aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
authorJiri Kosina <jkosina@suse.cz>2010-08-11 03:36:51 -0400
committerJiri Kosina <jkosina@suse.cz>2010-08-11 03:36:51 -0400
commit6396fc3b3ff3f6b942992b653a62df11dcef9bea (patch)
treedb3c7cbe833b43c653adc99f70941431c5ff7c4e /Documentation
parent4785879e4d340e24e54f6de2ccfc42728b912808 (diff)
parent3d30701b58970425e1d45994d6cb82f828924fdd (diff)
Merge branch 'master' into for-next
Conflicts: fs/exofs/inode.c
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/sysfs-devices-platform-_UDC_-gadget12
-rw-r--r--Documentation/DocBook/Makefile2
-rw-r--r--Documentation/DocBook/v4l/lirc_device_interface.xml16
-rw-r--r--Documentation/DocBook/v4l/pixfmt-packed-rgb.xml78
-rw-r--r--Documentation/feature-removal-schedule.txt8
-rw-r--r--Documentation/filesystems/Locking22
-rw-r--r--Documentation/filesystems/porting45
-rw-r--r--Documentation/kernel-parameters.txt3
-rw-r--r--Documentation/usb/ehci.txt2
-rw-r--r--Documentation/usb/gadget_multi.txt150
-rw-r--r--Documentation/usb/gadget_serial.txt87
-rw-r--r--Documentation/usb/hotplug.txt4
-rw-r--r--Documentation/usb/linux-cdc-acm.inf107
-rw-r--r--Documentation/usb/linux.inf228
-rw-r--r--Documentation/video4linux/v4l2-controls.txt648
15 files changed, 1132 insertions, 280 deletions
diff --git a/Documentation/ABI/testing/sysfs-devices-platform-_UDC_-gadget b/Documentation/ABI/testing/sysfs-devices-platform-_UDC_-gadget
index 34034027b13c..d548eaac230a 100644
--- a/Documentation/ABI/testing/sysfs-devices-platform-_UDC_-gadget
+++ b/Documentation/ABI/testing/sysfs-devices-platform-_UDC_-gadget
@@ -7,3 +7,15 @@ Description:
7 0 -> resumed 7 0 -> resumed
8 8
9 (_UDC_ is the name of the USB Device Controller driver) 9 (_UDC_ is the name of the USB Device Controller driver)
10
11What: /sys/devices/platform/_UDC_/gadget/gadget-lunX/nofua
12Date: July 2010
13Contact: Andy Shevchenko <andy.shevchenko@gmail.com>
14Description:
15 Show or set the reaction on the FUA (Force Unit Access) bit in
16 the SCSI WRITE(10,12) commands when a gadget in USB Mass
17 Storage mode.
18
19 Possible values are:
20 1 -> ignore the FUA flag
21 0 -> obey the FUA flag
diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile
index c7e5dc7e8cb3..4b603c5c3cc1 100644
--- a/Documentation/DocBook/Makefile
+++ b/Documentation/DocBook/Makefile
@@ -45,7 +45,7 @@ PDF := $(patsubst %.xml, %.pdf, $(BOOKS))
45pdfdocs: $(PDF) 45pdfdocs: $(PDF)
46 46
47HTML := $(sort $(patsubst %.xml, %.html, $(BOOKS))) 47HTML := $(sort $(patsubst %.xml, %.html, $(BOOKS)))
48htmldocs: $(HTML) 48htmldocs: $(HTML) xmldoclinks
49 $(call build_main_index) 49 $(call build_main_index)
50 $(call build_images) 50 $(call build_images)
51 51
diff --git a/Documentation/DocBook/v4l/lirc_device_interface.xml b/Documentation/DocBook/v4l/lirc_device_interface.xml
index 0413234023d4..68134c0ab4d1 100644
--- a/Documentation/DocBook/v4l/lirc_device_interface.xml
+++ b/Documentation/DocBook/v4l/lirc_device_interface.xml
@@ -229,6 +229,22 @@ on working with the default settings initially.</para>
229 and LIRC_SETUP_END. Drivers can also choose to ignore these ioctls.</para> 229 and LIRC_SETUP_END. Drivers can also choose to ignore these ioctls.</para>
230 </listitem> 230 </listitem>
231 </varlistentry> 231 </varlistentry>
232 <varlistentry>
233 <term>LIRC_SET_WIDEBAND_RECEIVER</term>
234 <listitem>
235 <para>Some receivers are equipped with special wide band receiver which is intended
236 to be used to learn output of existing remote.
237 Calling that ioctl with (1) will enable it, and with (0) disable it.
238 This might be useful of receivers that have otherwise narrow band receiver
239 that prevents them to be used with some remotes.
240 Wide band receiver might also be more precise
241 On the other hand its disadvantage it usually reduced range of reception.
242 Note: wide band receiver might be implictly enabled if you enable
243 carrier reports. In that case it will be disabled as soon as you disable
244 carrier reports. Trying to disable wide band receiver while carrier
245 reports are active will do nothing.</para>
246 </listitem>
247 </varlistentry>
232</variablelist> 248</variablelist>
233 249
234</section> 250</section>
diff --git a/Documentation/DocBook/v4l/pixfmt-packed-rgb.xml b/Documentation/DocBook/v4l/pixfmt-packed-rgb.xml
index d2dd697a81d8..26e879231088 100644
--- a/Documentation/DocBook/v4l/pixfmt-packed-rgb.xml
+++ b/Documentation/DocBook/v4l/pixfmt-packed-rgb.xml
@@ -240,6 +240,45 @@ colorspace <constant>V4L2_COLORSPACE_SRGB</constant>.</para>
240 <entry>r<subscript>1</subscript></entry> 240 <entry>r<subscript>1</subscript></entry>
241 <entry>r<subscript>0</subscript></entry> 241 <entry>r<subscript>0</subscript></entry>
242 </row> 242 </row>
243 <row id="V4L2-PIX-FMT-BGR666">
244 <entry><constant>V4L2_PIX_FMT_BGR666</constant></entry>
245 <entry>'BGRH'</entry>
246 <entry></entry>
247 <entry>b<subscript>5</subscript></entry>
248 <entry>b<subscript>4</subscript></entry>
249 <entry>b<subscript>3</subscript></entry>
250 <entry>b<subscript>2</subscript></entry>
251 <entry>b<subscript>1</subscript></entry>
252 <entry>b<subscript>0</subscript></entry>
253 <entry>g<subscript>5</subscript></entry>
254 <entry>g<subscript>4</subscript></entry>
255 <entry></entry>
256 <entry>g<subscript>3</subscript></entry>
257 <entry>g<subscript>2</subscript></entry>
258 <entry>g<subscript>1</subscript></entry>
259 <entry>g<subscript>0</subscript></entry>
260 <entry>r<subscript>5</subscript></entry>
261 <entry>r<subscript>4</subscript></entry>
262 <entry>r<subscript>3</subscript></entry>
263 <entry>r<subscript>2</subscript></entry>
264 <entry></entry>
265 <entry>r<subscript>1</subscript></entry>
266 <entry>r<subscript>0</subscript></entry>
267 <entry></entry>
268 <entry></entry>
269 <entry></entry>
270 <entry></entry>
271 <entry></entry>
272 <entry></entry>
273 <entry></entry>
274 <entry></entry>
275 <entry></entry>
276 <entry></entry>
277 <entry></entry>
278 <entry></entry>
279 <entry></entry>
280 <entry></entry>
281 </row>
243 <row id="V4L2-PIX-FMT-BGR24"> 282 <row id="V4L2-PIX-FMT-BGR24">
244 <entry><constant>V4L2_PIX_FMT_BGR24</constant></entry> 283 <entry><constant>V4L2_PIX_FMT_BGR24</constant></entry>
245 <entry>'BGR3'</entry> 284 <entry>'BGR3'</entry>
@@ -700,6 +739,45 @@ defined in error. Drivers may interpret them as in <xref
700 <entry>b<subscript>1</subscript></entry> 739 <entry>b<subscript>1</subscript></entry>
701 <entry>b<subscript>0</subscript></entry> 740 <entry>b<subscript>0</subscript></entry>
702 </row> 741 </row>
742 <row id="V4L2-PIX-FMT-BGR666">
743 <entry><constant>V4L2_PIX_FMT_BGR666</constant></entry>
744 <entry>'BGRH'</entry>
745 <entry></entry>
746 <entry>b<subscript>5</subscript></entry>
747 <entry>b<subscript>4</subscript></entry>
748 <entry>b<subscript>3</subscript></entry>
749 <entry>b<subscript>2</subscript></entry>
750 <entry>b<subscript>1</subscript></entry>
751 <entry>b<subscript>0</subscript></entry>
752 <entry>g<subscript>5</subscript></entry>
753 <entry>g<subscript>4</subscript></entry>
754 <entry></entry>
755 <entry>g<subscript>3</subscript></entry>
756 <entry>g<subscript>2</subscript></entry>
757 <entry>g<subscript>1</subscript></entry>
758 <entry>g<subscript>0</subscript></entry>
759 <entry>r<subscript>5</subscript></entry>
760 <entry>r<subscript>4</subscript></entry>
761 <entry>r<subscript>3</subscript></entry>
762 <entry>r<subscript>2</subscript></entry>
763 <entry></entry>
764 <entry>r<subscript>1</subscript></entry>
765 <entry>r<subscript>0</subscript></entry>
766 <entry></entry>
767 <entry></entry>
768 <entry></entry>
769 <entry></entry>
770 <entry></entry>
771 <entry></entry>
772 <entry></entry>
773 <entry></entry>
774 <entry></entry>
775 <entry></entry>
776 <entry></entry>
777 <entry></entry>
778 <entry></entry>
779 <entry></entry>
780 </row>
703 <row><!-- id="V4L2-PIX-FMT-BGR24" --> 781 <row><!-- id="V4L2-PIX-FMT-BGR24" -->
704 <entry><constant>V4L2_PIX_FMT_BGR24</constant></entry> 782 <entry><constant>V4L2_PIX_FMT_BGR24</constant></entry>
705 <entry>'BGR3'</entry> 783 <entry>'BGR3'</entry>
diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt
index 56cee4727b1a..b16cbe4152ea 100644
--- a/Documentation/feature-removal-schedule.txt
+++ b/Documentation/feature-removal-schedule.txt
@@ -360,14 +360,6 @@ When: 2.6.33
360Why: Should be implemented in userspace, policy daemon. 360Why: Should be implemented in userspace, policy daemon.
