aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
authorAmerigo Wang <amwang@redhat.com>2009-07-10 18:02:41 -0400
committerLinus Torvalds <torvalds@linux-foundation.org>2009-07-10 22:10:32 -0400
commit3697cd9aa80125f7717c3c7e7253cfa49a39a388 (patch)
treee3aaa4969dfe727ead5700ca3cfdb0d2426bec1a /Documentation
parent097041e576ee3a50d92dd643ee8ca65bf6a62e21 (diff)
Doc: update Documentation/exception.txt
Update Documentation/exception.txt. Remove trailing whitespaces in it. Signed-off-by: WANG Cong <amwang@redhat.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/exception.txt202
1 files changed, 101 insertions, 101 deletions
diff --git a/Documentation/exception.txt b/Documentation/exception.txt
index 2d5aded64247..32901aa36f0a 100644
--- a/Documentation/exception.txt
+++ b/Documentation/exception.txt
@@ -1,123 +1,123 @@
1 Kernel level exception handling in Linux 2.1.8 1 Kernel level exception handling in Linux
2 Commentary by Joerg Pommnitz <joerg@raleigh.ibm.com> 2 Commentary by Joerg Pommnitz <joerg@raleigh.ibm.com>
3 3
4When a process runs in kernel mode, it often has to access user 4When a process runs in kernel mode, it often has to access user
5mode memory whose address has been passed by an untrusted program. 5mode memory whose address has been passed by an untrusted program.
6To protect itself the kernel has to verify this address. 6To protect itself the kernel has to verify this address.
7 7
8In older versions of Linux this was done with the 8In older versions of Linux this was done with the
9int verify_area(int type, const void * addr, unsigned long size) 9int verify_area(int type, const void * addr, unsigned long size)
10function (which has since been replaced by access_ok()). 10function (which has since been replaced by access_ok()).
11 11
12This function verified that the memory area starting at address 12This function verified that the memory area starting at address
13'addr' and of size 'size' was accessible for the operation specified 13'addr' and of size 'size' was accessible for the operation specified
14in type (read or write). To do this, verify_read had to look up the 14in type (read or write). To do this, verify_read had to look up the
15virtual memory area (vma) that contained the address addr. In the 15virtual memory area (vma) that contained the address addr. In the
16normal case (correctly working program), this test was successful. 16normal case (correctly working program), this test was successful.
17It only failed for a few buggy programs. In some kernel profiling 17It only failed for a few buggy programs. In some kernel profiling
18tests, this normally unneeded verification used up a considerable 18tests, this normally unneeded verification used up a considerable
19amount of time. 19amount of time.
20 20
21To overcome this situation, Linus decided to let the virtual memory 21To overcome this situation, Linus decided to let the virtual memory
22hardware present in every Linux-capable CPU handle this test. 22hardware present in every Linux-capable CPU handle this test.
23 23
24How does this work? 24How does this work?
25 25
26Whenever the kernel tries to access an address that is currently not 26Whenever the kernel tries to access an address that is currently not
27accessible, the CPU generates a page fault exception and calls the 27accessible, the CPU generates a page fault exception and calls the
28page fault handler 28page fault handler
29 29
30void do_page_fault(struct pt_regs *regs, unsigned long error_code) 30void do_page_fault(struct pt_regs *regs, unsigned long error_code)
31 31
32in arch/i386/mm/fault.c. The parameters on the stack are set up by 32in arch/x86/mm/fault.c. The parameters on the stack are set up by
33the low level assembly glue in arch/i386/kernel/entry.S. The parameter 33the low level assembly glue in arch/x86/kernel/entry_32.S. The parameter
34regs is a pointer to the saved registers on the stack, error_code 34regs is a pointer to the saved registers on the stack, error_code
35contains a reason code for the exception. 35contains a reason code for the exception.
36 36
37do_page_fault first obtains the unaccessible address from the CPU 37do_page_fault first obtains the unaccessible address from the CPU
38control register CR2. If the address is within the virtual address 38control register CR2. If the address is within the virtual address
39space of the process, the fault probably occurred, because the page 39space of the process, the fault probably occurred, because the page
40was not swapped in, write protected or something similar. However, 40was not swapped in, write protected or something similar. However,
41we are interested in the other case: the address is not valid, there 41we are interested in the other case: the address is not valid, there
42is no vma that contains this address. In this case, the kernel jumps 42is no vma that contains this address. In this case, the kernel jumps
43to the bad_area label. 43to the bad_area label.
