aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/perf_counter/levenshtein.c
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2009-04-20 09:00:56 -0400
committerIngo Molnar <mingo@elte.hu>2009-04-20 11:36:48 -0400
commit0780060124011b94af55830939c86cc0916be0f5 (patch)
tree883a4d0ed69862ab49e6d4bf4e19debafeb5c48c /Documentation/perf_counter/levenshtein.c
parentd24e473e5b2ca86d1288b9416227ccc603313d0f (diff)
perf_counter tools: add in basic glue from Git
First very raw version at having a central 'perf' command and a list of subcommands: perf top perf stat perf record perf report ... This is done by picking up Git's collection of utility functions, and hacking them to build fine in this new environment. Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'Documentation/perf_counter/levenshtein.c')
-rw-r--r--Documentation/perf_counter/levenshtein.c84
1 files changed, 84 insertions, 0 deletions
diff --git a/Documentation/perf_counter/levenshtein.c b/Documentation/perf_counter/levenshtein.c
new file mode 100644
index 000000000000..e521d1516df6
--- /dev/null
+++ b/Documentation/perf_counter/levenshtein.c
@@ -0,0 +1,84 @@
1#include "cache.h"
2#include "levenshtein.h"
3
4/*
5 * This function implements the Damerau-Levenshtein algorithm to
6 * calculate a distance between strings.
7 *
8 * Basically, it says how many letters need to be swapped, substituted,
9 * deleted from, or added to string1, at least, to get string2.
10 *
11 * The idea is to build a distance matrix for the substrings of both
12 * strings. To avoid a large space complexity, only the last three rows
13 * are kept in memory (if swaps had the same or higher cost as one deletion
14 * plus one insertion, only two rows would be needed).
15 *
16 * At any stage, "i + 1" denotes the length of the current substring of
17 * string1 that the distance is calculated for.
18 *
19 * row2 holds the current row, row1 the previous row (i.e. for the substring
20 * of string1 of length "i"), and row0 the row before that.
21 *
22 * In other words, at the start of the big loop, row2[j + 1] contains the
23 * Damerau-Levenshtein distance between the substring of string1 of length
24 * "i" and the substring of string2 of length "j + 1".
25 *
26 * All the big loop does is determine the partial minimum-cost paths.
27 *
28 * It does so by calculating the costs of the path ending in characters
29 * i (in string1) and j (in string2), respectively, given that the last
30 * operation is a substition, a swap, a deletion, or an insertion.
31 *
32 * This implementation allows the costs to be weighted:
33 *
34 * - w (as in "sWap")
35 * - s (as in "Substitution")
36 * - a (for insertion, AKA "Add")
37 * - d (as in "Deletion")
38 *
39 * Note that this algorithm calculates a distance _iff_ d == a.
40 */
41int levenshtein(const char *string1, const char *string2,
42 int w, int s, int a, int d)
43{
44 int len1 = strlen(string1), len2 = strlen(string2);
45 int *row0 = malloc(sizeof(int) * (len2 + 1));
46 int *row1 = malloc(sizeof(int) * (len2 + 1));
47 int *row2 = malloc(sizeof(int) * (len2 + 1));
48 int i, j;
49
50 for (j = 0; j <= len2; j++)
51 row1[j] = j * a;
52 for (i = 0; i < len1; i++) {
53 int *dummy;
54
55 row2[0] = (i + 1) * d;
56 for (j = 0; j < len2; j++) {
57 /* substitution */
58 row2[j + 1] = row1[j] + s * (string1[i] != string2[j]);
59 /* swap */
60 if (i > 0 && j > 0 && string1[i - 1] == string2[j] &&
61 string1[i] == string2[j - 1] &&
62 row2[j + 1] > row0[j - 1] + w)
63 row2[j + 1] = row0[j - 1] + w;
64 /* deletion */
65 if (row2[j + 1] > row1[j + 1] + d)
66 row2[j + 1] = row1[j + 1] + d;
67 /* insertion */
68 if (row2[j + 1] > row2[j] + a)
69 row2[j + 1] = row2[j] + a;
70 }
71
72 dummy = row0;
73 row0 = row1;
74 row1 = row2;
75 row2 = dummy;
76 }
77
78 i = row1[len2];
79 free(row0);
80 free(row1);
81 free(row2);
82
83 return i;
84}