361Who: Johannes Berg <johannes@sipsolutions.net> 361Who: Johannes Berg <johannes@sipsolutions.net>
362 362
363---------------------------
364
365What: CONFIG_INOTIFY
366When: 2.6.33
367Why: last user (audit) will be converted to the newer more generic
368 and more easily maintained fsnotify subsystem
369Who: Eric Paris <eparis@redhat.com>
370
371---------------------------- 363----------------------------
372 364
373What: sound-slot/service-* module aliases and related clutters in 365What: sound-slot/service-* module aliases and related clutters in
diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/Locking
index 96d4293607ec..bbcc15651a21 100644
--- a/Documentation/filesystems/Locking
+++ b/Documentation/filesystems/Locking
@@ -92,8 +92,8 @@ prototypes:
92 void (*destroy_inode)(struct inode *); 92 void (*destroy_inode)(struct inode *);
93 void (*dirty_inode) (struct inode *); 93 void (*dirty_inode) (struct inode *);
94 int (*write_inode) (struct inode *, int); 94 int (*write_inode) (struct inode *, int);
95 void (*drop_inode) (struct inode *); 95 int (*drop_inode) (struct inode *);
96 void (*delete_inode) (struct inode *); 96 void (*evict_inode) (struct inode *);
97 void (*put_super) (struct super_block *); 97 void (*put_super) (struct super_block *);
98 void (*write_super) (struct super_block *); 98 void (*write_super) (struct super_block *);
99 int (*sync_fs)(struct super_block *sb, int wait); 99 int (*sync_fs)(struct super_block *sb, int wait);
@@ -101,14 +101,13 @@ prototypes:
101 int (*unfreeze_fs) (struct super_block *); 101 int (*unfreeze_fs) (struct super_block *);
102 int (*statfs) (struct dentry *, struct kstatfs *); 102 int (*statfs) (struct dentry *, struct kstatfs *);
103 int (*remount_fs) (struct super_block *, int *, char *); 103 int (*remount_fs) (struct super_block *, int *, char *);
104 void (*clear_inode) (struct inode *);
105 void (*umount_begin) (struct super_block *); 104 void (*umount_begin) (struct super_block *);
106 int (*show_options)(struct seq_file *, struct vfsmount *); 105 int (*show_options)(struct seq_file *, struct vfsmount *);
107 ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); 106 ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
108 ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); 107 ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
109 108
110locking rules: 109locking rules:
111 All may block. 110 All may block [not true, see below]
112 None have BKL 111 None have BKL
113 s_umount 112 s_umount
114alloc_inode: 113alloc_inode:
@@ -116,22 +115,25 @@ destroy_inode:
116dirty_inode: (must not sleep) 115dirty_inode: (must not sleep)
117write_inode: 116write_inode:
118drop_inode: !!!inode_lock!!! 117drop_inode: !!!inode_lock!!!
119delete_inode: 118evict_inode:
120put_super: write 119put_super: write
121write_super: read 120write_super: read
122sync_fs: read 121sync_fs: read
123freeze_fs: read 122freeze_fs: read
124unfreeze_fs: read 123unfreeze_fs: read
125statfs: no 124statfs: maybe(read) (see below)
126remount_fs: maybe (see below) 125remount_fs: write
127clear_inode:
128umount_begin: no 126umount_begin: no
129show_options: no (namespace_sem) 127show_options: no (namespace_sem)
130quota_read: no (see below) 128quota_read: no (see below)
131quota_write: no (see below) 129quota_write: no (see below)
132 130
133->remount_fs() will have the s_umount exclusive lock if it's already mounted. 131->statfs() has s_umount (shared) when called by ustat(2) (native or
134When called from get_sb_single, it does NOT have the s_umount lock. 132compat), but that's an accident of bad API; s_umount is used to pin
133the superblock down when we only have dev_t given us by userland to
134identify the superblock. Everything else (statfs(), fstatfs(), etc.)
135doesn't hold it when calling ->statfs() - superblock is pinned down
136by resolving the pathname passed to syscall.
135->quota_read() and ->quota_write() functions are both guaranteed to 137->quota_read() and ->quota_write() functions are both guaranteed to
136be the only ones operating on the quota file by the quota code (via 138be the only ones operating on the quota file by the quota code (via
137dqio_sem) (unless an admin really wants to screw up something and 139dqio_sem) (unless an admin really wants to screw up something and
diff --git a/Documentation/filesystems/porting b/Documentation/filesystems/porting
index a7e9746ee7ea..b12c89538680 100644
--- a/Documentation/filesystems/porting
+++ b/Documentation/filesystems/porting
@@ -273,3 +273,48 @@ it's safe to remove it. If you don't need it, remove it.
273deliberate; as soon as struct block_device * is propagated in a reasonable 273deliberate; as soon as struct block_device * is propagated in a reasonable
274way by that code fixing will become trivial; until then nothing can be 274way by that code fixing will become trivial; until then nothing can be
275done. 275done.
276
277[mandatory]
278
279 block truncatation on error exit from ->write_begin, and ->direct_IO
280moved from generic methods (block_write_begin, cont_write_begin,
281nobh_write_begin, blockdev_direct_IO*) to callers. Take a look at
282ext2_write_failed and callers for an example.
283
284[mandatory]
285
286 ->truncate is going away. The whole truncate sequence needs to be
287implemented in ->setattr, which is now mandatory for filesystems
288implementing on-disk size changes. Start with a copy of the old inode_setattr
289and vmtruncate, and the reorder the vmtruncate + foofs_vmtruncate sequence to
290be in order of zeroing blocks using block_truncate_page or similar helpers,
291size update and on finally on-disk truncation which should not fail.
292inode_change_ok now includes the size checks for ATTR_SIZE and must be called
293in the beginning of ->setattr unconditionally.
294
295[mandatory]
296
297 ->clear_inode() and ->delete_inode() are gone; ->evict_inode() should
298be used instead. It gets called whenever the inode is evicted, whether it has
299remaining links or not. Caller does *not* evict the pagecache or inode-associated
300metadata buffers; getting rid of those is responsibility of method, as it had
301been for ->delete_inode().
302 ->drop_inode() returns int now; it's called on final iput() with inode_lock
303held and it returns true if filesystems wants the inode to be dropped. As before,
304generic_drop_inode() is still the default and it's been updated appropriately.
305generic_delete_inode() is also alive and it consists simply of return 1. Note that
306all actual eviction work is done by caller after ->drop_inode() returns.
307 clear_inode() is gone; use end_writeback() instead. As before, it must
308be called exactly once on each call of ->evict_inode() (as it used to be for
309each call of ->delete_inode()). Unlike before, if you are using inode-associated
310metadata buffers (i.e. mark_buffer_dirty_inode()), it's your responsibility to
311call invalidate_inode_buffers() before end_writeback().
312 No async writeback (and thus no calls of ->write_inode()) will happen
313after end_writeback() returns, so actions that should not overlap with ->write_inode()
314(e.g. freeing on-disk inode if i_nlink is 0) ought to be done after that call.
315
316 NOTE: checking i_nlink in the beginning of ->write_inode() and bailing out
317if it's zero is not *and* *never* *had* *been* enough. Final unlink() and iput()
318may happen while the inode is in the middle of ->write_inode(); e.g. if you blindly
319free the on-disk inode, you may end up doing that while ->write_inode() is writing
320to it.
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index 44f6b19c50bb..d529b1363e95 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -681,8 +681,11 @@ and is between 256 and 4096 characters. It is defined in the file
681 earlycon= [KNL] Output early console device and options. 681 earlycon= [KNL] Output early console device and options.
682 uart[8250],io,<addr>[,options] 682 uart[8250],io,<addr>[,options]
683 uart[8250],mmio,<addr>[,options] 683 uart[8250],mmio,<addr>[,options]
684 uart[8250],mmio32,<addr>[,options]
684 Start an early, polled-mode console on the 8250/16550 685 Start an early, polled-mode console on the 8250/16550
685 UART at the specified I/O port or MMIO address. 686 UART at the specified I/O port or MMIO address.
687 MMIO inter-register address stride is either 8bit (mmio)
688 or 32bit (mmio32).
