aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/lguest/lguest.c
diff options
context:
space:
mode:
authorRusty Russell <rusty@rustcorp.com.au>2007-10-21 21:24:22 -0400
committerRusty Russell <rusty@rustcorp.com.au>2007-10-23 01:49:56 -0400
commit17cbca2ba3de990258943d9e5a1788430ca3ad0d (patch)
tree528bc7c927fd4e29832101b6e98672698463bcb2 /Documentation/lguest/lguest.c
parent19f1537b7b8a9a82665db3ad8210a9d954d13acd (diff)
Update example launcher for virtio
Implements virtio-based console, network and block servers. The block server uses a thread so it's async, which is an improvement over the old synchronous implementation (but a little more complex). Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Diffstat (limited to 'Documentation/lguest/lguest.c')
-rw-r--r--Documentation/lguest/lguest.c1143
1 files changed, 681 insertions, 462 deletions
diff --git a/Documentation/lguest/lguest.c b/Documentation/lguest/lguest.c
index 32c2eaf94c4d..7418f852e40c 100644
--- a/Documentation/lguest/lguest.c
+++ b/Documentation/lguest/lguest.c
@@ -32,7 +32,9 @@
32#include <termios.h> 32#include <termios.h>
33#include <getopt.h> 33#include <getopt.h>
34#include <zlib.h> 34#include <zlib.h>
35/*L:110 We can ignore the 28 include files we need for this program, but I do 35#include <assert.h>
36#include <sched.h>
37/*L:110 We can ignore the 30 include files we need for this program, but I do
36 * want to draw attention to the use of kernel-style types. 38 * want to draw attention to the use of kernel-style types.
37 * 39 *
38 * As Linus said, "C is a Spartan language, and so should your naming be." I 40 * As Linus said, "C is a Spartan language, and so should your naming be." I
@@ -44,6 +46,12 @@ typedef uint32_t u32;
44typedef uint16_t u16; 46typedef uint16_t u16;
45typedef uint8_t u8; 47typedef uint8_t u8;
46#include "linux/lguest_launcher.h" 48#include "linux/lguest_launcher.h"
49#include "linux/pci_ids.h"
50#include "linux/virtio_config.h"
51#include "linux/virtio_net.h"
52#include "linux/virtio_blk.h"
53#include "linux/virtio_console.h"
54#include "linux/virtio_ring.h"
47#include "asm-x86/e820.h" 55#include "asm-x86/e820.h"
48/*:*/ 56/*:*/
49 57
@@ -55,6 +63,8 @@ typedef uint8_t u8;
55#endif 63#endif
56/* We can have up to 256 pages for devices. */ 64/* We can have up to 256 pages for devices. */
57#define DEVICE_PAGES 256 65#define DEVICE_PAGES 256
66/* This fits nicely in a single 4096-byte page. */
67#define VIRTQUEUE_NUM 127
58 68
59/*L:120 verbose is both a global flag and a macro. The C preprocessor allows 69/*L:120 verbose is both a global flag and a macro. The C preprocessor allows
60 * this, and although I wouldn't recommend it, it works quite nicely here. */ 70 * this, and although I wouldn't recommend it, it works quite nicely here. */
@@ -78,8 +88,17 @@ struct device_list
78 fd_set infds; 88 fd_set infds;
79 int max_infd; 89 int max_infd;
80 90
91 /* Counter to assign interrupt numbers. */
92 unsigned int next_irq;
93
94 /* Counter to print out convenient device numbers. */
95 unsigned int device_num;
96
81 /* The descriptor page for the devices. */ 97 /* The descriptor page for the devices. */
82 struct lguest_device_desc *descs; 98 u8 *descpage;
99
100 /* The tail of the last descriptor. */
101 unsigned int desc_used;
83 102
84 /* A single linked list of devices. */ 103 /* A single linked list of devices. */
85 struct device *dev; 104 struct device *dev;
@@ -87,31 +106,88 @@ struct device_list
87 struct device **lastdev; 106 struct device **lastdev;
88}; 107};
89 108
109/* The list of Guest devices, based on command line arguments. */
110static struct device_list devices;
111
90/* The device structure describes a single device. */ 112/* The device structure describes a single device. */
91struct device 113struct device
92{ 114{
93 /* The linked-list pointer. */ 115 /* The linked-list pointer. */
94 struct device *next; 116 struct device *next;
95 /* The descriptor for this device, as mapped into the Guest. */ 117
118 /* The this device's descriptor, as mapped into the Guest. */
96 struct lguest_device_desc *desc; 119 struct lguest_device_desc *desc;
97 /* The memory page(s) of this device, if any. Also mapped in Guest. */ 120
98 void *mem; 121 /* The name of this device, for --verbose. */
122 const char *name;
99 123
100 /* If handle_input is set, it wants to be called when this file 124 /* If handle_input is set, it wants to be called when this file
101 * descriptor is ready. */ 125 * descriptor is ready. */
102 int fd; 126 int fd;
103 bool (*handle_input)(int fd, struct device *me); 127 bool (*handle_input)(int fd, struct device *me);
104 128
105 /* If handle_output is set, it wants to be called when the Guest sends 129 /* Any queues attached to this device */
106 * DMA to this key. */ 130 struct virtqueue *vq;
107 unsigned long watch_key;
108 u32 (*handle_output)(int fd, const struct iovec *iov,
109 unsigned int num, struct device *me);
110 131
111 /* Device-specific data. */ 132 /* Device-specific data. */
112 void *priv; 133 void *priv;
113}; 134};
114 135
136/* The virtqueue structure describes a queue attached to a device. */
137struct virtqueue
138{
139 struct virtqueue *next;
140
141 /* Which device owns me. */
142 struct device *dev;
143
144 /* The configuration for this queue. */
145 struct lguest_vqconfig config;
146
147 /* The actual ring of buffers. */
148 struct vring vring;
149
150 /* Last available index we saw. */
151 u16 last_avail_idx;
152
153 /* The routine to call when the Guest pings us. */
154 void (*handle_output)(int fd, struct virtqueue *me);
155};
156
157/* Since guest is UP and we don't run at the same time, we don't need barriers.
158 * But I include them in the code in case others copy it. */
159#define wmb()
160
161/* Convert an iovec element to the given type.
162 *
163 * This is a fairly ugly trick: we need to know the size of the type and
164 * alignment requirement to check the pointer is kosher. It's also nice to
165 * have the name of the type in case we report failure.
