aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
authorBryan Wu <bryan.wu@analog.com>2007-05-06 17:50:22 -0400
committerLinus Torvalds <torvalds@woody.linux-foundation.org>2007-05-07 15:12:58 -0400
commit1394f03221790a988afc3e4b3cb79f2e477246a9 (patch)
tree2c1963c9a4f2d84a5e021307fde240c5d567cf70 /Documentation
parent73243284463a761e04d69d22c7516b2be7de096c (diff)
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/blackfin/00-INDEX11
-rw-r--r--Documentation/blackfin/Filesystems169
-rw-r--r--Documentation/blackfin/cache-lock.txt48
-rw-r--r--Documentation/blackfin/cachefeatures.txt65
4 files changed, 293 insertions, 0 deletions
diff --git a/Documentation/blackfin/00-INDEX b/Documentation/blackfin/00-INDEX
new file mode 100644
index 000000000000..7cb3b356b249
--- /dev/null
+++ b/Documentation/blackfin/00-INDEX
@@ -0,0 +1,11 @@
100-INDEX
2 - This file
3
4cache-lock.txt
5 - HOWTO for blackfin cache locking.
6
7cachefeatures.txt
8 - Supported cache features.
9
10Filesystems
11 - Requirements for mounting the root file system.
diff --git a/Documentation/blackfin/Filesystems b/Documentation/blackfin/Filesystems
new file mode 100644
index 000000000000..51260a1b8032
--- /dev/null
+++ b/Documentation/blackfin/Filesystems
@@ -0,0 +1,169 @@
1/*
2 * File: Documentation/blackfin/Filesystems
3 * Based on:
4 * Author:
5 *
6 * Created:
7 * Description: This file contains the simple DMA Implementation for Blackfin
8 *
9 * Rev: $Id: Filesystems 2384 2006-11-01 04:12:43Z magicyang $
10 *
11 * Modified:
12 * Copyright 2004-2006 Analog Devices Inc.
13 *
14 * Bugs: Enter bugs at http://blackfin.uclinux.org/
15 *
16 */
17
18 How to mount the root file system in uClinux/Blackfin
19 -----------------------------------------------------
20
211 Mounting EXT3 File system.
22 ------------------------
23
24 Creating an EXT3 File system for uClinux/Blackfin:
25
26
27Please follow the steps to form the EXT3 File system and mount the same as root
28file system.
29
30a Make an ext3 file system as large as you want the final root file
31 system.
32
33 mkfs.ext3 /dev/ram0 <your-rootfs-size-in-1k-blocks>
34
35b Mount this Empty file system on a free directory as:
36
37 mount -t ext3 /dev/ram0 ./test
38 where ./test is the empty directory.
39
40c Copy your root fs directory that you have so carefully made over.
41
42 cp -af /tmp/my_final_rootfs_files/* ./test
43
44 (For ex: cp -af uClinux-dist/romfs/* ./test)
45
46d If you have done everything right till now you should be able to see
47 the required "root" dir's (that's etc, root, bin, lib, sbin...)
48
49e Now unmount the file system
50
51 umount ./test
52
53f Create the root file system image.
54
55 dd if=/dev/ram0 bs=1k count=<your-rootfs-size-in-1k-blocks> \
56 > ext3fs.img
57
58
59Now you have to tell the kernel that will be mounting this file system as
60rootfs.
61So do a make menuconfig under kernel and select the Ext3 journaling file system
62support under File system --> submenu.
63
64
652. Mounting EXT2 File system.
66 -------------------------
67
68By default the ext2 file system image will be created if you invoke make from
69the top uClinux-dist directory.
70
71
723. Mounting CRAMFS File System
73 ----------------------------
74
75To create a CRAMFS file system image execute the command
76
77 mkfs.cramfs ./test cramfs.img
78
79 where ./test is the target directory.
80
81
824. Mounting ROMFS File System
83 --------------------------
84
85To create a ROMFS file system image execute the command
86
87 genromfs -v -V "ROMdisk" -f romfs.img -d ./test
88
89 where ./test is the target directory
90
91
925. Mounting the JFFS2 Filesystem
93 -----------------------------
94
95To create a compressed JFFS filesystem (JFFS2), please execute the command
96
97 mkfs.jffs2 -d ./test -o jffs2.img
98
99 where ./test is the target directory.
100
101However, please make sure the following is in your kernel config.
102
103/*
104 * RAM/ROM/Flash chip drivers
105 */
106#define CONFIG_MTD_CFI 1
107#define CONFIG_MTD_ROM 1
108/*
109 * Mapping drivers for chip access
110 */
111#define CONFIG_MTD_COMPLEX_MAPPINGS 1
112#define CONFIG_MTD_BF533 1
113#undef CONFIG_MTD_UCLINUX
114
115Through the u-boot boot loader, use the jffs2.img in the corresponding
116partition made in linux-2.6.x/drivers/mtd/maps/bf533_flash.c.
