca/~apenwarr/apmd/
32 acpid: http://acpid.sf.net/
diff --git a/Documentation/power/pm.txt b/Documentation/power/pm.txt
deleted file mode 100644
index be841507e43f..000000000000
--- a/Documentation/power/pm.txt
+++ /dev/null
@@ -1,257 +0,0 @@
1 Linux Power Management Support
2
3This document briefly describes how to use power management with your
4Linux system and how to add power management support to Linux drivers.
5
6APM or ACPI?
7------------
8If you have a relatively recent x86 mobile, desktop, or server system,
9odds are it supports either Advanced Power Management (APM) or
10Advanced Configuration and Power Interface (ACPI). ACPI is the newer
11of the two technologies and puts power management in the hands of the
12operating system, allowing for more intelligent power management than
13is possible with BIOS controlled APM.
14
15The best way to determine which, if either, your system supports is to
16build a kernel with both ACPI and APM enabled (as of 2.3.x ACPI is
17enabled by default). If a working ACPI implementation is found, the
18ACPI driver will override and disable APM, otherwise the APM driver
19will be used.
20
21No, sorry, you cannot have both ACPI and APM enabled and running at
22once. Some people with broken ACPI or broken APM implementations
23would like to use both to get a full set of working features, but you
24simply cannot mix and match the two. Only one power management
25interface can be in control of the machine at once. Think about it..
26
27User-space Daemons
28------------------
29Both APM and ACPI rely on user-space daemons, apmd and acpid
30respectively, to be completely functional. Obtain both of these
31daemons from your Linux distribution or from the Internet (see below)
32and be sure that they are started sometime in the system boot process.
33Go ahead and start both. If ACPI or APM is not available on your
34system the associated daemon will exit gracefully.
35
36 apmd: http://worldvisions.ca/~apenwarr/apmd/
37 acpid: http://acpid.sf.net/
38
39Driver Interface -- OBSOLETE, DO NOT USE!
40----------------*************************
41
42Note: pm_register(), pm_access(), pm_dev_idle() and friends are
43obsolete. Please do not use them. Instead you should properly hook
44your driver into the driver model, and use its suspend()/resume()
45callbacks to do this kind of stuff.
46
47If you are writing a new driver or maintaining an old driver, it
48should include power management support. Without power management
49support, a single driver may prevent a system with power management
50capabilities from ever being able to suspend (safely).
51
52Overview:
531) Register each instance of a device with "pm_register"
542) Call "pm_access" before accessing the hardware.
55 (this will ensure that the hardware is awake and ready)
563) Your "pm_callback" is called before going into a
57 suspend state (ACPI D1-D3) or after resuming (ACPI D0)
58 from a suspend.
594) Call "pm_dev_idle" when the device is not being used
60 (optional but will improve device idle detection)
615) When unloaded, unregister the device with "pm_unregister"
62
63/*
64 * Description: Register a device with the power-management subsystem
65 *
66 * Parameters:
67 * type - device type (PCI device, system device, ...)
68 * id - instance number or unique identifier
69 * cback - request handler callback (suspend, resume, ...)
70 *
71 * Returns: Registered PM device or NULL on error
72 *
73 * Examples:
74 * dev = pm_register(PM_SYS_DEV, PM_SYS_VGA, vga_callback);
75 *
76 * struct pci_dev *pci_dev = pci_find_dev(...);
77 * dev = pm_register(PM_PCI_DEV, PM_PCI_ID(pci_dev), callback);
78 */
79struct pm_dev *pm_register(pm_dev_t type, unsigned long id, pm_callback cback);
80
81/*
82 * Description: Unregister a device with the power management subsystem
83 *
84 * Parameters:
85 * dev - PM device previously returned from pm_register
86 */
87void pm_unregister(struct pm_dev *dev);
88
89/*
90 * Description: Unregister all devices with a matching callback function
91 *
92 * Parameters:
93 * cback - previously registered request callback
94 *
95 * Notes: Provided for easier porting from old APM interface
96 */
97void pm_unregister_all(pm_callback cback);
98
99/*
100 * Power management request callback
101 *
102 * Parameters:
103 * dev - PM device previously returned from pm_register
104 * rqst - request type
105 * data - data, if any, associated with the request
106 *
107 * Returns: 0 if the request is successful
108 * EINVAL if the request is not supported
109 * EBUSY if the device is now busy and cannot handle the request
110 * ENOMEM if the device was unable to handle the request due to memory
111 *
112 * Details: The device request callback will be called before the
113 * device/system enters a suspend state (ACPI D1-D3) or
114 * or after the device/system resumes from suspend (ACPI D0).
115 * For PM_SUSPEND, the ACPI D-state being entered is passed
116 * as the "data" argument to the callback. The device
117 * driver should save (PM_SUSPEND) or restore (PM_RESUME)
118 * device context when the request callback is called.
119 *
120 * Once a driver returns 0 (success) from a suspend
121 * request, it should not process any further requests or
122 * access the device hardware until a call to "pm_access" is made.
123 */
124typedef int (*pm_callback)(struct pm_dev *dev, pm_request_t rqst, void *data);
125
126Driver Details
127--------------
128This is just a quick Q&A as a stopgap until a real driver writers'
129power management guide is available.
130
131Q: When is a device suspended?
132
133Devices can be suspended based on direct user request (eg. laptop lid
134closes), system power policy (eg. sleep after 30 minutes of console
135inactivity), or device power policy (eg. power down device after 5
136minutes of inactivity)
137
138Q: Must a driver honor a suspend request?
139
140No, a driver can return -EBUSY from a suspend request and this
141will stop the system from suspending. When a suspend request
142fails, all suspended devices are resumed and the system continues
143to run. Suspend can be retried at a later time.
144
145Q: Can the driver block suspend/resume requests?
146
147Yes, a driver can delay its return from a suspend or resume
148request until the device is ready to handle requests. It
149is advantageous to return as quickly as possible from a
150request as suspend/resume are done serially.
151
152Q: What context is a suspend/resume initiated from?
153
154A suspend or resume is initiated from a kernel thread context.
155It is safe to block, allocate memory, initiate requests
156or anything else you can do within the kernel.
157
158Q: Will requests continue to arrive after a suspend?
159
160Possibly. It is the driver's responsibility to queue(*),
161fail, or drop any requests that arrive after returning
162success to a suspend request. It is important that the
163driver not access its device until after it receives
164a resume request as the device's bus may no longer
165be active.
166
167(*) If a driver queues requests for processing after
168 resume be aware that the device, network, etc.
169 might be in a different state than at suspend time.
170 It's probably better to drop requests unless
171 the driver is a storage device.
172
173Q: Do I have to manage bus-specific power management registers
174
175No. It is the responsibility of the bus driver to manage
176PCI, USB, etc. power management registers. The bus driver
177or the power management subsystem will also enable any
178wake-on functionality that the device has.
179
180Q: So, really, what do I need to do to support suspend/resume?
181
182You need to save any device context that would
183be lost if the device was powered off and then restore
184it at resume time. When ACPI is active, there are
185three levels of device suspend states; D1, D2, and D3.
186(The suspend state is passed as the "data" argument
187to the device callback.) With D3, the device is powered
188off and loses all context, D1 and D2 are shallower power
189states and require less device context to be saved. To
190play it safe, just save everything at suspend and restore
191everything at resume.
192
193Q: Where do I store device context for suspend?
194
195Anywhere in memory, kmalloc a buffer or store it
196in the device descriptor. You are guaranteed that the
197contents of memory will be restored and accessible
198before resume, even when the system suspends to disk.
199
200Q: What do I need to do for ACPI vs. APM vs. etc?
201
202Drivers need not be aware of the specific power management
203technology that is active. They just need to be aware
204of when the overlying power management system requests
205that they suspend or resume.
206
207Q: What about device dependencies?
208
209When a driver registers a device, the power management
210subsystem uses the information provided to build a
211tree of device dependencies (eg. USB device X is on
212USB controller Y which is on PCI bus Z) When power
213management wants to suspend a device, it first sends
214a suspend request to its driver, then the bus driver,
215and so on up to the system bus. Device resumes
216proceed in the opposite direction.
217
218Q: Who do I contact for additional information about
219 enabling power management for my specific driver/device?
220
221ACPI Development mailing list: linux-acpi@vger.kernel.org
222
223System Interface -- OBSOLETE, DO NOT USE!
224----------------*************************
225If you are providing new power management support to Linux (ie.
226adding support for something like APM or ACPI), you should
227communicate with drivers through the existing generic power
228management interface.
229
230/*
231 * Send a request to all devices
232 *
233 * Parameters:
234 * rqst - request type
235 * data - data, if any, associated with the request
236 *
237 * Returns: 0 if the request is successful
238 * See "pm_callback" return for errors
239 *
240 * Details: Walk list of registered devices and call pm_send
241 * for each until complete or an error is encountered.
242 * If an error is encountered for a suspend request,
243 * return all devices to the state they were in before
244 * the suspend request.
245 */
246int pm_send_all(pm_request_t rqst, void *data);
247
248/*
249 * Find a matching device
250 *
251 * Parameters:
252 * type - device type (PCI device, system device, or 0 to match all devices)
253 * from - previous match or NULL to start from the beginning
254 *
255 * Returns: Matching device or NULL if none found
256 */
257struct pm_dev *pm_find(pm_dev_t type, struct pm_dev *from);
diff --git a/Documentation/power/pm_qos_interface.txt b/Documentation/power/pm_qos_interface.txt
index 49adb1a33514..c40866e8b957 100644
--- a/Documentation/power/pm_qos_interface.txt
+++ b/Documentation/power/pm_qos_interface.txt
@@ -1,4 +1,4 @@
1PM quality of Service interface. 1PM Quality Of Service Interface.
2 2
3This interface provides a kernel and user mode interface for registering 3This interface provides a kernel and user mode interface for registering
4performance expectations by drivers, subsystems and user space applications on 4performance expectations by drivers, subsystems and user space applications on
@@ -7,6 +7,11 @@ one of the parameters.
7Currently we have {cpu_dma_latency, network_latency, network_throughput} as the 7Currently we have {cpu_dma_latency, network_latency, network_throughput} as the
8initial set of pm_qos parameters. 8initial set of pm_qos parameters.
9 9
10Each parameters have defined units:
11 * latency: usec
12 * timeout: usec
13 * throughput: kbs (kilo bit / sec)
14
10The infrastructure exposes multiple misc device nodes one per implemented 15The infrastructure exposes multiple misc device nodes one per implemented
11parameter. The set of parameters implement is defined by pm_qos_power_init() 16parameter. The set of parameters implement is defined by pm_qos_power_init()
12and pm_qos_params.h. This is done because having the available parameters 17and pm_qos_params.h. This is done because having the available parameters
diff --git a/Documentation/power/power_supply_class.txt b/Documentation/power/power_supply_class.txt
index a8686e5a6857..c6cd4956047c 100644
--- a/Documentation/power/power_supply_class.txt
+++ b/Documentation/power/power_supply_class.txt
@@ -101,6 +101,10 @@ of charge when battery became full/empty". It also could mean "value of
101charge when battery considered full/empty at given conditions (temperature, 101charge when battery considered full/empty at given conditions (temperature,
102age)". I.e. these attributes represents real thresholds, not design values. 102age)". I.e. these attributes represents real thresholds, not design values.
103 103
104CHARGE_COUNTER - the current charge counter (in µAh). This could easily
105be negative; there is no empty or full value. It is only useful for
106relative, time-based measurements.
107
104ENERGY_FULL, ENERGY_EMPTY - same as above but for energy. 108ENERGY_FULL, ENERGY_EMPTY - same as above but for energy.
105 109
106CAPACITY - capacity in percents. 110CAPACITY - capacity in percents.
diff --git a/Documentation/power/regulator/consumer.txt b/Documentation/power/regulator/consumer.txt
new file mode 100644
index 000000000000..82b7a43aadba
--- /dev/null
+++ b/Documentation/power/regulator/consumer.txt
@@ -0,0 +1,182 @@
1Regulator Consumer Driver Interface
2===================================
3
4This text describes the regulator interface for consumer device drivers.
5Please see overview.txt for a description of the terms used in this text.
6
7
81. Consumer Regulator Access (static & dynamic drivers)
9=======================================================
10
11A consumer driver can get access to it's supply regulator by calling :-
12
13regulator = regulator_get(dev, "Vcc");
14
15The consumer passes in it's struct device pointer and power supply ID. The core
16then finds the correct regulator by consulting a machine specific lookup table.
17If the lookup is successful then this call will return a pointer to the struct
18regulator that supplies this consumer.
19
20To release the regulator the consumer driver should call :-
21
22regulator_put(regulator);
23
24Consumers can be supplied by more than one regulator e.g. codec consumer with
25analog and digital supplies :-
26
27digital = regulator_get(dev, "Vcc"); /* digital core */
28analog = regulator_get(dev, "Avdd"); /* analog */
29
30The regulator access functions regulator_get() and regulator_put() will
31usually be called in your device drivers probe() and remove() respectively.