166 *
167 * Typing those three things all the time is cumbersome and error prone, so we
168 * have a macro which sets them all up and passes to the real function. */
169#define convert(iov, type) \
170 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
171
172static void *_convert(struct iovec *iov, size_t size, size_t align,
173 const char *name)
174{
175 if (iov->iov_len != size)
176 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
177 if ((unsigned long)iov->iov_base % align != 0)
178 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
179 return iov->iov_base;
180}
181
182/* The virtio configuration space is defined to be little-endian. x86 is
183 * little-endian too, but it's nice to be explicit so we have these helpers. */
184#define cpu_to_le16(v16) (v16)
185#define cpu_to_le32(v32) (v32)
186#define cpu_to_le64(v64) (v64)
187#define le16_to_cpu(v16) (v16)
188#define le32_to_cpu(v32) (v32)
189#define le64_to_cpu(v32) (v64)
190
115/*L:100 The Launcher code itself takes us out into userspace, that scary place 191/*L:100 The Launcher code itself takes us out into userspace, that scary place
116 * where pointers run wild and free! Unfortunately, like most userspace 192 * where pointers run wild and free! Unfortunately, like most userspace
117 * programs, it's quite boring (which is why everyone likes to hack on the 193 * programs, it's quite boring (which is why everyone likes to hack on the
@@ -486,11 +562,11 @@ static int tell_kernel(unsigned long pgdir, unsigned long start)
486} 562}
487/*:*/ 563/*:*/
488 564
489static void set_fd(int fd, struct device_list *devices) 565static void add_device_fd(int fd)
490{ 566{
491 FD_SET(fd, &devices->infds); 567 FD_SET(fd, &devices.infds);
492 if (fd > devices->max_infd) 568 if (fd > devices.max_infd)
493 devices->max_infd = fd; 569 devices.max_infd = fd;
494} 570}
495 571
496/*L:200 572/*L:200
@@ -508,18 +584,18 @@ static void set_fd(int fd, struct device_list *devices)
508 * 584 *
509 * This, of course, is merely a different *kind* of icky. 585 * This, of course, is merely a different *kind* of icky.
510 */ 586 */
511static void wake_parent(int pipefd, int lguest_fd, struct device_list *devices) 587static void wake_parent(int pipefd, int lguest_fd)
512{ 588{
513 /* Add the pipe from the Launcher to the fdset in the device_list, so 589 /* Add the pipe from the Launcher to the fdset in the device_list, so
514 * we watch it, too. */ 590 * we watch it, too. */
515 set_fd(pipefd, devices); 591 add_device_fd(pipefd);
516 592
517 for (;;) { 593 for (;;) {
518 fd_set rfds = devices->infds; 594 fd_set rfds = devices.infds;
519 unsigned long args[] = { LHREQ_BREAK, 1 }; 595 unsigned long args[] = { LHREQ_BREAK, 1 };
520 596
521 /* Wait until input is ready from one of the devices. */ 597 /* Wait until input is ready from one of the devices. */
522 select(devices->max_infd+1, &rfds, NULL, NULL, NULL); 598 select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
523 /* Is it a message from the Launcher? */ 599 /* Is it a message from the Launcher? */
524 if (FD_ISSET(pipefd, &rfds)) { 600 if (FD_ISSET(pipefd, &rfds)) {
525 int ignorefd; 601 int ignorefd;
@@ -530,14 +606,14 @@ static void wake_parent(int pipefd, int lguest_fd, struct device_list *devices)
530 /* Otherwise it's telling us there's a problem with one 606 /* Otherwise it's telling us there's a problem with one
531 * of the devices, and we should ignore that file 607 * of the devices, and we should ignore that file
532 * descriptor from now on. */ 608 * descriptor from now on. */
533 FD_CLR(ignorefd, &devices->infds); 609 FD_CLR(ignorefd, &devices.infds);
534 } else /* Send LHREQ_BREAK command. */ 610 } else /* Send LHREQ_BREAK command. */
535 write(lguest_fd, args, sizeof(args)); 611 write(lguest_fd, args, sizeof(args));
536 } 612 }
537} 613}
538 614
539/* This routine just sets up a pipe to the Waker process. */ 615/* This routine just sets up a pipe to the Waker process. */
540static int setup_waker(int lguest_fd, struct device_list *device_list) 616static int setup_waker(int lguest_fd)
541{ 617{
542 int pipefd[2], child; 618 int pipefd[2], child;
543 619
@@ -551,7 +627,7 @@ static int setup_waker(int lguest_fd, struct device_list *device_list)
551 if (child == 0) { 627 if (child == 0) {
552 /* Close the "writing" end of our copy of the pipe */ 628 /* Close the "writing" end of our copy of the pipe */
553 close(pipefd[1]); 629 close(pipefd[1]);
554 wake_parent(pipefd[0], lguest_fd, device_list); 630 wake_parent(pipefd[0], lguest_fd);
555 } 631 }
556 /* Close the reading end of our copy of the pipe. */ 632 /* Close the reading end of our copy of the pipe. */
557 close(pipefd[0]); 633 close(pipefd[0]);
@@ -574,7 +650,7 @@ static void *_check_pointer(unsigned long addr, unsigned int size,
574 /* We have to separately check addr and addr+size, because size could 650 /* We have to separately check addr and addr+size, because size could
575 * be huge and addr + size might wrap around. */ 651 * be huge and addr + size might wrap around. */
576 if (addr >= guest_limit || addr + size >= guest_limit) 652 if (addr >= guest_limit || addr + size >= guest_limit)
577 errx(1, "%s:%i: Invalid address %li", __FILE__, line, addr); 653 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
578 /* We return a pointer for the caller's convenience, now we know it's 654 /* We return a pointer for the caller's convenience, now we know it's
579 * safe to use. */ 655 * safe to use. */
580 return from_guest_phys(addr); 656 return from_guest_phys(addr);
@@ -582,74 +658,131 @@ static void *_check_pointer(unsigned long addr, unsigned int size,
582/* A macro which transparently hands the line number to the real function. */ 658/* A macro which transparently hands the line number to the real function. */
583#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__) 659#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
584 660
585/* The Guest has given us the address of a "struct lguest_dma". We check it's 661/* This simply sets up an iovec array where we can put data to be discarded.
586 * OK and convert it to an iovec (which is a simple array of ptr/size 662 * This happens when the Guest doesn't want or can't handle the input: we have
587 * pairs). */ 663 * to get rid of it somewhere, and if we bury it in the ceiling space it will
588static u32 *dma2iov(unsigned long dma, struct iovec iov[], unsigned *num) 664 * start to smell after a week. */
665static void discard_iovec(struct iovec *iov, unsigned int *num)
589{ 666{
590 unsigned int i; 667 static char discard_buf[1024];
591 struct lguest_dma *udma; 668 *num = 1;
592 669 iov->iov_base = discard_buf;
593 /* First we make sure that the array memory itself is valid. */ 670 iov->iov_len = sizeof(discard_buf);
594 udma = check_pointer(dma, sizeof(*udma)); 671}
595 /* Now we check each element */
596 for (i = 0; i < LGUEST_MAX_DMA_SECTIONS; i++) {
597 /* A zero length ends the array. */
598 if (!udma->len[i])
599 break;
600 672
601 iov[i].iov_base = check_pointer(udma->addr[i], udma->len[i]); 673/* This function returns the next descriptor in the chain, or vq->vring.num. */
602 iov[i].iov_len = udma->len[i]; 674static unsigned next_desc(struct virtqueue *vq, unsigned int i)
603 } 675{
604 *num = i; 676 unsigned int next;
677
678 /* If this descriptor says it doesn't chain, we're done. */
679 if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
680 return vq->vring.num;
681
682 /* Check they're not leading us off end of descriptors. */
683 next = vq->vring.desc[i].next;
684 /* Make sure compiler knows to grab that: we don't want it changing! */
685 wmb();
686
687 if (next >= vq->vring.num)
688 errx(1, "Desc next is %u", next);
689
690 return next;
691}
692
693/* This looks in the virtqueue and for the first available buffer, and converts
694 * it to an iovec for convenient access. Since descriptors consist of some
695 * number of output then some number of input descriptors, it's actually two
696 * iovecs, but we pack them into one and note how many of each there were.