686 The options are the same as for ttyS, above. 689 The options are the same as for ttyS, above.
687 690
688 earlyprintk= [X86,SH,BLACKFIN] 691 earlyprintk= [X86,SH,BLACKFIN]
diff --git a/Documentation/usb/ehci.txt b/Documentation/usb/ehci.txt
index 1536b7e75134..9dcafa7d930d 100644
--- a/Documentation/usb/ehci.txt
+++ b/Documentation/usb/ehci.txt
@@ -9,7 +9,7 @@ compatible with the USB 1.1 standard. It defines three transfer speeds:
9 - "Low Speed" 1.5 Mbit/sec 9 - "Low Speed" 1.5 Mbit/sec
10 10
11USB 1.1 only addressed full speed and low speed. High speed devices 11USB 1.1 only addressed full speed and low speed. High speed devices
12can be used on USB 1.1 systems, but they slow down to USB 1.1 speeds. 12can be used on USB 1.1 systems, but they slow down to USB 1.1 speeds.
13 13
14USB 1.1 devices may also be used on USB 2.0 systems. When plugged 14USB 1.1 devices may also be used on USB 2.0 systems. When plugged
15into an EHCI controller, they are given to a USB 1.1 "companion" 15into an EHCI controller, they are given to a USB 1.1 "companion"
diff --git a/Documentation/usb/gadget_multi.txt b/Documentation/usb/gadget_multi.txt
new file mode 100644
index 000000000000..80f4ef0eb75b
--- /dev/null
+++ b/Documentation/usb/gadget_multi.txt
@@ -0,0 +1,150 @@
1 -*- org -*-
2
3* Overview
4
5The Multifunction Composite Gadget (or g_multi) is a composite gadget
6that makes extensive use of the composite framework to provide
7a... multifunction gadget.
8
9In it's standard configuration it provides a single USB configuration
10with RNDIS[1] (that is Ethernet), USB CDC[2] ACM (that is serial) and
11USB Mass Storage functions.
12
13A CDC ECM (Ethernet) function may be turned on via a Kconfig option
14and RNDIS can be turned off. If they are both enabled the gadget will
15have two configurations -- one with RNDIS and another with CDC ECM[3].
16
17Please not that if you use non-standard configuration (that is enable
18CDC ECM) you may need to change vendor and/or product ID.
19
20* Host drivers
21
22To make use of the gadget one needs to make it work on host side --
23without that there's no hope of achieving anything with the gadget.
24As one might expect, things one need to do very from system to system.
25
26** Linux host drivers
27
28Since the gadget uses standard composite framework and appears as such
29to Linux host it does not need any additional drivers on Linux host
30side. All the functions are handled by respective drivers developed
31for them.
32
33This is also true for two configuration set-up with RNDIS
34configuration being the first one. Linux host will use the second
35configuration with CDC ECM which should work better under Linux.
36
37** Windows host drivers
38
39For the gadget two work under Windows two conditions have to be met:
40
41*** Detecting as composite gadget
42
43First of all, Windows need to detect the gadget as an USB composite
44gadget which on its own have some conditions[4]. If they are met,
45Windows lets USB Generic Parent Driver[5] handle the device which then
46tries to much drivers for each individual interface (sort of, don't
47get into too many details).
48
49The good news is: you do not have to worry about most of the
50conditions!
51
52The only thing to worry is that the gadget has to have a single
53configuration so a dual RNDIS and CDC ECM gadget won't work unless you
54create a proper INF -- and of course, if you do submit it!
55
56*** Installing drivers for each function
57
58The other, trickier thing is making Windows install drivers for each
59individual function.
60
61For mass storage it is trivial since Windows detect it's an interface
62implementing USB Mass Storage class and selects appropriate driver.
63
64Things are harder with RDNIS and CDC ACM.
65
66**** RNDIS
67
68To make Windows select RNDIS drivers for the first function in the
69gadget, one needs to use the [[file:linux.inf]] file provided with this
70document. It "attaches" Window's RNDIS driver to the first interface
71of the gadget.
72
73Please note, that while testing we encountered some issues[6] when
74RNDIS was not the first interface. You do not need to worry abut it
75unless you are trying to develop your own gadget in which case watch
76out for this bug.
77
78**** CDC ACM
79
80Similarly, [[file:linux-cdc-acm.inf]] is provided for CDC ACM.
81
82**** Customising the gadget
83
84If you intend to hack the g_multi gadget be advised that rearranging
85functions will obviously change interface numbers for each of the
86functionality. As an effect provided INFs won't work since they have
87interface numbers hard-coded in them (it's not hard to change those
88though[7]).
89
90This also means, that after experimenting with g_multi and changing
91provided functions one should change gadget's vendor and/or product ID
92so there will be no collision with other customised gadgets or the
93original gadget.
94
95Failing to comply may cause brain damage after wondering for hours why
96things don't work as intended before realising Windows have cached
97some drivers information (changing USB port may sometimes help plus
98you might try using USBDeview[8] to remove the phantom device).
99
100**** INF testing
101
102Provided INF files have been tested on Windows XP SP3, Windows Vista
103and Windows 7, all 32-bit versions. It should work on 64-bit versions
104as well. It most likely won't work on Windows prior to Windows XP
105SP2.
106
107** Other systems
108
109At this moment, drivers for any other systems have not been tested.
110Knowing how MacOS is based on BSD and BSD is an Open Source it is
111believed that it should (read: "I have no idea whether it will") work
112out-of-the-box.
113
114For more exotic systems I have even less to say...
115
116Any testing and drivers *are* *welcome*!
117
118* Authors
119
120This document has been written by Michal Nazarewicz
121([[mailto:mina86@mina86.com]]). INF files have been hacked with
122support of Marek Szyprowski ([[mailto:m.szyprowski@samsung.com]]) and
123Xiaofan Chen ([[mailto:xiaofanc@gmail.com]]) basing on the MS RNDIS
124template[9], Microchip's CDC ACM INF file and David Brownell's
125([[mailto:dbrownell@users.sourceforge.net]]) original INF files.
126
127* Footnotes
128
129[1] Remote Network Driver Interface Specification,
130[[http://msdn.microsoft.com/en-us/library/ee484414.aspx]].
131
132[2] Communications Device Class Abstract Control Model, spec for this
133and other USB classes can be found at
134[[http://www.usb.org/developers/devclass_docs/]].
135
136[3] CDC Ethernet Control Model.
137
138[4] [[http://msdn.microsoft.com/en-us/library/ff537109(v=VS.85).aspx]]
139
140[5] [[http://msdn.microsoft.com/en-us/library/ff539234(v=VS.85).aspx]]
141
142[6] To put it in some other nice words, Windows failed to respond to
143any user input.
144
145[7] You may find [[http://www.cygnal.org/ubb/Forum9/HTML/001050.html]]
146useful.
147
148[8] http://www.nirsoft.net/utils/usb_devices_view.html
149
150[9] [[http://msdn.microsoft.com/en-us/library/ff570620.aspx]]
diff --git a/Documentation/usb/gadget_serial.txt b/Documentation/usb/gadget_serial.txt
index eac7df94d8e3..61e67f6a20a0 100644
--- a/Documentation/usb/gadget_serial.txt
+++ b/Documentation/usb/gadget_serial.txt
@@ -151,88 +151,23 @@ instructions below to install the host side driver.
151 151
152Installing the Windows Host ACM Driver 152Installing the Windows Host ACM Driver
153-------------------------------------- 153--------------------------------------
154To use the Windows ACM driver you must have the files "gserial.inf" 154To use the Windows ACM driver you must have the "linux-cdc-acm.inf"
155and "usbser.sys" together in a folder on the Windows machine. 155file (provided along this document) which supports all recent versions
156 156of Windows.
157The "gserial.inf" file is given here.
158
159-------------------- CUT HERE --------------------
160[Version]
161Signature="$Windows NT$"
162Class=Ports
163ClassGuid={4D36E978-E325-11CE-BFC1-08002BE10318}
164Provider=%LINUX%
165DriverVer=08/17/2004,0.0.2.0
166; Copyright (C) 2004 Al Borchers (alborchers@steinerpoint.com)
167
168[Manufacturer]
169%LINUX%=GSerialDeviceList
170
171[GSerialDeviceList]
172%GSERIAL%=GSerialInstall, USB\VID_0525&PID_A4A7
173
174[DestinationDirs]
175DefaultDestDir=10,System32\Drivers
176
177[GSerialInstall]
178CopyFiles=GSerialCopyFiles
179AddReg=GSerialAddReg
180
181[GSerialCopyFiles]
182usbser.sys
183
184[GSerialAddReg]
185HKR,,DevLoader,,*ntkern
186HKR,,NTMPDriver,,usbser.sys
187HKR,,EnumPropPages32,,"MsPorts.dll,SerialPortPropPageProvider"
188
189[GSerialInstall.Services]
190AddService = usbser,0x0002,GSerialService
191
192[GSerialService]
193DisplayName = %GSERIAL_DISPLAY_NAME%
194ServiceType = 1 ; SERVICE_KERNEL_DRIVER
195StartType = 3 ; SERVICE_DEMAND_START
196ErrorControl = 1 ; SERVICE_ERROR_NORMAL
197ServiceBinary = %10%\System32\Drivers\usbser.sys
198LoadOrderGroup = Base
199
200[Strings]
201LINUX = "Linux"
202GSERIAL = "Gadget Serial"
203GSERIAL_DISPLAY_NAME = "USB Gadget Serial Driver"
204-------------------- CUT HERE --------------------
205
206The "usbser.sys" file comes with various versions of Windows.