32
33
342. Regulator Output Enable & Disable (static & dynamic drivers)
35====================================================================
36
37A consumer can enable it's power supply by calling:-
38
39int regulator_enable(regulator);
40
41NOTE: The supply may already be enabled before regulator_enabled() is called.
42This may happen if the consumer shares the regulator or the regulator has been
43previously enabled by bootloader or kernel board initialization code.
44
45A consumer can determine if a regulator is enabled by calling :-
46
47int regulator_is_enabled(regulator);
48
49This will return > zero when the regulator is enabled.
50
51
52A consumer can disable it's supply when no longer needed by calling :-
53
54int regulator_disable(regulator);
55
56NOTE: This may not disable the supply if it's shared with other consumers. The
57regulator will only be disabled when the enabled reference count is zero.
58
59Finally, a regulator can be forcefully disabled in the case of an emergency :-
60
61int regulator_force_disable(regulator);
62
63NOTE: this will immediately and forcefully shutdown the regulator output. All
64consumers will be powered off.
65
66
673. Regulator Voltage Control & Status (dynamic drivers)
68======================================================
69
70Some consumer drivers need to be able to dynamically change their supply
71voltage to match system operating points. e.g. CPUfreq drivers can scale
72voltage along with frequency to save power, SD drivers may need to select the
73correct card voltage, etc.
74
75Consumers can control their supply voltage by calling :-
76
77int regulator_set_voltage(regulator, min_uV, max_uV);
78
79Where min_uV and max_uV are the minimum and maximum acceptable voltages in
80microvolts.
81
82NOTE: this can be called when the regulator is enabled or disabled. If called
83when enabled, then the voltage changes instantly, otherwise the voltage
84configuration changes and the voltage is physically set when the regulator is
85next enabled.
86
87The regulators configured voltage output can be found by calling :-
88
89int regulator_get_voltage(regulator);
90
91NOTE: get_voltage() will return the configured output voltage whether the
92regulator is enabled or disabled and should NOT be used to determine regulator
93output state. However this can be used in conjunction with is_enabled() to
94determine the regulator physical output voltage.
95
96
974. Regulator Current Limit Control & Status (dynamic drivers)
98===========================================================
99
100Some consumer drivers need to be able to dynamically change their supply
101current limit to match system operating points. e.g. LCD backlight driver can
102change the current limit to vary the backlight brightness, USB drivers may want
103to set the limit to 500mA when supplying power.
104
105Consumers can control their supply current limit by calling :-
106
107int regulator_set_current_limit(regulator, min_uV, max_uV);
108
109Where min_uA and max_uA are the minimum and maximum acceptable current limit in
110microamps.
111
112NOTE: this can be called when the regulator is enabled or disabled. If called
113when enabled, then the current limit changes instantly, otherwise the current
114limit configuration changes and the current limit is physically set when the
115regulator is next enabled.
116
117A regulators current limit can be found by calling :-
118
119int regulator_get_current_limit(regulator);
120
121NOTE: get_current_limit() will return the current limit whether the regulator
122is enabled or disabled and should not be used to determine regulator current
123load.
124
125
1265. Regulator Operating Mode Control & Status (dynamic drivers)
127=============================================================
128
129Some consumers can further save system power by changing the operating mode of
130their supply regulator to be more efficient when the consumers operating state
131changes. e.g. consumer driver is idle and subsequently draws less current
132
133Regulator operating mode can be changed indirectly or directly.
134
135Indirect operating mode control.
136--------------------------------
137Consumer drivers can request a change in their supply regulator operating mode
138by calling :-
139
140int regulator_set_optimum_mode(struct regulator *regulator, int load_uA);
141
142This will cause the core to recalculate the total load on the regulator (based
143on all it's consumers) and change operating mode (if necessary and permitted)
144to best match the current operating load.
145
146The load_uA value can be determined from the consumers datasheet. e.g.most
147datasheets have tables showing the max current consumed in certain situations.
148
149Most consumers will use indirect operating mode control since they have no
150knowledge of the regulator or whether the regulator is shared with other
151consumers.
152
153Direct operating mode control.
154------------------------------
155Bespoke or tightly coupled drivers may want to directly control regulator
156operating mode depending on their operating point. This can be achieved by
157calling :-
158
159int regulator_set_mode(struct regulator *regulator, unsigned int mode);
160unsigned int regulator_get_mode(struct regulator *regulator);
161
162Direct mode will only be used by consumers that *know* about the regulator and
163are not sharing the regulator with other consumers.
164
165
1666. Regulator Events
167===================
168Regulators can notify consumers of external events. Events could be received by
169consumers under regulator stress or failure conditions.
170
171Consumers can register interest in regulator events by calling :-
172
173int regulator_register_notifier(struct regulator *regulator,
174 struct notifier_block *nb);
175
176Consumers can uregister interest by calling :-
177
178int regulator_unregister_notifier(struct regulator *regulator,
179 struct notifier_block *nb);
180
181Regulators use the kernel notifier framework to send event to thier interested
182consumers.
diff --git a/Documentation/power/regulator/machine.txt b/Documentation/power/regulator/machine.txt
new file mode 100644
index 000000000000..c9a35665cf70
--- /dev/null
+++ b/Documentation/power/regulator/machine.txt
@@ -0,0 +1,101 @@
1Regulator Machine Driver Interface
2===================================
3
4The regulator machine driver interface is intended for board/machine specific
5initialisation code to configure the regulator subsystem. Typical things that
6machine drivers would do are :-
7
8 1. Regulator -> Device mapping.
9 2. Regulator supply configuration.
10 3. Power Domain constraint setting.
11
12
13
141. Regulator -> device mapping
15==============================
16Consider the following machine :-
17
18 Regulator-1 -+-> Regulator-2 --> [Consumer A @ 1.8 - 2.0V]
19 |
20 +-> [Consumer B @ 3.3V]
21
22The drivers for consumers A & B must be mapped to the correct regulator in
23order to control their power supply. This mapping can be achieved in machine
24initialisation code by calling :-
25
26int regulator_set_device_supply(const char *regulator, struct device *dev,
27 const char *supply);
28
29and is shown with the following code :-
30
31regulator_set_device_supply("Regulator-1", devB, "Vcc");
32regulator_set_device_supply("Regulator-2", devA, "Vcc");
33
34This maps Regulator-1 to the 'Vcc' supply for Consumer B and maps Regulator-2
35to the 'Vcc' supply for Consumer A.
36
37
382. Regulator supply configuration.
39==================================
40Consider the following machine (again) :-
41
42 Regulator-1 -+-> Regulator-2 --> [Consumer A @ 1.8 - 2.0V]
43 |
44 +-> [Consumer B @ 3.3V]
45
46Regulator-1 supplies power to Regulator-2. This relationship must be registered
47with the core so that Regulator-1 is also enabled when Consumer A enables it's
48supply (Regulator-2).
49
50This relationship can be register with the core via :-
51
52int regulator_set_supply(const char *regulator, const char *regulator_supply);
53
54In this example we would use the following code :-
55
56regulator_set_supply("Regulator-2", "Regulator-1");
57
58Relationships can be queried by calling :-
59
60const char *regulator_get_supply(const char *regulator);
61
62
633. Power Domain constraint setting.
64===================================
65Each power domain within a system has physical constraints on voltage and
66current. This must be defined in software so that the power domain is always
67operated within specifications.
68
69Consider the following machine (again) :-
70
71 Regulator-1 -+-> Regulator-2 --> [Consumer A @ 1.8 - 2.0V]
72 |
73 +-> [Consumer B @ 3.3V]
74
75This gives us two regulators and two power domains:
76
77 Domain 1: Regulator-2, Consumer B.
78 Domain 2: Consumer A.
79
80Constraints can be registered by calling :-
81
82int regulator_set_platform_constraints(const char *regulator,
83 struct regulation_constraints *constraints);
84
85The example is defined as follows :-
86
87struct regulation_constraints domain_1 = {
88 .min_uV = 3300000,
89 .max_uV = 3300000,
90 .valid_modes_mask = REGULATOR_MODE_NORMAL,
91};
92
93struct regulation_constraints domain_2 = {
94 .min_uV = 1800000,
95 .max_uV = 2000000,
96 .valid_ops_mask = REGULATOR_CHANGE_VOLTAGE,
97 .valid_modes_mask = REGULATOR_MODE_NORMAL,
98};
99
100regulator_set_platform_constraints("Regulator-1", &domain_1);
101regulator_set_platform_constraints("Regulator-2", &domain_2);
diff --git a/Documentation/power/regulator/overview.txt b/Documentation/power/regulator/overview.txt
new file mode 100644
index 000000000000..bdcb332bd7fb
--- /dev/null
+++ b/Documentation/power/regulator/overview.txt
@@ -0,0 +1,171 @@
1Linux voltage and current regulator framework
2=============================================
3
4About
5=====
6
7This framework is designed to provide a standard kernel interface to control
8voltage and current regulators.
9
10The intention is to allow systems to dynamically control regulator power output
11in order to save power and prolong battery life. This applies to both voltage
12regulators (where voltage output is controllable) and current sinks (where
13current limit is controllable).
14
15(C) 2008 Wolfson Microelectronics PLC.
16Author: Liam Girdwood <lg@opensource.wolfsonmicro.com>
17
18
19Nomenclature
20============
21
22Some terms used in this document:-
23
24 o Regulator - Electronic device that supplies power to other devices.
25 Most regulators can enable and disable their output whilst
26 some can control their output voltage and or current.
27
28 Input Voltage -> Regulator -> Output Voltage
29
30
31 o PMIC - Power Management IC. An IC that contains numerous regulators
32 and often contains other susbsystems.
33
34
35 o Consumer - Electronic device that is supplied power by a regulator.
36 Consumers can be classified into two types:-
37
38 Static: consumer does not change it's supply voltage or
39 current limit. It only needs to enable or disable it's
40 power supply. It's supply voltage is set by the hardware,
41 bootloader, firmware or kernel board initialisation code.
42
43 Dynamic: consumer needs to change it's supply voltage or
44 current limit to meet operation demands.
45
46
47 o Power Domain - Electronic circuit that is supplied it's input power by the
48 output power of a regulator, switch or by another power
49 domain.
50
51 The supply regulator may be behind a switch(s). i.e.
52
53 Regulator -+-> Switch-1 -+-> Switch-2 --> [Consumer A]
54 | |
55 | +-> [Consumer B], [Consumer C]
56 |
57 +-> [Consumer D], [Consumer E]
58
59 That is one regulator and three power domains:
60
61 Domain 1: Switch-1, Consumers D & E.
62 Domain 2: Switch-2, Consumers B & C.
63 Domain 3: Consumer A.
64
65 and this represents a "supplies" relationship:
66
67 Domain-1 --> Domain-2 --> Domain-3.
68
69 A power domain may have regulators that are supplied power
70 by other regulators. i.e.
71
72 Regulator-1 -+-> Regulator-2 -+-> [Consumer A]
73 |
74 +-> [Consumer B]
75
76 This gives us two regulators and two power domains:
77
78 Domain 1: Regulator-2, Consumer B.
79 Domain 2: Consumer A.
80
81 and a "supplies" relationship:
82
83 Domain-1 --> Domain-2
84
85
86 o Constraints - Constraints are used to define power levels for performance
87 and hardware protection. Constraints exist at three levels:
88
89 Regulator Level: This is defined by the regulator hardware
90 operating parameters and is specified in the regulator
91 datasheet. i.e.
92
93 - voltage output is in the range 800mV -> 3500mV.
94 - regulator current output limit is 20mA @ 5V but is
95 10mA @ 10V.
96
97 Power Domain Level: This is defined in software by kernel
98 level board initialisation code. It is used to constrain a
99 power domain to a particular power range. i.e.
100
101 - Domain-1 voltage is 3300mV
102 - Domain-2 voltage is 1400mV -> 1600mV
103 - Domain-3 current limit is 0mA -> 20mA.
104
105 Consumer Level: This is defined by consumer drivers
106 dynamically setting voltage or current limit levels.
107
108 e.g. a consumer backlight driver asks for a current increase
109 from 5mA to 10mA to increase LCD illumination. This passes
110 to through the levels as follows :-
111
112 Consumer: need to increase LCD brightness. Lookup and
113 request next current mA value in brightness table (the
114 consumer driver could be used on several different
115 personalities based upon the same reference device).
116
117 Power Domain: is the new current limit within the domain
118 operating limits for this domain and system state (e.g.
119 battery power, USB power)
120
121 Regulator Domains: is the new current limit within the
122 regulator operating parameters for input/ouput voltage.
123
124 If the regulator request passes all the constraint tests
125 then the new regulator value is applied.
126
127
128Design
129======
130
131The framework is designed and targeted at SoC based devices but may also be
132relevant to non SoC devices and is split into the following four interfaces:-
133
134
135 1. Consumer driver interface.
136
137 This uses a similar API to the kernel clock interface in that consumer
138 drivers can get and put a regulator (like they can with clocks atm) and
139 get/set voltage, current limit, mode, enable and disable. This should
140 allow consumers complete control over their supply voltage and current
141 limit. This also compiles out if not in use so drivers can be reused in
142 systems with no regulator based power control.
143
144 See Documentation/power/regulator/consumer.txt
145
146 2. Regulator driver interface.