697 *
698 * This function returns the descriptor number found, or vq->vring.num (which
699 * is never a valid descriptor number) if none was found. */
700static unsigned get_vq_desc(struct virtqueue *vq,
701 struct iovec iov[],
702 unsigned int *out_num, unsigned int *in_num)
703{
704 unsigned int i, head;
705
706 /* Check it isn't doing very strange things with descriptor numbers. */
707 if ((u16)(vq->vring.avail->idx - vq->last_avail_idx) > vq->vring.num)
708 errx(1, "Guest moved used index from %u to %u",
709 vq->last_avail_idx, vq->vring.avail->idx);
710
711 /* If there's nothing new since last we looked, return invalid. */
712 if (vq->vring.avail->idx == vq->last_avail_idx)
713 return vq->vring.num;
714
715 /* Grab the next descriptor number they're advertising, and increment
716 * the index we've seen. */
717 head = vq->vring.avail->ring[vq->last_avail_idx++ % vq->vring.num];
718
719 /* If their number is silly, that's a fatal mistake. */
720 if (head >= vq->vring.num)
721 errx(1, "Guest says index %u is available", head);
722
723 /* When we start there are none of either input nor output. */
724 *out_num = *in_num = 0;
725
726 i = head;
727 do {
728 /* Grab the first descriptor, and check it's OK. */
729 iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
730 iov[*out_num + *in_num].iov_base
731 = check_pointer(vq->vring.desc[i].addr,
732 vq->vring.desc[i].len);
733 /* If this is an input descriptor, increment that count. */
734 if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
735 (*in_num)++;
736 else {
737 /* If it's an output descriptor, they're all supposed
738 * to come before any input descriptors. */
739 if (*in_num)
740 errx(1, "Descriptor has out after in");
741 (*out_num)++;
742 }
743
744 /* If we've got too many, that implies a descriptor loop. */
745 if (*out_num + *in_num > vq->vring.num)
746 errx(1, "Looped descriptor");
747 } while ((i = next_desc(vq, i)) != vq->vring.num);
605 748
606 /* We return the pointer to where the caller should write the amount of 749 return head;
607 * the buffer used. */
608 return &udma->used_len;
609} 750}
610 751
611/* This routine gets a DMA buffer from the Guest for a given key, and converts 752/* Once we've used one of their buffers, we tell them about it. We'll then
612 * it to an iovec array. It returns the interrupt the Guest wants when we're 753 * want to send them an interrupt, using trigger_irq(). */
613 * finished, and a pointer to the "used_len" field to fill in. */ 754static void add_used(struct virtqueue *vq, unsigned int head, int len)
614static u32 *get_dma_buffer(int fd, void *key,
615 struct iovec iov[], unsigned int *num, u32 *irq)
616{ 755{
617 unsigned long buf[] = { LHREQ_GETDMA, to_guest_phys(key) }; 756 struct vring_used_elem *used;
618 unsigned long udma; 757
619 u32 *res; 758 /* Get a pointer to the next entry in the used ring. */
620 759 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
621 /* Ask the kernel for a DMA buffer corresponding to this key. */ 760 used->id = head;
622 udma = write(fd, buf, sizeof(buf)); 761 used->len = len;
623 /* They haven't registered any, or they're all used? */ 762 /* Make sure buffer is written before we update index. */
624 if (udma == (unsigned long)-1) 763 wmb();
625 return NULL; 764 vq->vring.used->idx++;
626
627 /* Convert it into our iovec array */
628 res = dma2iov(udma, iov, num);
629 /* The kernel stashes irq in ->used_len to get it out to us. */
630 *irq = *res;
631 /* Return a pointer to ((struct lguest_dma *)udma)->used_len. */
632 return res;
633} 765}
634 766
635/* This is a convenient routine to send the Guest an interrupt. */ 767/* This actually sends the interrupt for this virtqueue */
636static void trigger_irq(int fd, u32 irq) 768static void trigger_irq(int fd, struct virtqueue *vq)
637{ 769{
638 unsigned long buf[] = { LHREQ_IRQ, irq }; 770 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
771
772 if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
773 return;
774
775 /* Send the Guest an interrupt tell them we used something up. */
639 if (write(fd, buf, sizeof(buf)) != 0) 776 if (write(fd, buf, sizeof(buf)) != 0)
640 err(1, "Triggering irq %i", irq); 777 err(1, "Triggering irq %i", vq->config.irq);
641} 778}
642 779
643/* This simply sets up an iovec array where we can put data to be discarded. 780/* And here's the combo meal deal. Supersize me! */
644 * This happens when the Guest doesn't want or can't handle the input: we have 781static void add_used_and_trigger(int fd, struct virtqueue *vq,
645 * to get rid of it somewhere, and if we bury it in the ceiling space it will 782 unsigned int head, int len)
646 * start to smell after a week. */
647static void discard_iovec(struct iovec *iov, unsigned int *num)
648{ 783{
649 static char discard_buf[1024]; 784 add_used(vq, head, len);
650 *num = 1; 785 trigger_irq(fd, vq);
651 iov->iov_base = discard_buf;
652 iov->iov_len = sizeof(discard_buf);
653} 786}
654 787
655/* Here is the input terminal setting we save, and the routine to restore them 788/* Here is the input terminal setting we save, and the routine to restore them
@@ -672,38 +805,37 @@ struct console_abort
672/* This is the routine which handles console input (ie. stdin). */ 805/* This is the routine which handles console input (ie. stdin). */
673static bool handle_console_input(int fd, struct device *dev) 806static bool handle_console_input(int fd, struct device *dev)
674{ 807{
675 u32 irq = 0, *lenp;
676 int len; 808 int len;
677 unsigned int num; 809 unsigned int head, in_num, out_num;
678 struct iovec iov[LGUEST_MAX_DMA_SECTIONS]; 810 struct iovec iov[dev->vq->vring.num];
679 struct console_abort *abort = dev->priv; 811 struct console_abort *abort = dev->priv;
680 812
681 /* First we get the console buffer from the Guest. The key is dev->mem 813 /* First we need a console buffer from the Guests's input virtqueue. */
682 * which was set to 0 in setup_console(). */ 814 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
683 lenp = get_dma_buffer(fd, dev->mem, iov, &num, &irq); 815 if (head == dev->vq->vring.num) {
684 if (!lenp) { 816 /* If they're not ready for input, we warn and set up to
685 /* If it's not ready for input, warn and set up to discard. */ 817 * discard. */
686 warn("console: no dma buffer!"); 818 warnx("console: no dma buffer!");
687 discard_iovec(iov, &num); 819 discard_iovec(iov, &in_num);
688 } 820 } else if (out_num)
821 errx(1, "Output buffers in console in queue?");
689 822
690 /* This is why we convert to iovecs: the readv() call uses them, and so 823 /* This is why we convert to iovecs: the readv() call uses them, and so
691 * it reads straight into the Guest's buffer. */ 824 * it reads straight into the Guest's buffer. */
692 len = readv(dev->fd, iov, num); 825 len = readv(dev->fd, iov, in_num);
693 if (len <= 0) { 826 if (len <= 0) {
694 /* This implies that the console is closed, is /dev/null, or 827 /* This implies that the console is closed, is /dev/null, or
695 * something went terribly wrong. We still go through the rest 828 * something went terribly wrong. */
696 * of the logic, though, especially the exit handling below. */
697 warnx("Failed to get console input, ignoring console."); 829 warnx("Failed to get console input, ignoring console.");
698 len = 0; 830 /* Put the input terminal back and return failure (meaning,
831 * don't call us again). */
832 restore_term();
833 return false;
699 } 834 }
700 835
701 /* If we read the data into the Guest, fill in the length and send the 836 /* If we actually read the data into the Guest, tell them about it. */
702 * interrupt. */ 837 if (head != dev->vq->vring.num)
703 if (lenp) { 838 add_used_and_trigger(fd, dev->vq, head, len);
704 *lenp = len;
705 trigger_irq(fd, irq);
706 }
707 839
708 /* Three ^C within one second? Exit. 840 /* Three ^C within one second? Exit.
