diff options
author | Rusty Russell <rusty@rustcorp.com.au> | 2007-07-26 13:41:03 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@woody.linux-foundation.org> | 2007-07-26 14:35:17 -0400 |
commit | dde797899ac17ebb812b7566044124d785e98dc7 (patch) | |
tree | 531ae7fd415d267e49acfedbbf4f03cf86e5eac1 /Documentation/lguest | |
parent | e2c9784325490c878b7f69aeec1bed98b288bd97 (diff) |
lguest: documentation IV: Launcher
Documentation: The Launcher
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'Documentation/lguest')
-rw-r--r-- | Documentation/lguest/lguest.c | 599 |
1 files changed, 555 insertions, 44 deletions
diff --git a/Documentation/lguest/lguest.c b/Documentation/lguest/lguest.c index fc1bf70abfb1..d7e26f025959 100644 --- a/Documentation/lguest/lguest.c +++ b/Documentation/lguest/lguest.c | |||
@@ -34,12 +34,20 @@ | |||
34 | #include <termios.h> | 34 | #include <termios.h> |
35 | #include <getopt.h> | 35 | #include <getopt.h> |
36 | #include <zlib.h> | 36 | #include <zlib.h> |
37 | /*L:110 We can ignore the 28 include files we need for this program, but I do | ||
38 | * want to draw attention to the use of kernel-style types. | ||
39 | * | ||
40 | * As Linus said, "C is a Spartan language, and so should your naming be." I | ||
41 | * like these abbreviations and the header we need uses them, so we define them | ||
42 | * here. | ||
43 | */ | ||
37 | typedef unsigned long long u64; | 44 | typedef unsigned long long u64; |
38 | typedef uint32_t u32; | 45 | typedef uint32_t u32; |
39 | typedef uint16_t u16; | 46 | typedef uint16_t u16; |
40 | typedef uint8_t u8; | 47 | typedef uint8_t u8; |
41 | #include "../../include/linux/lguest_launcher.h" | 48 | #include "../../include/linux/lguest_launcher.h" |
42 | #include "../../include/asm-i386/e820.h" | 49 | #include "../../include/asm-i386/e820.h" |
50 | /*:*/ | ||
43 | 51 | ||
44 | #define PAGE_PRESENT 0x7 /* Present, RW, Execute */ | 52 | #define PAGE_PRESENT 0x7 /* Present, RW, Execute */ |
45 | #define NET_PEERNUM 1 | 53 | #define NET_PEERNUM 1 |
@@ -48,33 +56,52 @@ typedef uint8_t u8; | |||
48 | #define SIOCBRADDIF 0x89a2 /* add interface to bridge */ | 56 | #define SIOCBRADDIF 0x89a2 /* add interface to bridge */ |
49 | #endif | 57 | #endif |
50 | 58 | ||
59 | /*L:120 verbose is both a global flag and a macro. The C preprocessor allows | ||
60 | * this, and although I wouldn't recommend it, it works quite nicely here. */ | ||
51 | static bool verbose; | 61 | static bool verbose; |
52 | #define verbose(args...) \ | 62 | #define verbose(args...) \ |
53 | do { if (verbose) printf(args); } while(0) | 63 | do { if (verbose) printf(args); } while(0) |
64 | /*:*/ | ||
65 | |||
66 | /* The pipe to send commands to the waker process */ | ||
54 | static int waker_fd; | 67 | static int waker_fd; |
68 | /* The top of guest physical memory. */ | ||
55 | static u32 top; | 69 | static u32 top; |
56 | 70 | ||
71 | /* This is our list of devices. */ | ||
57 | struct device_list | 72 | struct device_list |
58 | { | 73 | { |
74 | /* Summary information about the devices in our list: ready to pass to | ||
75 | * select() to ask which need servicing.*/ | ||
59 | fd_set infds; | 76 | fd_set infds; |
60 | int max_infd; | 77 | int max_infd; |
61 | 78 | ||
79 | /* The descriptor page for the devices. */ | ||
62 | struct lguest_device_desc *descs; | 80 | struct lguest_device_desc *descs; |
81 | |||
82 | /* A single linked list of devices. */ | ||
63 | struct device *dev; | 83 | struct device *dev; |
84 | /* ... And an end pointer so we can easily append new devices */ | ||
64 | struct device **lastdev; | 85 | struct device **lastdev; |
65 | }; | 86 | }; |
66 | 87 | ||
88 | /* The device structure describes a single device. */ | ||
67 | struct device | 89 | struct device |
68 | { | 90 | { |
91 | /* The linked-list pointer. */ | ||
69 | struct device *next; | 92 | struct device *next; |
93 | /* The descriptor for this device, as mapped into the Guest. */ | ||
70 | struct lguest_device_desc *desc; | 94 | struct lguest_device_desc *desc; |
95 | /* The memory page(s) of this device, if any. Also mapped in Guest. */ | ||
71 | void *mem; | 96 | void *mem; |
72 | 97 | ||
73 | /* Watch this fd if handle_input non-NULL. */ | 98 | /* If handle_input is set, it wants to be called when this file |
99 | * descriptor is ready. */ | ||
74 | int fd; | 100 | int fd; |
75 | bool (*handle_input)(int fd, struct device *me); | 101 | bool (*handle_input)(int fd, struct device *me); |
76 | 102 | ||
77 | /* Watch DMA to this key if handle_input non-NULL. */ | 103 | /* If handle_output is set, it wants to be called when the Guest sends |
104 | * DMA to this key. */ | ||
78 | unsigned long watch_key; | 105 | unsigned long watch_key; |
79 | u32 (*handle_output)(int fd, const struct iovec *iov, | 106 | u32 (*handle_output)(int fd, const struct iovec *iov, |
80 | unsigned int num, struct device *me); | 107 | unsigned int num, struct device *me); |
@@ -83,6 +110,11 @@ struct device | |||
83 | void *priv; | 110 | void *priv; |
84 | }; | 111 | }; |
85 | 112 | ||
113 | /*L:130 | ||
114 | * Loading the Kernel. | ||
115 | * | ||
116 | * We start with couple of simple helper routines. open_or_die() avoids | ||
117 | * error-checking code cluttering the callers: */ | ||
86 | static int open_or_die(const char *name, int flags) | 118 | static int open_or_die(const char *name, int flags) |
87 | { | 119 | { |
88 | int fd = open(name, flags); | 120 | int fd = open(name, flags); |
@@ -91,26 +123,38 @@ static int open_or_die(const char *name, int flags) | |||
91 | return fd; | 123 | return fd; |
92 | } | 124 | } |
93 | 125 | ||
126 | /* map_zeroed_pages() takes a (page-aligned) address and a number of pages. */ | ||
94 | static void *map_zeroed_pages(unsigned long addr, unsigned int num) | 127 | static void *map_zeroed_pages(unsigned long addr, unsigned int num) |
95 | { | 128 | { |
129 | /* We cache the /dev/zero file-descriptor so we only open it once. */ | ||
96 | static int fd = -1; | 130 | static int fd = -1; |
97 | 131 | ||
98 | if (fd == -1) | 132 | if (fd == -1) |
99 | fd = open_or_die("/dev/zero", O_RDONLY); | 133 | fd = open_or_die("/dev/zero", O_RDONLY); |
100 | 134 | ||
135 | /* We use a private mapping (ie. if we write to the page, it will be | ||
136 | * copied), and obviously we insist that it be mapped where we ask. */ | ||
101 | if (mmap((void *)addr, getpagesize() * num, | 137 | if (mmap((void *)addr, getpagesize() * num, |
102 | PROT_READ|PROT_WRITE|PROT_EXEC, MAP_FIXED|MAP_PRIVATE, fd, 0) | 138 | PROT_READ|PROT_WRITE|PROT_EXEC, MAP_FIXED|MAP_PRIVATE, fd, 0) |
103 | != (void *)addr) | 139 | != (void *)addr) |
104 | err(1, "Mmaping %u pages of /dev/zero @%p", num, (void *)addr); | 140 | err(1, "Mmaping %u pages of /dev/zero @%p", num, (void *)addr); |
141 | |||
142 | /* Returning the address is just a courtesy: can simplify callers. */ | ||
105 | return (void *)addr; | 143 | return (void *)addr; |
106 | } | 144 | } |
107 | 145 | ||
108 | /* Find magic string marking entry point, return entry point. */ | 146 | /* To find out where to start we look for the magic Guest string, which marks |
147 | * the code we see in lguest_asm.S. This is a hack which we are currently | ||
148 | * plotting to replace with the normal Linux entry point. */ | ||
109 | static unsigned long entry_point(void *start, void *end, | 149 | static unsigned long entry_point(void *start, void *end, |
110 | unsigned long page_offset) | 150 | unsigned long page_offset) |
111 | { | 151 | { |
112 | void *p; | 152 | void *p; |
113 | 153 | ||
154 | /* The scan gives us the physical starting address. We want the | ||
155 | * virtual address in this case, and fortunately, we already figured | ||
156 | * out the physical-virtual difference and passed it here in | ||
157 | * "page_offset". */ | ||
114 | for (p = start; p < end; p++) | 158 | for (p = start; p < end; p++) |
115 | if (memcmp(p, "GenuineLguest", strlen("GenuineLguest")) == 0) | 159 | if (memcmp(p, "GenuineLguest", strlen("GenuineLguest")) == 0) |
116 | return (long)p + strlen("GenuineLguest") + page_offset; | 160 | return (long)p + strlen("GenuineLguest") + page_offset; |
@@ -118,7 +162,17 @@ static unsigned long entry_point(void *start, void *end, | |||
118 | err(1, "Is this image a genuine lguest?"); | 162 | err(1, "Is this image a genuine lguest?"); |
119 | } | 163 | } |
120 | 164 | ||
121 | /* Returns the entry point */ | 165 | /* This routine takes an open vmlinux image, which is in ELF, and maps it into |
166 | * the Guest memory. ELF = Embedded Linking Format, which is the format used | ||
167 | * by all modern binaries on Linux including the kernel. | ||
168 | * | ||
169 | * The ELF headers give *two* addresses: a physical address, and a virtual | ||
170 | * address. The Guest kernel expects to be placed in memory at the physical | ||
171 | * address, and the page tables set up so it will correspond to that virtual | ||
172 | * address. We return the difference between the virtual and physical | ||
173 | * addresses in the "page_offset" pointer. | ||
174 | * | ||
175 | * We return the starting address. */ | ||
122 | static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr, | 176 | static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr, |
123 | unsigned long *page_offset) | 177 | unsigned long *page_offset) |
124 | { | 178 | { |
@@ -127,40 +181,61 @@ static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr, | |||
127 | unsigned int i; | 181 | unsigned int i; |
128 | unsigned long start = -1UL, end = 0; | 182 | unsigned long start = -1UL, end = 0; |
129 | 183 | ||
130 | /* Sanity checks. */ | 184 | /* Sanity checks on the main ELF header: an x86 executable with a |
185 | * reasonable number of correctly-sized program headers. */ | ||
131 | if (ehdr->e_type != ET_EXEC | 186 | if (ehdr->e_type != ET_EXEC |
132 | || ehdr->e_machine != EM_386 | 187 | || ehdr->e_machine != EM_386 |
133 | || ehdr->e_phentsize != sizeof(Elf32_Phdr) | 188 | || ehdr->e_phentsize != sizeof(Elf32_Phdr) |
134 | || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr)) | 189 | || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr)) |
135 | errx(1, "Malformed elf header"); | 190 | errx(1, "Malformed elf header"); |
136 | 191 | ||
192 | /* An ELF executable contains an ELF header and a number of "program" | ||
193 | * headers which indicate which parts ("segments") of the program to | ||
194 | * load where. */ | ||
195 | |||
196 | /* We read in all the program headers at once: */ | ||
137 | if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0) | 197 | if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0) |
138 | err(1, "Seeking to program headers"); | 198 | err(1, "Seeking to program headers"); |
139 | if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr)) | 199 | if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr)) |
140 | err(1, "Reading program headers"); | 200 | err(1, "Reading program headers"); |
141 | 201 | ||
202 | /* We don't know page_offset yet. */ | ||
142 | *page_offset = 0; | 203 | *page_offset = 0; |
143 | /* We map the loadable segments at virtual addresses corresponding | 204 | |