44 44
45There it uses the address of the instruction that caused the exception 45There it uses the address of the instruction that caused the exception
46(i.e. regs->eip) to find an address where the execution can continue 46(i.e. regs->eip) to find an address where the execution can continue
47(fixup). If this search is successful, the fault handler modifies the 47(fixup). If this search is successful, the fault handler modifies the
48return address (again regs->eip) and returns. The execution will 48return address (again regs->eip) and returns. The execution will
49continue at the address in fixup. 49continue at the address in fixup.
50 50
51Where does fixup point to? 51Where does fixup point to?
52 52
53Since we jump to the contents of fixup, fixup obviously points 53Since we jump to the contents of fixup, fixup obviously points
54to executable code. This code is hidden inside the user access macros. 54to executable code. This code is hidden inside the user access macros.
55I have picked the get_user macro defined in include/asm/uaccess.h as an 55I have picked the get_user macro defined in arch/x86/include/asm/uaccess.h
56example. The definition is somewhat hard to follow, so let's peek at 56as an example. The definition is somewhat hard to follow, so let's peek at
57the code generated by the preprocessor and the compiler. I selected 57the code generated by the preprocessor and the compiler. I selected
58the get_user call in drivers/char/console.c for a detailed examination. 58the get_user call in drivers/char/sysrq.c for a detailed examination.
59 59
60The original code in console.c line 1405: 60The original code in sysrq.c line 587:
61 get_user(c, buf); 61 get_user(c, buf);
62 62
63The preprocessor output (edited to become somewhat readable): 63The preprocessor output (edited to become somewhat readable):
64 64
65( 65(
66 { 66 {
67 long __gu_err = - 14 , __gu_val = 0; 67 long __gu_err = - 14 , __gu_val = 0;
68 const __typeof__(*( ( buf ) )) *__gu_addr = ((buf)); 68 const __typeof__(*( ( buf ) )) *__gu_addr = ((buf));
69 if (((((0 + current_set[0])->tss.segment) == 0x18 ) || 69 if (((((0 + current_set[0])->tss.segment) == 0x18 ) ||
70 (((sizeof(*(buf))) <= 0xC0000000UL) && 70 (((sizeof(*(buf))) <= 0xC0000000UL) &&
71 ((unsigned long)(__gu_addr ) <= 0xC0000000UL - (sizeof(*(buf))))))) 71 ((unsigned long)(__gu_addr ) <= 0xC0000000UL - (sizeof(*(buf)))))))
72 do { 72 do {
73 __gu_err = 0; 73 __gu_err = 0;
74 switch ((sizeof(*(buf)))) { 74 switch ((sizeof(*(buf)))) {
75 case 1: 75 case 1:
76 __asm__ __volatile__( 76 __asm__ __volatile__(
77 "1: mov" "b" " %2,%" "b" "1\n" 77 "1: mov" "b" " %2,%" "b" "1\n"
78 "2:\n" 78 "2:\n"
79 ".section .fixup,\"ax\"\n" 79 ".section .fixup,\"ax\"\n"
80 "3: movl %3,%0\n" 80 "3: movl %3,%0\n"
81 " xor" "b" " %" "b" "1,%" "b" "1\n" 81 " xor" "b" " %" "b" "1,%" "b" "1\n"
82 " jmp 2b\n" 82 " jmp 2b\n"
83 ".section __ex_table,\"a\"\n" 83 ".section __ex_table,\"a\"\n"
84 " .align 4\n" 84 " .align 4\n"
85 " .long 1b,3b\n" 85 " .long 1b,3b\n"
86 ".text" : "=r"(__gu_err), "=q" (__gu_val): "m"((*(struct __large_struct *) 86 ".text" : "=r"(__gu_err), "=q" (__gu_val): "m"((*(struct __large_struct *)
87 ( __gu_addr )) ), "i"(- 14 ), "0"( __gu_err )) ; 87 ( __gu_addr )) ), "i"(- 14 ), "0"( __gu_err )) ;
88 break; 88 break;
89 case 2: 89 case 2:
90 __asm__ __volatile__( 90 __asm__ __volatile__(
91 "1: mov" "w" " %2,%" "w" "1\n" 91 "1: mov" "w" " %2,%" "w" "1\n"
92 "2:\n" 92 "2:\n"
93 ".section .fixup,\"ax\"\n" 93 ".section .fixup,\"ax\"\n"
94 "3: movl %3,%0\n" 94 "3: movl %3,%0\n"