709 * 841 *
@@ -732,202 +864,137 @@ static bool handle_console_input(int fd, struct device *dev)
732 /* Any other key resets the abort counter. */ 864 /* Any other key resets the abort counter. */
733 abort->count = 0; 865 abort->count = 0;
734 866
735 /* Now, if we didn't read anything, put the input terminal back and
736 * return failure (meaning, don't call us again). */
737 if (!len) {
738 restore_term();
739 return false;
740 }
741 /* Everything went OK! */ 867 /* Everything went OK! */
742 return true; 868 return true;
743} 869}
744 870
745/* Handling console output is much simpler than input. */ 871/* Handling output for console is simple: we just get all the output buffers
746static u32 handle_console_output(int fd, const struct iovec *iov, 872 * and write them to stdout. */
747 unsigned num, struct device*dev) 873static void handle_console_output(int fd, struct virtqueue *vq)
748{ 874{
749 /* Whatever the Guest sends, write it to standard output. Return the 875 unsigned int head, out, in;
750 * number of bytes written. */ 876 int len;
751 return writev(STDOUT_FILENO, iov, num); 877 struct iovec iov[vq->vring.num];
752} 878
753 879 /* Keep getting output buffers from the Guest until we run out. */
754/* Guest->Host network output is also pretty easy. */ 880 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
755static u32 handle_tun_output(int fd, const struct iovec *iov, 881 if (in)
756 unsigned num, struct device *dev) 882 errx(1, "Input buffers in output queue?");
757{ 883 len = writev(STDOUT_FILENO, iov, out);
758 /* We put a flag in the "priv" pointer of the network device, and set 884 add_used_and_trigger(fd, vq, head, len);
759 * it as soon as we see output. We'll see why in handle_tun_input() */ 885 }
760 *(bool *)dev->priv = true;
761 /* Whatever packet the Guest sent us, write it out to the tun
762 * device. */
763 return writev(dev->fd, iov, num);
764} 886}
765 887
766/* This matches the peer_key() in lguest_net.c. The key for any given slot 888/* Handling output for network is also simple: we get all the output buffers
767 * is the address of the network device's page plus 4 * the slot number. */ 889 * and write them (ignoring the first element) to this device's file descriptor
768static unsigned long peer_offset(unsigned int peernum) 890 * (stdout). */
891static void handle_net_output(int fd, struct virtqueue *vq)
769{ 892{
770 return 4 * peernum; 893 unsigned int head, out, in;
894 int len;
895 struct iovec iov[vq->vring.num];
896
897 /* Keep getting output buffers from the Guest until we run out. */
898 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
899 if (in)
900 errx(1, "Input buffers in output queue?");
901 /* Check header, but otherwise ignore it (we said we supported
902 * no features). */
903 (void)convert(&iov[0], struct virtio_net_hdr);
904 len = writev(vq->dev->fd, iov+1, out-1);
905 add_used_and_trigger(fd, vq, head, len);
906 }
771} 907}
772 908
773/* This is where we handle a packet coming in from the tun device */ 909/* This is where we handle a packet coming in from the tun device to our
910 * Guest. */
774static bool handle_tun_input(int fd, struct device *dev) 911static bool handle_tun_input(int fd, struct device *dev)
775{ 912{
776 u32 irq = 0, *lenp; 913 unsigned int head, in_num, out_num;
777 int len; 914 int len;
778 unsigned num; 915 struct iovec iov[dev->vq->vring.num];
779 struct iovec iov[LGUEST_MAX_DMA_SECTIONS]; 916 struct virtio_net_hdr *hdr;
780 917
781 /* First we get a buffer the Guest has bound to its key. */ 918 /* First we need a network buffer from the Guests's recv virtqueue. */
782 lenp = get_dma_buffer(fd, dev->mem+peer_offset(NET_PEERNUM), iov, &num, 919 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
783 &irq); 920 if (head == dev->vq->vring.num) {
784 if (!lenp) {
785 /* Now, it's expected that if we try to send a packet too 921 /* Now, it's expected that if we try to send a packet too
786 * early, the Guest won't be ready yet. This is why we set a 922 * early, the Guest won't be ready yet. Wait until the device
787 * flag when the Guest sends its first packet. If it's sent a 923 * status says it's ready. */
788 * packet we assume it should be ready to receive them. 924 /* FIXME: Actually want DRIVER_ACTIVE here. */
789 * 925 if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
790 * Actually, this is what the status bits in the descriptor are
791 * for: we should *use* them. FIXME! */
792 if (*(bool *)dev->priv)
793 warn("network: no dma buffer!"); 926 warn("network: no dma buffer!");
794 discard_iovec(iov, &num); 927 discard_iovec(iov, &in_num);
795 } 928 } else if (out_num)
929 errx(1, "Output buffers in network recv queue?");
930
931 /* First element is the header: we set it to 0 (no features). */
932 hdr = convert(&iov[0], struct virtio_net_hdr);
933 hdr->flags = 0;
934 hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
796 935
797 /* Read the packet from the device directly into the Guest's buffer. */ 936 /* Read the packet from the device directly into the Guest's buffer. */
798 len = readv(dev->fd, iov, num); 937 len = readv(dev->fd, iov+1, in_num-1);
799 if (len <= 0) 938 if (len <= 0)
800 err(1, "reading network"); 939 err(1, "reading network");
801 940
802 /* Write the used_len, and trigger the interrupt for the Guest */ 941 /* If we actually read the data into the Guest, tell them about it. */
803 if (lenp) { 942 if (head != dev->vq->vring.num)
804 *lenp = len; 943 add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
805 trigger_irq(fd, irq); 944
806 }
807 verbose("tun input packet len %i [%02x %02x] (%s)\n", len, 945 verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
808 ((u8 *)iov[0].iov_base)[0], ((u8 *)iov[0].iov_base)[1], 946 ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
809 lenp ? "sent" : "discarded"); 947 head != dev->vq->vring.num ? "sent" : "discarded");
948
810 /* All good. */ 949 /* All good. */
811 return true; 950 return true;
812} 951}
813 952
814/* The last device handling routine is block output: the Guest has sent a DMA 953/* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
815 * to the block device. It will have placed the command it wants in the 954static void handle_output(int fd, unsigned long addr)
816 * "struct lguest_block_page". */
817static u32 handle_block_output(int fd, const struct iovec *iov,