144 | * to their physical addresses (our virtual == guest physical). */ | 205 | /* Try all the headers: there are usually only three. A read-only one, |
206 | * a read-write one, and a "note" section which isn't loadable. */ | ||
145 | for (i = 0; i < ehdr->e_phnum; i++) { | 207 | for (i = 0; i < ehdr->e_phnum; i++) { |
208 | /* If this isn't a loadable segment, we ignore it */ | ||
146 | if (phdr[i].p_type != PT_LOAD) | 209 | if (phdr[i].p_type != PT_LOAD) |
147 | continue; | 210 | continue; |
148 | 211 | ||
149 | verbose("Section %i: size %i addr %p\n", | 212 | verbose("Section %i: size %i addr %p\n", |
150 | i, phdr[i].p_memsz, (void *)phdr[i].p_paddr); | 213 | i, phdr[i].p_memsz, (void *)phdr[i].p_paddr); |
151 | 214 | ||
152 | /* We expect linear address space. */ | 215 | /* We expect a simple linear address space: every segment must |
216 | * have the same difference between virtual (p_vaddr) and | ||
217 | * physical (p_paddr) address. */ | ||
153 | if (!*page_offset) | 218 | if (!*page_offset) |
154 | *page_offset = phdr[i].p_vaddr - phdr[i].p_paddr; | 219 | *page_offset = phdr[i].p_vaddr - phdr[i].p_paddr; |
155 | else if (*page_offset != phdr[i].p_vaddr - phdr[i].p_paddr) | 220 | else if (*page_offset != phdr[i].p_vaddr - phdr[i].p_paddr) |
156 | errx(1, "Page offset of section %i different", i); | 221 | errx(1, "Page offset of section %i different", i); |
157 | 222 | ||
223 | /* We track the first and last address we mapped, so we can | ||
224 | * tell entry_point() where to scan. */ | ||
158 | if (phdr[i].p_paddr < start) | 225 | if (phdr[i].p_paddr < start) |
159 | start = phdr[i].p_paddr; | 226 | start = phdr[i].p_paddr; |
160 | if (phdr[i].p_paddr + phdr[i].p_filesz > end) | 227 | if (phdr[i].p_paddr + phdr[i].p_filesz > end) |
161 | end = phdr[i].p_paddr + phdr[i].p_filesz; | 228 | end = phdr[i].p_paddr + phdr[i].p_filesz; |
162 | 229 | ||
163 | /* We map everything private, writable. */ | 230 | /* We map this section of the file at its physical address. We |
231 | * map it read & write even if the header says this segment is | ||
232 | * read-only. The kernel really wants to be writable: it | ||
233 | * patches its own instructions which would normally be | ||
234 | * read-only. | ||
235 | * | ||
236 | * MAP_PRIVATE means that the page won't be copied until a | ||
237 | * write is done to it. This allows us to share much of the | ||
238 | * kernel memory between Guests. */ | ||
164 | addr = mmap((void *)phdr[i].p_paddr, | 239 | addr = mmap((void *)phdr[i].p_paddr, |
165 | phdr[i].p_filesz, | 240 | phdr[i].p_filesz, |
166 | PROT_READ|PROT_WRITE|PROT_EXEC, | 241 | PROT_READ|PROT_WRITE|PROT_EXEC, |
@@ -174,7 +249,31 @@ static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr, | |||
174 | return entry_point((void *)start, (void *)end, *page_offset); | 249 | return entry_point((void *)start, (void *)end, *page_offset); |
175 | } | 250 | } |
176 | 251 | ||
177 | /* This is amazingly reliable. */ | 252 | /*L:170 Prepare to be SHOCKED and AMAZED. And possibly a trifle nauseated. |
253 | * | ||
254 | * We know that CONFIG_PAGE_OFFSET sets what virtual address the kernel expects | ||
255 | * to be. We don't know what that option was, but we can figure it out | ||
256 | * approximately by looking at the addresses in the code. I chose the common | ||
257 | * case of reading a memory location into the %eax register: | ||
258 | * | ||
259 | * movl <some-address>, %eax | ||
260 | * | ||
261 | * This gets encoded as five bytes: "0xA1 <4-byte-address>". For example, | ||
262 | * "0xA1 0x18 0x60 0x47 0xC0" reads the address 0xC0476018 into %eax. | ||
263 | * | ||
264 | * In this example can guess that the kernel was compiled with | ||
265 | * CONFIG_PAGE_OFFSET set to 0xC0000000 (it's always a round number). If the | ||
266 | * kernel were larger than 16MB, we might see 0xC1 addresses show up, but our | ||
267 | * kernel isn't that bloated yet. | ||
268 | * | ||
269 | * Unfortunately, x86 has variable-length instructions, so finding this | ||
270 | * particular instruction properly involves writing a disassembler. Instead, | ||
271 | * we rely on statistics. We look for "0xA1" and tally the different bytes | ||
272 | * which occur 4 bytes later (the "0xC0" in our example above). When one of | ||
273 | * those bytes appears three times, we can be reasonably confident that it | ||
274 | * forms the start of CONFIG_PAGE_OFFSET. | ||
275 | * | ||
276 | * This is amazingly reliable. */ | ||
178 | static unsigned long intuit_page_offset(unsigned char *img, unsigned long len) | 277 | static unsigned long intuit_page_offset(unsigned char *img, unsigned long len) |
179 | { | 278 | { |
180 | unsigned int i, possibilities[256] = { 0 }; | 279 | unsigned int i, possibilities[256] = { 0 }; |
@@ -187,30 +286,52 @@ static unsigned long intuit_page_offset(unsigned char *img, unsigned long len) | |||
187 | errx(1, "could not determine page offset"); | 286 | errx(1, "could not determine page offset"); |
188 | } | 287 | } |
189 | 288 | ||
289 | /*L:160 Unfortunately the entire ELF image isn't compressed: the segments | ||
290 | * which need loading are extracted and compressed raw. This denies us the | ||
291 | * information we need to make a fully-general loader. */ | ||
190 | static unsigned long unpack_bzimage(int fd, unsigned long *page_offset) | 292 | static unsigned long unpack_bzimage(int fd, unsigned long *page_offset) |
191 | { | 293 | { |
192 | gzFile f; | 294 | gzFile f; |
193 | int ret, len = 0; | 295 | int ret, len = 0; |
296 | /* A bzImage always gets loaded at physical address 1M. This is | ||
297 | * actually configurable as CONFIG_PHYSICAL_START, but as the comment | ||
298 | * there says, "Don't change this unless you know what you are doing". | ||
299 | * Indeed. */ | ||
194 | void *img = (void *)0x100000; | 300 | void *img = (void *)0x100000; |
195 | 301 | ||
302 | /* gzdopen takes our file descriptor (carefully placed at the start of | ||
303 | * the GZIP header we found) and returns a gzFile. */ | ||
196 | f = gzdopen(fd, "rb"); | 304 | f = gzdopen(fd, "rb"); |
305 | /* We read it into memory in 64k chunks until we hit the end. */ | ||
197 | while ((ret = gzread(f, img + len, 65536)) > 0) | 306 | while ((ret = gzread(f, img + len, 65536)) > 0) |
198 | len += ret; | 307 | len += ret; |
199 | if (ret < 0) | 308 | if (ret < 0) |
200 | err(1, "reading image from bzImage"); | 309 | err(1, "reading image from bzImage"); |
201 | 310 | ||
202 | verbose("Unpacked size %i addr %p\n", len, img); | 311 | verbose("Unpacked size %i addr %p\n", len, img); |
312 | |||
313 | /* Without the ELF header, we can't tell virtual-physical gap. This is | ||
314 | * CONFIG_PAGE_OFFSET, and people do actually change it. Fortunately, | ||
315 | * I have a clever way of figuring it out from the code itself. */ | ||
203 | *page_offset = intuit_page_offset(img, len); | 316 | *page_offset = intuit_page_offset(img, len); |
204 | 317 | ||
205 | return entry_point(img, img + len, *page_offset); | 318 | return entry_point(img, img + len, *page_offset); |
206 | } | 319 | } |
207 | 320 | ||
321 | /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're | ||
322 | * supposed to jump into it and it will unpack itself. We can't do that | ||
323 | * because the Guest can't run the unpacking code, and adding features to | ||
324 | * lguest kills puppies, so we don't want to. | ||
325 | * | ||
326 | * The bzImage is formed by putting the decompressing code in front of the | ||
327 | * compressed kernel code. So we can simple scan through it looking for the | ||
328 | * first "gzip" header, and start decompressing from there. */ | ||
208 | static unsigned long load_bzimage(int fd, unsigned long *page_offset) | 329 | static unsigned long load_bzimage(int fd, unsigned long *page_offset) |
209 | { | 330 | { |
210 | unsigned char c; | 331 | unsigned char c; |
211 | int state = 0; | 332 | int state = 0; |
212 | 333 | ||
213 | /* Ugly brute force search for gzip header. */ | 334 | /* GZIP header is 0x1F 0x8B <method> <flags>... <compressed-by>. */ |
214 | while (read(fd, &c, 1) == 1) { | 335 | while (read(fd, &c, 1) == 1) { |
215 | switch (state) { | 336 | switch (state) { |
216 | case 0: | 337 | case 0: |
@@ -227,8 +348,10 @@ static unsigned long load_bzimage(int fd, unsigned long *page_offset) | |||
227 | state++; | 348 | state++; |
228 | break; | 349 | break; |
229 | case 9: | 350 | case 9: |
351 | /* Seek back to the start of the gzip header. */ | ||
230 | lseek(fd, -10, SEEK_CUR); | 352 | lseek(fd, -10, SEEK_CUR); |
231 | if (c != 0x03) /* Compressed under UNIX. */ | 353 | /* One final check: "compressed under UNIX". */ |
354 | if (c != 0x03) | ||
232 | state = -1; | 355 | state = -1; |
233 | else | 356 | else |
234 | return unpack_bzimage(fd, page_offset); | 357 | return unpack_bzimage(fd, page_offset); |
@@ -237,25 +360,43 @@ static unsigned long load_bzimage(int fd, unsigned long *page_offset) | |||
237 | errx(1, "Could not find kernel in bzImage"); | 360 | errx(1, "Could not find kernel in bzImage"); |
238 | } | 361 | } |
239 | 362 | ||
363 | /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels | ||
364 | * come wrapped up in the self-decompressing "bzImage" format. With some funky | ||
365 | * coding, we can load those, too. */ | ||
240 | static unsigned long load_kernel(int fd, unsigned long *page_offset) | 366 | static unsigned long load_kernel(int fd, unsigned long *page_offset) |
241 | { | 367 | { |
242 | Elf32_Ehdr hdr; | 368 | Elf32_Ehdr hdr; |
243 | 369 | ||
370 | /* Read in the first few bytes. */ | ||
244 | if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr)) | 371 | if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr)) |
245 | err(1, "Reading kernel"); | 372 | err(1, "Reading kernel"); |
246 | 373 | ||
374 | /* If it's an ELF file, it starts with "\177ELF" */ | ||
247 | if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0) | 375 | if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0) |
248 | return map_elf(fd, &hdr, page_offset); | 376 | return map_elf(fd, &hdr, page_offset); |
249 | 377 | ||
378 | /* Otherwise we assume it's a bzImage, and try to unpack it */ | ||
250 | return load_bzimage(fd, page_offset); | 379 | return load_bzimage(fd, page_offset); |
251 | } | 380 | } |
252 | 381 | ||
382 | /* This is a trivial little helper to align pages. Andi Kleen hated it because | ||
383 | * it calls getpagesize() twice: "it's dumb code." | ||
384 | * | ||
385 | * Kernel guys get really het up about optimization, even when it's not | ||
386 | * necessary. I leave this code as a reaction against that. */ | ||
253 | static inline unsigned long page_align(unsigned long addr) | 387 | static inline unsigned long page_align(unsigned long addr) |
254 | { | 388 | { |
389 | /* Add upwards and truncate downwards. */ | ||
255 | return ((addr + getpagesize()-1) & ~(getpagesize()-1)); | 390 | return ((addr + getpagesize()-1) & ~(getpagesize()-1)); |
256 | } | 391 | } |
257 | 392 | ||
258 | /* initrd gets loaded at top of memory: return length. */ | 393 | /*L:180 An "initial ram disk" is a disk image loaded into memory along with |
394 | * the kernel which the kernel can use to boot from without needing any | ||
395 | * drivers. Most distributions now use this as standard: the initrd contains | ||