95 " xor" "w" " %" "w" "1,%" "w" "1\n" 95 " xor" "w" " %" "w" "1,%" "w" "1\n"
96 " jmp 2b\n" 96 " jmp 2b\n"
97 ".section __ex_table,\"a\"\n" 97 ".section __ex_table,\"a\"\n"
98 " .align 4\n" 98 " .align 4\n"
99 " .long 1b,3b\n" 99 " .long 1b,3b\n"
100 ".text" : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *) 100 ".text" : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *)
101 ( __gu_addr )) ), "i"(- 14 ), "0"( __gu_err )); 101 ( __gu_addr )) ), "i"(- 14 ), "0"( __gu_err ));
102 break; 102 break;
103 case 4: 103 case 4:
104 __asm__ __volatile__( 104 __asm__ __volatile__(
105 "1: mov" "l" " %2,%" "" "1\n" 105 "1: mov" "l" " %2,%" "" "1\n"
106 "2:\n" 106 "2:\n"
107 ".section .fixup,\"ax\"\n" 107 ".section .fixup,\"ax\"\n"
108 "3: movl %3,%0\n" 108 "3: movl %3,%0\n"
109 " xor" "l" " %" "" "1,%" "" "1\n" 109 " xor" "l" " %" "" "1,%" "" "1\n"
110 " jmp 2b\n" 110 " jmp 2b\n"
111 ".section __ex_table,\"a\"\n" 111 ".section __ex_table,\"a\"\n"
112 " .align 4\n" " .long 1b,3b\n" 112 " .align 4\n" " .long 1b,3b\n"
113 ".text" : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *) 113 ".text" : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *)
114 ( __gu_addr )) ), "i"(- 14 ), "0"(__gu_err)); 114 ( __gu_addr )) ), "i"(- 14 ), "0"(__gu_err));
115 break; 115 break;
116 default: 116 default:
117 (__gu_val) = __get_user_bad(); 117 (__gu_val) = __get_user_bad();
118 } 118 }
119 } while (0) ; 119 } while (0) ;
120 ((c)) = (__typeof__(*((buf))))__gu_val; 120 ((c)) = (__typeof__(*((buf))))__gu_val;
121 __gu_err; 121 __gu_err;
122 } 122 }
123); 123);
@@ -127,12 +127,12 @@ see what code gcc generates:
127 127
128 > xorl %edx,%edx 128 > xorl %edx,%edx
129 > movl current_set,%eax 129 > movl current_set,%eax
130 > cmpl $24,788(%eax) 130 > cmpl $24,788(%eax)
131 > je .L1424 131 > je .L1424
132 > cmpl $-1073741825,64(%esp) 132 > cmpl $-1073741825,64(%esp)
133 > ja .L1423 133 > ja .L1423
134 > .L1424: 134 > .L1424:
135 > movl %edx,%eax 135 > movl %edx,%eax
136 > movl 64(%esp),%ebx 136 > movl 64(%esp),%ebx
137 > #APP 137 > #APP
138 > 1: movb (%ebx),%dl /* this is the actual user access */ 138 > 1: movb (%ebx),%dl /* this is the actual user access */
@@ -149,17 +149,17 @@ see what code gcc generates:
149 > .L1423: 149 > .L1423:
150 > movzbl %dl,%esi 150 > movzbl %dl,%esi
151 151
152The optimizer does a good job and gives us something we can actually 152The optimizer does a good job and gives us something we can actually
153understand. Can we? The actual user access is quite obvious. Thanks 153understand. Can we? The actual user access is quite obvious. Thanks
154to the unified address space we can just access the address in user 154to the unified address space we can just access the address in user
155memory. But what does the .section stuff do????? 155memory. But what does the .section stuff do?????
156 156
157To understand this we have to look at the final kernel: 157To understand this we have to look at the final kernel:
158 158
159 > objdump --section-headers vmlinux 159 > objdump --section-headers vmlinux
160 > 160 >
161 > vmlinux: file format elf32-i386 161 > vmlinux: file format elf32-i386
162 > 162 >
163 > Sections: 163 > Sections:
164 > Idx Name Size VMA LMA File off Algn 164 > Idx Name Size VMA LMA File off Algn
165 > 0 .text 00098f40 c0100000 c0100000 00001000 2**4 165 > 0 .text 00098f40 c0100000 c0100000 00001000 2**4
@@ -198,18 +198,18 @@ final kernel executable:
198 198
199The whole user memory access is reduced to 10 x86 machine instructions. 199The whole user memory access is reduced to 10 x86 machine instructions.