147
148 This allows regulator drivers to register their regulators and provide
149 operations to the core. It also has a notifier call chain for propagating
150 regulator events to clients.
151
152 See Documentation/power/regulator/regulator.txt
153
154 3. Machine interface.
155
156 This interface is for machine specific code and allows the creation of
157 voltage/current domains (with constraints) for each regulator. It can
158 provide regulator constraints that will prevent device damage through
159 overvoltage or over current caused by buggy client drivers. It also
160 allows the creation of a regulator tree whereby some regulators are
161 supplied by others (similar to a clock tree).
162
163 See Documentation/power/regulator/machine.txt
164
165 4. Userspace ABI.
166
167 The framework also exports a lot of useful voltage/current/opmode data to
168 userspace via sysfs. This could be used to help monitor device power
169 consumption and status.
170
171 See Documentation/ABI/testing/regulator-sysfs.txt
diff --git a/Documentation/power/regulator/regulator.txt b/Documentation/power/regulator/regulator.txt
new file mode 100644
index 000000000000..a69050143592
--- /dev/null
+++ b/Documentation/power/regulator/regulator.txt
@@ -0,0 +1,30 @@
1Regulator Driver Interface
2==========================
3
4The regulator driver interface is relatively simple and designed to allow
5regulator drivers to register their services with the core framework.
6
7
8Registration
9============
10
11Drivers can register a regulator by calling :-
12
13struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
14 void *reg_data);
15
16This will register the regulators capabilities and operations the regulator
17core. The core does not touch reg_data (private to regulator driver).
18
19Regulators can be unregistered by calling :-
20
21void regulator_unregister(struct regulator_dev *rdev);
22
23
24Regulator Events
25================
26Regulators can send events (e.g. over temp, under voltage, etc) to consumer
27drivers by calling :-
28
29int regulator_notifier_call_chain(struct regulator_dev *rdev,
30 unsigned long event, void *data);
diff --git a/Documentation/powerpc/00-INDEX b/Documentation/powerpc/00-INDEX
index 3be84aa38dfe..29d839ce7327 100644
--- a/Documentation/powerpc/00-INDEX
+++ b/Documentation/powerpc/00-INDEX
@@ -20,8 +20,6 @@ mpc52xx-device-tree-bindings.txt
20 - MPC5200 Device Tree Bindings 20 - MPC5200 Device Tree Bindings
21ppc_htab.txt 21ppc_htab.txt
22 - info about the Linux/PPC /proc/ppc_htab entry 22 - info about the Linux/PPC /proc/ppc_htab entry
23SBC8260_memory_mapping.txt
24 - EST SBC8260 board info
25smp.txt 23smp.txt
26 - use and state info about Linux/PPC on MP machines 24 - use and state info about Linux/PPC on MP machines
27sound.txt 25sound.txt
diff --git a/Documentation/powerpc/SBC8260_memory_mapping.txt b/Documentation/powerpc/SBC8260_memory_mapping.txt
deleted file mode 100644
index e6e9ee0506c3..000000000000
--- a/Documentation/powerpc/SBC8260_memory_mapping.txt
+++ /dev/null
@@ -1,197 +0,0 @@
1Please mail me (Jon Diekema, diekema_jon@si.com or diekema@cideas.com)
2if you have questions, comments or corrections.
3
4 * EST SBC8260 Linux memory mapping rules
5
6 http://www.estc.com/
7 http://www.estc.com/products/boards/SBC8260-8240_ds.html
8
9 Initial conditions:
10 -------------------
11
12 Tasks that need to be perform by the boot ROM before control is
13 transferred to zImage (compressed Linux kernel):
14
15 - Define the IMMR to 0xf0000000
16
17 - Initialize the memory controller so that RAM is available at
18 physical address 0x00000000. On the SBC8260 is this 16M (64M)
19 SDRAM.
20
21 - The boot ROM should only clear the RAM that it is using.
22
23 The reason for doing this is to enhances the chances of a
24 successful post mortem on a Linux panic. One of the first
25 items to examine is the 16k (LOG_BUF_LEN) circular console
26 buffer called log_buf which is defined in kernel/printk.c.
27
28 - To enhance boot ROM performance, the I-cache can be enabled.
29
30 Date: Mon, 22 May 2000 14:21:10 -0700
31 From: Neil Russell <caret@c-side.com>
32
33 LiMon (LInux MONitor) runs with and starts Linux with MMU
34 off, I-cache enabled, D-cache disabled. The I-cache doesn't
35 need hints from the MMU to work correctly as the D-cache
36 does. No D-cache means no special code to handle devices in
37 the presence of cache (no snooping, etc). The use of the
38 I-cache means that the monitor can run acceptably fast
39 directly from ROM, rather than having to copy it to RAM.
40
41 - Build the board information structure (see
42 include/asm-ppc/est8260.h for its definition)
43
44 - The compressed Linux kernel (zImage) contains a bootstrap loader
45 that is position independent; you can load it into any RAM,
46 ROM or FLASH memory address >= 0x00500000 (above 5 MB), or
47 at its link address of 0x00400000 (4 MB).
48
49 Note: If zImage is loaded at its link address of 0x00400000 (4 MB),
50 then zImage will skip the step of moving itself to
51 its link address.
52
53 - Load R3 with the address of the board information structure
54
55 - Transfer control to zImage
56
57 - The Linux console port is SMC1, and the baud rate is controlled
58 from the bi_baudrate field of the board information structure.
59 On thing to keep in mind when picking the baud rate, is that
60 there is no flow control on the SMC ports. I would stick
61 with something safe and standard like 19200.
62
63 On the EST SBC8260, the SMC1 port is on the COM1 connector of
64 the board.
65
66
67 EST SBC8260 defaults:
68 ---------------------
69
70 Chip
71 Memory Sel Bus Use
72 --------------------- --- --- ----------------------------------
73 0x00000000-0x03FFFFFF CS2 60x (16M or 64M)/64M SDRAM
74 0x04000000-0x04FFFFFF CS4 local 4M/16M SDRAM (soldered to the board)
75 0x21000000-0x21000000 CS7 60x 1B/64K Flash present detect (from the flash SIMM)
76 0x21000001-0x21000001 CS7 60x 1B/64K Switches (read) and LEDs (write)
77 0x22000000-0x2200FFFF CS5 60x 8K/64K EEPROM
78 0xFC000000-0xFCFFFFFF CS6 60x 2M/16M flash (8 bits wide, soldered to the board)
79 0xFE000000-0xFFFFFFFF CS0 60x 4M/16M flash (SIMM)
80
81 Notes:
82 ------
83
84 - The chip selects can map 32K blocks and up (powers of 2)
85
86 - The SDRAM machine can handled up to 128Mbytes per chip select
87
88 - Linux uses the 60x bus memory (the SDRAM DIMM) for the
89 communications buffers.
90
91 - BATs can map 128K-256Mbytes each. There are four data BATs and
92 four instruction BATs. Generally the data and instruction BATs
93 are mapped the same.
94
95 - The IMMR must be set above the kernel virtual memory addresses,
96 which start at 0xC0000000. Otherwise, the kernel may crash as
97 soon as you start any threads or processes due to VM collisions
98 in the kernel or user process space.
99
100
101 Details from Dan Malek <dan_malek@mvista.com> on 10/29/1999:
102
103 The user application virtual space consumes the first 2 Gbytes
104 (0x00000000 to 0x7FFFFFFF). The kernel virtual text starts at
105 0xC0000000, with data following. There is a "protection hole"
106 between the end of kernel data and the start of the kernel
107 dynamically allocated space, but this space is still within
108 0xCxxxxxxx.
109
110 Obviously the kernel can't map any physical addresses 1:1 in
111 these ranges.
112
113
114 Details from Dan Malek <dan_malek@mvista.com> on 5/19/2000:
115
116 During the early kernel initialization, the kernel virtual
117 memory allocator is not operational. Prior to this KVM
118 initialization, we choose to map virtual to physical addresses
119 1:1. That is, the kernel virtual address exactly matches the
120 physical address on the bus. These mappings are typically done
121 in arch/ppc/kernel/head.S, or arch/ppc/mm/init.c. Only
122 absolutely necessary mappings should be done at this time, for
123 example board control registers or a serial uart. Normal device
124 driver initialization should map resources later when necessary.
125
126 Although platform dependent, and certainly the case for embedded
127 8xx, traditionally memory is mapped at physical address zero,
128 and I/O devices above physical address 0x80000000. The lowest
129 and highest (above 0xf0000000) I/O addresses are traditionally
130 used for devices or registers we need to map during kernel
131 initialization and prior to KVM operation. For this reason,
132 and since it followed prior PowerPC platform examples, I chose
133 to map the embedded 8xx kernel to the 0xc0000000 virtual address.
134 This way, we can enable the MMU to map the kernel for proper
135 operation, and still map a few windows before the KVM is operational.
136
137 On some systems, you could possibly run the kernel at the
138 0x80000000 or any other virtual address. It just depends upon
139 mapping that must be done prior to KVM operational. You can never
140 map devices or kernel spaces that overlap with the user virtual
141 space. This is why default IMMR mapping used by most BDM tools
142 won't work. They put the IMMR at something like 0x10000000 or
143 0x02000000 for example. You simply can't map these addresses early
144 in the kernel, and continue proper system operation.
145
146 The embedded 8xx/82xx kernel is mature enough that all you should
147 need to do is map the IMMR someplace at or above 0xf0000000 and it
148 should boot far enough to get serial console messages and KGDB
149 connected on any platform. There are lots of other subtle memory
150 management design features that you simply don't need to worry
151 about. If you are changing functions related to MMU initialization,
152 you are likely breaking things that are known to work and are
153 heading down a path of disaster and frustration. Your changes
154 should be to make the flexibility of the processor fit Linux,
155 not force arbitrary and non-workable memory mappings into Linux.
156
157 - You don't want to change KERNELLOAD or KERNELBASE, otherwise the
158 virtual memory and MMU code will get confused.
159
160 arch/ppc/Makefile:KERNELLOAD = 0xc0000000
161
162 include/asm-ppc/page.h:#define PAGE_OFFSET 0xc0000000
163 include/asm-ppc/page.h:#define KERNELBASE PAGE_OFFSET
164
165 - RAM is at physical address 0x00000000, and gets mapped to
166 virtual address 0xC0000000 for the kernel.
167
168
169 Physical addresses used by the Linux kernel:
170 --------------------------------------------
171
172 0x00000000-0x3FFFFFFF 1GB reserved for RAM
173 0xF0000000-0xF001FFFF 128K IMMR 64K used for dual port memory,
174 64K for 8260 registers
175
176
177 Logical addresses used by the Linux kernel:
178 -------------------------------------------
179
180 0xF0000000-0xFFFFFFFF 256M BAT0 (IMMR: dual port RAM, registers)
181 0xE0000000-0xEFFFFFFF 256M BAT1 (I/O space for custom boards)
182 0xC0000000-0xCFFFFFFF 256M BAT2 (RAM)
183 0xD0000000-0xDFFFFFFF 256M BAT3 (if RAM > 256MByte)
184
185
186 EST SBC8260 Linux mapping:
187 --------------------------
188
189 DBAT0, IBAT0, cache inhibited:
190
191 Chip
192 Memory Sel Use
193 --------------------- --- ---------------------------------
194 0xF0000000-0xF001FFFF n/a IMMR: dual port RAM, registers
195
196 DBAT1, IBAT1, cache inhibited:
197
diff --git a/Documentation/powerpc/booting-without-of.txt b/Documentation/powerpc/booting-without-of.txt
index ea1b70b35793..de4063cb4fdc 100644
--- a/Documentation/powerpc/booting-without-of.txt
+++ b/Documentation/powerpc/booting-without-of.txt
@@ -59,6 +59,7 @@ Table of Contents
59 p) Freescale Synchronous Serial Interface 59 p) Freescale Synchronous Serial Interface
60 q) USB EHCI controllers 60 q) USB EHCI controllers
61 r) MDIO on GPIOs 61 r) MDIO on GPIOs
62 s) SPI busses
62 63
63 VII - Marvell Discovery mv64[345]6x System Controller chips 64 VII - Marvell Discovery mv64[345]6x System Controller chips
64 1) The /system-controller node 65 1) The /system-controller node
@@ -277,7 +278,7 @@ it with special cases.
277 a 64-bit platform. 278 a 64-bit platform.
278 279
279 d) request and get assigned a platform number (see PLATFORM_* 280 d) request and get assigned a platform number (see PLATFORM_*
280 constants in include/asm-powerpc/processor.h 281 constants in arch/powerpc/include/asm/processor.h
281 282
28232-bit embedded kernels: 28332-bit embedded kernels:
283 284
@@ -339,7 +340,7 @@ the block to RAM before passing it to the kernel.
339--------- 340---------
340 341
341 The kernel is entered with r3 pointing to an area of memory that is 342 The kernel is entered with r3 pointing to an area of memory that is
342 roughly described in include/asm-powerpc/prom.h by the structure 343 roughly described in arch/powerpc/include/asm/prom.h by the structure
343 boot_param_header: 344 boot_param_header:
344 345
345struct boot_param_header { 346struct boot_param_header {
@@ -707,7 +708,7 @@ device or bus to be described by the device tree.