396 | * the code to load the appropriate driver modules for the current machine. | ||
397 | * | ||
398 | * Importantly, James Morris works for RedHat, and Fedora uses initrds for its | ||
399 | * kernels. He sent me this (and tells me when I break it). */ | ||
259 | static unsigned long load_initrd(const char *name, unsigned long mem) | 400 | static unsigned long load_initrd(const char *name, unsigned long mem) |
260 | { | 401 | { |
261 | int ifd; | 402 | int ifd; |
@@ -264,21 +405,35 @@ static unsigned long load_initrd(const char *name, unsigned long mem) | |||
264 | void *iaddr; | 405 | void *iaddr; |
265 | 406 | ||
266 | ifd = open_or_die(name, O_RDONLY); | 407 | ifd = open_or_die(name, O_RDONLY); |
408 | /* fstat() is needed to get the file size. */ | ||
267 | if (fstat(ifd, &st) < 0) | 409 | if (fstat(ifd, &st) < 0) |
268 | err(1, "fstat() on initrd '%s'", name); | 410 | err(1, "fstat() on initrd '%s'", name); |
269 | 411 | ||
412 | /* The length needs to be rounded up to a page size: mmap needs the | ||
413 | * address to be page aligned. */ | ||
270 | len = page_align(st.st_size); | 414 | len = page_align(st.st_size); |
415 | /* We map the initrd at the top of memory. */ | ||
271 | iaddr = mmap((void *)mem - len, st.st_size, | 416 | iaddr = mmap((void *)mem - len, st.st_size, |
272 | PROT_READ|PROT_EXEC|PROT_WRITE, | 417 | PROT_READ|PROT_EXEC|PROT_WRITE, |
273 | MAP_FIXED|MAP_PRIVATE, ifd, 0); | 418 | MAP_FIXED|MAP_PRIVATE, ifd, 0); |
274 | if (iaddr != (void *)mem - len) | 419 | if (iaddr != (void *)mem - len) |
275 | err(1, "Mmaping initrd '%s' returned %p not %p", | 420 | err(1, "Mmaping initrd '%s' returned %p not %p", |
276 | name, iaddr, (void *)mem - len); | 421 | name, iaddr, (void *)mem - len); |
422 | /* Once a file is mapped, you can close the file descriptor. It's a | ||
423 | * little odd, but quite useful. */ | ||
277 | close(ifd); | 424 | close(ifd); |
278 | verbose("mapped initrd %s size=%lu @ %p\n", name, st.st_size, iaddr); | 425 | verbose("mapped initrd %s size=%lu @ %p\n", name, st.st_size, iaddr); |
426 | |||
427 | /* We return the initrd size. */ | ||
279 | return len; | 428 | return len; |
280 | } | 429 | } |
281 | 430 | ||
431 | /* Once we know how much memory we have, and the address the Guest kernel | ||
432 | * expects, we can construct simple linear page tables which will get the Guest | ||
433 | * far enough into the boot to create its own. | ||
434 | * | ||
435 | * We lay them out of the way, just below the initrd (which is why we need to | ||
436 | * know its size). */ | ||
282 | static unsigned long setup_pagetables(unsigned long mem, | 437 | static unsigned long setup_pagetables(unsigned long mem, |
283 | unsigned long initrd_size, | 438 | unsigned long initrd_size, |
284 | unsigned long page_offset) | 439 | unsigned long page_offset) |
@@ -287,23 +442,32 @@ static unsigned long setup_pagetables(unsigned long mem, | |||
287 | unsigned int mapped_pages, i, linear_pages; | 442 | unsigned int mapped_pages, i, linear_pages; |
288 | unsigned int ptes_per_page = getpagesize()/sizeof(u32); | 443 | unsigned int ptes_per_page = getpagesize()/sizeof(u32); |
289 | 444 | ||
290 | /* If we can map all of memory above page_offset, we do so. */ | 445 | /* Ideally we map all physical memory starting at page_offset. |
446 | * However, if page_offset is 0xC0000000 we can only map 1G of physical | ||
447 | * (0xC0000000 + 1G overflows). */ | ||
291 | if (mem <= -page_offset) | 448 | if (mem <= -page_offset) |
292 | mapped_pages = mem/getpagesize(); | 449 | mapped_pages = mem/getpagesize(); |
293 | else | 450 | else |
294 | mapped_pages = -page_offset/getpagesize(); | 451 | mapped_pages = -page_offset/getpagesize(); |
295 | 452 | ||
296 | /* Each linear PTE page can map ptes_per_page pages. */ | 453 | /* Each PTE page can map ptes_per_page pages: how many do we need? */ |
297 | linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page; | 454 | linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page; |
298 | 455 | ||
299 | /* We lay out top-level then linear mapping immediately below initrd */ | 456 | /* We put the toplevel page directory page at the top of memory. */ |
300 | pgdir = (void *)mem - initrd_size - getpagesize(); | 457 | pgdir = (void *)mem - initrd_size - getpagesize(); |
458 | |||
459 | /* Now we use the next linear_pages pages as pte pages */ | ||
301 | linear = (void *)pgdir - linear_pages*getpagesize(); | 460 | linear = (void *)pgdir - linear_pages*getpagesize(); |
302 | 461 | ||
462 | /* Linear mapping is easy: put every page's address into the mapping in | ||
463 | * order. PAGE_PRESENT contains the flags Present, Writable and | ||
464 | * Executable. */ | ||
303 | for (i = 0; i < mapped_pages; i++) | 465 | for (i = 0; i < mapped_pages; i++) |
304 | linear[i] = ((i * getpagesize()) | PAGE_PRESENT); | 466 | linear[i] = ((i * getpagesize()) | PAGE_PRESENT); |
305 | 467 | ||
306 | /* Now set up pgd so that this memory is at page_offset */ | 468 | /* The top level points to the linear page table pages above. The |
469 | * entry representing page_offset points to the first one, and they | ||
470 | * continue from there. */ | ||
307 | for (i = 0; i < mapped_pages; i += ptes_per_page) { | 471 | for (i = 0; i < mapped_pages; i += ptes_per_page) { |
308 | pgdir[(i + page_offset/getpagesize())/ptes_per_page] | 472 | pgdir[(i + page_offset/getpagesize())/ptes_per_page] |
309 | = (((u32)linear + i*sizeof(u32)) | PAGE_PRESENT); | 473 | = (((u32)linear + i*sizeof(u32)) | PAGE_PRESENT); |
@@ -312,9 +476,13 @@ static unsigned long setup_pagetables(unsigned long mem, | |||
312 | verbose("Linear mapping of %u pages in %u pte pages at %p\n", | 476 | verbose("Linear mapping of %u pages in %u pte pages at %p\n", |
313 | mapped_pages, linear_pages, linear); | 477 | mapped_pages, linear_pages, linear); |
314 | 478 | ||
479 | /* We return the top level (guest-physical) address: the kernel needs | ||
480 | * to know where it is. */ | ||
315 | return (unsigned long)pgdir; | 481 | return (unsigned long)pgdir; |
316 | } | 482 | } |
317 | 483 | ||
484 | /* Simple routine to roll all the commandline arguments together with spaces | ||
485 | * between them. */ | ||
318 | static void concat(char *dst, char *args[]) | 486 | static void concat(char *dst, char *args[]) |
319 | { | 487 | { |
320 | unsigned int i, len = 0; | 488 | unsigned int i, len = 0; |
@@ -328,6 +496,10 @@ static void concat(char *dst, char *args[]) | |||
328 | dst[len] = '\0'; | 496 | dst[len] = '\0'; |
329 | } | 497 | } |
330 | 498 | ||
499 | /* This is where we actually tell the kernel to initialize the Guest. We saw | ||
500 | * the arguments it expects when we looked at initialize() in lguest_user.c: | ||
501 | * the top physical page to allow, the top level pagetable, the entry point and | ||
502 | * the page_offset constant for the Guest. */ | ||
331 | static int tell_kernel(u32 pgdir, u32 start, u32 page_offset) | 503 | static int tell_kernel(u32 pgdir, u32 start, u32 page_offset) |
332 | { | 504 | { |
333 | u32 args[] = { LHREQ_INITIALIZE, | 505 | u32 args[] = { LHREQ_INITIALIZE, |
@@ -337,8 +509,11 @@ static int tell_kernel(u32 pgdir, u32 start, u32 page_offset) | |||
337 | fd = open_or_die("/dev/lguest", O_RDWR); | 509 | fd = open_or_die("/dev/lguest", O_RDWR); |
338 | if (write(fd, args, sizeof(args)) < 0) | 510 | if (write(fd, args, sizeof(args)) < 0) |
339 | err(1, "Writing to /dev/lguest"); | 511 | err(1, "Writing to /dev/lguest"); |
512 | |||
513 | /* We return the /dev/lguest file descriptor to control this Guest */ | ||
340 | return fd; | 514 | return fd; |
341 | } | 515 | } |
516 | /*:*/ | ||
342 | 517 | ||
343 | static void set_fd(int fd, struct device_list *devices) | 518 | static void set_fd(int fd, struct device_list *devices) |
344 | { | 519 | { |
@@ -347,61 +522,108 @@ static void set_fd(int fd, struct device_list *devices) | |||
347 | devices->max_infd = fd; | 522 | devices->max_infd = fd; |
348 | } | 523 | } |
349 | 524 | ||
350 | /* When input arrives, we tell the kernel to kick lguest out with -EAGAIN. */ | 525 | /*L:200 |
526 | * The Waker. | ||
527 | * | ||
528 | * With a console and network devices, we can have lots of input which we need | ||
529 | * to process. We could try to tell the kernel what file descriptors to watch, | ||
530 | * but handing a file descriptor mask through to the kernel is fairly icky. | ||
531 | * | ||
532 | * Instead, we fork off a process which watches the file descriptors and writes | ||
533 | * the LHREQ_BREAK command to the /dev/lguest filedescriptor to tell the Host | ||
534 | * loop to stop running the Guest. This causes it to return from the | ||
535 | * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset | ||
536 | * the LHREQ_BREAK and wake us up again. | ||
537 | * | ||
538 | * This, of course, is merely a different *kind* of icky. | ||
539 | */ | ||
351 | static void wake_parent(int pipefd, int lguest_fd, struct device_list *devices) | 540 | static void wake_parent(int pipefd, int lguest_fd, struct device_list *devices) |
352 | { | 541 | { |
542 | /* Add the pipe from the Launcher to the fdset in the device_list, so | ||
543 | * we watch it, too. */ | ||
353 | set_fd(pipefd, devices); | 544 | set_fd(pipefd, devices); |
354 | 545 | ||
355 | for (;;) { | 546 | for (;;) { |
356 | fd_set rfds = devices->infds; | 547 | fd_set rfds = devices->infds; |
357 | u32 args[] = { LHREQ_BREAK, 1 }; | 548 | u32 args[] = { LHREQ_BREAK, 1 }; |
358 | 549 | ||
550 | /* Wait until input is ready from one of the devices. */ | ||
359 | select(devices->max_infd+1, &rfds, NULL, NULL, NULL); | 551 | select(devices->max_infd+1, &rfds, NULL, NULL, NULL); |
552 | /* Is it a message from the Launcher? */ | ||
360 | if (FD_ISSET(pipefd, &rfds)) { | 553 | if (FD_ISSET(pipefd, &rfds)) { |
361 | int ignorefd; | 554 | int ignorefd; |
555 | /* If read() returns 0, it means the Launcher has | ||
556 | * exited. We silently follow. */ | ||
362 | if (read(pipefd, &ignorefd, sizeof(ignorefd)) == 0) | 557 | if (read(pipefd, &ignorefd, sizeof(ignorefd)) == 0) |
363 | exit(0); | 558 | exit(0); |
559 | /* Otherwise it's telling us there's a problem with one | ||
560 | * of the devices, and we should ignore that file | ||
561 | * descriptor from now on. */ | ||
364 | FD_CLR(ignorefd, &devices->infds); | 562 | FD_CLR(ignorefd, &devices->infds); |
365 | } else | 563 | } else /* Send LHREQ_BREAK command. */ |
366 | write(lguest_fd, args, sizeof(args)); | 564 | write(lguest_fd, args, sizeof(args)); |
367 | } | 565 | } |
368 | } | 566 | } |
369 | 567 | ||
568 | /* This routine just sets up a pipe to the Waker process. */ | ||
370 | static int setup_waker(int lguest_fd, struct device_list *device_list) | 569 | static int setup_waker(int lguest_fd, struct device_list *device_list) |
371 | { | 570 | { |
372 | int pipefd[2], child; | 571 | int pipefd[2], child; |
373 | 572 | ||
573 | /* We create a pipe to talk to the waker, and also so it knows when the | ||
574 | * Launcher dies (and closes pipe). */ | ||
374 | pipe(pipefd); | 575 | pipe(pipefd); |
375 | child = fork(); | 576 | child = fork(); |
376 | if (child == -1) | 577 | if (child == -1) |