818 unsigned num, struct device *dev)
819{
820 struct lguest_block_page *p = dev->mem;
821 u32 irq, *lenp;
822 unsigned int len, reply_num;
823 struct iovec reply[LGUEST_MAX_DMA_SECTIONS];
824 off64_t device_len, off = (off64_t)p->sector * 512;
825
826 /* First we extract the device length from the dev->priv pointer. */
827 device_len = *(off64_t *)dev->priv;
828
829 /* We first check that the read or write is within the length of the
830 * block file. */
831 if (off >= device_len)
832 errx(1, "Bad offset %llu vs %llu", off, device_len);
833 /* Move to the right location in the block file. This shouldn't fail,
834 * but best to check. */
835 if (lseek64(dev->fd, off, SEEK_SET) != off)
836 err(1, "Bad seek to sector %i", p->sector);
837
838 verbose("Block: %s at offset %llu\n", p->type ? "WRITE" : "READ", off);
839
840 /* They were supposed to bind a reply buffer at key equal to the start
841 * of the block device memory. We need this to tell them when the
842 * request is finished. */
843 lenp = get_dma_buffer(fd, dev->mem, reply, &reply_num, &irq);
844 if (!lenp)
845 err(1, "Block request didn't give us a dma buffer");
846
847 if (p->type) {
848 /* A write request. The DMA they sent contained the data, so
849 * write it out. */
850 len = writev(dev->fd, iov, num);
851 /* Grr... Now we know how long the "struct lguest_dma" they
852 * sent was, we make sure they didn't try to write over the end
853 * of the block file (possibly extending it). */
854 if (off + len > device_len) {
855 /* Trim it back to the correct length */
856 ftruncate64(dev->fd, device_len);
857 /* Die, bad Guest, die. */
858 errx(1, "Write past end %llu+%u", off, len);
859 }
860 /* The reply length is 0: we just send back an empty DMA to
861 * interrupt them and tell them the write is finished. */
862 *lenp = 0;
863 } else {
864 /* A read request. They sent an empty DMA to start the
865 * request, and we put the read contents into the reply
866 * buffer. */
867 len = readv(dev->fd, reply, reply_num);
868 *lenp = len;
869 }
870
871 /* The result is 1 (done), 2 if there was an error (short read or
872 * write). */
873 p->result = 1 + (p->bytes != len);
874 /* Now tell them we've used their reply buffer. */
875 trigger_irq(fd, irq);
876
877 /* We're supposed to return the number of bytes of the output buffer we
878 * used. But the block device uses the "result" field instead, so we
879 * don't bother. */
880 return 0;
881}
882
883/* This is the generic routine we call when the Guest sends some DMA out. */
884static void handle_output(int fd, unsigned long dma, unsigned long key,
885 struct device_list *devices)
886{ 955{
887 struct device *i; 956 struct device *i;
888 u32 *lenp; 957 struct virtqueue *vq;
889 struct iovec iov[LGUEST_MAX_DMA_SECTIONS]; 958
890 unsigned num = 0; 959 /* Check each virtqueue. */
891 960 for (i = devices.dev; i; i = i->next) {
892 /* Convert the "struct lguest_dma" they're sending to a "struct 961 for (vq = i->vq; vq; vq = vq->next) {
893 * iovec". */ 962 if (vq->config.pfn == addr/getpagesize()
894 lenp = dma2iov(dma, iov, &num); 963 && vq->handle_output) {
895 964 verbose("Output to %s\n", vq->dev->name);
896 /* Check each device: if they expect output to this key, tell them to 965 vq->handle_output(fd, vq);
897 * handle it. */ 966 return;
898 for (i = devices->dev; i; i = i->next) { 967 }
899 if (i->handle_output && key == i->watch_key) {
900 /* We write the result straight into the used_len field
901 * for them. */
902 *lenp = i->handle_output(fd, iov, num, i);
903 return;
904 } 968 }
905 } 969 }
906 970
907 /* This can happen: the kernel sends any SEND_DMA which doesn't match 971 /* Early console write is done using notify on a nul-terminated string
908 * another Guest to us. It could be that another Guest just left a 972 * in Guest memory. */
909 * network, for example. But it's unusual. */ 973 if (addr >= guest_limit)
910 warnx("Pending dma %p, key %p", (void *)dma, (void *)key); 974 errx(1, "Bad NOTIFY %#lx", addr);
975
976 write(STDOUT_FILENO, from_guest_phys(addr),
977 strnlen(from_guest_phys(addr), guest_limit - addr));
911} 978}
912 979
913/* This is called when the waker wakes us up: check for incoming file 980/* This is called when the waker wakes us up: check for incoming file
914 * descriptors. */ 981 * descriptors. */
915static void handle_input(int fd, struct device_list *devices) 982static void handle_input(int fd)
916{ 983{
917 /* select() wants a zeroed timeval to mean "don't wait". */ 984 /* select() wants a zeroed timeval to mean "don't wait". */
918 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 }; 985 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
919 986
920 for (;;) { 987 for (;;) {
921 struct device *i; 988 struct device *i;
922 fd_set fds = devices->infds; 989 fd_set fds = devices.infds;
923 990
924 /* If nothing is ready, we're done. */ 991 /* If nothing is ready, we're done. */
925 if (select(devices->max_infd+1, &fds, NULL, NULL, &poll) == 0) 992 if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0)
926 break; 993 break;
927 994
928 /* Otherwise, call the device(s) which have readable 995 /* Otherwise, call the device(s) which have readable
929 * file descriptors and a method of handling them. */ 996 * file descriptors and a method of handling them. */
930 for (i = devices->dev; i; i = i->next) { 997 for (i = devices.dev; i; i = i->next) {
931 if (i->handle_input && FD_ISSET(i->fd, &fds)) { 998 if (i->handle_input && FD_ISSET(i->fd, &fds)) {
932 /* If handle_input() returns false, it means we 999 /* If handle_input() returns false, it means we
933 * should no longer service it. 1000 * should no longer service it.
@@ -936,7 +1003,7 @@ static void handle_input(int fd, struct device_list *devices)
936 /* Clear it from the set of input file 1003 /* Clear it from the set of input file
937 * descriptors kept at the head of the 1004 * descriptors kept at the head of the
938 * device list. */ 1005 * device list. */
939 FD_CLR(i->fd, &devices->infds); 1006 FD_CLR(i->fd, &devices.infds);
940 /* Tell waker to ignore it too... */ 1007 /* Tell waker to ignore it too... */
941 write(waker_fd, &i->fd, sizeof(i->fd)); 1008 write(waker_fd, &i->fd, sizeof(i->fd));
942 } 1009 }
@@ -953,43 +1020,93 @@ static void handle_input(int fd, struct device_list *devices)
953 * routines to allocate them. 1020 * routines to allocate them.