207For example, it can be found on Windows XP typically in
208
209 C:\WINDOWS\Driver Cache\i386\driver.cab
210
211Or it can be found on the Windows 98SE CD in the "win98" folder
212in the "DRIVER11.CAB" through "DRIVER20.CAB" cab files. You will
213need the DOS "expand" program, the Cygwin "cabextract" program, or
214a similar program to unpack these cab files and extract "usbser.sys".
215
216For example, to extract "usbser.sys" into the current directory
217on Windows XP, open a DOS window and run a command like
218
219 expand C:\WINDOWS\Driver~1\i386\driver.cab -F:usbser.sys .
220
221(Thanks to Nishant Kamat for pointing out this DOS command.)
222 157
223When the gadget serial driver is loaded and the USB device connected 158When the gadget serial driver is loaded and the USB device connected
224to the Windows host with a USB cable, Windows should recognize the 159to the Windows host with a USB cable, Windows should recognize the
225gadget serial device and ask for a driver. Tell Windows to find the 160gadget serial device and ask for a driver. Tell Windows to find the
226driver in the folder that contains "gserial.inf" and "usbser.sys". 161driver in the folder that contains the "linux-cdc-acm.inf" file.
227 162
228For example, on Windows XP, when the gadget serial device is first 163For example, on Windows XP, when the gadget serial device is first
229plugged in, the "Found New Hardware Wizard" starts up. Select 164plugged in, the "Found New Hardware Wizard" starts up. Select
230"Install from a list or specific location (Advanced)", then on 165"Install from a list or specific location (Advanced)", then on the
231the next screen select "Include this location in the search" and 166next screen select "Include this location in the search" and enter the
232enter the path or browse to the folder containing "gserial.inf" and 167path or browse to the folder containing the "linux-cdc-acm.inf" file.
233"usbser.sys". Windows will complain that the Gadget Serial driver 168Windows will complain that the Gadget Serial driver has not passed
234has not passed Windows Logo testing, but select "Continue anyway" 169Windows Logo testing, but select "Continue anyway" and finish the
235and finish the driver installation. 170driver installation.
236 171
237On Windows XP, in the "Device Manager" (under "Control Panel", 172On Windows XP, in the "Device Manager" (under "Control Panel",
238"System", "Hardware") expand the "Ports (COM & LPT)" entry and you 173"System", "Hardware") expand the "Ports (COM & LPT)" entry and you
@@ -345,5 +280,3 @@ you should be able to send data back and forth between the gadget
345side and host side systems. Anything you type on the terminal 280side and host side systems. Anything you type on the terminal
346window on the gadget side should appear in the terminal window on 281window on the gadget side should appear in the terminal window on
347the host side and vice versa. 282the host side and vice versa.
348
349
diff --git a/Documentation/usb/hotplug.txt b/Documentation/usb/hotplug.txt
index f53170665f37..4c945716a660 100644
--- a/Documentation/usb/hotplug.txt
+++ b/Documentation/usb/hotplug.txt
@@ -10,7 +10,7 @@ immediately usable. That means the system must do many things, including:
10 10
11 - Bind a driver to that device. Bus frameworks do that using a 11 - Bind a driver to that device. Bus frameworks do that using a
12 device driver's probe() routine. 12 device driver's probe() routine.
13 13
14 - Tell other subsystems to configure the new device. Print 14 - Tell other subsystems to configure the new device. Print
15 queues may need to be enabled, networks brought up, disk 15 queues may need to be enabled, networks brought up, disk
16 partitions mounted, and so on. In some cases these will 16 partitions mounted, and so on. In some cases these will
@@ -84,7 +84,7 @@ USB MODUTILS SUPPORT
84Current versions of module-init-tools will create a "modules.usbmap" file 84Current versions of module-init-tools will create a "modules.usbmap" file
85which contains the entries from each driver's MODULE_DEVICE_TABLE. Such 85which contains the entries from each driver's MODULE_DEVICE_TABLE. Such
86files can be used by various user mode policy agents to make sure all the 86files can be used by various user mode policy agents to make sure all the
87right driver modules get loaded, either at boot time or later. 87right driver modules get loaded, either at boot time or later.
88 88
89See <linux/usb.h> for full information about such table entries; or look 89See <linux/usb.h> for full information about such table entries; or look
90at existing drivers. Each table entry describes one or more criteria to 90at existing drivers. Each table entry describes one or more criteria to
diff --git a/Documentation/usb/linux-cdc-acm.inf b/Documentation/usb/linux-cdc-acm.inf
new file mode 100644
index 000000000000..612e7220fb29
--- /dev/null
+++ b/Documentation/usb/linux-cdc-acm.inf
@@ -0,0 +1,107 @@
1; Windows USB CDC ACM Setup File
2
3; Based on INF template which was:
4; Copyright (c) 2000 Microsoft Corporation
5; Copyright (c) 2007 Microchip Technology Inc.
6; likely to be covered by the MLPL as found at:
7; <http://msdn.microsoft.com/en-us/cc300389.aspx#MLPL>.
8; For use only on Windows operating systems.
9
10[Version]
11Signature="$Windows NT$"
12Class=Ports
13ClassGuid={4D36E978-E325-11CE-BFC1-08002BE10318}
14Provider=%Linux%
15DriverVer=11/15/2007,5.1.2600.0
16
17[Manufacturer]
18%Linux%=DeviceList, NTamd64
19
20[DestinationDirs]
21DefaultDestDir=12
22
23
24;------------------------------------------------------------------------------
25; Windows 2000/XP/Vista-32bit Sections
26;------------------------------------------------------------------------------
27
28[DriverInstall.nt]
29include=mdmcpq.inf
30CopyFiles=DriverCopyFiles.nt
31AddReg=DriverInstall.nt.AddReg
32
33[DriverCopyFiles.nt]
34usbser.sys,,,0x20
35
36[DriverInstall.nt.AddReg]
37HKR,,DevLoader,,*ntkern
38HKR,,NTMPDriver,,USBSER.sys
39HKR,,EnumPropPages32,,"MsPorts.dll,SerialPortPropPageProvider"
40
41[DriverInstall.nt.Services]
42AddService=usbser, 0x00000002, DriverService.nt
43
44[DriverService.nt]
45DisplayName=%SERVICE%
46ServiceType=1
47StartType=3
48ErrorControl=1
49ServiceBinary=%12%\USBSER.sys
50
51;------------------------------------------------------------------------------
52; Vista-64bit Sections
53;------------------------------------------------------------------------------
54
55[DriverInstall.NTamd64]
56include=mdmcpq.inf
57CopyFiles=DriverCopyFiles.NTamd64
58AddReg=DriverInstall.NTamd64.AddReg
59
60[DriverCopyFiles.NTamd64]
61USBSER.sys,,,0x20
62
63[DriverInstall.NTamd64.AddReg]
64HKR,,DevLoader,,*ntkern
65HKR,,NTMPDriver,,USBSER.sys
66HKR,,EnumPropPages32,,"MsPorts.dll,SerialPortPropPageProvider"
67
68[DriverInstall.NTamd64.Services]
69AddService=usbser, 0x00000002, DriverService.NTamd64
70
71[DriverService.NTamd64]
72DisplayName=%SERVICE%
73ServiceType=1
74StartType=3
75ErrorControl=1
76ServiceBinary=%12%\USBSER.sys
77
78
79;------------------------------------------------------------------------------
80; Vendor and Product ID Definitions
81;------------------------------------------------------------------------------
82; When developing your USB device, the VID and PID used in the PC side
83; application program and the firmware on the microcontroller must match.
84; Modify the below line to use your VID and PID. Use the format as shown
85; below.
86; Note: One INF file can be used for multiple devices with different
87; VID and PIDs. For each supported device, append
88; ",USB\VID_xxxx&PID_yyyy" to the end of the line.
89;------------------------------------------------------------------------------
90[SourceDisksFiles]
91[SourceDisksNames]
92[DeviceList]
93%DESCRIPTION%=DriverInstall, USB\VID_0525&PID_A4A7, USB\VID_0525&PID_A4AB&MI_02
94
95[DeviceList.NTamd64]
96%DESCRIPTION%=DriverInstall, USB\VID_0525&PID_A4A7, USB\VID_0525&PID_A4AB&MI_02
97
98
99;------------------------------------------------------------------------------
100; String Definitions
101;------------------------------------------------------------------------------
102;Modify these strings to customize your device
103;------------------------------------------------------------------------------
104[Strings]
105Linux = "Linux Developer Community"
106DESCRIPTION = "Gadget Serial"
107SERVICE = "USB RS-232 Emulation Driver"
diff --git a/Documentation/usb/linux.inf b/Documentation/usb/linux.inf
index af71d87d9e94..4dee95851224 100644
--- a/Documentation/usb/linux.inf
+++ b/Documentation/usb/linux.inf
@@ -1,200 +1,66 @@
1; MS-Windows driver config matching some basic modes of the 1; Based on template INF file found at
2; Linux-USB Ethernet/RNDIS gadget firmware: 2; <http://msdn.microsoft.com/en-us/library/ff570620.aspx>
3; 3; which was:
4; - RNDIS plus CDC Ethernet ... this may be familiar as a DOCSIS 4; Copyright (c) Microsoft Corporation
5; cable modem profile, and supports most non-Microsoft USB hosts 5; and released under the MLPL as found at:
6; 6; <http://msdn.microsoft.com/en-us/cc300389.aspx#MLPL>.