377 | err(1, "forking"); | 578 | err(1, "forking"); |
378 | 579 | ||
379 | if (child == 0) { | 580 | if (child == 0) { |
581 | /* Close the "writing" end of our copy of the pipe */ | ||
380 | close(pipefd[1]); | 582 | close(pipefd[1]); |
381 | wake_parent(pipefd[0], lguest_fd, device_list); | 583 | wake_parent(pipefd[0], lguest_fd, device_list); |
382 | } | 584 | } |
585 | /* Close the reading end of our copy of the pipe. */ | ||
383 | close(pipefd[0]); | 586 | close(pipefd[0]); |
384 | 587 | ||
588 | /* Here is the fd used to talk to the waker. */ | ||
385 | return pipefd[1]; | 589 | return pipefd[1]; |
386 | } | 590 | } |
387 | 591 | ||
592 | /*L:210 | ||
593 | * Device Handling. | ||
594 | * | ||
595 | * When the Guest sends DMA to us, it sends us an array of addresses and sizes. | ||
596 | * We need to make sure it's not trying to reach into the Launcher itself, so | ||
597 | * we have a convenient routine which check it and exits with an error message | ||
598 | * if something funny is going on: | ||
599 | */ | ||
388 | static void *_check_pointer(unsigned long addr, unsigned int size, | 600 | static void *_check_pointer(unsigned long addr, unsigned int size, |
389 | unsigned int line) | 601 | unsigned int line) |
390 | { | 602 | { |
603 | /* We have to separately check addr and addr+size, because size could | ||
604 | * be huge and addr + size might wrap around. */ | ||
391 | if (addr >= top || addr + size >= top) | 605 | if (addr >= top || addr + size >= top) |
392 | errx(1, "%s:%i: Invalid address %li", __FILE__, line, addr); | 606 | errx(1, "%s:%i: Invalid address %li", __FILE__, line, addr); |
607 | /* We return a pointer for the caller's convenience, now we know it's | ||
608 | * safe to use. */ | ||
393 | return (void *)addr; | 609 | return (void *)addr; |
394 | } | 610 | } |
611 | /* A macro which transparently hands the line number to the real function. */ | ||
395 | #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__) | 612 | #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__) |
396 | 613 | ||
397 | /* Returns pointer to dma->used_len */ | 614 | /* The Guest has given us the address of a "struct lguest_dma". We check it's |
615 | * OK and convert it to an iovec (which is a simple array of ptr/size | ||
616 | * pairs). */ | ||
398 | static u32 *dma2iov(unsigned long dma, struct iovec iov[], unsigned *num) | 617 | static u32 *dma2iov(unsigned long dma, struct iovec iov[], unsigned *num) |
399 | { | 618 | { |
400 | unsigned int i; | 619 | unsigned int i; |
401 | struct lguest_dma *udma; | 620 | struct lguest_dma *udma; |
402 | 621 | ||
622 | /* First we make sure that the array memory itself is valid. */ | ||
403 | udma = check_pointer(dma, sizeof(*udma)); | 623 | udma = check_pointer(dma, sizeof(*udma)); |
624 | /* Now we check each element */ | ||
404 | for (i = 0; i < LGUEST_MAX_DMA_SECTIONS; i++) { | 625 | for (i = 0; i < LGUEST_MAX_DMA_SECTIONS; i++) { |
626 | /* A zero length ends the array. */ | ||
405 | if (!udma->len[i]) | 627 | if (!udma->len[i]) |
406 | break; | 628 | break; |
407 | 629 | ||
@@ -409,9 +631,15 @@ static u32 *dma2iov(unsigned long dma, struct iovec iov[], unsigned *num) | |||
409 | iov[i].iov_len = udma->len[i]; | 631 | iov[i].iov_len = udma->len[i]; |
410 | } | 632 | } |
411 | *num = i; | 633 | *num = i; |
634 | |||
635 | /* We return the pointer to where the caller should write the amount of | ||
636 | * the buffer used. */ | ||
412 | return &udma->used_len; | 637 | return &udma->used_len; |
413 | } | 638 | } |
414 | 639 | ||
640 | /* This routine gets a DMA buffer from the Guest for a given key, and converts | ||
641 | * it to an iovec array. It returns the interrupt the Guest wants when we're | ||
642 | * finished, and a pointer to the "used_len" field to fill in. */ | ||
415 | static u32 *get_dma_buffer(int fd, void *key, | 643 | static u32 *get_dma_buffer(int fd, void *key, |
416 | struct iovec iov[], unsigned int *num, u32 *irq) | 644 | struct iovec iov[], unsigned int *num, u32 *irq) |
417 | { | 645 | { |
@@ -419,16 +647,21 @@ static u32 *get_dma_buffer(int fd, void *key, | |||
419 | unsigned long udma; | 647 | unsigned long udma; |
420 | u32 *res; | 648 | u32 *res; |
421 | 649 | ||
650 | /* Ask the kernel for a DMA buffer corresponding to this key. */ | ||
422 | udma = write(fd, buf, sizeof(buf)); | 651 | udma = write(fd, buf, sizeof(buf)); |
652 | /* They haven't registered any, or they're all used? */ | ||
423 | if (udma == (unsigned long)-1) | 653 | if (udma == (unsigned long)-1) |
424 | return NULL; | 654 | return NULL; |
425 | 655 | ||
426 | /* Kernel stashes irq in ->used_len. */ | 656 | /* Convert it into our iovec array */ |
427 | res = dma2iov(udma, iov, num); | 657 | res = dma2iov(udma, iov, num); |
658 | /* The kernel stashes irq in ->used_len to get it out to us. */ | ||
428 | *irq = *res; | 659 | *irq = *res; |
660 | /* Return a pointer to ((struct lguest_dma *)udma)->used_len. */ | ||
429 | return res; | 661 | return res; |
430 | } | 662 | } |
431 | 663 | ||
664 | /* This is a convenient routine to send the Guest an interrupt. */ | ||
432 | static void trigger_irq(int fd, u32 irq) | 665 | static void trigger_irq(int fd, u32 irq) |
433 | { | 666 | { |
434 | u32 buf[] = { LHREQ_IRQ, irq }; | 667 | u32 buf[] = { LHREQ_IRQ, irq }; |
@@ -436,6 +669,10 @@ static void trigger_irq(int fd, u32 irq) | |||
436 | err(1, "Triggering irq %i", irq); | 669 | err(1, "Triggering irq %i", irq); |
437 | } | 670 | } |
438 | 671 | ||
672 | /* This simply sets up an iovec array where we can put data to be discarded. | ||
673 | * This happens when the Guest doesn't want or can't handle the input: we have | ||
674 | * to get rid of it somewhere, and if we bury it in the ceiling space it will | ||
675 | * start to smell after a week. */ | ||
439 | static void discard_iovec(struct iovec *iov, unsigned int *num) | 676 | static void discard_iovec(struct iovec *iov, unsigned int *num) |
440 | { | 677 | { |
441 | static char discard_buf[1024]; | 678 | static char discard_buf[1024]; |
@@ -444,19 +681,24 @@ static void discard_iovec(struct iovec *iov, unsigned int *num) | |||
444 | iov->iov_len = sizeof(discard_buf); | 681 | iov->iov_len = sizeof(discard_buf); |
445 | } | 682 | } |
446 | 683 | ||
684 | /* Here is the input terminal setting we save, and the routine to restore them | ||
685 | * on exit so the user can see what they type next. */ | ||
447 | static struct termios orig_term; | 686 | static struct termios orig_term; |
448 | static void restore_term(void) | 687 | static void restore_term(void) |
449 | { | 688 | { |
450 | tcsetattr(STDIN_FILENO, TCSANOW, &orig_term); | 689 | tcsetattr(STDIN_FILENO, TCSANOW, &orig_term); |
451 | } | 690 | } |
452 | 691 | ||
692 | /* We associate some data with the console for our exit hack. */ | ||
453 | struct console_abort | 693 | struct console_abort |
454 | { | 694 | { |
695 | /* How many times have they hit ^C? */ | ||
455 | int count; | 696 | int count; |
697 | /* When did they start? */ | ||
456 | struct timeval start; | 698 | struct timeval start; |
457 | }; | 699 | }; |
458 | 700 | ||
459 | /* We DMA input to buffer bound at start of console page. */ | 701 | /* This is the routine which handles console input (ie. stdin). */ |
460 | static bool handle_console_input(int fd, struct device *dev) | 702 | static bool handle_console_input(int fd, struct device *dev) |
461 | { | 703 | { |
462 | u32 irq = 0, *lenp; | 704 | u32 irq = 0, *lenp; |
@@ -465,24 +707,38 @@ static bool handle_console_input(int fd, struct device *dev) | |||
465 | struct iovec iov[LGUEST_MAX_DMA_SECTIONS]; | 707 | struct iovec iov[LGUEST_MAX_DMA_SECTIONS]; |
466 | struct console_abort *abort = dev->priv; | 708 | struct console_abort *abort = dev->priv; |
467 | 709 | ||
710 | /* First we get the console buffer from the Guest. The key is dev->mem | ||
711 | * which was set to 0 in setup_console(). */ | ||
468 | lenp = get_dma_buffer(fd, dev->mem, iov, &num, &irq); | 712 | lenp = get_dma_buffer(fd, dev->mem, iov, &num, &irq); |
469 | if (!lenp) { | 713 | if (!lenp) { |
714 | /* If it's not ready for input, warn and set up to discard. */ | ||
470 | warn("console: no dma buffer!"); | 715 | warn("console: no dma buffer!"); |
471 | discard_iovec(iov, &num); | 716 | discard_iovec(iov, &num); |
472 | } | 717 | } |
473 | 718 | ||
719 | /* This is why we convert to iovecs: the readv() call uses them, and so | ||
720 | * it reads straight into the Guest's buffer. */ | ||
474 | len = readv(dev->fd, iov, num); | 721 | len = readv(dev->fd, iov, num); |
475 | if (len <= 0) { | 722 | if (len <= 0) { |
723 | /* This implies that the console is closed, is /dev/null, or | ||
724 | * something went terribly wrong. We still go through the rest | ||
725 | * of the logic, though, especially the exit handling below. */ | ||
476 | warnx("Failed to get console input, ignoring console."); | 726 | warnx("Failed to get console input, ignoring console."); |
477 | len = 0; | 727 | len = 0; |
478 | } | 728 | } |
479 | 729 | ||
730 | /* If we read the data into the Guest, fill in the length and send the | ||
731 | * interrupt. */ | ||
480 | if (lenp) { | 732 | if (lenp) { |
481 | *lenp = len; | 733 | *lenp = len; |
482 | trigger_irq(fd, irq); | 734 | trigger_irq(fd, irq); |
483 | } | 735 | } |
484 | 736 | ||
485 | /* Three ^C within one second? Exit. */ | 737 | /* Three ^C within one second? Exit. |
738 | * | ||
739 | * This is such a hack, but works surprisingly well. Each ^C has to be | ||
740 | * in a buffer by itself, so they can't be too fast. But we check that | ||
741 | * we get three within about a second, so they can't be too slow. */ | ||
486 | if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) { | 742 | if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) { |
487 | if (!abort->count++) | 743 | if (!abort->count++) |
488 | gettimeofday(&abort->start, NULL); | 744 | gettimeofday(&abort->start, NULL); |
@@ -490,43 +746,60 @@ static bool handle_console_input(int fd, struct device *dev) | |||
490 | struct timeval now; | 746 | struct timeval now; |
491 | gettimeofday(&now, NULL); | 747 | gettimeofday(&now, NULL); |
492 | if (now.tv_sec <= abort->start.tv_sec+1) { | 748 | if (now.tv_sec <= abort->start.tv_sec+1) { |
493 | /* Make sure waker is not blocked in BREAK */ | ||
494 | u32 args[] = { LHREQ_BREAK, 0 }; | 749 | u32 args[] = { LHREQ_BREAK, 0 }; |
750 | /* Close the fd so Waker will know it has to | ||
751 | * exit. */ | ||
495 | close(waker_fd); | 752 | close(waker_fd); |
753 | /* Just in case waker is blocked in BREAK, send | ||
754 | * unbreak now. */ | ||
496 | write(fd, args, sizeof(args)); | 755 | write(fd, args, sizeof(args)); |
497 | exit(2); | 756 | exit(2); |
498 | } | 757 | } |
499 | abort->count = 0; | 758 | abort->count = 0; |
500 | } | 759 | } |
501 | } else | 760 | } else |
761 | /* Any other key resets the abort counter. */ | ||
502 | abort->count = 0; | 762 | abort->count = 0; |
503 | 763 | ||
764 | /* Now, if we didn't read anything, put the input terminal back and | ||
765 | * return failure (meaning, don't call us again). */ | ||
504 | if (!len) { | 766 | if (!len) { |
505 | restore_term(); | 767 | restore_term(); |
506 | return false; | 768 | return false; |