707In general, the format of an address for a device is defined by the 708In general, the format of an address for a device is defined by the
708parent bus type, based on the #address-cells and #size-cells 709parent bus type, based on the #address-cells and #size-cells
709properties. Note that the parent's parent definitions of #address-cells 710properties. Note that the parent's parent definitions of #address-cells
710and #size-cells are not inhereted so every node with children must specify 711and #size-cells are not inherited so every node with children must specify
711them. The kernel requires the root node to have those properties defining 712them. The kernel requires the root node to have those properties defining
712addresses format for devices directly mapped on the processor bus. 713addresses format for devices directly mapped on the processor bus.
713 714
@@ -1776,7 +1777,7 @@ platforms are moved over to use the flattened-device-tree model.
1776 1777
1777 Xilinx uartlite devices are simple fixed speed serial ports. 1778 Xilinx uartlite devices are simple fixed speed serial ports.
1778 1779
1779 Requred properties: 1780 Required properties:
1780 - current-speed : Baud rate of uartlite 1781 - current-speed : Baud rate of uartlite
1781 1782
1782 v) Xilinx hwicap 1783 v) Xilinx hwicap
@@ -1798,7 +1799,7 @@ platforms are moved over to use the flattened-device-tree model.
1798 Xilinx UART 16550 devices are very similar to the NS16550 but with 1799 Xilinx UART 16550 devices are very similar to the NS16550 but with
1799 different register spacing and an offset from the base address. 1800 different register spacing and an offset from the base address.
1800 1801
1801 Requred properties: 1802 Required properties:
1802 - clock-frequency : Frequency of the clock input 1803 - clock-frequency : Frequency of the clock input
1803 - reg-offset : A value of 3 is required 1804 - reg-offset : A value of 3 is required
1804 - reg-shift : A value of 2 is required 1805 - reg-shift : A value of 2 is required
@@ -1883,6 +1884,62 @@ platforms are moved over to use the flattened-device-tree model.
1883 &qe_pio_c 6>; 1884 &qe_pio_c 6>;
1884 }; 1885 };
1885 1886
1887 s) SPI (Serial Peripheral Interface) busses
1888
1889 SPI busses can be described with a node for the SPI master device
1890 and a set of child nodes for each SPI slave on the bus. For this
1891 discussion, it is assumed that the system's SPI controller is in
1892 SPI master mode. This binding does not describe SPI controllers
1893 in slave mode.
1894
1895 The SPI master node requires the following properties:
1896 - #address-cells - number of cells required to define a chip select
1897 address on the SPI bus.
1898 - #size-cells - should be zero.
1899 - compatible - name of SPI bus controller following generic names
1900 recommended practice.
1901 No other properties are required in the SPI bus node. It is assumed
1902 that a driver for an SPI bus device will understand that it is an SPI bus.
1903 However, the binding does not attempt to define the specific method for
1904 assigning chip select numbers. Since SPI chip select configuration is
1905 flexible and non-standardized, it is left out of this binding with the
1906 assumption that board specific platform code will be used to manage
1907 chip selects. Individual drivers can define additional properties to
1908 support describing the chip select layout.
1909
1910 SPI slave nodes must be children of the SPI master node and can
1911 contain the following properties.
1912 - reg - (required) chip select address of device.
1913 - compatible - (required) name of SPI device following generic names
1914 recommended practice
1915 - spi-max-frequency - (required) Maximum SPI clocking speed of device in Hz
1916 - spi-cpol - (optional) Empty property indicating device requires
1917 inverse clock polarity (CPOL) mode
1918 - spi-cpha - (optional) Empty property indicating device requires
1919 shifted clock phase (CPHA) mode
1920
1921 SPI example for an MPC5200 SPI bus:
1922 spi@f00 {
1923 #address-cells = <1>;
1924 #size-cells = <0>;
1925 compatible = "fsl,mpc5200b-spi","fsl,mpc5200-spi";
1926 reg = <0xf00 0x20>;
1927 interrupts = <2 13 0 2 14 0>;
1928 interrupt-parent = <&mpc5200_pic>;
1929
1930 ethernet-switch@0 {
1931 compatible = "micrel,ks8995m";
1932 spi-max-frequency = <1000000>;
1933 reg = <0>;
1934 };
1935
1936 codec@1 {
1937 compatible = "ti,tlv320aic26";
1938 spi-max-frequency = <100000>;
1939 reg = <1>;
1940 };
1941 };
1942
1886VII - Marvell Discovery mv64[345]6x System Controller chips 1943VII - Marvell Discovery mv64[345]6x System Controller chips
1887=========================================================== 1944===========================================================
1888 1945
@@ -1896,7 +1953,7 @@ prefixed with the string "marvell,", for Marvell Technology Group Ltd.
18961) The /system-controller node 19531) The /system-controller node
1897 1954
1898 This node is used to represent the system-controller and must be 1955 This node is used to represent the system-controller and must be
1899 present when the system uses a system contller chip. The top-level 1956 present when the system uses a system controller chip. The top-level
1900 system-controller node contains information that is global to all 1957 system-controller node contains information that is global to all
1901 devices within the system controller chip. The node name begins 1958 devices within the system controller chip. The node name begins
1902 with "system-controller" followed by the unit address, which is 1959 with "system-controller" followed by the unit address, which is
diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/serial.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/serial.txt
index b35f3482e3e4..2ea76d9d137c 100644
--- a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/serial.txt
+++ b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/serial.txt
@@ -7,6 +7,15 @@ Currently defined compatibles:
7- fsl,cpm2-scc-uart 7- fsl,cpm2-scc-uart
8- fsl,qe-uart 8- fsl,qe-uart
9 9
10Modem control lines connected to GPIO controllers are listed in the gpios
11property as described in booting-without-of.txt, section IX.1 in the following
12order:
13
14CTS, RTS, DCD, DSR, DTR, and RI.
15
16The gpios property is optional and can be left out when control lines are
17not used.
18
10Example: 19Example:
11 20
12 serial@11a00 { 21 serial@11a00 {
@@ -18,4 +27,6 @@ Example:
18 interrupt-parent = <&PIC>; 27 interrupt-parent = <&PIC>;
19 fsl,cpm-brg = <1>; 28 fsl,cpm-brg = <1>;
20 fsl,cpm-command = <00800000>; 29 fsl,cpm-command = <00800000>;
30 gpios = <&gpio_c 15 0
31 &gpio_d 29 0>;
21 }; 32 };
diff --git a/Documentation/powerpc/eeh-pci-error-recovery.txt b/Documentation/powerpc/eeh-pci-error-recovery.txt
index df7afe43d462..9d4e33df624c 100644
--- a/Documentation/powerpc/eeh-pci-error-recovery.txt
+++ b/Documentation/powerpc/eeh-pci-error-recovery.txt
@@ -133,7 +133,7 @@ error. Given an arbitrary address, the routine
133pci_get_device_by_addr() will find the pci device associated 133pci_get_device_by_addr() will find the pci device associated
134with that address (if any). 134with that address (if any).
135 135
136The default include/asm-powerpc/io.h macros readb(), inb(), insb(), 136The default arch/powerpc/include/asm/io.h macros readb(), inb(), insb(),
137etc. include a check to see if the i/o read returned all-0xff's. 137etc. include a check to see if the i/o read returned all-0xff's.
138If so, these make a call to eeh_dn_check_failure(), which in turn 138If so, these make a call to eeh_dn_check_failure(), which in turn
139asks the firmware if the all-ff's value is the sign of a true EEH 139asks the firmware if the all-ff's value is the sign of a true EEH
diff --git a/Documentation/powerpc/qe_firmware.txt b/Documentation/powerpc/qe_firmware.txt
index 896266432d33..06da4d4b44f9 100644
--- a/Documentation/powerpc/qe_firmware.txt
+++ b/Documentation/powerpc/qe_firmware.txt
@@ -217,7 +217,7 @@ Although it is not recommended, you can specify '0' in the soc.model
217field to skip matching SOCs altogether. 217field to skip matching SOCs altogether.
218 218
219The 'model' field is a 16-bit number that matches the actual SOC. The 219The 'model' field is a 16-bit number that matches the actual SOC. The
220'major' and 'minor' fields are the major and minor revision numbrs, 220'major' and 'minor' fields are the major and minor revision numbers,
221respectively, of the SOC. 221respectively, of the SOC.
222 222
223For example, to match the 8323, revision 1.0: 223For example, to match the 8323, revision 1.0:
diff --git a/Documentation/rfkill.txt b/Documentation/rfkill.txt
index 0843ed0163a5..6fcb3060dec5 100644
--- a/Documentation/rfkill.txt
+++ b/Documentation/rfkill.txt
@@ -363,6 +363,11 @@ This rule exists because users of the rfkill subsystem expect to get (and set,
363when possible) the overall transmitter rfkill state, not of a particular rfkill 363when possible) the overall transmitter rfkill state, not of a particular rfkill
364line. 364line.
365 365
3665. During suspend, the rfkill class will attempt to soft-block the radio
367through a call to rfkill->toggle_radio, and will try to restore its previous
368state during resume. After a rfkill class is suspended, it will *not* call
369rfkill->toggle_radio until it is resumed.
370
366Example of a WLAN wireless driver connected to the rfkill subsystem: 371Example of a WLAN wireless driver connected to the rfkill subsystem:
367-------------------------------------------------------------------- 372--------------------------------------------------------------------
368 373
@@ -390,9 +395,10 @@ rfkill lines are inactive, it must return RFKILL_STATE_SOFT_BLOCKED if its soft
390rfkill input line is active. Only if none of the rfkill input lines are 395rfkill input line is active. Only if none of the rfkill input lines are
391active, will it return RFKILL_STATE_UNBLOCKED. 396active, will it return RFKILL_STATE_UNBLOCKED.
392 397
393If it doesn't implement the get_state() hook, it must make sure that its calls 398Since the device has a hardware rfkill line, it IS subject to state changes
394to rfkill_force_state() are enough to keep the status always up-to-date, and it 399external to rfkill. Therefore, the driver must make sure that it calls
395must do a rfkill_force_state() on resume from sleep. 400rfkill_force_state() to keep the status always up-to-date, and it must do a
401rfkill_force_state() on resume from sleep.
396 402
397Every time the driver gets a notification from the card that one of its rfkill 403Every time the driver gets a notification from the card that one of its rfkill
398lines changed state (polling might be needed on badly designed cards that don't 404lines changed state (polling might be needed on badly designed cards that don't
@@ -422,13 +428,24 @@ of the hardware is unknown), or read-write (where the hardware can be queried
422about its current state). 428about its current state).
423 429
424The rfkill class will call the get_state hook of a device every time it needs 430The rfkill class will call the get_state hook of a device every time it needs
425to know the *real* current state of the hardware. This can happen often. 431to know the *real* current state of the hardware. This can happen often, but
432it does not do any polling, so it is not enough on hardware that is subject
433to state changes outside of the rfkill subsystem.
434
435Therefore, calling rfkill_force_state() when a state change happens is
436mandatory when the device has a hardware rfkill line, or when something else
437like the firmware could cause its state to be changed without going through the
438rfkill class.
426 439
427Some hardware provides events when its status changes. In these cases, it is 440Some hardware provides events when its status changes. In these cases, it is
428best for the driver to not provide a get_state hook, and instead register the 441best for the driver to not provide a get_state hook, and instead register the
429rfkill class *already* with the correct status, and keep it updated using 442rfkill class *already* with the correct status, and keep it updated using
430rfkill_force_state() when it gets an event from the hardware. 443rfkill_force_state() when it gets an event from the hardware.
431 444
445rfkill_force_state() must be used on the device resume handlers to update the
446rfkill status, should there be any chance of the device status changing during
447the sleep.
448
432There is no provision for a statically-allocated rfkill struct. You must 449There is no provision for a statically-allocated rfkill struct. You must
433use rfkill_allocate() to allocate one. 450use rfkill_allocate() to allocate one.
434 451
diff --git a/Documentation/s390/driver-model.txt b/Documentation/s390/driver-model.txt
index e938c442277d..bde473df748d 100644
--- a/Documentation/s390/driver-model.txt
+++ b/Documentation/s390/driver-model.txt
@@ -25,7 +25,7 @@ device 4711 via subchannel 1 in subchannel set 0, and subchannel 2 is a non-I/O
25subchannel. Device 1234 is accessed via subchannel 0 in subchannel set 1. 25subchannel. Device 1234 is accessed via subchannel 0 in subchannel set 1.