954 * 1021 *
955 * This routine allocates a new "struct lguest_device_desc" from descriptor 1022 * This routine allocates a new "struct lguest_device_desc" from descriptor
956 * table in the devices array just above the Guest's normal memory. */ 1023 * table just above the Guest's normal memory. It returns a pointer to that
957static struct lguest_device_desc * 1024 * descriptor. */
958new_dev_desc(struct lguest_device_desc *descs, 1025static struct lguest_device_desc *new_dev_desc(u16 type)
959 u16 type, u16 features, u16 num_pages)
960{ 1026{
961 unsigned int i; 1027 struct lguest_device_desc *d;
962 1028
963 for (i = 0; i < LGUEST_MAX_DEVICES; i++) { 1029 /* We only have one page for all the descriptors. */
964 if (!descs[i].type) { 1030 if (devices.desc_used + sizeof(*d) > getpagesize())
965 descs[i].type = type; 1031 errx(1, "Too many devices");
966 descs[i].features = features; 1032
967 descs[i].num_pages = num_pages; 1033 /* We don't need to set config_len or status: page is 0 already. */
968 /* If they said the device needs memory, we allocate 1034 d = (void *)devices.descpage + devices.desc_used;
969 * that now. */ 1035 d->type = type;
970 if (num_pages) { 1036 devices.desc_used += sizeof(*d);
971 unsigned long pa; 1037
972 pa = to_guest_phys(get_pages(num_pages)); 1038 return d;
973 descs[i].pfn = pa / getpagesize(); 1039}
974 } 1040
975 return &descs[i]; 1041/* Each device descriptor is followed by some configuration information.
976 } 1042 * The first byte is a "status" byte for the Guest to report what's happening.
977 } 1043 * After that are fields: u8 type, u8 len, [... len bytes...].
978 errx(1, "too many devices"); 1044 *
1045 * This routine adds a new field to an existing device's descriptor. It only
1046 * works for the last device, but that's OK because that's how we use it. */
1047static void add_desc_field(struct device *dev, u8 type, u8 len, const void *c)
1048{
1049 /* This is the last descriptor, right? */
1050 assert(devices.descpage + devices.desc_used
1051 == (u8 *)(dev->desc + 1) + dev->desc->config_len);
1052
1053 /* We only have one page of device descriptions. */
1054 if (devices.desc_used + 2 + len > getpagesize())
1055 errx(1, "Too many devices");
1056
1057 /* Copy in the new config header: type then length. */
1058 devices.descpage[devices.desc_used++] = type;
1059 devices.descpage[devices.desc_used++] = len;
1060 memcpy(devices.descpage + devices.desc_used, c, len);
1061 devices.desc_used += len;
1062
1063 /* Update the device descriptor length: two byte head then data. */
1064 dev->desc->config_len += 2 + len;
1065}
1066
1067/* This routine adds a virtqueue to a device. We specify how many descriptors
1068 * the virtqueue is to have. */
1069static void add_virtqueue(struct device *dev, unsigned int num_descs,
1070 void (*handle_output)(int fd, struct virtqueue *me))
1071{
1072 unsigned int pages;
1073 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1074 void *p;
1075
1076 /* First we need some pages for this virtqueue. */
1077 pages = (vring_size(num_descs) + getpagesize() - 1) / getpagesize();
1078 p = get_pages(pages);
1079
1080 /* Initialize the configuration. */
1081 vq->config.num = num_descs;
1082 vq->config.irq = devices.next_irq++;
1083 vq->config.pfn = to_guest_phys(p) / getpagesize();
1084
1085 /* Initialize the vring. */
1086 vring_init(&vq->vring, num_descs, p);
1087
1088 /* Add the configuration information to this device's descriptor. */
1089 add_desc_field(dev, VIRTIO_CONFIG_F_VIRTQUEUE,
1090 sizeof(vq->config), &vq->config);
1091
1092 /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1093 * second. */
1094 for (i = &dev->vq; *i; i = &(*i)->next);
1095 *i = vq;
1096
1097 /* Link virtqueue back to device. */
1098 vq->dev = dev;
1099
1100 /* Set up handler. */
1101 vq->handle_output = handle_output;
1102 if (!handle_output)
1103 vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
979} 1104}
980 1105
981/* This monster routine does all the creation and setup of a new device, 1106/* This routine does all the creation and setup of a new device, including
982 * including caling new_dev_desc() to allocate the descriptor and device 1107 * caling new_dev_desc() to allocate the descriptor and device memory. */
983 * memory. */ 1108static struct device *new_device(const char *name, u16 type, int fd,
984static struct device *new_device(struct device_list *devices, 1109 bool (*handle_input)(int, struct device *))
985 u16 type, u16 num_pages, u16 features,
986 int fd,
987 bool (*handle_input)(int, struct device *),
988 unsigned long watch_off,
989 u32 (*handle_output)(int,
990 const struct iovec *,
991 unsigned,
992 struct device *))
993{ 1110{
994 struct device *dev = malloc(sizeof(*dev)); 1111 struct device *dev = malloc(sizeof(*dev));
995 1112
@@ -997,27 +1114,25 @@ static struct device *new_device(struct device_list *devices,
997 * easier, but the user expects the devices to be arranged on the bus 1114 * easier, but the user expects the devices to be arranged on the bus
998 * in command-line order. The first network device on the command line 1115 * in command-line order. The first network device on the command line
999 * is eth0, the first block device /dev/lgba, etc. */ 1116 * is eth0, the first block device /dev/lgba, etc. */
1000 *devices->lastdev = dev; 1117 *devices.lastdev = dev;
1001 dev->next = NULL; 1118 dev->next = NULL;
1002 devices->lastdev = &dev->next; 1119 devices.lastdev = &dev->next;
1003 1120
1004 /* Now we populate the fields one at a time. */ 1121 /* Now we populate the fields one at a time. */
1005 dev->fd = fd; 1122 dev->fd = fd;
1006 /* If we have an input handler for this file descriptor, then we add it 1123 /* If we have an input handler for this file descriptor, then we add it
1007 * to the device_list's fdset and maxfd. */ 1124 * to the device_list's fdset and maxfd. */
1008 if (handle_input) 1125 if (handle_input)
1009 set_fd(dev->fd, devices); 1126 add_device_fd(dev->fd);
1010 dev->desc = new_dev_desc(devices->descs, type, features, num_pages); 1127 dev->desc = new_dev_desc(type);
1011 dev->mem = from_guest_phys(dev->desc->pfn * getpagesize());
1012 dev->handle_input = handle_input; 1128 dev->handle_input = handle_input;
1013 dev->watch_key = to_guest_phys(dev->mem) + watch_off; 1129 dev->name = name;
1014 dev->handle_output = handle_output;
1015 return dev; 1130 return dev;
1016} 1131}
1017 1132
1018/* Our first setup routine is the console. It's a fairly simple device, but 1133/* Our first setup routine is the console. It's a fairly simple device, but
1019 * UNIX tty handling makes it uglier than it could be. */ 1134 * UNIX tty handling makes it uglier than it could be. */
1020static void setup_console(struct device_list *devices) 1135static void setup_console(void)
1021{ 1136{