507 | } | 769 | } |
770 | /* Everything went OK! */ | ||
508 | return true; | 771 | return true; |
509 | } | 772 | } |
510 | 773 | ||
774 | /* Handling console output is much simpler than input. */ | ||
511 | static u32 handle_console_output(int fd, const struct iovec *iov, | 775 | static u32 handle_console_output(int fd, const struct iovec *iov, |
512 | unsigned num, struct device*dev) | 776 | unsigned num, struct device*dev) |
513 | { | 777 | { |
778 | /* Whatever the Guest sends, write it to standard output. Return the | ||
779 | * number of bytes written. */ | ||
514 | return writev(STDOUT_FILENO, iov, num); | 780 | return writev(STDOUT_FILENO, iov, num); |
515 | } | 781 | } |
516 | 782 | ||
783 | /* Guest->Host network output is also pretty easy. */ | ||
517 | static u32 handle_tun_output(int fd, const struct iovec *iov, | 784 | static u32 handle_tun_output(int fd, const struct iovec *iov, |
518 | unsigned num, struct device *dev) | 785 | unsigned num, struct device *dev) |
519 | { | 786 | { |
520 | /* Now we've seen output, we should warn if we can't get buffers. */ | 787 | /* We put a flag in the "priv" pointer of the network device, and set |
788 | * it as soon as we see output. We'll see why in handle_tun_input() */ | ||
521 | *(bool *)dev->priv = true; | 789 | *(bool *)dev->priv = true; |
790 | /* Whatever packet the Guest sent us, write it out to the tun | ||
791 | * device. */ | ||
522 | return writev(dev->fd, iov, num); | 792 | return writev(dev->fd, iov, num); |
523 | } | 793 | } |
524 | 794 | ||
795 | /* This matches the peer_key() in lguest_net.c. The key for any given slot | ||
796 | * is the address of the network device's page plus 4 * the slot number. */ | ||
525 | static unsigned long peer_offset(unsigned int peernum) | 797 | static unsigned long peer_offset(unsigned int peernum) |
526 | { | 798 | { |
527 | return 4 * peernum; | 799 | return 4 * peernum; |
528 | } | 800 | } |
529 | 801 | ||
802 | /* This is where we handle a packet coming in from the tun device */ | ||
530 | static bool handle_tun_input(int fd, struct device *dev) | 803 | static bool handle_tun_input(int fd, struct device *dev) |
531 | { | 804 | { |
532 | u32 irq = 0, *lenp; | 805 | u32 irq = 0, *lenp; |
@@ -534,17 +807,28 @@ static bool handle_tun_input(int fd, struct device *dev) | |||
534 | unsigned num; | 807 | unsigned num; |
535 | struct iovec iov[LGUEST_MAX_DMA_SECTIONS]; | 808 | struct iovec iov[LGUEST_MAX_DMA_SECTIONS]; |
536 | 809 | ||
810 | /* First we get a buffer the Guest has bound to its key. */ | ||
537 | lenp = get_dma_buffer(fd, dev->mem+peer_offset(NET_PEERNUM), iov, &num, | 811 | lenp = get_dma_buffer(fd, dev->mem+peer_offset(NET_PEERNUM), iov, &num, |
538 | &irq); | 812 | &irq); |
539 | if (!lenp) { | 813 | if (!lenp) { |
814 | /* Now, it's expected that if we try to send a packet too | ||
815 | * early, the Guest won't be ready yet. This is why we set a | ||
816 | * flag when the Guest sends its first packet. If it's sent a | ||
817 | * packet we assume it should be ready to receive them. | ||
818 | * | ||
819 | * Actually, this is what the status bits in the descriptor are | ||
820 | * for: we should *use* them. FIXME! */ | ||
540 | if (*(bool *)dev->priv) | 821 | if (*(bool *)dev->priv) |
541 | warn("network: no dma buffer!"); | 822 | warn("network: no dma buffer!"); |
542 | discard_iovec(iov, &num); | 823 | discard_iovec(iov, &num); |
543 | } | 824 | } |
544 | 825 | ||
826 | /* Read the packet from the device directly into the Guest's buffer. */ | ||
545 | len = readv(dev->fd, iov, num); | 827 | len = readv(dev->fd, iov, num); |
546 | if (len <= 0) | 828 | if (len <= 0) |
547 | err(1, "reading network"); | 829 | err(1, "reading network"); |
830 | |||
831 | /* Write the used_len, and trigger the interrupt for the Guest */ | ||
548 | if (lenp) { | 832 | if (lenp) { |
549 | *lenp = len; | 833 | *lenp = len; |
550 | trigger_irq(fd, irq); | 834 | trigger_irq(fd, irq); |
@@ -552,9 +836,13 @@ static bool handle_tun_input(int fd, struct device *dev) | |||
552 | verbose("tun input packet len %i [%02x %02x] (%s)\n", len, | 836 | verbose("tun input packet len %i [%02x %02x] (%s)\n", len, |
553 | ((u8 *)iov[0].iov_base)[0], ((u8 *)iov[0].iov_base)[1], | 837 | ((u8 *)iov[0].iov_base)[0], ((u8 *)iov[0].iov_base)[1], |
554 | lenp ? "sent" : "discarded"); | 838 | lenp ? "sent" : "discarded"); |
839 | /* All good. */ | ||
555 | return true; | 840 | return true; |
556 | } | 841 | } |
557 | 842 | ||
843 | /* The last device handling routine is block output: the Guest has sent a DMA | ||
844 | * to the block device. It will have placed the command it wants in the | ||
845 | * "struct lguest_block_page". */ | ||
558 | static u32 handle_block_output(int fd, const struct iovec *iov, | 846 | static u32 handle_block_output(int fd, const struct iovec *iov, |
559 | unsigned num, struct device *dev) | 847 | unsigned num, struct device *dev) |
560 | { | 848 | { |
@@ -564,36 +852,64 @@ static u32 handle_block_output(int fd, const struct iovec *iov, | |||
564 | struct iovec reply[LGUEST_MAX_DMA_SECTIONS]; | 852 | struct iovec reply[LGUEST_MAX_DMA_SECTIONS]; |
565 | off64_t device_len, off = (off64_t)p->sector * 512; | 853 | off64_t device_len, off = (off64_t)p->sector * 512; |
566 | 854 | ||
855 | /* First we extract the device length from the dev->priv pointer. */ | ||
567 | device_len = *(off64_t *)dev->priv; | 856 | device_len = *(off64_t *)dev->priv; |
568 | 857 | ||
858 | /* We first check that the read or write is within the length of the | ||
859 | * block file. */ | ||
569 | if (off >= device_len) | 860 | if (off >= device_len) |
570 | err(1, "Bad offset %llu vs %llu", off, device_len); | 861 | err(1, "Bad offset %llu vs %llu", off, device_len); |
862 | /* Move to the right location in the block file. This shouldn't fail, | ||
863 | * but best to check. */ | ||
571 | if (lseek64(dev->fd, off, SEEK_SET) != off) | 864 | if (lseek64(dev->fd, off, SEEK_SET) != off) |
572 | err(1, "Bad seek to sector %i", p->sector); | 865 | err(1, "Bad seek to sector %i", p->sector); |
573 | 866 | ||
574 | verbose("Block: %s at offset %llu\n", p->type ? "WRITE" : "READ", off); | 867 | verbose("Block: %s at offset %llu\n", p->type ? "WRITE" : "READ", off); |
575 | 868 | ||
869 | /* They were supposed to bind a reply buffer at key equal to the start | ||
870 | * of the block device memory. We need this to tell them when the | ||
871 | * request is finished. */ | ||
576 | lenp = get_dma_buffer(fd, dev->mem, reply, &reply_num, &irq); | 872 | lenp = get_dma_buffer(fd, dev->mem, reply, &reply_num, &irq); |
577 | if (!lenp) | 873 | if (!lenp) |
578 | err(1, "Block request didn't give us a dma buffer"); | 874 | err(1, "Block request didn't give us a dma buffer"); |
579 | 875 | ||
580 | if (p->type) { | 876 | if (p->type) { |
877 | /* A write request. The DMA they sent contained the data, so | ||
878 | * write it out. */ | ||
581 | len = writev(dev->fd, iov, num); | 879 | len = writev(dev->fd, iov, num); |
880 | /* Grr... Now we know how long the "struct lguest_dma" they | ||
881 | * sent was, we make sure they didn't try to write over the end | ||
882 | * of the block file (possibly extending it). */ | ||
582 | if (off + len > device_len) { | 883 | if (off + len > device_len) { |
884 | /* Trim it back to the correct length */ | ||
583 | ftruncate(dev->fd, device_len); | 885 | ftruncate(dev->fd, device_len); |
886 | /* Die, bad Guest, die. */ | ||
584 | errx(1, "Write past end %llu+%u", off, len); | 887 | errx(1, "Write past end %llu+%u", off, len); |
585 | } | 888 | } |
889 | /* The reply length is 0: we just send back an empty DMA to | ||
890 | * interrupt them and tell them the write is finished. */ | ||
586 | *lenp = 0; | 891 | *lenp = 0; |
587 | } else { | 892 | } else { |
893 | /* A read request. They sent an empty DMA to start the | ||
894 | * request, and we put the read contents into the reply | ||
895 | * buffer. */ | ||
588 | len = readv(dev->fd, reply, reply_num); | 896 | len = readv(dev->fd, reply, reply_num); |
589 | *lenp = len; | 897 | *lenp = len; |
590 | } | 898 | } |
591 | 899 | ||
900 | /* The result is 1 (done), 2 if there was an error (short read or | ||
901 | * write). */ | ||
592 | p->result = 1 + (p->bytes != len); | 902 | p->result = 1 + (p->bytes != len); |
903 | /* Now tell them we've used their reply buffer. */ | ||
593 | trigger_irq(fd, irq); | 904 | trigger_irq(fd, irq); |
905 | |||
906 | /* We're supposed to return the number of bytes of the output buffer we | ||
907 | * used. But the block device uses the "result" field instead, so we | ||
908 | * don't bother. */ | ||
594 | return 0; | 909 | return 0; |
595 | } | 910 | } |
596 | 911 | ||
912 | /* This is the generic routine we call when the Guest sends some DMA out. */ | ||
597 | static void handle_output(int fd, unsigned long dma, unsigned long key, | 913 | static void handle_output(int fd, unsigned long dma, unsigned long key, |
598 | struct device_list *devices) | 914 | struct device_list *devices) |
599 | { | 915 | { |
@@ -602,30 +918,53 @@ static void handle_output(int fd, unsigned long dma, unsigned long key, | |||
602 | struct iovec iov[LGUEST_MAX_DMA_SECTIONS]; | 918 | struct iovec iov[LGUEST_MAX_DMA_SECTIONS]; |
603 | unsigned num = 0; | 919 | unsigned num = 0; |
604 | 920 | ||
921 | /* Convert the "struct lguest_dma" they're sending to a "struct | ||
922 | * iovec". */ | ||
605 | lenp = dma2iov(dma, iov, &num); | 923 | lenp = dma2iov(dma, iov, &num); |
924 | |||
925 | /* Check each device: if they expect output to this key, tell them to | ||
926 | * handle it. */ | ||
606 | for (i = devices->dev; i; i = i->next) { | 927 | for (i = devices->dev; i; i = i->next) { |
607 | if (i->handle_output && key == i->watch_key) { | 928 | if (i->handle_output && key == i->watch_key) { |
929 | /* We write the result straight into the used_len field | ||
930 | * for them. */ | ||
608 | *lenp = i->handle_output(fd, iov, num, i); | 931 | *lenp = i->handle_output(fd, iov, num, i); |
609 | return; | 932 | return; |
610 | } | 933 | } |
611 | } | 934 | } |
935 | |||
936 | /* This can happen: the kernel sends any SEND_DMA which doesn't match | ||
937 | * another Guest to us. It could be that another Guest just left a | ||
938 | * network, for example. But it's unusual. */ | ||
612 | warnx("Pending dma %p, key %p", (void *)dma, (void *)key); | 939 | warnx("Pending dma %p, key %p", (void *)dma, (void *)key); |
613 | } | 940 | } |
614 | 941 | ||
942 | /* This is called when the waker wakes us up: check for incoming file | ||
943 | * descriptors. */ | ||
615 | static void handle_input(int fd, struct device_list *devices) | 944 | static void handle_input(int fd, struct device_list *devices) |
616 | { | 945 | { |
946 | /* select() wants a zeroed timeval to mean "don't wait". */ | ||
617 | struct timeval poll = { .tv_sec = 0, .tv_usec = 0 }; | 947 | struct timeval poll = { .tv_sec = 0, .tv_usec = 0 }; |
618 | 948 | ||
619 | for (;;) { | 949 | for (;;) { |
620 | struct device *i; | 950 | struct device *i; |
621 | fd_set fds = devices->infds; | 951 | fd_set fds = devices->infds; |
622 | 952 | ||
953 | /* If nothing is ready, we're done. */ | ||