26 26
27The subchannel named 'defunct' does not represent any real subchannel on the 27The subchannel named 'defunct' does not represent any real subchannel on the
28system; it is a pseudo subchannel where disconnnected ccw devices are moved to 28system; it is a pseudo subchannel where disconnected ccw devices are moved to
29if they are displaced by another ccw device becoming operational on their 29if they are displaced by another ccw device becoming operational on their
30former subchannel. The ccw devices will be moved again to a proper subchannel 30former subchannel. The ccw devices will be moved again to a proper subchannel
31if they become operational again on that subchannel. 31if they become operational again on that subchannel.
diff --git a/Documentation/scsi/ChangeLog.megaraid_sas b/Documentation/scsi/ChangeLog.megaraid_sas
index 716fcc1cafb5..c851ef497795 100644
--- a/Documentation/scsi/ChangeLog.megaraid_sas
+++ b/Documentation/scsi/ChangeLog.megaraid_sas
@@ -1,3 +1,26 @@
1
21 Release Date : Thur.July. 24 11:41:51 PST 2008 -
3 (emaild-id:megaraidlinux@lsi.com)
4 Sumant Patro
5 Bo Yang
6
72 Current Version : 00.00.04.01
83 Older Version : 00.00.03.22
9
101. Add the new controller (0078, 0079) support to the driver
11 Those controllers are LSI's next generatation(gen2) SAS controllers.
12
131 Release Date : Mon.June. 23 10:12:45 PST 2008 -
14 (emaild-id:megaraidlinux@lsi.com)
15 Sumant Patro
16 Bo Yang
17
182 Current Version : 00.00.03.22
193 Older Version : 00.00.03.20
20
211. Add shutdown DCMD cmd to the shutdown routine to make FW shutdown proper.
222. Unexpected interrupt occurs in HWR Linux driver, add the dumy readl pci flush will fix this issue.
23
11 Release Date : Mon. March 10 11:02:31 PDT 2008 - 241 Release Date : Mon. March 10 11:02:31 PDT 2008 -
2 (emaild-id:megaraidlinux@lsi.com) 25 (emaild-id:megaraidlinux@lsi.com)
3 Sumant Patro 26 Sumant Patro
diff --git a/Documentation/scsi/ibmmca.txt b/Documentation/scsi/ibmmca.txt
index a810421f1fb3..3920f28710c4 100644
--- a/Documentation/scsi/ibmmca.txt
+++ b/Documentation/scsi/ibmmca.txt
@@ -524,7 +524,7 @@
524 - Michael Lang 524 - Michael Lang
525 525
526 June 25 1997: (v1.8b) 526 June 25 1997: (v1.8b)
527 1) Some cosmetical changes for the handling of SCSI-device-types. 527 1) Some cosmetic changes for the handling of SCSI-device-types.
528 Now, also CD-Burners / WORMs and SCSI-scanners should work. For 528 Now, also CD-Burners / WORMs and SCSI-scanners should work. For
529 MO-drives I have no experience, therefore not yet supported. 529 MO-drives I have no experience, therefore not yet supported.
530 In logical_devices I changed from different type-variables to one 530 In logical_devices I changed from different type-variables to one
@@ -914,7 +914,7 @@
914 in version 4.0. This was never really necessary, as all troubles were 914 in version 4.0. This was never really necessary, as all troubles were
915 based on non-command related reasons up to now, so bypassing commands 915 based on non-command related reasons up to now, so bypassing commands
916 did not help to avoid any bugs. It is kept in 3.2X for debugging reasons. 916 did not help to avoid any bugs. It is kept in 3.2X for debugging reasons.
917 5) Dynamical reassignment of ldns was again verified and analyzed to be 917 5) Dynamic reassignment of ldns was again verified and analyzed to be
918 completely inoperational. This is corrected and should work now. 918 completely inoperational. This is corrected and should work now.
919 6) All commands that get sent to the SCSI adapter were verified and 919 6) All commands that get sent to the SCSI adapter were verified and
920 completed in such a way, that they are now completely conform to the 920 completed in such a way, that they are now completely conform to the
@@ -1386,7 +1386,7 @@
1386 concerning the Linux-kernel in special, this SCSI-driver comes without any 1386 concerning the Linux-kernel in special, this SCSI-driver comes without any
1387 warranty. Its functionality is tested as good as possible on certain 1387 warranty. Its functionality is tested as good as possible on certain
1388 machines and combinations of computer hardware, which does not exclude, 1388 machines and combinations of computer hardware, which does not exclude,
1389 that dataloss or severe damage of hardware is possible while using this 1389 that data loss or severe damage of hardware is possible while using this
1390 part of software on some arbitrary computer hardware or in combination 1390 part of software on some arbitrary computer hardware or in combination
1391 with other software packages. It is highly recommended to make backup 1391 with other software packages. It is highly recommended to make backup
1392 copies of your data before using this software. Furthermore, personal 1392 copies of your data before using this software. Furthermore, personal
diff --git a/Documentation/scsi/lpfc.txt b/Documentation/scsi/lpfc.txt
index 4dbe41370a6d..5741ea8aa88a 100644
--- a/Documentation/scsi/lpfc.txt
+++ b/Documentation/scsi/lpfc.txt
@@ -36,7 +36,7 @@ Cable pull and temporary device Loss:
36 being removed, a switch rebooting, or a device reboot), the driver could 36 being removed, a switch rebooting, or a device reboot), the driver could
37 hide the disappearance of the device from the midlayer. I/O's issued to 37 hide the disappearance of the device from the midlayer. I/O's issued to
38 the LLDD would simply be queued for a short duration, allowing the device 38 the LLDD would simply be queued for a short duration, allowing the device
39 to reappear or link come back alive, with no inadvertant side effects 39 to reappear or link come back alive, with no inadvertent side effects
40 to the system. If the driver did not hide these conditions, i/o would be 40 to the system. If the driver did not hide these conditions, i/o would be
41 errored by the driver, the mid-layer would exhaust its retries, and the 41 errored by the driver, the mid-layer would exhaust its retries, and the
42 device would be taken offline. Manual intervention would be required to 42 device would be taken offline. Manual intervention would be required to
diff --git a/Documentation/scsi/scsi_fc_transport.txt b/Documentation/scsi/scsi_fc_transport.txt
index d403e46d8463..75143f0c23b6 100644
--- a/Documentation/scsi/scsi_fc_transport.txt
+++ b/Documentation/scsi/scsi_fc_transport.txt
@@ -65,7 +65,7 @@ Overview:
65 discussion will concentrate on NPIV. 65 discussion will concentrate on NPIV.
66 66
67 Note: World Wide Name assignment (and uniqueness guarantees) are left 67 Note: World Wide Name assignment (and uniqueness guarantees) are left
68 up to an administrative entity controling the vport. For example, 68 up to an administrative entity controlling the vport. For example,
69 if vports are to be associated with virtual machines, a XEN mgmt 69 if vports are to be associated with virtual machines, a XEN mgmt
70 utility would be responsible for creating wwpn/wwnn's for the vport, 70 utility would be responsible for creating wwpn/wwnn's for the vport,
71 using it's own naming authority and OUI. (Note: it already does this 71 using it's own naming authority and OUI. (Note: it already does this
@@ -91,7 +91,7 @@ Device Trees and Vport Objects:
91 Here's what to expect in the device tree : 91 Here's what to expect in the device tree :
92 The typical Physical Port's Scsi_Host: 92 The typical Physical Port's Scsi_Host:
93 /sys/devices/.../host17/ 93 /sys/devices/.../host17/
94 and it has the typical decendent tree: 94 and it has the typical descendant tree:
95 /sys/devices/.../host17/rport-17:0-0/target17:0:0/17:0:0:0: 95 /sys/devices/.../host17/rport-17:0-0/target17:0:0/17:0:0:0:
96 and then the vport is created on the Physical Port: 96 and then the vport is created on the Physical Port:
97 /sys/devices/.../host17/vport-17:0-0 97 /sys/devices/.../host17/vport-17:0-0
@@ -192,7 +192,7 @@ Vport States:
192 independent of the adapter's link state. 192 independent of the adapter's link state.
193 - Instantiation of the vport on the FC link via ELS traffic, etc. 193 - Instantiation of the vport on the FC link via ELS traffic, etc.
194 This is equivalent to a "link up" and successfull link initialization. 194 This is equivalent to a "link up" and successfull link initialization.
195 Futher information can be found in the interfaces section below for 195 Further information can be found in the interfaces section below for
196 Vport Creation. 196 Vport Creation.
197 197
198 Once a vport has been instantiated with the kernel/LLDD, a vport state 198 Once a vport has been instantiated with the kernel/LLDD, a vport state
diff --git a/Documentation/sh/clk.txt b/Documentation/sh/clk.txt
index 9aef710e9a4b..114b595cfa97 100644
--- a/Documentation/sh/clk.txt
+++ b/Documentation/sh/clk.txt
@@ -12,7 +12,7 @@ means no changes to adjanced clock
12Internally, the clk_set_rate_ex forwards request to clk->ops->set_rate method, 12Internally, the clk_set_rate_ex forwards request to clk->ops->set_rate method,
13if it is present in ops structure. The method should set the clock rate and adjust 13if it is present in ops structure. The method should set the clock rate and adjust
14all needed clocks according to the passed algo_id. 14all needed clocks according to the passed algo_id.
15Exact values for algo_id are machine-dependend. For the sh7722, the following 15Exact values for algo_id are machine-dependent. For the sh7722, the following
16values are defined: 16values are defined:
17 17
18 NO_CHANGE = 0, 18 NO_CHANGE = 0,
diff --git a/Documentation/sound/alsa/ALSA-Configuration.txt b/Documentation/sound/alsa/ALSA-Configuration.txt
index 72aff61e7315..b117e42a6166 100644
--- a/Documentation/sound/alsa/ALSA-Configuration.txt
+++ b/Documentation/sound/alsa/ALSA-Configuration.txt
@@ -1024,6 +1024,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
1024 intel-mac-v3 Intel Mac Type 3 1024 intel-mac-v3 Intel Mac Type 3
1025 intel-mac-v4 Intel Mac Type 4 1025 intel-mac-v4 Intel Mac Type 4
1026 intel-mac-v5 Intel Mac Type 5 1026 intel-mac-v5 Intel Mac Type 5
1027 intel-mac-auto Intel Mac (detect type according to subsystem id)
1027 macmini Intel Mac Mini (equivalent with type 3) 1028 macmini Intel Mac Mini (equivalent with type 3)
1028 macbook Intel Mac Book (eq. type 5) 1029 macbook Intel Mac Book (eq. type 5)
1029 macbook-pro-v1 Intel Mac Book Pro 1st generation (eq. type 3) 1030 macbook-pro-v1 Intel Mac Book Pro 1st generation (eq. type 3)
@@ -1143,8 +1144,6 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
1143 1144
1144 This module supports autoprobe and multiple cards. 1145 This module supports autoprobe and multiple cards.
1145 1146
1146 Power management is _not_ supported.
1147
1148 Module snd-ice1712 1147 Module snd-ice1712
1149 ------------------ 1148 ------------------
1150 1149
@@ -1627,8 +1626,6 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
1627 1626
1628 This module supports autoprobe and multiple cards. 1627 This module supports autoprobe and multiple cards.
1629 1628
1630 Power management is _not_ supported.
1631
1632 Module snd-pcsp 1629 Module snd-pcsp
1633 ----------------- 1630 -----------------
1634 1631
@@ -2080,13 +2077,11 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
2080 Module snd-virtuoso 2077 Module snd-virtuoso
2081 ------------------- 2078 -------------------
2082 2079
2083 Module for sound cards based on the Asus AV200 chip, i.e., 2080 Module for sound cards based on the Asus AV100/AV200 chips,
2084 Xonar D2 and Xonar D2X. 2081 i.e., Xonar D1, DX, D2 and D2X.
2085 2082
2086 This module supports autoprobe and multiple cards. 2083 This module supports autoprobe and multiple cards.
2087 2084
2088 Power management is _not_ supported.
2089
2090 Module snd-vx222 2085 Module snd-vx222
2091 ---------------- 2086 ----------------
2092 2087
diff --git a/Documentation/sound/alsa/Audiophile-Usb.txt b/Documentation/sound/alsa/Audiophile-Usb.txt
index 2ad5e6306c44..a4c53d8961e1 100644
--- a/Documentation/sound/alsa/Audiophile-Usb.txt
+++ b/Documentation/sound/alsa/Audiophile-Usb.txt
@@ -236,15 +236,15 @@ The parameter can be given:
236 alias snd-card-1 snd-usb-audio 236 alias snd-card-1 snd-usb-audio
237 options snd-usb-audio index=1 device_setup=0x09 237 options snd-usb-audio index=1 device_setup=0x09
238 238
239CAUTION when initializaing the device 239CAUTION when initializing the device
240------------------------------------- 240-------------------------------------
241 241
242 * Correct initialization on the device requires that device_setup is given to 242 * Correct initialization on the device requires that device_setup is given to
243 the module BEFORE the device is turned on. So, if you use the "manual probing" 243 the module BEFORE the device is turned on. So, if you use the "manual probing"
244 method described above, take care to power-on the device AFTER this initialization. 244 method described above, take care to power-on the device AFTER this initialization.
245 245
246 * Failing to respect this will lead in a misconfiguration of the device. In this case 246 * Failing to respect this will lead to a misconfiguration of the device. In this case
247 turn off the device, unproble the snd-usb-audio module, then probe it again with 247 turn off the device, unprobe the snd-usb-audio module, then probe it again with
248 correct device_setup parameter and then (and only then) turn on the device again. 248 correct device_setup parameter and then (and only then) turn on the device again.
