diff options
author | J. Bruce Fields <bfields@citi.umich.edu> | 2008-02-07 03:13:37 -0500 |
---|---|---|
committer | Linus Torvalds <torvalds@woody.linux-foundation.org> | 2008-02-07 11:42:17 -0500 |
commit | 9b8eae7248dad42091204f83ed3448e661456af1 (patch) | |
tree | 1e300d41f8aaa9c258c179024ba63799a79f5a6f /Documentation/scheduler/sched-arch.txt | |
parent | d3cf91d0e201962a6367191e5926f5b0920b0339 (diff) |
Documentation: create new scheduler/ subdirectory
The top-level Documentation/ directory is unmanageably large, so we
should take any obvious opportunities to move stuff into subdirectories.
These sched-*.txt files seem an obvious easy case.
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'Documentation/scheduler/sched-arch.txt')
-rw-r--r-- | Documentation/scheduler/sched-arch.txt | 89 |
1 files changed, 89 insertions, 0 deletions
diff --git a/Documentation/scheduler/sched-arch.txt b/Documentation/scheduler/sched-arch.txt new file mode 100644 index 000000000000..941615a9769b --- /dev/null +++ b/Documentation/scheduler/sched-arch.txt | |||
@@ -0,0 +1,89 @@ | |||
1 | CPU Scheduler implementation hints for architecture specific code | ||
2 | |||
3 | Nick Piggin, 2005 | ||
4 | |||
5 | Context switch | ||
6 | ============== | ||
7 | 1. Runqueue locking | ||
8 | By default, the switch_to arch function is called with the runqueue | ||
9 | locked. This is usually not a problem unless switch_to may need to | ||
10 | take the runqueue lock. This is usually due to a wake up operation in | ||
11 | the context switch. See include/asm-ia64/system.h for an example. | ||
12 | |||
13 | To request the scheduler call switch_to with the runqueue unlocked, | ||
14 | you must `#define __ARCH_WANT_UNLOCKED_CTXSW` in a header file | ||
15 | (typically the one where switch_to is defined). | ||
16 | |||
17 | Unlocked context switches introduce only a very minor performance | ||
18 | penalty to the core scheduler implementation in the CONFIG_SMP case. | ||
19 | |||
20 | 2. Interrupt status | ||
21 | By default, the switch_to arch function is called with interrupts | ||
22 | disabled. Interrupts may be enabled over the call if it is likely to | ||
23 | introduce a significant interrupt latency by adding the line | ||
24 | `#define __ARCH_WANT_INTERRUPTS_ON_CTXSW` in the same place as for | ||
25 | unlocked context switches. This define also implies | ||
26 | `__ARCH_WANT_UNLOCKED_CTXSW`. See include/asm-arm/system.h for an | ||
27 | example. | ||
28 | |||
29 | |||
30 | CPU idle | ||
31 | ======== | ||
32 | Your cpu_idle routines need to obey the following rules: | ||
33 | |||
34 | 1. Preempt should now disabled over idle routines. Should only | ||
35 | be enabled to call schedule() then disabled again. | ||
36 | |||
37 | 2. need_resched/TIF_NEED_RESCHED is only ever set, and will never | ||
38 | be cleared until the running task has called schedule(). Idle | ||
39 | threads need only ever query need_resched, and may never set or | ||
40 | clear it. | ||
41 | |||
42 | 3. When cpu_idle finds (need_resched() == 'true'), it should call | ||
43 | schedule(). It should not call schedule() otherwise. | ||
44 | |||
45 | 4. The only time interrupts need to be disabled when checking | ||
46 | need_resched is if we are about to sleep the processor until | ||
47 | the next interrupt (this doesn't provide any protection of | ||
48 | need_resched, it prevents losing an interrupt). | ||
49 | |||
50 | 4a. Common problem with this type of sleep appears to be: | ||
51 | local_irq_disable(); | ||
52 | if (!need_resched()) { | ||
53 | local_irq_enable(); | ||
54 | *** resched interrupt arrives here *** | ||
55 | __asm__("sleep until next interrupt"); | ||
56 | } | ||
57 | |||
58 | 5. TIF_POLLING_NRFLAG can be set by idle routines that do not | ||
59 | need an interrupt to wake them up when need_resched goes high. | ||
60 | In other words, they must be periodically polling need_resched, | ||
61 | although it may be reasonable to do some background work or enter | ||
62 | a low CPU priority. | ||
63 | |||
64 | 5a. If TIF_POLLING_NRFLAG is set, and we do decide to enter | ||
65 | an interrupt sleep, it needs to be cleared then a memory | ||
66 | barrier issued (followed by a test of need_resched with | ||
67 | interrupts disabled, as explained in 3). | ||
68 | |||
69 | arch/i386/kernel/process.c has examples of both polling and | ||
70 | sleeping idle functions. | ||
71 | |||
72 | |||
73 | Possible arch/ problems | ||
74 | ======================= | ||
75 | |||
76 | Possible arch problems I found (and either tried to fix or didn't): | ||
77 | |||
78 | h8300 - Is such sleeping racy vs interrupts? (See #4a). | ||
79 | The H8/300 manual I found indicates yes, however disabling IRQs | ||
80 | over the sleep mean only NMIs can wake it up, so can't fix easily | ||
81 | without doing spin waiting. | ||
82 | |||
83 | ia64 - is safe_halt call racy vs interrupts? (does it sleep?) (See #4a) | ||
84 | |||
85 | sh64 - Is sleeping racy vs interrupts? (See #4a) | ||
86 | |||
87 | sparc - IRQs on at this point(?), change local_irq_save to _disable. | ||
88 | - TODO: needs secondary CPUs to disable preempt (See #1) | ||
89 | |||