623 | if (select(devices->max_infd+1, &fds, NULL, NULL, &poll) == 0) | 954 | if (select(devices->max_infd+1, &fds, NULL, NULL, &poll) == 0) |
624 | break; | 955 | break; |
625 | 956 | ||
957 | /* Otherwise, call the device(s) which have readable | ||
958 | * file descriptors and a method of handling them. */ | ||
626 | for (i = devices->dev; i; i = i->next) { | 959 | for (i = devices->dev; i; i = i->next) { |
627 | if (i->handle_input && FD_ISSET(i->fd, &fds)) { | 960 | if (i->handle_input && FD_ISSET(i->fd, &fds)) { |
961 | /* If handle_input() returns false, it means we | ||
962 | * should no longer service it. | ||
963 | * handle_console_input() does this. */ | ||
628 | if (!i->handle_input(fd, i)) { | 964 | if (!i->handle_input(fd, i)) { |
965 | /* Clear it from the set of input file | ||
966 | * descriptors kept at the head of the | ||
967 | * device list. */ | ||
629 | FD_CLR(i->fd, &devices->infds); | 968 | FD_CLR(i->fd, &devices->infds); |
630 | /* Tell waker to ignore it too... */ | 969 | /* Tell waker to ignore it too... */ |
631 | write(waker_fd, &i->fd, sizeof(i->fd)); | 970 | write(waker_fd, &i->fd, sizeof(i->fd)); |
@@ -635,6 +974,15 @@ static void handle_input(int fd, struct device_list *devices) | |||
635 | } | 974 | } |
636 | } | 975 | } |
637 | 976 | ||
977 | /*L:190 | ||
978 | * Device Setup | ||
979 | * | ||
980 | * All devices need a descriptor so the Guest knows it exists, and a "struct | ||
981 | * device" so the Launcher can keep track of it. We have common helper | ||
982 | * routines to allocate them. | ||
983 | * | ||
984 | * This routine allocates a new "struct lguest_device_desc" from descriptor | ||
985 | * table in the devices array just above the Guest's normal memory. */ | ||
638 | static struct lguest_device_desc * | 986 | static struct lguest_device_desc * |
639 | new_dev_desc(struct lguest_device_desc *descs, | 987 | new_dev_desc(struct lguest_device_desc *descs, |
640 | u16 type, u16 features, u16 num_pages) | 988 | u16 type, u16 features, u16 num_pages) |
@@ -646,6 +994,8 @@ new_dev_desc(struct lguest_device_desc *descs, | |||
646 | descs[i].type = type; | 994 | descs[i].type = type; |
647 | descs[i].features = features; | 995 | descs[i].features = features; |
648 | descs[i].num_pages = num_pages; | 996 | descs[i].num_pages = num_pages; |
997 | /* If they said the device needs memory, we allocate | ||
998 | * that now, bumping up the top of Guest memory. */ | ||
649 | if (num_pages) { | 999 | if (num_pages) { |
650 | map_zeroed_pages(top, num_pages); | 1000 | map_zeroed_pages(top, num_pages); |
651 | descs[i].pfn = top/getpagesize(); | 1001 | descs[i].pfn = top/getpagesize(); |
@@ -657,6 +1007,9 @@ new_dev_desc(struct lguest_device_desc *descs, | |||
657 | errx(1, "too many devices"); | 1007 | errx(1, "too many devices"); |
658 | } | 1008 | } |
659 | 1009 | ||
1010 | /* This monster routine does all the creation and setup of a new device, | ||
1011 | * including caling new_dev_desc() to allocate the descriptor and device | ||
1012 | * memory. */ | ||
660 | static struct device *new_device(struct device_list *devices, | 1013 | static struct device *new_device(struct device_list *devices, |
661 | u16 type, u16 num_pages, u16 features, | 1014 | u16 type, u16 num_pages, u16 features, |
662 | int fd, | 1015 | int fd, |
@@ -669,12 +1022,18 @@ static struct device *new_device(struct device_list *devices, | |||
669 | { | 1022 | { |
670 | struct device *dev = malloc(sizeof(*dev)); | 1023 | struct device *dev = malloc(sizeof(*dev)); |
671 | 1024 | ||
672 | /* Append to device list. */ | 1025 | /* Append to device list. Prepending to a single-linked list is |
1026 | * easier, but the user expects the devices to be arranged on the bus | ||
1027 | * in command-line order. The first network device on the command line | ||
1028 | * is eth0, the first block device /dev/lgba, etc. */ | ||
673 | *devices->lastdev = dev; | 1029 | *devices->lastdev = dev; |
674 | dev->next = NULL; | 1030 | dev->next = NULL; |
675 | devices->lastdev = &dev->next; | 1031 | devices->lastdev = &dev->next; |
676 | 1032 | ||
1033 | /* Now we populate the fields one at a time. */ | ||
677 | dev->fd = fd; | 1034 | dev->fd = fd; |
1035 | /* If we have an input handler for this file descriptor, then we add it | ||
1036 | * to the device_list's fdset and maxfd. */ | ||
678 | if (handle_input) | 1037 | if (handle_input) |
679 | set_fd(dev->fd, devices); | 1038 | set_fd(dev->fd, devices); |
680 | dev->desc = new_dev_desc(devices->descs, type, features, num_pages); | 1039 | dev->desc = new_dev_desc(devices->descs, type, features, num_pages); |
@@ -685,27 +1044,37 @@ static struct device *new_device(struct device_list *devices, | |||
685 | return dev; | 1044 | return dev; |
686 | } | 1045 | } |
687 | 1046 | ||
1047 | /* Our first setup routine is the console. It's a fairly simple device, but | ||
1048 | * UNIX tty handling makes it uglier than it could be. */ | ||
688 | static void setup_console(struct device_list *devices) | 1049 | static void setup_console(struct device_list *devices) |
689 | { | 1050 | { |
690 | struct device *dev; | 1051 | struct device *dev; |
691 | 1052 | ||
1053 | /* If we can save the initial standard input settings... */ | ||
692 | if (tcgetattr(STDIN_FILENO, &orig_term) == 0) { | 1054 | if (tcgetattr(STDIN_FILENO, &orig_term) == 0) { |
693 | struct termios term = orig_term; | 1055 | struct termios term = orig_term; |
1056 | /* Then we turn off echo, line buffering and ^C etc. We want a | ||
1057 | * raw input stream to the Guest. */ | ||
694 | term.c_lflag &= ~(ISIG|ICANON|ECHO); | 1058 | term.c_lflag &= ~(ISIG|ICANON|ECHO); |
695 | tcsetattr(STDIN_FILENO, TCSANOW, &term); | 1059 | tcsetattr(STDIN_FILENO, TCSANOW, &term); |
1060 | /* If we exit gracefully, the original settings will be | ||
1061 | * restored so the user can see what they're typing. */ | ||
696 | atexit(restore_term); | 1062 | atexit(restore_term); |
697 | } | 1063 | } |
698 | 1064 | ||
699 | /* We don't currently require a page for the console. */ | 1065 | /* We don't currently require any memory for the console, so we ask for |
1066 | * 0 pages. */ | ||
700 | dev = new_device(devices, LGUEST_DEVICE_T_CONSOLE, 0, 0, | 1067 | dev = new_device(devices, LGUEST_DEVICE_T_CONSOLE, 0, 0, |
701 | STDIN_FILENO, handle_console_input, | 1068 | STDIN_FILENO, handle_console_input, |
702 | LGUEST_CONSOLE_DMA_KEY, handle_console_output); | 1069 | LGUEST_CONSOLE_DMA_KEY, handle_console_output); |
1070 | /* We store the console state in dev->priv, and initialize it. */ | ||
703 | dev->priv = malloc(sizeof(struct console_abort)); | 1071 | dev->priv = malloc(sizeof(struct console_abort)); |
704 | ((struct console_abort *)dev->priv)->count = 0; | 1072 | ((struct console_abort *)dev->priv)->count = 0; |
705 | verbose("device %p: console\n", | 1073 | verbose("device %p: console\n", |
706 | (void *)(dev->desc->pfn * getpagesize())); | 1074 | (void *)(dev->desc->pfn * getpagesize())); |
707 | } | 1075 | } |
708 | 1076 | ||
1077 | /* Setting up a block file is also fairly straightforward. */ | ||
709 | static void setup_block_file(const char *filename, struct device_list *devices) | 1078 | static void setup_block_file(const char *filename, struct device_list *devices) |
710 | { | 1079 | { |
711 | int fd; | 1080 | int fd; |
@@ -713,20 +1082,47 @@ static void setup_block_file(const char *filename, struct device_list *devices) | |||
713 | off64_t *device_len; | 1082 | off64_t *device_len; |
714 | struct lguest_block_page *p; | 1083 | struct lguest_block_page *p; |
715 | 1084 | ||
1085 | /* We open with O_LARGEFILE because otherwise we get stuck at 2G. We | ||
1086 | * open with O_DIRECT because otherwise our benchmarks go much too | ||
1087 | * fast. */ | ||
716 | fd = open_or_die(filename, O_RDWR|O_LARGEFILE|O_DIRECT); | 1088 | fd = open_or_die(filename, O_RDWR|O_LARGEFILE|O_DIRECT); |
1089 | |||
1090 | /* We want one page, and have no input handler (the block file never | ||
1091 | * has anything interesting to say to us). Our timing will be quite | ||
1092 | * random, so it should be a reasonable randomness source. */ | ||
717 | dev = new_device(devices, LGUEST_DEVICE_T_BLOCK, 1, | 1093 | dev = new_device(devices, LGUEST_DEVICE_T_BLOCK, 1, |
718 | LGUEST_DEVICE_F_RANDOMNESS, | 1094 | LGUEST_DEVICE_F_RANDOMNESS, |
719 | fd, NULL, 0, handle_block_output); | 1095 | fd, NULL, 0, handle_block_output); |
1096 | |||
1097 | /* We store the device size in the private area */ | ||
720 | device_len = dev->priv = malloc(sizeof(*device_len)); | 1098 | device_len = dev->priv = malloc(sizeof(*device_len)); |
1099 | /* This is the safe way of establishing the size of our device: it | ||
1100 | * might be a normal file or an actual block device like /dev/hdb. */ | ||
721 | *device_len = lseek64(fd, 0, SEEK_END); | 1101 | *device_len = lseek64(fd, 0, SEEK_END); |
722 | p = dev->mem; | ||
723 | 1102 | ||
1103 | /* The device memory is a "struct lguest_block_page". It's zeroed | ||
1104 | * already, we just need to put in the device size. Block devices | ||
1105 | * think in sectors (ie. 512 byte chunks), so we translate here. */ | ||
1106 | p = dev->mem; | ||
724 | p->num_sectors = *device_len/512; | 1107 | p->num_sectors = *device_len/512; |
725 | verbose("device %p: block %i sectors\n", | 1108 | verbose("device %p: block %i sectors\n", |
726 | (void *)(dev->desc->pfn * getpagesize()), p->num_sectors); | 1109 | (void *)(dev->desc->pfn * getpagesize()), p->num_sectors); |
727 | } | 1110 | } |
728 | 1111 | ||
729 | /* We use fnctl locks to reserve network slots (autocleanup!) */ | 1112 | /* |
1113 | * Network Devices. | ||
1114 | * | ||
1115 | * Setting up network devices is quite a pain, because we have three types. | ||
1116 | * First, we have the inter-Guest network. This is a file which is mapped into | ||
1117 | * the address space of the Guests who are on the network. Because it is a | ||
1118 | * shared mapping, the same page underlies all the devices, and they can send | ||
1119 | * DMA to each other. | ||
1120 | * | ||
1121 | * Remember from our network driver, the Guest is told what slot in the page it | ||
1122 | * is to use. We use exclusive fnctl locks to reserve a slot. If another | ||
1123 | * Guest is using a slot, the lock will fail and we try another. Because fnctl | ||
1124 | * locks are cleaned up automatically when we die, this cleverly means that our | ||
1125 | * reservation on the slot will vanish if we crash. */ | ||
730 | static unsigned int find_slot(int netfd, const char *filename) | 1126 | static unsigned int find_slot(int netfd, const char *filename) |
731 | { | 1127 | { |
732 | struct flock fl; | 1128 | struct flock fl; |
@@ -734,26 +1130,33 @@ static unsigned int find_slot(int netfd, const char *filename) | |||
734 | fl.l_type = F_WRLCK; | 1130 | fl.l_type = F_WRLCK; |
735 | fl.l_whence = SEEK_SET; | 1131 | fl.l_whence = SEEK_SET; |
736 | fl.l_len = 1; | 1132 | fl.l_len = 1; |
1133 | /* Try a 1 byte lock in each possible position number */ | ||
737 | for (fl.l_start = 0; | 1134 | for (fl.l_start = 0; |
738 | fl.l_start < getpagesize()/sizeof(struct lguest_net); | 1135 | fl.l_start < getpagesize()/sizeof(struct lguest_net); |
739 | fl.l_start++) { | 1136 | fl.l_start++) { |