249 249
250 * If you've correctly initialized the device in a valid mode and then want to switch 250 * If you've correctly initialized the device in a valid mode and then want to switch
@@ -388,9 +388,9 @@ There are 2 main potential issues when using Jackd with the device:
388 388
389Jack supports big endian devices only in recent versions (thanks to 389Jack supports big endian devices only in recent versions (thanks to
390Andreas Steinmetz for his first big-endian patch). I can't remember 390Andreas Steinmetz for his first big-endian patch). I can't remember
391extacly when this support was released into jackd, let's just say that 391exactly when this support was released into jackd, let's just say that
392with jackd version 0.103.0 it's almost ok (just a small bug is affecting 392with jackd version 0.103.0 it's almost ok (just a small bug is affecting
39316bits Big-Endian devices, but since you've read carefully the above 39316bits Big-Endian devices, but since you've read carefully the above
394paragraphs, you're now using kernel >= 2.6.23 and your 16bits devices 394paragraphs, you're now using kernel >= 2.6.23 and your 16bits devices
395are now Little Endians ;-) ). 395are now Little Endians ;-) ).
396 396
diff --git a/Documentation/sound/alsa/hda_codec.txt b/Documentation/sound/alsa/hda_codec.txt
index 8e1b02526698..34e87ec1379c 100644
--- a/Documentation/sound/alsa/hda_codec.txt
+++ b/Documentation/sound/alsa/hda_codec.txt
@@ -67,7 +67,7 @@ CONFIG_SND_HDA_POWER_SAVE kconfig. It's called when the codec needs
67to power up or may power down. The controller should check the all 67to power up or may power down. The controller should check the all
68belonging codecs on the bus whether they are actually powered off 68belonging codecs on the bus whether they are actually powered off
69(check codec->power_on), and optionally the driver may power down the 69(check codec->power_on), and optionally the driver may power down the
70contoller side, too. 70controller side, too.
71 71
72The bus instance is created via snd_hda_bus_new(). You need to pass 72The bus instance is created via snd_hda_bus_new(). You need to pass
73the card instance, the template, and the pointer to store the 73the card instance, the template, and the pointer to store the
diff --git a/Documentation/sound/alsa/soc/dapm.txt b/Documentation/sound/alsa/soc/dapm.txt
index c784a18b94dc..b2ed6983f40d 100644
--- a/Documentation/sound/alsa/soc/dapm.txt
+++ b/Documentation/sound/alsa/soc/dapm.txt
@@ -68,7 +68,7 @@ Audio DAPM widgets fall into a number of types:-
68(Widgets are defined in include/sound/soc-dapm.h) 68(Widgets are defined in include/sound/soc-dapm.h)
69 69
70Widgets are usually added in the codec driver and the machine driver. There are 70Widgets are usually added in the codec driver and the machine driver. There are
71convience macros defined in soc-dapm.h that can be used to quickly build a 71convenience macros defined in soc-dapm.h that can be used to quickly build a
72list of widgets of the codecs and machines DAPM widgets. 72list of widgets of the codecs and machines DAPM widgets.
73 73
74Most widgets have a name, register, shift and invert. Some widgets have extra 74Most widgets have a name, register, shift and invert. Some widgets have extra
diff --git a/Documentation/sparse.txt b/Documentation/sparse.txt
index 1a3bdc27d95e..42f43fa59f24 100644
--- a/Documentation/sparse.txt
+++ b/Documentation/sparse.txt
@@ -73,10 +73,10 @@ recompiled, or use "make C=2" to run sparse on the files whether they need to
73be recompiled or not. The latter is a fast way to check the whole tree if you 73be recompiled or not. The latter is a fast way to check the whole tree if you
74have already built it. 74have already built it.
75 75
76The optional make variable CHECKFLAGS can be used to pass arguments to sparse. 76The optional make variable CF can be used to pass arguments to sparse. The
77The build system passes -Wbitwise to sparse automatically. To perform 77build system passes -Wbitwise to sparse automatically. To perform endianness
78endianness checks, you may define __CHECK_ENDIAN__: 78checks, you may define __CHECK_ENDIAN__:
79 79
80 make C=2 CHECKFLAGS="-D__CHECK_ENDIAN__" 80 make C=2 CF="-D__CHECK_ENDIAN__"
81 81
82These checks are disabled by default as they generate a host of warnings. 82These checks are disabled by default as they generate a host of warnings.
diff --git a/Documentation/spi/Makefile b/Documentation/spi/Makefile
new file mode 100644
index 000000000000..a5b03c88beae
--- /dev/null
+++ b/Documentation/spi/Makefile
@@ -0,0 +1,11 @@
1# kbuild trick to avoid linker error. Can be omitted if a module is built.
2obj- := dummy.o
3
4# List of programs to build
5hostprogs-y := spidev_test spidev_fdx
6
7# Tell kbuild to always build the programs
8always := $(hostprogs-y)
9
10HOSTCFLAGS_spidev_test.o += -I$(objtree)/usr/include
11HOSTCFLAGS_spidev_fdx.o += -I$(objtree)/usr/include
diff --git a/Documentation/spi/pxa2xx b/Documentation/spi/pxa2xx
index f3853cc37bde..bbe8dee681a5 100644
--- a/Documentation/spi/pxa2xx
+++ b/Documentation/spi/pxa2xx
@@ -19,7 +19,7 @@ Declaring PXA2xx Master Controllers
19----------------------------------- 19-----------------------------------
20Typically a SPI master is defined in the arch/.../mach-*/board-*.c as a 20Typically a SPI master is defined in the arch/.../mach-*/board-*.c as a
21"platform device". The master configuration is passed to the driver via a table 21"platform device". The master configuration is passed to the driver via a table
22found in include/asm-arm/arch-pxa/pxa2xx_spi.h: 22found in arch/arm/mach-pxa/include/mach/pxa2xx_spi.h:
23 23
24struct pxa2xx_spi_master { 24struct pxa2xx_spi_master {
25 enum pxa_ssp_type ssp_type; 25 enum pxa_ssp_type ssp_type;
@@ -94,7 +94,7 @@ using the "spi_board_info" structure found in "linux/spi/spi.h". See
94 94
95Each slave device attached to the PXA must provide slave specific configuration 95Each slave device attached to the PXA must provide slave specific configuration
96information via the structure "pxa2xx_spi_chip" found in 96information via the structure "pxa2xx_spi_chip" found in
97"include/asm-arm/arch-pxa/pxa2xx_spi.h". The pxa2xx_spi master controller driver 97"arch/arm/mach-pxa/include/mach/pxa2xx_spi.h". The pxa2xx_spi master controller driver
98will uses the configuration whenever the driver communicates with the slave 98will uses the configuration whenever the driver communicates with the slave
99device. 99device.
100 100
diff --git a/Documentation/spi/spi-summary b/Documentation/spi/spi-summary
index 6d5f18143c50..8bae2f018d34 100644
--- a/Documentation/spi/spi-summary
+++ b/Documentation/spi/spi-summary
@@ -210,7 +210,7 @@ board should normally be set up and registered.
210 210
211So for example arch/.../mach-*/board-*.c files might have code like: 211So for example arch/.../mach-*/board-*.c files might have code like:
212 212
213 #include <asm/arch/spi.h> /* for mysoc_spi_data */ 213 #include <mach/spi.h> /* for mysoc_spi_data */
214 214
215 /* if your mach-* infrastructure doesn't support kernels that can 215 /* if your mach-* infrastructure doesn't support kernels that can
216 * run on multiple boards, pdata wouldn't benefit from "__init". 216 * run on multiple boards, pdata wouldn't benefit from "__init".
@@ -227,7 +227,7 @@ So for example arch/.../mach-*/board-*.c files might have code like:
227 227
228And SOC-specific utility code might look something like: 228And SOC-specific utility code might look something like:
229 229
230 #include <asm/arch/spi.h> 230 #include <mach/spi.h>
231 231
232 static struct platform_device spi2 = { ... }; 232 static struct platform_device spi2 = { ... };
233 233
diff --git a/Documentation/sysctl/vm.txt b/Documentation/sysctl/vm.txt
index 8a4863c4edd4..d79eeda7a699 100644
--- a/Documentation/sysctl/vm.txt
+++ b/Documentation/sysctl/vm.txt
@@ -116,7 +116,7 @@ of kilobytes free. The VM uses this number to compute a pages_min
116value for each lowmem zone in the system. Each lowmem zone gets 116value for each lowmem zone in the system. Each lowmem zone gets
117a number of reserved free pages based proportionally on its size. 117a number of reserved free pages based proportionally on its size.
118 118
119Some minimal ammount of memory is needed to satisfy PF_MEMALLOC 119Some minimal amount of memory is needed to satisfy PF_MEMALLOC
120allocations; if you set this to lower than 1024KB, your system will 120allocations; if you set this to lower than 1024KB, your system will
121become subtly broken, and prone to deadlock under high loads. 121become subtly broken, and prone to deadlock under high loads.
122 122
diff --git a/Documentation/timers/highres.txt b/Documentation/timers/highres.txt
index a73ecf5b4bdb..21332233cef1 100644
--- a/Documentation/timers/highres.txt
+++ b/Documentation/timers/highres.txt
@@ -125,7 +125,7 @@ increase of flexibility and the avoidance of duplicated code across
125architectures justifies the slight increase of the binary size. 125architectures justifies the slight increase of the binary size.
126 126
127The conversion of an architecture has no functional impact, but allows to 127The conversion of an architecture has no functional impact, but allows to
128utilize the high resolution and dynamic tick functionalites without any change 128utilize the high resolution and dynamic tick functionalities without any change
129to the clock event device and timer interrupt code. After the conversion the 129to the clock event device and timer interrupt code. After the conversion the
130enabling of high resolution timers and dynamic ticks is simply provided by 130enabling of high resolution timers and dynamic ticks is simply provided by
131adding the kernel/time/Kconfig file to the architecture specific Kconfig and 131adding the kernel/time/Kconfig file to the architecture specific Kconfig and
diff --git a/Documentation/unaligned-memory-access.txt b/Documentation/unaligned-memory-access.txt
index b0472ac5226a..f866c72291bf 100644
--- a/Documentation/unaligned-memory-access.txt
+++ b/Documentation/unaligned-memory-access.txt
@@ -218,9 +218,35 @@ If use of such macros is not convenient, another option is to use memcpy(),
218where the source or destination (or both) are of type u8* or unsigned char*. 218where the source or destination (or both) are of type u8* or unsigned char*.
219Due to the byte-wise nature of this operation, unaligned accesses are avoided. 219Due to the byte-wise nature of this operation, unaligned accesses are avoided.
220 220
221
222Alignment vs. Networking
223========================
224
225On architectures that require aligned loads, networking requires that the IP
226header is aligned on a four-byte boundary to optimise the IP stack. For
227regular ethernet hardware, the constant NET_IP_ALIGN is used. On most
228architectures this constant has the value 2 because the normal ethernet
229header is 14 bytes long, so in order to get proper alignment one needs to
230DMA to an address which can be expressed as 4*n + 2. One notable exception
231here is powerpc which defines NET_IP_ALIGN to 0 because DMA to unaligned
232addresses can be very expensive and dwarf the cost of unaligned loads.
233
234For some ethernet hardware that cannot DMA to unaligned addresses like
2354*n+2 or non-ethernet hardware, this can be a problem, and it is then
236required to copy the incoming frame into an aligned buffer. Because this is
237unnecessary on architectures that can do unaligned accesses, the code can be
238made dependent on CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS like so:
239
240#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
241 skb = original skb
242#else
243 skb = copy skb
244#endif
245
221-- 246--
222Author: Daniel Drake <dsd@gentoo.org> 247Authors: Daniel Drake <dsd@gentoo.org>,
248 Johannes Berg <johannes@sipsolutions.net>
223With help from: Alan Cox, Avuton Olrich, Heikki Orsila, Jan Engelhardt, 249With help from: Alan Cox, Avuton Olrich, Heikki Orsila, Jan Engelhardt,
224Johannes Berg, Kyle McMartin, Kyle Moffett, Randy Dunlap, Robert Hancock, 250Kyle McMartin, Kyle Moffett, Randy Dunlap, Robert Hancock, Uli Kunitz,
225Uli Kunitz, Vadim Lobanov 251Vadim Lobanov
226 252
diff --git a/Documentation/usb/auerswald.txt b/Documentation/usb/auerswald.txt
deleted file mode 100644
index 7ee4d8f69116..000000000000
--- a/Documentation/usb/auerswald.txt
+++ /dev/null
@@ -1,30 +0,0 @@
1 Auerswald USB kernel driver
2 ===========================
3
4What is it? What can I do with it?
5==================================
6The auerswald USB kernel driver connects your linux 2.4.x
7system to the auerswald usb-enabled devices.
8
9There are two types of auerswald usb devices:
10a) small PBX systems (ISDN)
11b) COMfort system telephones (ISDN)
12
13The driver installation creates the devices
14/dev/usb/auer0..15. These devices carry a vendor-
15specific protocol. You may run all auerswald java
16software on it. The java software needs a native
17library "libAuerUsbJNINative.so" installed on
18your system. This library is available from
19auerswald and shipped as part of the java software.