7; - RNDIS plus CDC Subset ... used by hardware that incapable of 7; For use only on Windows operating systems.
8; full CDC Ethernet support.
9;
10; Microsoft only directly supports RNDIS drivers, and bundled them into XP.
11; The Microsoft "Remote NDIS USB Driver Kit" is currently found at:
12; http://www.microsoft.com/whdc/device/network/ndis/rmndis.mspx
13
14 8
15[Version] 9[Version]
16Signature = "$CHICAGO$" 10Signature = "$Windows NT$"
17Class = Net 11Class = Net
18ClassGUID = {4d36e972-e325-11ce-bfc1-08002be10318} 12ClassGUID = {4d36e972-e325-11ce-bfc1-08002be10318}
19Provider = %Linux% 13Provider = %Linux%
20Compatible = 1 14DriverVer = 06/21/2006,6.0.6000.16384
21MillenniumPreferred = .ME
22DriverVer = 03/30/2004,0.0.0.0
23; catalog file would be used by WHQL
24;CatalogFile = Linux.cat
25 15
26[Manufacturer] 16[Manufacturer]
27%Linux% = LinuxDevices,NT.5.1 17%Linux% = LinuxDevices,NTx86,NTamd64,NTia64
18
19; Decoration for x86 architecture
20[LinuxDevices.NTx86]
21%LinuxDevice% = RNDIS.NT.5.1, USB\VID_0525&PID_a4a2, USB\VID_0525&PID_a4ab&MI_00
28 22
29[LinuxDevices] 23; Decoration for x64 architecture
30; NetChip IDs, used by both firmware modes 24[LinuxDevices.NTamd64]
31%LinuxDevice% = RNDIS, USB\VID_0525&PID_a4a2 25%LinuxDevice% = RNDIS.NT.5.1, USB\VID_0525&PID_a4a2, USB\VID_0525&PID_a4ab&MI_00
32 26
33[LinuxDevices.NT.5.1] 27; Decoration for ia64 architecture
34%LinuxDevice% = RNDIS.NT.5.1, USB\VID_0525&PID_a4a2 28[LinuxDevices.NTia64]
29%LinuxDevice% = RNDIS.NT.5.1, USB\VID_0525&PID_a4a2, USB\VID_0525&PID_a4ab&MI_00
35 30
31;@@@ This is the common setting for setup
36[ControlFlags] 32[ControlFlags]
37ExcludeFromSelect=* 33ExcludeFromSelect=*
38 34
39; Windows 98, Windows 98 Second Edition specific sections -------- 35; DDInstall section
40 36; References the in-build Netrndis.inf
41[RNDIS]
42DeviceID = usb8023
43MaxInstance = 512
44DriverVer = 03/30/2004,0.0.0.0
45AddReg = RNDIS_AddReg_98, RNDIS_AddReg_Common
46
47[RNDIS_AddReg_98]
48HKR, , DevLoader, 0, *ndis
49HKR, , DeviceVxDs, 0, usb8023.sys
50HKR, NDIS, LogDriverName, 0, "usb8023"
51HKR, NDIS, MajorNdisVersion, 1, 5
52HKR, NDIS, MinorNdisVersion, 1, 0
53HKR, Ndi\Interfaces, DefUpper, 0, "ndis3,ndis4,ndis5"
54HKR, Ndi\Interfaces, DefLower, 0, "ethernet"
55HKR, Ndi\Interfaces, UpperRange, 0, "ndis3,ndis4,ndis5"
56HKR, Ndi\Interfaces, LowerRange, 0, "ethernet"
57HKR, Ndi\Install, ndis3, 0, "RNDIS_Install_98"
58HKR, Ndi\Install, ndis4, 0, "RNDIS_Install_98"
59HKR, Ndi\Install, ndis5, 0, "RNDIS_Install_98"
60HKR, Ndi, DeviceId, 0, "USB\VID_0525&PID_a4a2"
61
62[RNDIS_Install_98]
63CopyFiles=RNDIS_CopyFiles_98
64
65[RNDIS_CopyFiles_98]
66usb8023.sys, usb8023w.sys, , 0
67rndismp.sys, rndismpw.sys, , 0
68
69; Windows Millennium Edition specific sections --------------------
70
71[RNDIS.ME]
72DeviceID = usb8023
73MaxInstance = 512
74DriverVer = 03/30/2004,0.0.0.0
75AddReg = RNDIS_AddReg_ME, RNDIS_AddReg_Common
76Characteristics = 0x84 ; NCF_PHYSICAL + NCF_HAS_UI
77BusType = 15
78
79[RNDIS_AddReg_ME]
80HKR, , DevLoader, 0, *ndis
81HKR, , DeviceVxDs, 0, usb8023.sys
82HKR, NDIS, LogDriverName, 0, "usb8023"
83HKR, NDIS, MajorNdisVersion, 1, 5
84HKR, NDIS, MinorNdisVersion, 1, 0
85HKR, Ndi\Interfaces, DefUpper, 0, "ndis3,ndis4,ndis5"
86HKR, Ndi\Interfaces, DefLower, 0, "ethernet"
87HKR, Ndi\Interfaces, UpperRange, 0, "ndis3,ndis4,ndis5"
88HKR, Ndi\Interfaces, LowerRange, 0, "ethernet"
89HKR, Ndi\Install, ndis3, 0, "RNDIS_Install_ME"
90HKR, Ndi\Install, ndis4, 0, "RNDIS_Install_ME"
91HKR, Ndi\Install, ndis5, 0, "RNDIS_Install_ME"
92HKR, Ndi, DeviceId, 0, "USB\VID_0525&PID_a4a2"
93
94[RNDIS_Install_ME]
95CopyFiles=RNDIS_CopyFiles_ME
96
97[RNDIS_CopyFiles_ME]
98usb8023.sys, usb8023m.sys, , 0
99rndismp.sys, rndismpm.sys, , 0
100
101; Windows 2000 specific sections ---------------------------------
102
103[RNDIS.NT]
104Characteristics = 0x84 ; NCF_PHYSICAL + NCF_HAS_UI
105BusType = 15
106DriverVer = 03/30/2004,0.0.0.0
107AddReg = RNDIS_AddReg_NT, RNDIS_AddReg_Common
108CopyFiles = RNDIS_CopyFiles_NT
109
110[RNDIS.NT.Services]
111AddService = USB_RNDIS, 2, RNDIS_ServiceInst_NT, RNDIS_EventLog
112
113[RNDIS_CopyFiles_NT]
114; no rename of files on Windows 2000, use the 'k' names as is
115usb8023k.sys, , , 0
116rndismpk.sys, , , 0
117
118[RNDIS_ServiceInst_NT]
119DisplayName = %ServiceDisplayName%
120ServiceType = 1
121StartType = 3
122ErrorControl = 1
123ServiceBinary = %12%\usb8023k.sys
124LoadOrderGroup = NDIS
125AddReg = RNDIS_WMI_AddReg_NT
126
127[RNDIS_WMI_AddReg_NT]
128HKR, , MofImagePath, 0x00020000, "System32\drivers\rndismpk.sys"
129
130; Windows XP specific sections -----------------------------------
131
132[RNDIS.NT.5.1] 37[RNDIS.NT.5.1]
133Characteristics = 0x84 ; NCF_PHYSICAL + NCF_HAS_UI 38Characteristics = 0x84 ; NCF_PHYSICAL + NCF_HAS_UI
134BusType = 15 39BusType = 15
135DriverVer = 03/30/2004,0.0.0.0 40; NEVER REMOVE THE FOLLOWING REFERENCE FOR NETRNDIS.INF
136AddReg = RNDIS_AddReg_NT, RNDIS_AddReg_Common 41include = netrndis.inf
137; no copyfiles - the files are already in place 42needs = Usb_Rndis.ndi
138 43AddReg = Rndis_AddReg_Vista
44
45; DDInstal.Services section
139[RNDIS.NT.5.1.Services] 46[RNDIS.NT.5.1.Services]
140AddService = USB_RNDIS, 2, RNDIS_ServiceInst_51, RNDIS_EventLog 47include = netrndis.inf
141 48needs = Usb_Rndis.ndi.Services
142[RNDIS_ServiceInst_51] 49
143DisplayName = %ServiceDisplayName% 50; Optional registry settings. You can modify as needed.