1137 | /* If we succeed, return the slot number. */ | ||
740 | if (fcntl(netfd, F_SETLK, &fl) == 0) | 1138 | if (fcntl(netfd, F_SETLK, &fl) == 0) |
741 | return fl.l_start; | 1139 | return fl.l_start; |
742 | } | 1140 | } |
743 | errx(1, "No free slots in network file %s", filename); | 1141 | errx(1, "No free slots in network file %s", filename); |
744 | } | 1142 | } |
745 | 1143 | ||
1144 | /* This function sets up the network file */ | ||
746 | static void setup_net_file(const char *filename, | 1145 | static void setup_net_file(const char *filename, |
747 | struct device_list *devices) | 1146 | struct device_list *devices) |
748 | { | 1147 | { |
749 | int netfd; | 1148 | int netfd; |
750 | struct device *dev; | 1149 | struct device *dev; |
751 | 1150 | ||
1151 | /* We don't use open_or_die() here: for friendliness we create the file | ||
1152 | * if it doesn't already exist. */ | ||
752 | netfd = open(filename, O_RDWR, 0); | 1153 | netfd = open(filename, O_RDWR, 0); |
753 | if (netfd < 0) { | 1154 | if (netfd < 0) { |
754 | if (errno == ENOENT) { | 1155 | if (errno == ENOENT) { |
755 | netfd = open(filename, O_RDWR|O_CREAT, 0600); | 1156 | netfd = open(filename, O_RDWR|O_CREAT, 0600); |
756 | if (netfd >= 0) { | 1157 | if (netfd >= 0) { |
1158 | /* If we succeeded, initialize the file with a | ||
1159 | * blank page. */ | ||
757 | char page[getpagesize()]; | 1160 | char page[getpagesize()]; |
758 | memset(page, 0, sizeof(page)); | 1161 | memset(page, 0, sizeof(page)); |
759 | write(netfd, page, sizeof(page)); | 1162 | write(netfd, page, sizeof(page)); |
@@ -763,11 +1166,15 @@ static void setup_net_file(const char *filename, | |||
763 | err(1, "cannot open net file '%s'", filename); | 1166 | err(1, "cannot open net file '%s'", filename); |
764 | } | 1167 | } |
765 | 1168 | ||
1169 | /* We need 1 page, and the features indicate the slot to use and that | ||
1170 | * no checksum is needed. We never touch this device again; it's | ||
1171 | * between the Guests on the network, so we don't register input or | ||
1172 | * output handlers. */ | ||
766 | dev = new_device(devices, LGUEST_DEVICE_T_NET, 1, | 1173 | dev = new_device(devices, LGUEST_DEVICE_T_NET, 1, |
767 | find_slot(netfd, filename)|LGUEST_NET_F_NOCSUM, | 1174 | find_slot(netfd, filename)|LGUEST_NET_F_NOCSUM, |
768 | -1, NULL, 0, NULL); | 1175 | -1, NULL, 0, NULL); |
769 | 1176 | ||
770 | /* We overwrite the /dev/zero mapping with the actual file. */ | 1177 | /* Map the shared file. */ |
771 | if (mmap(dev->mem, getpagesize(), PROT_READ|PROT_WRITE, | 1178 | if (mmap(dev->mem, getpagesize(), PROT_READ|PROT_WRITE, |
772 | MAP_FIXED|MAP_SHARED, netfd, 0) != dev->mem) | 1179 | MAP_FIXED|MAP_SHARED, netfd, 0) != dev->mem) |
773 | err(1, "could not mmap '%s'", filename); | 1180 | err(1, "could not mmap '%s'", filename); |
@@ -775,6 +1182,7 @@ static void setup_net_file(const char *filename, | |||
775 | (void *)(dev->desc->pfn * getpagesize()), filename, | 1182 | (void *)(dev->desc->pfn * getpagesize()), filename, |
776 | dev->desc->features & ~LGUEST_NET_F_NOCSUM); | 1183 | dev->desc->features & ~LGUEST_NET_F_NOCSUM); |
777 | } | 1184 | } |
1185 | /*:*/ | ||
778 | 1186 | ||
779 | static u32 str2ip(const char *ipaddr) | 1187 | static u32 str2ip(const char *ipaddr) |
780 | { | 1188 | { |
@@ -784,7 +1192,11 @@ static u32 str2ip(const char *ipaddr) | |||
784 | return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3]; | 1192 | return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3]; |
785 | } | 1193 | } |
786 | 1194 | ||
787 | /* adapted from libbridge */ | 1195 | /* This code is "adapted" from libbridge: it attaches the Host end of the |
1196 | * network device to the bridge device specified by the command line. | ||
1197 | * | ||
1198 | * This is yet another James Morris contribution (I'm an IP-level guy, so I | ||
1199 | * dislike bridging), and I just try not to break it. */ | ||
788 | static void add_to_bridge(int fd, const char *if_name, const char *br_name) | 1200 | static void add_to_bridge(int fd, const char *if_name, const char *br_name) |
789 | { | 1201 | { |
790 | int ifidx; | 1202 | int ifidx; |
@@ -803,12 +1215,16 @@ static void add_to_bridge(int fd, const char *if_name, const char *br_name) | |||
803 | err(1, "can't add %s to bridge %s", if_name, br_name); | 1215 | err(1, "can't add %s to bridge %s", if_name, br_name); |
804 | } | 1216 | } |
805 | 1217 | ||
1218 | /* This sets up the Host end of the network device with an IP address, brings | ||
1219 | * it up so packets will flow, the copies the MAC address into the hwaddr | ||
1220 | * pointer (in practice, the Host's slot in the network device's memory). */ | ||
806 | static void configure_device(int fd, const char *devname, u32 ipaddr, | 1221 | static void configure_device(int fd, const char *devname, u32 ipaddr, |
807 | unsigned char hwaddr[6]) | 1222 | unsigned char hwaddr[6]) |
808 | { | 1223 | { |
809 | struct ifreq ifr; | 1224 | struct ifreq ifr; |
810 | struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr; | 1225 | struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr; |
811 | 1226 | ||
1227 | /* Don't read these incantations. Just cut & paste them like I did! */ | ||
812 | memset(&ifr, 0, sizeof(ifr)); | 1228 | memset(&ifr, 0, sizeof(ifr)); |
813 | strcpy(ifr.ifr_name, devname); | 1229 | strcpy(ifr.ifr_name, devname); |
814 | sin->sin_family = AF_INET; | 1230 | sin->sin_family = AF_INET; |
@@ -819,12 +1235,19 @@ static void configure_device(int fd, const char *devname, u32 ipaddr, | |||
819 | if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0) | 1235 | if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0) |
820 | err(1, "Bringing interface %s up", devname); | 1236 | err(1, "Bringing interface %s up", devname); |
821 | 1237 | ||
1238 | /* SIOC stands for Socket I/O Control. G means Get (vs S for Set | ||
1239 | * above). IF means Interface, and HWADDR is hardware address. | ||
1240 | * Simple! */ | ||
822 | if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0) | 1241 | if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0) |
823 | err(1, "getting hw address for %s", devname); | 1242 | err(1, "getting hw address for %s", devname); |
824 | |||
825 | memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6); | 1243 | memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6); |
826 | } | 1244 | } |
827 | 1245 | ||
1246 | /*L:195 The other kind of network is a Host<->Guest network. This can either | ||
1247 | * use briding or routing, but the principle is the same: it uses the "tun" | ||
1248 | * device to inject packets into the Host as if they came in from a normal | ||
1249 | * network card. We just shunt packets between the Guest and the tun | ||
1250 | * device. */ | ||
828 | static void setup_tun_net(const char *arg, struct device_list *devices) | 1251 | static void setup_tun_net(const char *arg, struct device_list *devices) |
829 | { | 1252 | { |
830 | struct device *dev; | 1253 | struct device *dev; |
@@ -833,36 +1256,56 @@ static void setup_tun_net(const char *arg, struct device_list *devices) | |||
833 | u32 ip; | 1256 | u32 ip; |
834 | const char *br_name = NULL; | 1257 | const char *br_name = NULL; |
835 | 1258 | ||
1259 | /* We open the /dev/net/tun device and tell it we want a tap device. A | ||
1260 | * tap device is like a tun device, only somehow different. To tell | ||
1261 | * the truth, I completely blundered my way through this code, but it | ||
1262 | * works now! */ | ||
836 | netfd = open_or_die("/dev/net/tun", O_RDWR); | 1263 | netfd = open_or_die("/dev/net/tun", O_RDWR); |
837 | memset(&ifr, 0, sizeof(ifr)); | 1264 | memset(&ifr, 0, sizeof(ifr)); |
838 | ifr.ifr_flags = IFF_TAP | IFF_NO_PI; | 1265 | ifr.ifr_flags = IFF_TAP | IFF_NO_PI; |
839 | strcpy(ifr.ifr_name, "tap%d"); | 1266 | strcpy(ifr.ifr_name, "tap%d"); |
840 | if (ioctl(netfd, TUNSETIFF, &ifr) != 0) | 1267 | if (ioctl(netfd, TUNSETIFF, &ifr) != 0) |
841 | err(1, "configuring /dev/net/tun"); | 1268 | err(1, "configuring /dev/net/tun"); |
1269 | /* We don't need checksums calculated for packets coming in this | ||
1270 | * device: trust us! */ | ||
842 | ioctl(netfd, TUNSETNOCSUM, 1); | 1271 | ioctl(netfd, TUNSETNOCSUM, 1); |
843 | 1272 | ||
844 | /* You will be peer 1: we should create enough jitter to randomize */ | 1273 | /* We create the net device with 1 page, using the features field of |
1274 | * the descriptor to tell the Guest it is in slot 1 (NET_PEERNUM), and | ||
1275 | * that the device has fairly random timing. We do *not* specify | ||
1276 | * LGUEST_NET_F_NOCSUM: these packets can reach the real world. | ||
1277 | * | ||
1278 | * We will put our MAC address is slot 0 for the Guest to see, so | ||
1279 | * it will send packets to us using the key "peer_offset(0)": */ | ||
845 | dev = new_device(devices, LGUEST_DEVICE_T_NET, 1, | 1280 | dev = new_device(devices, LGUEST_DEVICE_T_NET, 1, |
846 | NET_PEERNUM|LGUEST_DEVICE_F_RANDOMNESS, netfd, | 1281 | NET_PEERNUM|LGUEST_DEVICE_F_RANDOMNESS, netfd, |
847 | handle_tun_input, peer_offset(0), handle_tun_output); | 1282 | handle_tun_input, peer_offset(0), handle_tun_output); |
1283 | |||
1284 | /* We keep a flag which says whether we've seen packets come out from | ||
1285 | * this network device. */ | ||
848 | dev->priv = malloc(sizeof(bool)); | 1286 | dev->priv = malloc(sizeof(bool)); |
849 | *(bool *)dev->priv = false; | 1287 | *(bool *)dev->priv = false; |
850 | 1288 | ||
1289 | /* We need a socket to perform the magic network ioctls to bring up the | ||
1290 | * tap interface, connect to the bridge etc. Any socket will do! */ | ||
851 | ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP); | 1291 | ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP); |
852 | if (ipfd < 0) | 1292 | if (ipfd < 0) |
853 | err(1, "opening IP socket"); | 1293 | err(1, "opening IP socket"); |
854 | 1294 | ||
1295 | /* If the command line was --tunnet=bridge:<name> do bridging. */ | ||
855 | if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) { | 1296 | if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) { |
856 | ip = INADDR_ANY; | 1297 | ip = INADDR_ANY; |
857 | br_name = arg + strlen(BRIDGE_PFX); | 1298 | br_name = arg + strlen(BRIDGE_PFX); |
858 | add_to_bridge(ipfd, ifr.ifr_name, br_name); | 1299 | add_to_bridge(ipfd, ifr.ifr_name, br_name); |
859 | } else | 1300 | } else /* It is an IP address to set up the device with */ |
860 | ip = str2ip(arg); | 1301 | ip = str2ip(arg); |
861 | 1302 | ||
862 | /* We are peer 0, ie. first slot. */ | 1303 | /* We are peer 0, ie. first slot, so we hand dev->mem to this routine |
1304 | * to write the MAC address at the start of the device memory. */ | ||
863 | configure_device(ipfd, ifr.ifr_name, ip, dev->mem); | 1305 | configure_device(ipfd, ifr.ifr_name, ip, dev->mem); |
864 | 1306 | ||
865 | /* Set "promisc" bit: we want every single packet. */ | 1307 | /* Set "promisc" bit: we want every single packet if we're going to |
1308 | * bridge to other machines (and otherwise it doesn't matter). */ | ||
866 | *((u8 *)dev->mem) |= 0x1; | 1309 | *((u8 *)dev->mem) |= 0x1; |
867 | 1310 | ||
868 | close(ipfd); | 1311 | close(ipfd); |