200The instructions bracketed in the .section directives are no longer 200The instructions bracketed in the .section directives are no longer
201in the normal execution path. They are located in a different section 201in the normal execution path. They are located in a different section
202of the executable file: 202of the executable file:
203 203
204 > objdump --disassemble --section=.fixup vmlinux 204 > objdump --disassemble --section=.fixup vmlinux
205 > 205 >
206 > c0199ff5 <.fixup+10b5> movl $0xfffffff2,%eax 206 > c0199ff5 <.fixup+10b5> movl $0xfffffff2,%eax
207 > c0199ffa <.fixup+10ba> xorb %dl,%dl 207 > c0199ffa <.fixup+10ba> xorb %dl,%dl
208 > c0199ffc <.fixup+10bc> jmp c017e7a7 <do_con_write+e3> 208 > c0199ffc <.fixup+10bc> jmp c017e7a7 <do_con_write+e3>
209 209
210And finally: 210And finally:
211 > objdump --full-contents --section=__ex_table vmlinux 211 > objdump --full-contents --section=__ex_table vmlinux
212 > 212 >
213 > c01aa7c4 93c017c0 e09f19c0 97c017c0 99c017c0 ................ 213 > c01aa7c4 93c017c0 e09f19c0 97c017c0 99c017c0 ................
214 > c01aa7d4 f6c217c0 e99f19c0 a5e717c0 f59f19c0 ................ 214 > c01aa7d4 f6c217c0 e99f19c0 a5e717c0 f59f19c0 ................
215 > c01aa7e4 080a18c0 01a019c0 0a0a18c0 04a019c0 ................ 215 > c01aa7e4 080a18c0 01a019c0 0a0a18c0 04a019c0 ................
@@ -235,8 +235,8 @@ sections in the ELF object file. So the instructions
235ended up in the .fixup section of the object file and the addresses 235ended up in the .fixup section of the object file and the addresses
236 .long 1b,3b 236 .long 1b,3b
237ended up in the __ex_table section of the object file. 1b and 3b 237ended up in the __ex_table section of the object file. 1b and 3b
238are local labels. The local label 1b (1b stands for next label 1 238are local labels. The local label 1b (1b stands for next label 1
239backward) is the address of the instruction that might fault, i.e. 239backward) is the address of the instruction that might fault, i.e.
240in our case the address of the label 1 is c017e7a5: 240in our case the address of the label 1 is c017e7a5:
241the original assembly code: > 1: movb (%ebx),%dl 241the original assembly code: > 1: movb (%ebx),%dl
242and linked in vmlinux : > c017e7a5 <do_con_write+e1> movb (%ebx),%dl 242and linked in vmlinux : > c017e7a5 <do_con_write+e1> movb (%ebx),%dl
@@ -254,7 +254,7 @@ The assembly code
254becomes the value pair 254becomes the value pair
255 > c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5 ................ 255 > c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5 ................
256 ^this is ^this is 256 ^this is ^this is
257 1b 3b 257 1b 3b
258c017e7a5,c0199ff5 in the exception table of the kernel. 258c017e7a5,c0199ff5 in the exception table of the kernel.
259 259
260So, what actually happens if a fault from kernel mode with no suitable 260So, what actually happens if a fault from kernel mode with no suitable
@@ -266,9 +266,9 @@ vma occurs?
2663.) CPU calls do_page_fault 2663.) CPU calls do_page_fault
2674.) do page fault calls search_exception_table (regs->eip == c017e7a5); 2674.) do page fault calls search_exception_table (regs->eip == c017e7a5);
2685.) search_exception_table looks up the address c017e7a5 in the 2685.) search_exception_table looks up the address c017e7a5 in the
269 exception table (i.e. the contents of the ELF section __ex_table) 269 exception table (i.e. the contents of the ELF section __ex_table)
270 and returns the address of the associated fault handle code c0199ff5. 270 and returns the address of the associated fault handle code c0199ff5.
2716.) do_page_fault modifies its own return address to point to the fault 2716.) do_page_fault modifies its own return address to point to the fault
272 handle code and returns. 272 handle code and returns.
2737.) execution continues in the fault handling code. 2737.) execution continues in the fault handling code.
2748.) 8a) EAX becomes -EFAULT (== -14) 2748.) 8a) EAX becomes -EFAULT (== -14)