1022 struct device *dev; 1137 struct device *dev;
1023 1138
@@ -1033,127 +1148,38 @@ static void setup_console(struct device_list *devices)
1033 atexit(restore_term); 1148 atexit(restore_term);
1034 } 1149 }
1035 1150
1036 /* We don't currently require any memory for the console, so we ask for 1151 dev = new_device("console", VIRTIO_ID_CONSOLE,
1037 * 0 pages. */ 1152 STDIN_FILENO, handle_console_input);
1038 dev = new_device(devices, LGUEST_DEVICE_T_CONSOLE, 0, 0,
1039 STDIN_FILENO, handle_console_input,
1040 LGUEST_CONSOLE_DMA_KEY, handle_console_output);
1041 /* We store the console state in dev->priv, and initialize it. */ 1153 /* We store the console state in dev->priv, and initialize it. */
1042 dev->priv = malloc(sizeof(struct console_abort)); 1154 dev->priv = malloc(sizeof(struct console_abort));
1043 ((struct console_abort *)dev->priv)->count = 0; 1155 ((struct console_abort *)dev->priv)->count = 0;
1044 verbose("device %p: console\n",
1045 (void *)(dev->desc->pfn * getpagesize()));
1046}
1047 1156
1048/* Setting up a block file is also fairly straightforward. */ 1157 /* The console needs two virtqueues: the input then the output. We
1049static void setup_block_file(const char *filename, struct device_list *devices) 1158 * don't care when they refill the input queue, since we don't hold
1050{ 1159 * data waiting for them. That's why the input queue's callback is
1051 int fd; 1160 * NULL. */
1052 struct device *dev; 1161 add_virtqueue(dev, VIRTQUEUE_NUM, NULL);
1053 off64_t *device_len; 1162 add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1054 struct lguest_block_page *p; 1163
1055 1164 verbose("device %u: console\n", devices.device_num++);
1056 /* We open with O_LARGEFILE because otherwise we get stuck at 2G. We
1057 * open with O_DIRECT because otherwise our benchmarks go much too
1058 * fast. */
1059 fd = open_or_die(filename, O_RDWR|O_LARGEFILE|O_DIRECT);
1060
1061 /* We want one page, and have no input handler (the block file never
1062 * has anything interesting to say to us). Our timing will be quite
1063 * random, so it should be a reasonable randomness source. */
1064 dev = new_device(devices, LGUEST_DEVICE_T_BLOCK, 1,
1065 LGUEST_DEVICE_F_RANDOMNESS,
1066 fd, NULL, 0, handle_block_output);
1067
1068 /* We store the device size in the private area */
1069 device_len = dev->priv = malloc(sizeof(*device_len));
1070 /* This is the safe way of establishing the size of our device: it
1071 * might be a normal file or an actual block device like /dev/hdb. */
1072 *device_len = lseek64(fd, 0, SEEK_END);
1073
1074 /* The device memory is a "struct lguest_block_page". It's zeroed
1075 * already, we just need to put in the device size. Block devices
1076 * think in sectors (ie. 512 byte chunks), so we translate here. */
1077 p = dev->mem;
1078 p->num_sectors = *device_len/512;
1079 verbose("device %p: block %i sectors\n",
1080 (void *)(dev->desc->pfn * getpagesize()), p->num_sectors);
1081} 1165}
1166/*:*/
1082 1167
1083/* 1168/*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1084 * Network Devices. 1169 * --sharenet=<name> option which opens or creates a named pipe. This can be
1170 * used to send packets to another guest in a 1:1 manner.
1085 * 1171 *
1086 * Setting up network devices is quite a pain, because we have three types. 1172 * More sopisticated is to use one of the tools developed for project like UML
1087 * First, we have the inter-Guest network. This is a file which is mapped into 1173 * to do networking.
1088 * the address space of the Guests who are on the network. Because it is a
1089 * shared mapping, the same page underlies all the devices, and they can send
1090 * DMA to each other.
1091 * 1174 *
1092 * Remember from our network driver, the Guest is told what slot in the page it 1175 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1093 * is to use. We use exclusive fnctl locks to reserve a slot. If another 1176 * completely generic ("here's my vring, attach to your vring") and would work
1094 * Guest is using a slot, the lock will fail and we try another. Because fnctl 1177 * for any traffic. Of course, namespace and permissions issues need to be
1095 * locks are cleaned up automatically when we die, this cleverly means that our 1178 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1096 * reservation on the slot will vanish if we crash. */ 1179 * multiple inter-guest channels behind one interface, although it would
1097static unsigned int find_slot(int netfd, const char *filename) 1180 * require some manner of hotplugging new virtio channels.
1098{ 1181 *
1099 struct flock fl; 1182 * Finally, we could implement a virtio network switch in the kernel. :*/
1100
1101 fl.l_type = F_WRLCK;
1102 fl.l_whence = SEEK_SET;
1103 fl.l_len = 1;
1104 /* Try a 1 byte lock in each possible position number */
1105 for (fl.l_start = 0;
1106 fl.l_start < getpagesize()/sizeof(struct lguest_net);
1107 fl.l_start++) {
1108 /* If we succeed, return the slot number. */
1109 if (fcntl(netfd, F_SETLK, &fl) == 0)
1110 return fl.l_start;
1111 }
1112 errx(1, "No free slots in network file %s", filename);
1113}
1114
1115/* This function sets up the network file */
1116static void setup_net_file(const char *filename,
1117 struct device_list *devices)
1118{
1119 int netfd;
1120 struct device *dev;
1121
1122 /* We don't use open_or_die() here: for friendliness we create the file
1123 * if it doesn't already exist. */
1124 netfd = open(filename, O_RDWR, 0);
1125 if (netfd < 0) {
1126 if (errno == ENOENT) {
1127 netfd = open(filename, O_RDWR|O_CREAT, 0600);
1128 if (netfd >= 0) {
1129 /* If we succeeded, initialize the file with a
1130 * blank page. */
1131 char page[getpagesize()];
1132 memset(page, 0, sizeof(page));
1133 write(netfd, page, sizeof(page));
1134 }
1135 }
1136 if (netfd < 0)
1137 err(1, "cannot open net file '%s'", filename);
1138 }
1139
1140 /* We need 1 page, and the features indicate the slot to use and that
1141 * no checksum is needed. We never touch this device again; it's
1142 * between the Guests on the network, so we don't register input or
1143 * output handlers. */
1144 dev = new_device(devices, LGUEST_DEVICE_T_NET, 1,
1145 find_slot(netfd, filename)|LGUEST_NET_F_NOCSUM,
1146 -1, NULL, 0, NULL);
1147
1148 /* Map the shared file. */
1149 if (mmap(dev->mem, getpagesize(), PROT_READ|PROT_WRITE,
1150 MAP_FIXED|MAP_SHARED, netfd, 0) != dev->mem)
1151 err(1, "could not mmap '%s'", filename);
1152 verbose("device %p: shared net %s, peer %i\n",
1153 (void *)(dev->desc->pfn * getpagesize()), filename,
1154 dev->desc->features & ~LGUEST_NET_F_NOCSUM);
1155}
1156/*:*/
1157 1183
1158static u32 str2ip(const char *ipaddr) 1184static u32 str2ip(const char *ipaddr)
1159{ 1185{
@@ -1188,7 +1214,7 @@ static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1188 1214