@@ -873,7 +1316,10 @@ static void setup_tun_net(const char *arg, struct device_list *devices) | |||
873 | if (br_name) | 1316 | if (br_name) |
874 | verbose("attached to bridge: %s\n", br_name); | 1317 | verbose("attached to bridge: %s\n", br_name); |
875 | } | 1318 | } |
1319 | /* That's the end of device setup. */ | ||
876 | 1320 | ||
1321 | /*L:220 Finally we reach the core of the Launcher, which runs the Guest, serves | ||
1322 | * its input and output, and finally, lays it to rest. */ | ||
877 | static void __attribute__((noreturn)) | 1323 | static void __attribute__((noreturn)) |
878 | run_guest(int lguest_fd, struct device_list *device_list) | 1324 | run_guest(int lguest_fd, struct device_list *device_list) |
879 | { | 1325 | { |
@@ -885,20 +1331,37 @@ run_guest(int lguest_fd, struct device_list *device_list) | |||
885 | /* We read from the /dev/lguest device to run the Guest. */ | 1331 | /* We read from the /dev/lguest device to run the Guest. */ |
886 | readval = read(lguest_fd, arr, sizeof(arr)); | 1332 | readval = read(lguest_fd, arr, sizeof(arr)); |
887 | 1333 | ||
1334 | /* The read can only really return sizeof(arr) (the Guest did a | ||
1335 | * SEND_DMA to us), or an error. */ | ||
1336 | |||
1337 | /* For a successful read, arr[0] is the address of the "struct | ||
1338 | * lguest_dma", and arr[1] is the key the Guest sent to. */ | ||
888 | if (readval == sizeof(arr)) { | 1339 | if (readval == sizeof(arr)) { |
889 | handle_output(lguest_fd, arr[0], arr[1], device_list); | 1340 | handle_output(lguest_fd, arr[0], arr[1], device_list); |
890 | continue; | 1341 | continue; |
1342 | /* ENOENT means the Guest died. Reading tells us why. */ | ||
891 | } else if (errno == ENOENT) { | 1343 | } else if (errno == ENOENT) { |
892 | char reason[1024] = { 0 }; | 1344 | char reason[1024] = { 0 }; |
893 | read(lguest_fd, reason, sizeof(reason)-1); | 1345 | read(lguest_fd, reason, sizeof(reason)-1); |
894 | errx(1, "%s", reason); | 1346 | errx(1, "%s", reason); |
1347 | /* EAGAIN means the waker wanted us to look at some input. | ||
1348 | * Anything else means a bug or incompatible change. */ | ||
895 | } else if (errno != EAGAIN) | 1349 | } else if (errno != EAGAIN) |
896 | err(1, "Running guest failed"); | 1350 | err(1, "Running guest failed"); |
1351 | |||
1352 | /* Service input, then unset the BREAK which releases | ||
1353 | * the Waker. */ | ||
897 | handle_input(lguest_fd, device_list); | 1354 | handle_input(lguest_fd, device_list); |
898 | if (write(lguest_fd, args, sizeof(args)) < 0) | 1355 | if (write(lguest_fd, args, sizeof(args)) < 0) |
899 | err(1, "Resetting break"); | 1356 | err(1, "Resetting break"); |
900 | } | 1357 | } |
901 | } | 1358 | } |
1359 | /* | ||
1360 | * This is the end of the Launcher. | ||
1361 | * | ||
1362 | * But wait! We've seen I/O from the Launcher, and we've seen I/O from the | ||
1363 | * Drivers. If we were to see the Host kernel I/O code, our understanding | ||
1364 | * would be complete... :*/ | ||
902 | 1365 | ||
903 | static struct option opts[] = { | 1366 | static struct option opts[] = { |
904 | { "verbose", 0, NULL, 'v' }, | 1367 | { "verbose", 0, NULL, 'v' }, |
@@ -916,20 +1379,49 @@ static void usage(void) | |||
916 | "<mem-in-mb> vmlinux [args...]"); | 1379 | "<mem-in-mb> vmlinux [args...]"); |
917 | } | 1380 | } |
918 | 1381 | ||
1382 | /*L:100 The Launcher code itself takes us out into userspace, that scary place | ||
1383 | * where pointers run wild and free! Unfortunately, like most userspace | ||
1384 | * programs, it's quite boring (which is why everyone like to hack on the | ||
1385 | * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it | ||
1386 | * will get you through this section. Or, maybe not. | ||
1387 | * | ||
1388 | * The Launcher binary sits up high, usually starting at address 0xB8000000. | ||
1389 | * Everything below this is the "physical" memory for the Guest. For example, | ||
1390 | * if the Guest were to write a "1" at physical address 0, we would see a "1" | ||
1391 | * in the Launcher at "(int *)0". Guest physical == Launcher virtual. | ||
1392 | * | ||
1393 | * This can be tough to get your head around, but usually it just means that we | ||
1394 | * don't need to do any conversion when the Guest gives us it's "physical" | ||
1395 | * addresses. | ||
1396 | */ | ||
919 | int main(int argc, char *argv[]) | 1397 | int main(int argc, char *argv[]) |
920 | { | 1398 | { |
1399 | /* Memory, top-level pagetable, code startpoint, PAGE_OFFSET and size | ||
1400 | * of the (optional) initrd. */ | ||
921 | unsigned long mem = 0, pgdir, start, page_offset, initrd_size = 0; | 1401 | unsigned long mem = 0, pgdir, start, page_offset, initrd_size = 0; |
1402 | /* A temporary and the /dev/lguest file descriptor. */ | ||
922 | int i, c, lguest_fd; | 1403 | int i, c, lguest_fd; |
1404 | /* The list of Guest devices, based on command line arguments. */ | ||
923 | struct device_list device_list; | 1405 | struct device_list device_list; |
1406 | /* The boot information for the Guest: at guest-physical address 0. */ | ||
924 | void *boot = (void *)0; | 1407 | void *boot = (void *)0; |
1408 | /* If they specify an initrd file to load. */ | ||
925 | const char *initrd_name = NULL; | 1409 | const char *initrd_name = NULL; |
926 | 1410 | ||
1411 | /* First we initialize the device list. Since console and network | ||
1412 | * device receive input from a file descriptor, we keep an fdset | ||
1413 | * (infds) and the maximum fd number (max_infd) with the head of the | ||
1414 | * list. We also keep a pointer to the last device, for easy appending | ||
1415 | * to the list. */ | ||
927 | device_list.max_infd = -1; | 1416 | device_list.max_infd = -1; |
928 | device_list.dev = NULL; | 1417 | device_list.dev = NULL; |
929 | device_list.lastdev = &device_list.dev; | 1418 | device_list.lastdev = &device_list.dev; |
930 | FD_ZERO(&device_list.infds); | 1419 | FD_ZERO(&device_list.infds); |
931 | 1420 | ||
932 | /* We need to know how much memory so we can allocate devices. */ | 1421 | /* We need to know how much memory so we can set up the device |
1422 | * descriptor and memory pages for the devices as we parse the command | ||
1423 | * line. So we quickly look through the arguments to find the amount | ||
1424 | * of memory now. */ | ||
933 | for (i = 1; i < argc; i++) { | 1425 | for (i = 1; i < argc; i++) { |
934 | if (argv[i][0] != '-') { | 1426 | if (argv[i][0] != '-') { |
935 | mem = top = atoi(argv[i]) * 1024 * 1024; | 1427 | mem = top = atoi(argv[i]) * 1024 * 1024; |
@@ -938,6 +1430,8 @@ int main(int argc, char *argv[]) | |||
938 | break; | 1430 | break; |
939 | } | 1431 | } |
940 | } | 1432 | } |
1433 | |||
1434 | /* The options are fairly straight-forward */ | ||
941 | while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) { | 1435 | while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) { |
942 | switch (c) { | 1436 | switch (c) { |
943 | case 'v': | 1437 | case 'v': |
@@ -960,42 +1454,59 @@ int main(int argc, char *argv[]) | |||
960 | usage(); | 1454 | usage(); |
961 | } | 1455 | } |
962 | } | 1456 | } |
1457 | /* After the other arguments we expect memory and kernel image name, | ||
1458 | * followed by command line arguments for the kernel. */ | ||
963 | if (optind + 2 > argc) | 1459 | if (optind + 2 > argc) |
964 | usage(); | 1460 | usage(); |
965 | 1461 | ||
966 | /* We need a console device */ | 1462 | /* We always have a console device */ |
967 | setup_console(&device_list); | 1463 | setup_console(&device_list); |
968 | 1464 | ||
969 | /* First we map /dev/zero over all of guest-physical memory. */ | 1465 | /* We start by mapping anonymous pages over all of guest-physical |
1466 | * memory range. This fills it with 0, and ensures that the Guest | ||
1467 | * won't be killed when it tries to access it. */ | ||
970 | map_zeroed_pages(0, mem / getpagesize()); | 1468 | map_zeroed_pages(0, mem / getpagesize()); |
971 | 1469 | ||
972 | /* Now we load the kernel */ | 1470 | /* Now we load the kernel */ |
973 | start = load_kernel(open_or_die(argv[optind+1], O_RDONLY), | 1471 | start = load_kernel(open_or_die(argv[optind+1], O_RDONLY), |
974 | &page_offset); | 1472 | &page_offset); |
975 | 1473 | ||
976 | /* Map the initrd image if requested */ | 1474 | /* Map the initrd image if requested (at top of physical memory) */ |
977 | if (initrd_name) { | 1475 | if (initrd_name) { |
978 | initrd_size = load_initrd(initrd_name, mem); | 1476 | initrd_size = load_initrd(initrd_name, mem); |
1477 | /* These are the location in the Linux boot header where the | ||
1478 | * start and size of the initrd are expected to be found. */ | ||
979 | *(unsigned long *)(boot+0x218) = mem - initrd_size; | 1479 | *(unsigned long *)(boot+0x218) = mem - initrd_size; |
980 | *(unsigned long *)(boot+0x21c) = initrd_size; | 1480 | *(unsigned long *)(boot+0x21c) = initrd_size; |
1481 | /* The bootloader type 0xFF means "unknown"; that's OK. */ | ||
981 | *(unsigned char *)(boot+0x210) = 0xFF; | 1482 | *(unsigned char *)(boot+0x210) = 0xFF; |
982 | } | 1483 | } |
983 | 1484 | ||
984 | /* Set up the initial linar pagetables. */ | 1485 | /* Set up the initial linear pagetables, starting below the initrd. */ |
985 | pgdir = setup_pagetables(mem, initrd_size, page_offset); | 1486 | pgdir = setup_pagetables(mem, initrd_size, page_offset); |
986 | 1487 | ||
987 | /* E820 memory map: ours is a simple, single region. */ | 1488 | /* The Linux boot header contains an "E820" memory map: ours is a |
1489 | * simple, single region. */ | ||
988 | *(char*)(boot+E820NR) = 1; | 1490 | *(char*)(boot+E820NR) = 1; |
989 | *((struct e820entry *)(boot+E820MAP)) | 1491 | *((struct e820entry *)(boot+E820MAP)) |
990 | = ((struct e820entry) { 0, mem, E820_RAM }); | 1492 | = ((struct e820entry) { 0, mem, E820_RAM }); |
991 | /* Command line pointer and command line (at 4096) */ | 1493 | /* The boot header contains a command line pointer: we put the command |
1494 | * line after the boot header (at address 4096) */ | ||
992 | *(void **)(boot + 0x228) = boot + 4096; | 1495 | *(void **)(boot + 0x228) = boot + 4096; |
993 | concat(boot + 4096, argv+optind+2); | 1496 | concat(boot + 4096, argv+optind+2); |
994 | /* Paravirt type: 1 == lguest */ | 1497 | |
1498 | /* The guest type value of "1" tells the Guest it's under lguest. */ | ||
995 | *(int *)(boot + 0x23c) = 1; | 1499 | *(int *)(boot + 0x23c) = 1; |
996 | 1500 | ||
1501 | /* We tell the kernel to initialize the Guest: this returns the open | ||
1502 | * /dev/lguest file descriptor. */ | ||
997 | lguest_fd = tell_kernel(pgdir, start, page_offset); | 1503 | lguest_fd = tell_kernel(pgdir, start, page_offset); |
1504 | |||
1505 | /* We fork off a child process, which wakes the Launcher whenever one | ||
1506 | * of the input file descriptors needs attention. Otherwise we would | ||
1507 | * run the Guest until it tries to output something. */ | ||
998 | waker_fd = setup_waker(lguest_fd, &device_list); | 1508 | waker_fd = setup_waker(lguest_fd, &device_list); |
999 | 1509 | ||
1510 | /* Finally, run the Guest. This doesn't return. */ | ||
1000 | run_guest(lguest_fd, &device_list); | 1511 | run_guest(lguest_fd, &device_list); |
1001 | } | 1512 | } |