117
118NOTE - Currently the Flash driver is available only for EZKIT. Watch out for a
119 STAMP driver soon.
120
121
1226. Mounting the NFS File system
123 -----------------------------
124
125 For mounting the NFS please do the following in the kernel config.
126
127 In Networking Support --> Networking options --> TCP/IP networking -->
128 IP: kernel level autoconfiguration
129
130 Enable BOOTP Support.
131
132 In Kernel hacking --> Compiled-in kernel boot parameter add the following
133
134 root=/dev/nfs rw ip=bootp
135
136 In File system --> Network File system, Enable
137
138 NFS file system support --> NFSv3 client support
139 Root File system on NFS
140
141 in uClibc menuconfig, do the following
142 In Networking Support
143 enable Remote Procedure Call (RPC) support
144 Full RPC Support
145
146 On the Host side, ensure that /etc/dhcpd.conf looks something like this
147
148 ddns-update-style ad-hoc;
149 allow bootp;
150 subnet 10.100.4.0 netmask 255.255.255.0 {
151 default-lease-time 122209600;
152 max-lease-time 31557600;
153 group {
154 host bf533 {
155 hardware ethernet 00:CF:52:49:C3:01;
156 fixed-address 10.100.4.50;
157 option root-path "/home/nfsmount";
158 }
159 }
160
161 ensure that /etc/exports looks something like this
162 /home/nfsmount *(rw,no_root_squash,no_all_squash)
163
164 run the following commands as root (may differ depending on your
165 distribution) :
166 - service nfs start
167 - service portmap start
168 - service dhcpd start
169 - /usr/sbin/exportfs
diff --git a/Documentation/blackfin/cache-lock.txt b/Documentation/blackfin/cache-lock.txt
new file mode 100644
index 000000000000..88ba1e6c31c3
--- /dev/null
+++ b/Documentation/blackfin/cache-lock.txt
@@ -0,0 +1,48 @@
1/*
2 * File: Documentation/blackfin/cache-lock.txt
3 * Based on:
4 * Author:
5 *
6 * Created:
7 * Description: This file contains the simple DMA Implementation for Blackfin
8 *
9 * Rev: $Id: cache-lock.txt 2384 2006-11-01 04:12:43Z magicyang $
10 *
11 * Modified:
12 * Copyright 2004-2006 Analog Devices Inc.
13 *
14 * Bugs: Enter bugs at http://blackfin.uclinux.org/
15 *
16 */
17
18How to lock your code in cache in uClinux/blackfin
19--------------------------------------------------
20
21There are only a few steps required to lock your code into the cache.
22Currently you can lock the code by Way.
23
24Below are the interface provided for locking the cache.
25
26
271. cache_grab_lock(int Ways);
28
29This function grab the lock for locking your code into the cache specified
30by Ways.
31
32
332. cache_lock(int Ways);
34
35This function should be called after your critical code has been executed.
36Once the critical code exits, the code is now loaded into the cache. This
37function locks the code into the cache.
38
39
40So, the example sequence will be:
41
42 cache_grab_lock(WAY0_L); /* Grab the lock */
43
44 critical_code(); /* Execute the code of interest */
45
46 cache_lock(WAY0_L); /* Lock the cache */
47
48Where WAY0_L signifies WAY0 locking.
diff --git a/Documentation/blackfin/cachefeatures.txt b/Documentation/blackfin/cachefeatures.txt
new file mode 100644
index 000000000000..0fbec23becb5
--- /dev/null
+++ b/Documentation/blackfin/cachefeatures.txt
@@ -0,0 +1,65 @@
1/*
2 * File: Documentation/blackfin/cachefeatures.txt
3 * Based on:
4 * Author:
5 *
6 * Created:
7 * Description: This file contains the simple DMA Implementation for Blackfin
8 *
9 * Rev: $Id: cachefeatures.txt 2384 2006-11-01 04:12:43Z magicyang $
10 *
11 * Modified:
12 * Copyright 2004-2006 Analog Devices Inc.
13 *
14 * Bugs: Enter bugs at http://blackfin.uclinux.org/
15 *
16 */
17
18 - Instruction and Data cache initialization.
19 icache_init();
20 dcache_init();
21
22 - Instruction and Data cache Invalidation Routines, when flushing the
23 same is not required.
24 _icache_invalidate();
25 _dcache_invalidate();
26
27 Also, for invalidating the entire instruction and data cache, the below
28 routines are provided (another method for invalidation, refer page no 267 and 287 of
29 ADSP-BF533 Hardware Reference manual)
30
31 invalidate_entire_dcache();
32 invalidate_entire_icache();
33
34 -External Flushing of Instruction and data cache routines.
35
36 flush_instruction_cache();
37 flush_data_cache();
38
39 - Internal Flushing of Instruction and Data Cache.
40
41 icplb_flush();
42 dcplb_flush();
43
44 - Locking the cache.
45
46 cache_grab_lock();
47 cache_lock();
48
49 Please refer linux-2.6.x/Documentation/blackfin/cache-lock.txt for how to
50 lock the cache.
51
52 Locking the cache is optional feature.
53
54 - Miscellaneous cache functions.
55
56 flush_cache_all();
57 flush_cache_mm();
58 invalidate_dcache_range();
59 flush_dcache_range();
60 flush_dcache_page();
61 flush_cache_range();
62 flush_cache_page();
63 invalidate_dcache_range();
64 flush_page_to_ram();
65