144ServiceType = 1 51[RNDIS_AddReg_Vista]
145StartType = 3 52HKR, NDI\params\VistaProperty, ParamDesc, 0, %Vista_Property%
146ErrorControl = 1 53HKR, NDI\params\VistaProperty, type, 0, "edit"
147ServiceBinary = %12%\usb8023.sys 54HKR, NDI\params\VistaProperty, LimitText, 0, "12"
148LoadOrderGroup = NDIS 55HKR, NDI\params\VistaProperty, UpperCase, 0, "1"
149AddReg = RNDIS_WMI_AddReg_51 56HKR, NDI\params\VistaProperty, default, 0, " "
150 57HKR, NDI\params\VistaProperty, optional, 0, "1"
151[RNDIS_WMI_AddReg_51] 58
152HKR, , MofImagePath, 0x00020000, "System32\drivers\rndismp.sys" 59; No sys copyfiles - the sys files are already in-build
153 60; (part of the operating system).
154; Windows 2000 and Windows XP common sections -------------------- 61; We do not support XP SP1-, 2003 SP1-, ME, 9x.
155
156[RNDIS_AddReg_NT]
157HKR, Ndi, Service, 0, "USB_RNDIS"
158HKR, Ndi\Interfaces, UpperRange, 0, "ndis5"
159HKR, Ndi\Interfaces, LowerRange, 0, "ethernet"
160
161[RNDIS_EventLog]
162AddReg = RNDIS_EventLog_AddReg
163
164[RNDIS_EventLog_AddReg]
165HKR, , EventMessageFile, 0x00020000, "%%SystemRoot%%\System32\netevent.dll"
166HKR, , TypesSupported, 0x00010001, 7
167
168; Common Sections -------------------------------------------------
169
170[RNDIS_AddReg_Common]
171HKR, NDI\params\NetworkAddress, ParamDesc, 0, %NetworkAddress%
172HKR, NDI\params\NetworkAddress, type, 0, "edit"
173HKR, NDI\params\NetworkAddress, LimitText, 0, "12"
174HKR, NDI\params\NetworkAddress, UpperCase, 0, "1"
175HKR, NDI\params\NetworkAddress, default, 0, " "
176HKR, NDI\params\NetworkAddress, optional, 0, "1"
177
178[SourceDisksNames]
1791=%SourceDisk%,,1
180
181[SourceDisksFiles]
182usb8023m.sys=1
183rndismpm.sys=1
184usb8023w.sys=1
185rndismpw.sys=1
186usb8023k.sys=1
187rndismpk.sys=1
188
189[DestinationDirs]
190RNDIS_CopyFiles_98 = 10, system32/drivers
191RNDIS_CopyFiles_ME = 10, system32/drivers
192RNDIS_CopyFiles_NT = 12
193 62
194[Strings] 63[Strings]
195ServiceDisplayName = "USB Remote NDIS Network Device Driver"
196NetworkAddress = "Network Address"
197Linux = "Linux Developer Community" 64Linux = "Linux Developer Community"
198LinuxDevice = "Linux USB Ethernet/RNDIS Gadget" 65LinuxDevice = "Linux USB Ethernet/RNDIS Gadget"
199SourceDisk = "Ethernet/RNDIS Gadget Driver Install Disk" 66Vista_Property = "Optional Vista Property"
200
diff --git a/Documentation/video4linux/v4l2-controls.txt b/Documentation/video4linux/v4l2-controls.txt
new file mode 100644
index 000000000000..8773778d23fc
--- /dev/null
+++ b/Documentation/video4linux/v4l2-controls.txt
@@ -0,0 +1,648 @@
1Introduction
2============
3
4The V4L2 control API seems simple enough, but quickly becomes very hard to
5implement correctly in drivers. But much of the code needed to handle controls
6is actually not driver specific and can be moved to the V4L core framework.
7
8After all, the only part that a driver developer is interested in is:
9
101) How do I add a control?
112) How do I set the control's value? (i.e. s_ctrl)
12
13And occasionally:
14
153) How do I get the control's value? (i.e. g_volatile_ctrl)
164) How do I validate the user's proposed control value? (i.e. try_ctrl)
17
18All the rest is something that can be done centrally.
19
20The control framework was created in order to implement all the rules of the
21V4L2 specification with respect to controls in a central place. And to make
22life as easy as possible for the driver developer.
23
24Note that the control framework relies on the presence of a struct v4l2_device
25for V4L2 drivers and struct v4l2_subdev for sub-device drivers.
26
27
28Objects in the framework
29========================
30
31There are two main objects:
32
33The v4l2_ctrl object describes the control properties and keeps track of the
34control's value (both the current value and the proposed new value).
35
36v4l2_ctrl_handler is the object that keeps track of controls. It maintains a
37list of v4l2_ctrl objects that it owns and another list of references to
38controls, possibly to controls owned by other handlers.
39
40
41Basic usage for V4L2 and sub-device drivers
42===========================================
43
441) Prepare the driver:
45
461.1) Add the handler to your driver's top-level struct:
47
48 struct foo_dev {
49 ...
50 struct v4l2_ctrl_handler ctrl_handler;
51 ...
52 };
53
54 struct foo_dev *foo;
55
561.2) Initialize the handler:
57
58 v4l2_ctrl_handler_init(&foo->ctrl_handler, nr_of_controls);
59
60 The second argument is a hint telling the function how many controls this
61 handler is expected to handle. It will allocate a hashtable based on this
62 information. It is a hint only.
63
641.3) Hook the control handler into the driver:
65
661.3.1) For V4L2 drivers do this:
67
68 struct foo_dev {
69 ...
70 struct v4l2_device v4l2_dev;
71 ...
72 struct v4l2_ctrl_handler ctrl_handler;
73 ...
74 };
75
76 foo->v4l2_dev.ctrl_handler = &foo->ctrl_handler;
77
78 Where foo->v4l2_dev is of type struct v4l2_device.
79
80 Finally, remove all control functions from your v4l2_ioctl_ops:
81 vidioc_queryctrl, vidioc_querymenu, vidioc_g_ctrl, vidioc_s_ctrl,
82 vidioc_g_ext_ctrls, vidioc_try_ext_ctrls and vidioc_s_ext_ctrls.
83 Those are now no longer needed.
84
851.3.2) For sub-device drivers do this:
86
87 struct foo_dev {
88 ...
89 struct v4l2_subdev sd;
90 ...
91 struct v4l2_ctrl_handler ctrl_handler;
92 ...
93 };
94
95 foo->sd.ctrl_handler = &foo->ctrl_handler;
96
97 Where foo->sd is of type struct v4l2_subdev.
98
99 And set all core control ops in your struct v4l2_subdev_core_ops to these
100 helpers:
101
102 .queryctrl = v4l2_subdev_queryctrl,
103 .querymenu = v4l2_subdev_querymenu,
104 .g_ctrl = v4l2_subdev_g_ctrl,
105 .s_ctrl = v4l2_subdev_s_ctrl,
106 .g_ext_ctrls = v4l2_subdev_g_ext_ctrls,
107 .try_ext_ctrls = v4l2_subdev_try_ext_ctrls,
108 .s_ext_ctrls = v4l2_subdev_s_ext_ctrls,
109
110 Note: this is a temporary solution only. Once all V4L2 drivers that depend
111 on subdev drivers are converted to the control framework these helpers will
112 no longer be needed.
113
1141.4) Clean up the handler at the end:
115
116 v4l2_ctrl_handler_free(&foo->ctrl_handler);
117
118
1192) Add controls:
120
121You add non-menu controls by calling v4l2_ctrl_new_std:
122
123 struct v4l2_ctrl *v4l2_ctrl_new_std(struct v4l2_ctrl_handler *hdl,
124 const struct v4l2_ctrl_ops *ops,
125 u32 id, s32 min, s32 max, u32 step, s32 def);
126
127Menu controls are added by calling v4l2_ctrl_new_std_menu:
128
129 struct v4l2_ctrl *v4l2_ctrl_new_std_menu(struct v4l2_ctrl_handler *hdl,
130 const struct v4l2_ctrl_ops *ops,
131 u32 id, s32 max, s32 skip_mask, s32 def);
132
133These functions are typically called right after the v4l2_ctrl_handler_init:
134
135 v4l2_ctrl_handler_init(&foo->ctrl_handler, nr_of_controls);
136 v4l2_ctrl_new_std(&foo->ctrl_handler, &foo_ctrl_ops,
137 V4L2_CID_BRIGHTNESS, 0, 255, 1, 128);
138 v4l2_ctrl_new_std(&foo->ctrl_handler, &foo_ctrl_ops,
139 V4L2_CID_CONTRAST, 0, 255, 1, 128);
140 v4l2_ctrl_new_std_menu(&foo->ctrl_handler, &foo_ctrl_ops,
141 V4L2_CID_POWER_LINE_FREQUENCY,
142 V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0,
143 V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
144 ...
145 if (foo->ctrl_handler.error) {
146 int err = foo->ctrl_handler.error;
147
148 v4l2_ctrl_handler_free(&foo->ctrl_handler);
149 return err;
150 }
151
152The v4l2_ctrl_new_std function returns the v4l2_ctrl pointer to the new
153control, but if you do not need to access the pointer outside the control ops,
154then there is no need to store it.
155
156The v4l2_ctrl_new_std function will fill in most fields based on the control
157ID except for the min, max, step and default values. These are passed in the
158last four arguments. These values are driver specific while control attributes
159like type, name, flags are all global. The control's current value will be set
160to the default value.
161
162The v4l2_ctrl_new_std_menu function is very similar but it is used for menu
163controls. There is no min argument since that is always 0 for menu controls,
164and instead of a step there is a skip_mask argument: if bit X is 1, then menu
165item X is skipped.