20
21You may create the devices with:
22 mknod -m 666 /dev/usb/auer0 c 180 112
23 ...
24 mknod -m 666 /dev/usb/auer15 c 180 127
25
26Future plans
27============
28- Connection to ISDN4LINUX (the hisax interface)
29
30The maintainer of this driver is wolfgang@iksw-muees.de
diff --git a/Documentation/usb/authorization.txt b/Documentation/usb/authorization.txt
index 2af400609498..381b22ee7834 100644
--- a/Documentation/usb/authorization.txt
+++ b/Documentation/usb/authorization.txt
@@ -8,7 +8,7 @@ not) in a system. This feature will allow you to implement a lock-down
8of USB devices, fully controlled by user space. 8of USB devices, fully controlled by user space.
9 9
10As of now, when a USB device is connected it is configured and 10As of now, when a USB device is connected it is configured and
11it's interfaces inmediately made available to the users. With this 11its interfaces are immediately made available to the users. With this
12modification, only if root authorizes the device to be configured will 12modification, only if root authorizes the device to be configured will
13then it be possible to use it. 13then it be possible to use it.
14 14
diff --git a/Documentation/usb/power-management.txt b/Documentation/usb/power-management.txt
index b2fc4d4a9917..9d31140e3f5b 100644
--- a/Documentation/usb/power-management.txt
+++ b/Documentation/usb/power-management.txt
@@ -436,7 +436,12 @@ post_reset; the USB core guarantees that this is true of internal
436suspend/resume events as well. 436suspend/resume events as well.
437 437
438If a driver wants to block all suspend/resume calls during some 438If a driver wants to block all suspend/resume calls during some
439critical section, it can simply acquire udev->pm_mutex. 439critical section, it can simply acquire udev->pm_mutex. Note that
440calls to resume may be triggered indirectly. Block IO due to memory
441allocations can make the vm subsystem resume a device. Thus while
442holding this lock you must not allocate memory with GFP_KERNEL or
443GFP_NOFS.
444
440Alternatively, if the critical section might call some of the 445Alternatively, if the critical section might call some of the
441usb_autopm_* routines, the driver can avoid deadlock by doing: 446usb_autopm_* routines, the driver can avoid deadlock by doing:
442 447
diff --git a/Documentation/video4linux/CARDLIST.au0828 b/Documentation/video4linux/CARDLIST.au0828
index 86d1c8e7b18f..aa05e5bb22fb 100644
--- a/Documentation/video4linux/CARDLIST.au0828
+++ b/Documentation/video4linux/CARDLIST.au0828
@@ -2,3 +2,5 @@
2 1 -> Hauppauge HVR950Q (au0828) [2040:7200,2040:7210,2040:7217,2040:721b,2040:721f,2040:7280,0fd9:0008] 2 1 -> Hauppauge HVR950Q (au0828) [2040:7200,2040:7210,2040:7217,2040:721b,2040:721f,2040:7280,0fd9:0008]
3 2 -> Hauppauge HVR850 (au0828) [2040:7240] 3 2 -> Hauppauge HVR850 (au0828) [2040:7240]
4 3 -> DViCO FusionHDTV USB (au0828) [0fe9:d620] 4 3 -> DViCO FusionHDTV USB (au0828) [0fe9:d620]
5 4 -> Hauppauge HVR950Q rev xxF8 (au0828) [2040:7201,2040:7211,2040:7281]
6 5 -> Hauppauge Woodbury (au0828) [2040:8200]
diff --git a/Documentation/video4linux/CARDLIST.em28xx b/Documentation/video4linux/CARDLIST.em28xx
index 10591467ef16..89c7f32abf9f 100644
--- a/Documentation/video4linux/CARDLIST.em28xx
+++ b/Documentation/video4linux/CARDLIST.em28xx
@@ -1,11 +1,11 @@
1 0 -> Unknown EM2800 video grabber (em2800) [eb1a:2800] 1 0 -> Unknown EM2800 video grabber (em2800) [eb1a:2800]
2 1 -> Unknown EM2750/28xx video grabber (em2820/em2840) [eb1a:2750,eb1a:2820,eb1a:2821,eb1a:2860,eb1a:2861,eb1a:2870,eb1a:2881,eb1a:2883] 2 1 -> Unknown EM2750/28xx video grabber (em2820/em2840) [eb1a:2820,eb1a:2821,eb1a:2860,eb1a:2861,eb1a:2870,eb1a:2881,eb1a:2883]
3 2 -> Terratec Cinergy 250 USB (em2820/em2840) [0ccd:0036] 3 2 -> Terratec Cinergy 250 USB (em2820/em2840) [0ccd:0036]
4 3 -> Pinnacle PCTV USB 2 (em2820/em2840) [2304:0208] 4 3 -> Pinnacle PCTV USB 2 (em2820/em2840) [2304:0208]
5 4 -> Hauppauge WinTV USB 2 (em2820/em2840) [2040:4200,2040:4201] 5 4 -> Hauppauge WinTV USB 2 (em2820/em2840) [2040:4200,2040:4201]
6 5 -> MSI VOX USB 2.0 (em2820/em2840) 6 5 -> MSI VOX USB 2.0 (em2820/em2840)
7 6 -> Terratec Cinergy 200 USB (em2800) 7 6 -> Terratec Cinergy 200 USB (em2800)
8 7 -> Leadtek Winfast USB II (em2800) 8 7 -> Leadtek Winfast USB II (em2800) [0413:6023]
9 8 -> Kworld USB2800 (em2800) 9 8 -> Kworld USB2800 (em2800)
10 9 -> Pinnacle Dazzle DVC 90/DVC 100 (em2820/em2840) [2304:0207,2304:021a] 10 9 -> Pinnacle Dazzle DVC 90/DVC 100 (em2820/em2840) [2304:0207,2304:021a]
11 10 -> Hauppauge WinTV HVR 900 (em2880) [2040:6500] 11 10 -> Hauppauge WinTV HVR 900 (em2880) [2040:6500]
@@ -14,7 +14,46 @@
14 13 -> Terratec Prodigy XS (em2880) [0ccd:0047] 14 13 -> Terratec Prodigy XS (em2880) [0ccd:0047]
15 14 -> Pixelview Prolink PlayTV USB 2.0 (em2820/em2840) 15 14 -> Pixelview Prolink PlayTV USB 2.0 (em2820/em2840)
16 15 -> V-Gear PocketTV (em2800) 16 15 -> V-Gear PocketTV (em2800)
17 16 -> Hauppauge WinTV HVR 950 (em2880) [2040:6513,2040:6517,2040:651b,2040:651f] 17 16 -> Hauppauge WinTV HVR 950 (em2883) [2040:6513,2040:6517,2040:651b,2040:651f]
18 17 -> Pinnacle PCTV HD Pro Stick (em2880) [2304:0227] 18 17 -> Pinnacle PCTV HD Pro Stick (em2880) [2304:0227]
19 18 -> Hauppauge WinTV HVR 900 (R2) (em2880) [2040:6502] 19 18 -> Hauppauge WinTV HVR 900 (R2) (em2880) [2040:6502]
20 19 -> PointNix Intra-Oral Camera (em2860) 20 19 -> PointNix Intra-Oral Camera (em2860)
21 20 -> AMD ATI TV Wonder HD 600 (em2880) [0438:b002]
22 21 -> eMPIA Technology, Inc. GrabBeeX+ Video Encoder (em2800) [eb1a:2801]
23 22 -> Unknown EM2750/EM2751 webcam grabber (em2750) [eb1a:2750,eb1a:2751]
24 23 -> Huaqi DLCW-130 (em2750)
25 24 -> D-Link DUB-T210 TV Tuner (em2820/em2840) [2001:f112]
26 25 -> Gadmei UTV310 (em2820/em2840)
27 26 -> Hercules Smart TV USB 2.0 (em2820/em2840)
28 27 -> Pinnacle PCTV USB 2 (Philips FM1216ME) (em2820/em2840)
29 28 -> Leadtek Winfast USB II Deluxe (em2820/em2840)
30 29 -> Pinnacle Dazzle DVC 100 (em2820/em2840)
31 30 -> Videology 20K14XUSB USB2.0 (em2820/em2840)
32 31 -> Usbgear VD204v9 (em2821)
33 32 -> Supercomp USB 2.0 TV (em2821)
34 33 -> SIIG AVTuner-PVR/Prolink PlayTV USB 2.0 (em2821)
35 34 -> Terratec Cinergy A Hybrid XS (em2860) [0ccd:004f]
36 35 -> Typhoon DVD Maker (em2860)
37 36 -> NetGMBH Cam (em2860)
38 37 -> Gadmei UTV330 (em2860)
39 38 -> Yakumo MovieMixer (em2861)
40 39 -> KWorld PVRTV 300U (em2861) [eb1a:e300]
41 40 -> Plextor ConvertX PX-TV100U (em2861) [093b:a005]
42 41 -> Kworld 350 U DVB-T (em2870) [eb1a:e350]
43 42 -> Kworld 355 U DVB-T (em2870) [eb1a:e355,eb1a:e357]
44 43 -> Terratec Cinergy T XS (em2870) [0ccd:0043]
45 44 -> Terratec Cinergy T XS (MT2060) (em2870)
46 45 -> Pinnacle PCTV DVB-T (em2870)
47 46 -> Compro, VideoMate U3 (em2870) [185b:2870]
48 47 -> KWorld DVB-T 305U (em2880) [eb1a:e305]
49 48 -> KWorld DVB-T 310U (em2880)
50 49 -> MSI DigiVox A/D (em2880) [eb1a:e310]
51 50 -> MSI DigiVox A/D II (em2880) [eb1a:e320]
52 51 -> Terratec Hybrid XS Secam (em2880) [0ccd:004c]
53 52 -> DNT DA2 Hybrid (em2881)
54 53 -> Pinnacle Hybrid Pro (em2881)
55 54 -> Kworld VS-DVB-T 323UR (em2882) [eb1a:e323]
56 55 -> Terratec Hybrid XS (em2882) (em2882) [0ccd:005e]
57 56 -> Pinnacle Hybrid Pro (2) (em2882) [2304:0226]
58 57 -> Kworld PlusTV HD Hybrid 330 (em2883) [eb1a:a316]
59 58 -> Compro VideoMate ForYou/Stereo (em2820/em2840) [185b:2041]
diff --git a/Documentation/video4linux/Makefile b/Documentation/video4linux/Makefile
new file mode 100644
index 000000000000..1ed0e98d057d
--- /dev/null
+++ b/Documentation/video4linux/Makefile
@@ -0,0 +1,8 @@
1# kbuild trick to avoid linker error. Can be omitted if a module is built.
2obj- := dummy.o
3
4# List of programs to build
5hostprogs-y := v4lgrab
6
7# Tell kbuild to always build the programs
8always := $(hostprogs-y)
diff --git a/Documentation/video4linux/gspca.txt b/Documentation/video4linux/gspca.txt
index 0c4880af57a3..0f03900c48fb 100644
--- a/Documentation/video4linux/gspca.txt
+++ b/Documentation/video4linux/gspca.txt
@@ -1,4 +1,4 @@
1List of the webcams know by gspca. 1List of the webcams known by gspca.
