diff options
author | Liam Girdwood <liam.girdwood@wolfsonmicro.com> | 2006-10-06 12:34:51 -0400 |
---|---|---|
committer | Jaroslav Kysela <perex@suse.cz> | 2007-02-09 03:00:20 -0500 |
commit | eb1a6af39b70375d93ed25e7c916f64463e00614 (patch) | |
tree | a5cb9228ad4f5cad115d491a413a3ad0a0e7de29 /Documentation/sound/alsa/soc/overview.txt | |
parent | a3288176de3fdd439d9bca0a0b9ca749c12ac5ac (diff) |
[ALSA] ASoC: documentation & maintainer
This patch adds documentation describing the ASoC architecture and a
maintainer entry for ASoC.
The documentation includes the following files:-
codec.txt: Codec driver internals.
DAI.txt: Description of Digital Audio Interface standards and how to
configure a DAI within your codec and CPU DAI drivers.
dapm.txt: Dynamic Audio Power Management.
platform.txt: Platform audio DMA and DAI.
machine.txt: Machine driver internals.
pop_clicks.txt: How to minimise audio artifacts.
clocking.txt: ASoC clocking for best power performance.
Signed-off-by: Liam Girdwood <liam.girdwood@wolfsonmicro.com>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Jaroslav Kysela <perex@suse.cz>
Diffstat (limited to 'Documentation/sound/alsa/soc/overview.txt')
-rw-r--r-- | Documentation/sound/alsa/soc/overview.txt | 83 |
1 files changed, 83 insertions, 0 deletions
diff --git a/Documentation/sound/alsa/soc/overview.txt b/Documentation/sound/alsa/soc/overview.txt new file mode 100644 index 000000000000..753c5cc5984a --- /dev/null +++ b/Documentation/sound/alsa/soc/overview.txt | |||
@@ -0,0 +1,83 @@ | |||
1 | ALSA SoC Layer | ||
2 | ============== | ||
3 | |||
4 | The overall project goal of the ALSA System on Chip (ASoC) layer is to provide | ||
5 | better ALSA support for embedded system on chip procesors (e.g. pxa2xx, au1x00, | ||
6 | iMX, etc) and portable audio codecs. Currently there is some support in the | ||
7 | kernel for SoC audio, however it has some limitations:- | ||
8 | |||
9 | * Currently, codec drivers are often tightly coupled to the underlying SoC | ||
10 | cpu. This is not ideal and leads to code duplication i.e. Linux now has 4 | ||
11 | different wm8731 drivers for 4 different SoC platforms. | ||
12 | |||
13 | * There is no standard method to signal user initiated audio events. | ||
14 | e.g. Headphone/Mic insertion, Headphone/Mic detection after an insertion | ||
15 | event. These are quite common events on portable devices and ofter require | ||
16 | machine specific code to re route audio, enable amps etc after such an event. | ||
17 | |||
18 | * Current drivers tend to power up the entire codec when playing | ||
19 | (or recording) audio. This is fine for a PC, but tends to waste a lot of | ||
20 | power on portable devices. There is also no support for saving power via | ||
21 | changing codec oversampling rates, bias currents, etc. | ||
22 | |||
23 | |||
24 | ASoC Design | ||
25 | =========== | ||
26 | |||
27 | The ASoC layer is designed to address these issues and provide the following | ||
28 | features :- | ||
29 | |||
30 | * Codec independence. Allows reuse of codec drivers on other platforms | ||
31 | and machines. | ||
32 | |||
33 | * Easy I2S/PCM audio interface setup between codec and SoC. Each SoC interface | ||
34 | and codec registers it's audio interface capabilities with the core and are | ||
35 | subsequently matched and configured when the application hw params are known. | ||
36 | |||
37 | * Dynamic Audio Power Management (DAPM). DAPM automatically sets the codec to | ||
38 | it's minimum power state at all times. This includes powering up/down | ||
39 | internal power blocks depending on the internal codec audio routing and any | ||
40 | active streams. | ||
41 | |||
42 | * Pop and click reduction. Pops and clicks can be reduced by powering the | ||
43 | codec up/down in the correct sequence (including using digital mute). ASoC | ||
44 | signals the codec when to change power states. | ||
45 | |||
46 | * Machine specific controls: Allow machines to add controls to the sound card | ||
47 | e.g. volume control for speaker amp. | ||
48 | |||
49 | To achieve all this, ASoC basically splits an embedded audio system into 3 | ||
50 | components :- | ||
51 | |||
52 | * Codec driver: The codec driver is platform independent and contains audio | ||
53 | controls, audio interface capabilities, codec dapm definition and codec IO | ||
54 | functions. | ||
55 | |||
56 | * Platform driver: The platform driver contains the audio dma engine and audio | ||
57 | interface drivers (e.g. I2S, AC97, PCM) for that platform. | ||
58 | |||
59 | * Machine driver: The machine driver handles any machine specific controls and | ||
60 | audio events. i.e. turing on an amp at start of playback. | ||
61 | |||
62 | |||
63 | Documentation | ||
64 | ============= | ||
65 | |||
66 | The documentation is spilt into the following sections:- | ||
67 | |||
68 | overview.txt: This file. | ||
69 | |||
70 | codec.txt: Codec driver internals. | ||
71 | |||
72 | DAI.txt: Description of Digital Audio Interface standards and how to configure | ||
73 | a DAI within your codec and CPU DAI drivers. | ||
74 | |||
75 | dapm.txt: Dynamic Audio Power Management | ||
76 | |||
77 | platform.txt: Platform audio DMA and DAI. | ||
78 | |||
79 | machine.txt: Machine driver internals. | ||
80 | |||
81 | pop_clicks.txt: How to minimise audio artifacts. | ||
82 | |||
83 | clocking.txt: ASoC clocking for best power performance. \ No newline at end of file | ||