166
167Note that if something fails, the function will return NULL or an error and
168set ctrl_handler->error to the error code. If ctrl_handler->error was already
169set, then it will just return and do nothing. This is also true for
170v4l2_ctrl_handler_init if it cannot allocate the internal data structure.
171
172This makes it easy to init the handler and just add all controls and only check
173the error code at the end. Saves a lot of repetitive error checking.
174
175It is recommended to add controls in ascending control ID order: it will be
176a bit faster that way.
177
1783) Optionally force initial control setup:
179
180 v4l2_ctrl_handler_setup(&foo->ctrl_handler);
181
182This will call s_ctrl for all controls unconditionally. Effectively this
183initializes the hardware to the default control values. It is recommended
184that you do this as this ensures that both the internal data structures and
185the hardware are in sync.
186
1874) Finally: implement the v4l2_ctrl_ops
188
189 static const struct v4l2_ctrl_ops foo_ctrl_ops = {
190 .s_ctrl = foo_s_ctrl,
191 };
192
193Usually all you need is s_ctrl:
194
195 static int foo_s_ctrl(struct v4l2_ctrl *ctrl)
196 {
197 struct foo *state = container_of(ctrl->handler, struct foo, ctrl_handler);
198
199 switch (ctrl->id) {
200 case V4L2_CID_BRIGHTNESS:
201 write_reg(0x123, ctrl->val);
202 break;
203 case V4L2_CID_CONTRAST:
204 write_reg(0x456, ctrl->val);
205 break;
206 }
207 return 0;
208 }
209
210The control ops are called with the v4l2_ctrl pointer as argument.
211The new control value has already been validated, so all you need to do is
212to actually update the hardware registers.
213
214You're done! And this is sufficient for most of the drivers we have. No need
215to do any validation of control values, or implement QUERYCTRL/QUERYMENU. And
216G/S_CTRL as well as G/TRY/S_EXT_CTRLS are automatically supported.
217
218
219==============================================================================
220
221The remainder of this document deals with more advanced topics and scenarios.
222In practice the basic usage as described above is sufficient for most drivers.
223
224===============================================================================
225
226
227Inheriting Controls
228===================
229
230When a sub-device is registered with a V4L2 driver by calling
231v4l2_device_register_subdev() and the ctrl_handler fields of both v4l2_subdev
232and v4l2_device are set, then the controls of the subdev will become
233automatically available in the V4L2 driver as well. If the subdev driver
234contains controls that already exist in the V4L2 driver, then those will be
235skipped (so a V4L2 driver can always override a subdev control).
236
237What happens here is that v4l2_device_register_subdev() calls
238v4l2_ctrl_add_handler() adding the controls of the subdev to the controls
239of v4l2_device.
240
241
242Accessing Control Values
243========================
244
245The v4l2_ctrl struct contains these two unions:
246
247 /* The current control value. */
248 union {
249 s32 val;
250 s64 val64;
251 char *string;
252 } cur;
253
254 /* The new control value. */
255 union {
256 s32 val;
257 s64 val64;
258 char *string;
259 };
260
261Within the control ops you can freely use these. The val and val64 speak for
262themselves. The string pointers point to character buffers of length
263ctrl->maximum + 1, and are always 0-terminated.
264
265In most cases 'cur' contains the current cached control value. When you create
266a new control this value is made identical to the default value. After calling
267v4l2_ctrl_handler_setup() this value is passed to the hardware. It is generally
268a good idea to call this function.
269
270Whenever a new value is set that new value is automatically cached. This means
271that most drivers do not need to implement the g_volatile_ctrl() op. The
272exception is for controls that return a volatile register such as a signal
273strength read-out that changes continuously. In that case you will need to
274implement g_volatile_ctrl like this:
275
276 static int foo_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
277 {
278 switch (ctrl->id) {
279 case V4L2_CID_BRIGHTNESS:
280 ctrl->cur.val = read_reg(0x123);
281 break;
282 }
283 }
284
285The 'new value' union is not used in g_volatile_ctrl. In general controls
286that need to implement g_volatile_ctrl are read-only controls.
287
288To mark a control as volatile you have to set the is_volatile flag:
289
290 ctrl = v4l2_ctrl_new_std(&sd->ctrl_handler, ...);
291 if (ctrl)
292 ctrl->is_volatile = 1;
293
294For try/s_ctrl the new values (i.e. as passed by the user) are filled in and
295you can modify them in try_ctrl or set them in s_ctrl. The 'cur' union
296contains the current value, which you can use (but not change!) as well.
297
298If s_ctrl returns 0 (OK), then the control framework will copy the new final
299values to the 'cur' union.
300
301While in g_volatile/s/try_ctrl you can access the value of all controls owned
302by the same handler since the handler's lock is held. If you need to access
303the value of controls owned by other handlers, then you have to be very careful
304not to introduce deadlocks.
305
306Outside of the control ops you have to go through to helper functions to get
307or set a single control value safely in your driver:
308
309 s32 v4l2_ctrl_g_ctrl(struct v4l2_ctrl *ctrl);
310 int v4l2_ctrl_s_ctrl(struct v4l2_ctrl *ctrl, s32 val);
311
312These functions go through the control framework just as VIDIOC_G/S_CTRL ioctls
313do. Don't use these inside the control ops g_volatile/s/try_ctrl, though, that
314will result in a deadlock since these helpers lock the handler as well.
315
316You can also take the handler lock yourself:
317
318 mutex_lock(&state->ctrl_handler.lock);
319 printk(KERN_INFO "String value is '%s'\n", ctrl1->cur.string);
320 printk(KERN_INFO "Integer value is '%s'\n", ctrl2->cur.val);
321 mutex_unlock(&state->ctrl_handler.lock);
322
323
324Menu Controls
325=============
326
327The v4l2_ctrl struct contains this union:
328
329 union {
330 u32 step;
331 u32 menu_skip_mask;
332 };
333
334For menu controls menu_skip_mask is used. What it does is that it allows you
335to easily exclude certain menu items. This is used in the VIDIOC_QUERYMENU
336implementation where you can return -EINVAL if a certain menu item is not
337present. Note that VIDIOC_QUERYCTRL always returns a step value of 1 for
338menu controls.
339
340A good example is the MPEG Audio Layer II Bitrate menu control where the
341menu is a list of standardized possible bitrates. But in practice hardware
342implementations will only support a subset of those. By setting the skip
343mask you can tell the framework which menu items should be skipped. Setting
344it to 0 means that all menu items are supported.
345
346You set this mask either through the v4l2_ctrl_config struct for a custom
347control, or by calling v4l2_ctrl_new_std_menu().
348
349
350Custom Controls
351===============
352
353Driver specific controls can be created using v4l2_ctrl_new_custom():
354
355 static const struct v4l2_ctrl_config ctrl_filter = {
356 .ops = &ctrl_custom_ops,
357 .id = V4L2_CID_MPEG_CX2341X_VIDEO_SPATIAL_FILTER,
358 .name = "Spatial Filter",
359 .type = V4L2_CTRL_TYPE_INTEGER,
360 .flags = V4L2_CTRL_FLAG_SLIDER,
361 .max = 15,
362 .step = 1,
363 };
364
365 ctrl = v4l2_ctrl_new_custom(&foo->ctrl_handler, &ctrl_filter, NULL);
366
367The last argument is the priv pointer which can be set to driver-specific
368private data.
369
370The v4l2_ctrl_config struct also has fields to set the is_private and is_volatile
371flags.
372
373If the name field is not set, then the framework will assume this is a standard
374control and will fill in the name, type and flags fields accordingly.
375
376
377Active and Grabbed Controls
378===========================
379
380If you get more complex relationships between controls, then you may have to
381activate and deactivate controls. For example, if the Chroma AGC control is
382on, then the Chroma Gain control is inactive. That is, you may set it, but
383the value will not be used by the hardware as long as the automatic gain
384control is on. Typically user interfaces can disable such input fields.
385
386You can set the 'active' status using v4l2_ctrl_activate(). By default all
387controls are active. Note that the framework does not check for this flag.
388It is meant purely for GUIs. The function is typically called from within
389s_ctrl.
390
391The other flag is the 'grabbed' flag. A grabbed control means that you cannot
392change it because it is in use by some resource. Typical examples are MPEG
393bitrate controls that cannot be changed while capturing is in progress.
394
395If a control is set to 'grabbed' using v4l2_ctrl_grab(), then the framework
396will return -EBUSY if an attempt is made to set this control. The
397v4l2_ctrl_grab() function is typically called from the driver when it
398starts or stops streaming.
399
400
401Control Clusters
402================
403
404By default all controls are independent from the others. But in more
405complex scenarios you can get dependencies from one control to another.
406In that case you need to 'cluster' them:
407
408 struct foo {
409 struct v4l2_ctrl_handler ctrl_handler;
410#define AUDIO_CL_VOLUME (0)
411#define AUDIO_CL_MUTE (1)
412 struct v4l2_ctrl *audio_cluster[2];
413 ...