2 2
3The modules are: 3The modules are:
4 gspca_main main driver 4 gspca_main main driver
@@ -88,14 +88,14 @@ zc3xx 0471:0325 Philips SPC 200 NC
88zc3xx 0471:0326 Philips SPC 300 NC 88zc3xx 0471:0326 Philips SPC 300 NC
89sonixj 0471:0327 Philips SPC 600 NC 89sonixj 0471:0327 Philips SPC 600 NC
90sonixj 0471:0328 Philips SPC 700 NC 90sonixj 0471:0328 Philips SPC 700 NC
91zc3xx 0471:032d Philips spc210nc 91zc3xx 0471:032d Philips SPC 210 NC
92zc3xx 0471:032e Philips spc315nc 92zc3xx 0471:032e Philips SPC 315 NC
93sonixj 0471:0330 Philips SPC 710NC 93sonixj 0471:0330 Philips SPC 710 NC
94spca501 0497:c001 Smile International 94spca501 0497:c001 Smile International
95sunplus 04a5:3003 Benq DC 1300 95sunplus 04a5:3003 Benq DC 1300
96sunplus 04a5:3008 Benq DC 1500 96sunplus 04a5:3008 Benq DC 1500
97sunplus 04a5:300a Benq DC3410 97sunplus 04a5:300a Benq DC 3410
98spca500 04a5:300c Benq DC1016 98spca500 04a5:300c Benq DC 1016
99sunplus 04f1:1001 JVC GC A50 99sunplus 04f1:1001 JVC GC A50
100spca561 04fc:0561 Flexcam 100 100spca561 04fc:0561 Flexcam 100
101sunplus 04fc:500c Sunplus CA500C 101sunplus 04fc:500c Sunplus CA500C
@@ -175,19 +175,21 @@ sunplus 08ca:2060 Aiptek PocketDV5300
175tv8532 0923:010f ICM532 cams 175tv8532 0923:010f ICM532 cams
176mars 093a:050f Mars-Semi Pc-Camera 176mars 093a:050f Mars-Semi Pc-Camera
177pac207 093a:2460 PAC207 Qtec Webcam 100 177pac207 093a:2460 PAC207 Qtec Webcam 100
178pac207 093a:2463 Philips spc200nc pac207 178pac207 093a:2463 Philips SPC 220 NC
179pac207 093a:2464 Labtec Webcam 1200 179pac207 093a:2464 Labtec Webcam 1200
180pac207 093a:2468 PAC207 180pac207 093a:2468 PAC207
181pac207 093a:2470 Genius GF112 181pac207 093a:2470 Genius GF112
182pac207 093a:2471 PAC207 Genius VideoCam ge111 182pac207 093a:2471 Genius VideoCam ge111
183pac207 093a:2472 PAC207 Genius VideoCam ge110 183pac207 093a:2472 Genius VideoCam ge110
184pac7311 093a:2600 PAC7311 Typhoon 184pac7311 093a:2600 PAC7311 Typhoon
185pac7311 093a:2601 PAC7311 Phillips SPC610NC 185pac7311 093a:2601 Philips SPC 610 NC
186pac7311 093a:2603 PAC7312 186pac7311 093a:2603 PAC7312
187pac7311 093a:2608 PAC7311 Trust WB-3300p 187pac7311 093a:2608 Trust WB-3300p
188pac7311 093a:260e PAC7311 Gigaware VGA PC Camera, Trust WB-3350p, SIGMA cam 2350 188pac7311 093a:260e Gigaware VGA PC Camera, Trust WB-3350p, SIGMA cam 2350
189pac7311 093a:260f PAC7311 SnakeCam 189pac7311 093a:260f SnakeCam
190pac7311 093a:2621 PAC731x 190pac7311 093a:2621 PAC731x
191pac7311 093a:2624 PAC7302
192pac7311 093a:2626 Labtec 2200
191zc3xx 0ac8:0302 Z-star Vimicro zc0302 193zc3xx 0ac8:0302 Z-star Vimicro zc0302
192vc032x 0ac8:0321 Vimicro generic vc0321 194vc032x 0ac8:0321 Vimicro generic vc0321
193vc032x 0ac8:0323 Vimicro Vc0323 195vc032x 0ac8:0323 Vimicro Vc0323
@@ -220,12 +222,14 @@ sonixj 0c45:60c0 Sangha Sn535
220sonixj 0c45:60ec SN9C105+MO4000 222sonixj 0c45:60ec SN9C105+MO4000
221sonixj 0c45:60fb Surfer NoName 223sonixj 0c45:60fb Surfer NoName
222sonixj 0c45:60fc LG-LIC300 224sonixj 0c45:60fc LG-LIC300
225sonixj 0c45:6128 Microdia/Sonix SNP325
223sonixj 0c45:612a Avant Camera 226sonixj 0c45:612a Avant Camera
224sonixj 0c45:612c Typhoon Rasy Cam 1.3MPix 227sonixj 0c45:612c Typhoon Rasy Cam 1.3MPix
225sonixj 0c45:6130 Sonix Pccam 228sonixj 0c45:6130 Sonix Pccam
226sonixj 0c45:6138 Sn9c120 Mo4000 229sonixj 0c45:6138 Sn9c120 Mo4000
227sonixj 0c45:613b Surfer SN-206 230sonixj 0c45:613b Surfer SN-206
228sonixj 0c45:613c Sonix Pccam168 231sonixj 0c45:613c Sonix Pccam168
232sonixj 0c45:6143 Sonix Pccam168
229sunplus 0d64:0303 Sunplus FashionCam DXG 233sunplus 0d64:0303 Sunplus FashionCam DXG
230etoms 102c:6151 Qcam Sangha CIF 234etoms 102c:6151 Qcam Sangha CIF
231etoms 102c:6251 Qcam xxxxxx VGA 235etoms 102c:6251 Qcam xxxxxx VGA
@@ -233,7 +237,7 @@ zc3xx 10fd:0128 Typhoon Webshot II USB 300k 0x0128
233spca561 10fd:7e50 FlyCam Usb 100 237spca561 10fd:7e50 FlyCam Usb 100
234zc3xx 10fd:8050 Typhoon Webshot II USB 300k 238zc3xx 10fd:8050 Typhoon Webshot II USB 300k
235spca501 1776:501c Arowana 300K CMOS Camera 239spca501 1776:501c Arowana 300K CMOS Camera
236t613 17a1:0128 T613/TAS5130A 240t613 17a1:0128 TASCORP JPEG Webcam, NGS Cyclops
237vc032x 17ef:4802 Lenovo Vc0323+MI1310_SOC 241vc032x 17ef:4802 Lenovo Vc0323+MI1310_SOC
238pac207 2001:f115 D-Link DSB-C120 242pac207 2001:f115 D-Link DSB-C120
239spca500 2899:012c Toptro Industrial 243spca500 2899:012c Toptro Industrial
diff --git a/Documentation/video4linux/sn9c102.txt b/Documentation/video4linux/sn9c102.txt
index b26f5195af51..73de4050d637 100644
--- a/Documentation/video4linux/sn9c102.txt
+++ b/Documentation/video4linux/sn9c102.txt
@@ -157,7 +157,7 @@ Loading can be done as shown below:
157 157
158 [root@localhost home]# modprobe sn9c102 158 [root@localhost home]# modprobe sn9c102
159 159
160Note that the module is called "sn9c102" for historic reasons, althought it 160Note that the module is called "sn9c102" for historic reasons, although it
161does not just support the SN9C102. 161does not just support the SN9C102.
162 162
163At this point all the devices supported by the driver and connected to the USB 163At this point all the devices supported by the driver and connected to the USB
diff --git a/Documentation/vm/Makefile b/Documentation/vm/Makefile
new file mode 100644
index 000000000000..6f562f778b28
--- /dev/null
+++ b/Documentation/vm/Makefile
@@ -0,0 +1,8 @@
1# kbuild trick to avoid linker error. Can be omitted if a module is built.
2obj- := dummy.o
3
4# List of programs to build
5hostprogs-y := slabinfo
6
7# Tell kbuild to always build the programs
8always := $(hostprogs-y)
diff --git a/Documentation/vm/hugetlbpage.txt b/Documentation/vm/hugetlbpage.txt
index 3102b81bef88..ea8714fcc3ad 100644
--- a/Documentation/vm/hugetlbpage.txt
+++ b/Documentation/vm/hugetlbpage.txt
@@ -77,7 +77,7 @@ memory that is preset in system at this time. System administrators may want
77to put this command in one of the local rc init files. This will enable the 77to put this command in one of the local rc init files. This will enable the
78kernel to request huge pages early in the boot process (when the possibility 78kernel to request huge pages early in the boot process (when the possibility
79of getting physical contiguous pages is still very high). In either 79of getting physical contiguous pages is still very high). In either
80case, adminstrators will want to verify the number of hugepages actually 80case, administrators will want to verify the number of hugepages actually
81allocated by checking the sysctl or meminfo. 81allocated by checking the sysctl or meminfo.
82 82
83/proc/sys/vm/nr_overcommit_hugepages indicates how large the pool of 83/proc/sys/vm/nr_overcommit_hugepages indicates how large the pool of
@@ -95,6 +95,29 @@ this condition holds, however, no more surplus huge pages will be
95allowed on the system until one of the two sysctls are increased 95allowed on the system until one of the two sysctls are increased
96sufficiently, or the surplus huge pages go out of use and are freed. 96sufficiently, or the surplus huge pages go out of use and are freed.
97 97
98With support for multiple hugepage pools at run-time available, much of
99the hugepage userspace interface has been duplicated in sysfs. The above
100information applies to the default hugepage size (which will be
101controlled by the proc interfaces for backwards compatibility). The root
102hugepage control directory is
103
104 /sys/kernel/mm/hugepages
105
106For each hugepage size supported by the running kernel, a subdirectory
107will exist, of the form
108
109 hugepages-${size}kB
110
111Inside each of these directories, the same set of files will exist:
112
113 nr_hugepages
114 nr_overcommit_hugepages
115 free_hugepages
116 resv_hugepages
117 surplus_hugepages
118
119which function as described above for the default hugepage-sized case.
120
98If the user applications are going to request hugepages using mmap system 121If the user applications are going to request hugepages using mmap system
99call, then it is required that system administrator mount a file system of 122call, then it is required that system administrator mount a file system of
100type hugetlbfs: 123type hugetlbfs:
diff --git a/Documentation/vm/numa_memory_policy.txt b/Documentation/vm/numa_memory_policy.txt
index bad16d3f6a47..6aaaeb38730c 100644
--- a/Documentation/vm/numa_memory_policy.txt
+++ b/Documentation/vm/numa_memory_policy.txt
@@ -58,7 +58,7 @@ most general to most specific:
58 the policy at the time they were allocated. 58 the policy at the time they were allocated.
59 59
60 VMA Policy: A "VMA" or "Virtual Memory Area" refers to a range of a task's 60 VMA Policy: A "VMA" or "Virtual Memory Area" refers to a range of a task's
61 virtual adddress space. A task may define a specific policy for a range 61 virtual address space. A task may define a specific policy for a range
62 of its virtual address space. See the MEMORY POLICIES APIS section, 62 of its virtual address space. See the MEMORY POLICIES APIS section,
63 below, for an overview of the mbind() system call used to set a VMA 63 below, for an overview of the mbind() system call used to set a VMA
64 policy. 64 policy.
@@ -353,7 +353,7 @@ follows:
353 353
354 Because of this extra reference counting, and because we must lookup 354 Because of this extra reference counting, and because we must lookup
355 shared policies in a tree structure under spinlock, shared policies are 355 shared policies in a tree structure under spinlock, shared policies are
356 more expensive to use in the page allocation path. This is expecially 356 more expensive to use in the page allocation path. This is especially
357 true for shared policies on shared memory regions shared by tasks running 357 true for shared policies on shared memory regions shared by tasks running
358 on different NUMA nodes. This extra overhead can be avoided by always 358 on different NUMA nodes. This extra overhead can be avoided by always
359 falling back to task or system default policy for shared memory regions, 359 falling back to task or system default policy for shared memory regions,
diff --git a/Documentation/vm/page_migration b/Documentation/vm/page_migration
index 99f89aa10169..d5fdfd34bbaf 100644
--- a/Documentation/vm/page_migration
+++ b/Documentation/vm/page_migration
@@ -18,10 +18,11 @@ migrate_pages function call takes two sets of nodes and moves pages of a
18process that are located on the from nodes to the destination nodes. 18process that are located on the from nodes to the destination nodes.
19Page migration functions are provided by the numactl package by Andi Kleen 19Page migration functions are provided by the numactl package by Andi Kleen
20(a version later than 0.9.3 is required. Get it from 20(a version later than 0.9.3 is required. Get it from
21ftp://ftp.suse.com/pub/people/ak). numactl provided libnuma which 21ftp://oss.sgi.com/www/projects/libnuma/download/). numactl provides libnuma
22provides an interface similar to other numa functionality for page migration. 22which provides an interface similar to other numa functionality for page
23cat /proc/<pid>/numa_maps allows an easy review of where the pages of 23migration. cat /proc/<pid>/numa_maps allows an easy review of where the
24a process are located. See also the numa_maps manpage in the numactl package. 24pages of a process are located. See also the numa_maps documentation in the
25proc(5) man page.
25 26
26Manual migration is useful if for example the scheduler has relocated 27Manual migration is useful if for example the scheduler has relocated
27a process to a processor on a distant node. A batch scheduler or an 28a process to a processor on a distant node. A batch scheduler or an
diff --git a/Documentation/volatile-considered-harmful.txt b/Documentation/volatile-considered-harmful.txt
index 10c2e411cca8..991c26a6ef64 100644
--- a/Documentation/volatile-considered-harmful.txt
+++ b/Documentation/volatile-considered-harmful.txt
@@ -114,6 +114,6 @@ CREDITS
114 114
115Original impetus and research by Randy Dunlap 115Original impetus and research by Randy Dunlap
116Written by Jonathan Corbet 116Written by Jonathan Corbet
117Improvements via coments from Satyam Sharma, Johannes Stezenbach, Jesper 117Improvements via comments from Satyam Sharma, Johannes Stezenbach, Jesper
118 Juhl, Heikki Orsila, H. Peter Anvin, Philipp Hahn, and Stefan 118 Juhl, Heikki Orsila, H. Peter Anvin, Philipp Hahn, and Stefan
119 Richter. 119 Richter.
diff --git a/Documentation/watchdog/src/Makefile b/Documentation/watchdog/src/Makefile
new file mode 100644
index 000000000000..40e5f46e4740
--- /dev/null
+++ b/Documentation/watchdog/src/Makefile
@@ -0,0 +1,8 @@
1# kbuild trick to avoid linker error. Can be omitted if a module is built.
2obj- := dummy.o
3
4# List of programs to build
5hostprogs-y := watchdog-simple watchdog-test
6
7# Tell kbuild to always build the programs
8always := $(hostprogs-y)