414 };
415
416 state->audio_cluster[AUDIO_CL_VOLUME] =
417 v4l2_ctrl_new_std(&state->ctrl_handler, ...);
418 state->audio_cluster[AUDIO_CL_MUTE] =
419 v4l2_ctrl_new_std(&state->ctrl_handler, ...);
420 v4l2_ctrl_cluster(ARRAY_SIZE(state->audio_cluster), state->audio_cluster);
421
422From now on whenever one or more of the controls belonging to the same
423cluster is set (or 'gotten', or 'tried'), only the control ops of the first
424control ('volume' in this example) is called. You effectively create a new
425composite control. Similar to how a 'struct' works in C.
426
427So when s_ctrl is called with V4L2_CID_AUDIO_VOLUME as argument, you should set
428all two controls belonging to the audio_cluster:
429
430 static int foo_s_ctrl(struct v4l2_ctrl *ctrl)
431 {
432 struct foo *state = container_of(ctrl->handler, struct foo, ctrl_handler);
433
434 switch (ctrl->id) {
435 case V4L2_CID_AUDIO_VOLUME: {
436 struct v4l2_ctrl *mute = ctrl->cluster[AUDIO_CL_MUTE];
437
438 write_reg(0x123, mute->val ? 0 : ctrl->val);
439 break;
440 }
441 case V4L2_CID_CONTRAST:
442 write_reg(0x456, ctrl->val);
443 break;
444 }
445 return 0;
446 }
447
448In the example above the following are equivalent for the VOLUME case:
449
450 ctrl == ctrl->cluster[AUDIO_CL_VOLUME] == state->audio_cluster[AUDIO_CL_VOLUME]
451 ctrl->cluster[AUDIO_CL_MUTE] == state->audio_cluster[AUDIO_CL_MUTE]
452
453Note that controls in a cluster may be NULL. For example, if for some
454reason mute was never added (because the hardware doesn't support that
455particular feature), then mute will be NULL. So in that case we have a
456cluster of 2 controls, of which only 1 is actually instantiated. The
457only restriction is that the first control of the cluster must always be
458present, since that is the 'master' control of the cluster. The master
459control is the one that identifies the cluster and that provides the
460pointer to the v4l2_ctrl_ops struct that is used for that cluster.
461
462Obviously, all controls in the cluster array must be initialized to either
463a valid control or to NULL.
464
465
466VIDIOC_LOG_STATUS Support
467=========================
468
469This ioctl allow you to dump the current status of a driver to the kernel log.
470The v4l2_ctrl_handler_log_status(ctrl_handler, prefix) can be used to dump the
471value of the controls owned by the given handler to the log. You can supply a
472prefix as well. If the prefix didn't end with a space, then ': ' will be added
473for you.
474
475
476Different Handlers for Different Video Nodes
477============================================
478
479Usually the V4L2 driver has just one control handler that is global for
480all video nodes. But you can also specify different control handlers for
481different video nodes. You can do that by manually setting the ctrl_handler
482field of struct video_device.
483
484That is no problem if there are no subdevs involved but if there are, then
485you need to block the automatic merging of subdev controls to the global
486control handler. You do that by simply setting the ctrl_handler field in
487struct v4l2_device to NULL. Now v4l2_device_register_subdev() will no longer
488merge subdev controls.
489
490After each subdev was added, you will then have to call v4l2_ctrl_add_handler
491manually to add the subdev's control handler (sd->ctrl_handler) to the desired
492control handler. This control handler may be specific to the video_device or
493for a subset of video_device's. For example: the radio device nodes only have
494audio controls, while the video and vbi device nodes share the same control
495handler for the audio and video controls.
496
497If you want to have one handler (e.g. for a radio device node) have a subset
498of another handler (e.g. for a video device node), then you should first add
499the controls to the first handler, add the other controls to the second
500handler and finally add the first handler to the second. For example:
501
502 v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_VOLUME, ...);
503 v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_MUTE, ...);
504 v4l2_ctrl_new_std(&video_ctrl_handler, &video_ops, V4L2_CID_BRIGHTNESS, ...);
505 v4l2_ctrl_new_std(&video_ctrl_handler, &video_ops, V4L2_CID_CONTRAST, ...);
506 v4l2_ctrl_add_handler(&video_ctrl_handler, &radio_ctrl_handler);
507
508Or you can add specific controls to a handler:
509
510 volume = v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_AUDIO_VOLUME, ...);
511 v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_BRIGHTNESS, ...);
512 v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_CONTRAST, ...);
513 v4l2_ctrl_add_ctrl(&radio_ctrl_handler, volume);
514
515What you should not do is make two identical controls for two handlers.
516For example:
517
518 v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_MUTE, ...);
519 v4l2_ctrl_new_std(&video_ctrl_handler, &video_ops, V4L2_CID_AUDIO_MUTE, ...);
520
521This would be bad since muting the radio would not change the video mute
522control. The rule is to have one control for each hardware 'knob' that you
523can twiddle.
524
525
526Finding Controls
527================
528
529Normally you have created the controls yourself and you can store the struct
530v4l2_ctrl pointer into your own struct.
531
532But sometimes you need to find a control from another handler that you do
533not own. For example, if you have to find a volume control from a subdev.
534
535You can do that by calling v4l2_ctrl_find:
536
537 struct v4l2_ctrl *volume;
538
539 volume = v4l2_ctrl_find(sd->ctrl_handler, V4L2_CID_AUDIO_VOLUME);
540
541Since v4l2_ctrl_find will lock the handler you have to be careful where you
542use it. For example, this is not a good idea:
543
544 struct v4l2_ctrl_handler ctrl_handler;
545
546 v4l2_ctrl_new_std(&ctrl_handler, &video_ops, V4L2_CID_BRIGHTNESS, ...);
547 v4l2_ctrl_new_std(&ctrl_handler, &video_ops, V4L2_CID_CONTRAST, ...);
548
549...and in video_ops.s_ctrl:
550
551 case V4L2_CID_BRIGHTNESS:
552 contrast = v4l2_find_ctrl(&ctrl_handler, V4L2_CID_CONTRAST);
553 ...
554
555When s_ctrl is called by the framework the ctrl_handler.lock is already taken, so
556attempting to find another control from the same handler will deadlock.
557
558It is recommended not to use this function from inside the control ops.
559
560
561Inheriting Controls
562===================
563
564When one control handler is added to another using v4l2_ctrl_add_handler, then
565by default all controls from one are merged to the other. But a subdev might
566have low-level controls that make sense for some advanced embedded system, but
567not when it is used in consumer-level hardware. In that case you want to keep
568those low-level controls local to the subdev. You can do this by simply
569setting the 'is_private' flag of the control to 1:
570
571 static const struct v4l2_ctrl_config ctrl_private = {
572 .ops = &ctrl_custom_ops,
573 .id = V4L2_CID_...,
574 .name = "Some Private Control",
575 .type = V4L2_CTRL_TYPE_INTEGER,
576 .max = 15,
577 .step = 1,
578 .is_private = 1,
579 };
580
581 ctrl = v4l2_ctrl_new_custom(&foo->ctrl_handler, &ctrl_private, NULL);
582
583These controls will now be skipped when v4l2_ctrl_add_handler is called.
584
585
586V4L2_CTRL_TYPE_CTRL_CLASS Controls
587==================================
588
589Controls of this type can be used by GUIs to get the name of the control class.
590A fully featured GUI can make a dialog with multiple tabs with each tab
591containing the controls belonging to a particular control class. The name of
592each tab can be found by querying a special control with ID <control class | 1>.
593
594Drivers do not have to care about this. The framework will automatically add
595a control of this type whenever the first control belonging to a new control
596class is added.
597
598
599Differences from the Spec
600=========================
601
602There are a few places where the framework acts slightly differently from the
603V4L2 Specification. Those differences are described in this section. We will
604have to see whether we need to adjust the spec or not.
605
6061) It is no longer required to have all controls contained in a
607v4l2_ext_control array be from the same control class. The framework will be
608able to handle any type of control in the array. You need to set ctrl_class
609to 0 in order to enable this. If ctrl_class is non-zero, then it will still
610check that all controls belong to that control class.
611
612If you set ctrl_class to 0 and count to 0, then it will only return an error
613if there are no controls at all.
614
6152) Clarified the way error_idx works. For get and set it will be equal to
616count if nothing was done yet. If it is less than count then only the controls
617up to error_idx-1 were successfully applied.
618
6193) When attempting to read a button control the framework will return -EACCES
620instead of -EINVAL as stated in the spec. It seems to make more sense since
621button controls are write-only controls.
622
6234) Attempting to write to a read-only control will return -EACCES instead of
624-EINVAL as the spec says.
625
6265) The spec does not mention what should happen when you try to set/get a
627control class controls. ivtv currently returns -EINVAL (indicating that the
628control ID does not exist) while the framework will return -EACCES, which
629makes more sense.
630
631
632Proposals for Extensions
633========================
634
635Some ideas for future extensions to the spec:
636
6371) Add a V4L2_CTRL_FLAG_HEX to have values shown as hexadecimal instead of
638decimal. Useful for e.g. video_mute_yuv.
639
6402) It is possible to mark in the controls array which controls have been
641successfully written and which failed by for example adding a bit to the
642control ID. Not sure if it is worth the effort, though.
643
6443) Trying to set volatile inactive controls should result in -EACCESS.
645
6464) Add a new flag to mark volatile controls. Any application that wants
647to store the state of the controls can then skip volatile inactive controls.
648Currently it is not possible to detect such controls.