1189/* This sets up the Host end of the network device with an IP address, brings 1215/* This sets up the Host end of the network device with an IP address, brings
1190 * it up so packets will flow, the copies the MAC address into the hwaddr 1216 * it up so packets will flow, the copies the MAC address into the hwaddr
1191 * pointer (in practice, the Host's slot in the network device's memory). */ 1217 * pointer. */
1192static void configure_device(int fd, const char *devname, u32 ipaddr, 1218static void configure_device(int fd, const char *devname, u32 ipaddr,
1193 unsigned char hwaddr[6]) 1219 unsigned char hwaddr[6])
1194{ 1220{
@@ -1214,18 +1240,18 @@ static void configure_device(int fd, const char *devname, u32 ipaddr,
1214 memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6); 1240 memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
1215} 1241}
1216 1242
1217/*L:195 The other kind of network is a Host<->Guest network. This can either 1243/*L:195 Our network is a Host<->Guest network. This can either use bridging or
1218 * use briding or routing, but the principle is the same: it uses the "tun" 1244 * routing, but the principle is the same: it uses the "tun" device to inject
1219 * device to inject packets into the Host as if they came in from a normal 1245 * packets into the Host as if they came in from a normal network card. We
1220 * network card. We just shunt packets between the Guest and the tun 1246 * just shunt packets between the Guest and the tun device. */
1221 * device. */ 1247static void setup_tun_net(const char *arg)
1222static void setup_tun_net(const char *arg, struct device_list *devices)
1223{ 1248{
1224 struct device *dev; 1249 struct device *dev;
1225 struct ifreq ifr; 1250 struct ifreq ifr;
1226 int netfd, ipfd; 1251 int netfd, ipfd;
1227 u32 ip; 1252 u32 ip;
1228 const char *br_name = NULL; 1253 const char *br_name = NULL;
1254 u8 hwaddr[6];
1229 1255
1230 /* We open the /dev/net/tun device and tell it we want a tap device. A 1256 /* We open the /dev/net/tun device and tell it we want a tap device. A
1231 * tap device is like a tun device, only somehow different. To tell 1257 * tap device is like a tun device, only somehow different. To tell
@@ -1241,21 +1267,12 @@ static void setup_tun_net(const char *arg, struct device_list *devices)
1241 * device: trust us! */ 1267 * device: trust us! */
1242 ioctl(netfd, TUNSETNOCSUM, 1); 1268 ioctl(netfd, TUNSETNOCSUM, 1);
1243 1269
1244 /* We create the net device with 1 page, using the features field of 1270 /* First we create a new network device. */
1245 * the descriptor to tell the Guest it is in slot 1 (NET_PEERNUM), and 1271 dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
1246 * that the device has fairly random timing. We do *not* specify
1247 * LGUEST_NET_F_NOCSUM: these packets can reach the real world.
1248 *
1249 * We will put our MAC address is slot 0 for the Guest to see, so
1250 * it will send packets to us using the key "peer_offset(0)": */
1251 dev = new_device(devices, LGUEST_DEVICE_T_NET, 1,
1252 NET_PEERNUM|LGUEST_DEVICE_F_RANDOMNESS, netfd,
1253 handle_tun_input, peer_offset(0), handle_tun_output);
1254 1272
1255 /* We keep a flag which says whether we've seen packets come out from 1273 /* Network devices need a receive and a send queue. */
1256 * this network device. */ 1274 add_virtqueue(dev, VIRTQUEUE_NUM, NULL);
1257 dev->priv = malloc(sizeof(bool)); 1275 add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
1258 *(bool *)dev->priv = false;
1259 1276
1260 /* We need a socket to perform the magic network ioctls to bring up the 1277 /* We need a socket to perform the magic network ioctls to bring up the
1261 * tap interface, connect to the bridge etc. Any socket will do! */ 1278 * tap interface, connect to the bridge etc. Any socket will do! */
@@ -1271,44 +1288,251 @@ static void setup_tun_net(const char *arg, struct device_list *devices)
1271 } else /* It is an IP address to set up the device with */ 1288 } else /* It is an IP address to set up the device with */
1272 ip = str2ip(arg); 1289 ip = str2ip(arg);
1273 1290
1274 /* We are peer 0, ie. first slot, so we hand dev->mem to this routine 1291 /* Set up the tun device, and get the mac address for the interface. */
1275 * to write the MAC address at the start of the device memory. */ 1292 configure_device(ipfd, ifr.ifr_name, ip, hwaddr);
1276 configure_device(ipfd, ifr.ifr_name, ip, dev->mem);
1277 1293
1278 /* Set "promisc" bit: we want every single packet if we're going to 1294 /* Tell Guest what MAC address to use. */
1279 * bridge to other machines (and otherwise it doesn't matter). */ 1295 add_desc_field(dev, VIRTIO_CONFIG_NET_MAC_F, sizeof(hwaddr), hwaddr);
1280 *((u8 *)dev->mem) |= 0x1;
1281 1296
1297 /* We don't seed the socket any more; setup is done. */
1282 close(ipfd); 1298 close(ipfd);
1283 1299
1284 verbose("device %p: tun net %u.%u.%u.%u\n", 1300 verbose("device %u: tun net %u.%u.%u.%u\n",
1285 (void *)(dev->desc->pfn * getpagesize()), 1301 devices.device_num++,
1286 (u8)(ip>>24), (u8)(ip>>16), (u8)(ip>>8), (u8)ip); 1302 (u8)(ip>>24),(u8)(ip>>16),(u8)(ip>>8),(u8)ip);
1287 if (br_name) 1303 if (br_name)
1288 verbose("attached to bridge: %s\n", br_name); 1304 verbose("attached to bridge: %s\n", br_name);
1289} 1305}
1306
1307
1308/*
1309 * Block device.
1310 *
1311 * Serving a block device is really easy: the Guest asks for a block number and
1312 * we read or write that position in the file.
1313 *
1314 * Unfortunately, this is amazingly slow: the Guest waits until the read is
1315 * finished before running anything else, even if it could be doing useful
1316 * work. We could use async I/O, except it's reputed to suck so hard that
1317 * characters actually go missing from your code when you try to use it.
1318 *
1319 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1320
1321/* This hangs off device->priv, with the data. */
1322struct vblk_info
1323{
1324 /* The size of the file. */
1325 off64_t len;
1326
1327 /* The file descriptor for the file. */
1328 int fd;
1329
1330 /* IO thread listens on this file descriptor [0]. */
1331 int workpipe[2];
1332
1333 /* IO thread writes to this file descriptor to mark it done, then
1334 * Launcher triggers interrupt to Guest. */
1335 int done_fd;
1336};
1337
1338/* This is the core of the I/O thread. It returns true if it did something. */
1339static bool service_io(struct device *dev)
1340{
1341 struct vblk_info *vblk = dev->priv;
1342 unsigned int head, out_num, in_num, wlen;
1343 int ret;
1344 struct virtio_blk_inhdr *in;
1345 struct virtio_blk_outhdr *out;
1346 struct iovec iov[dev->vq->vring.num];
1347 off64_t off;
1348
1349 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1350 if (head == dev->vq->vring.num)
1351 return false;
1352
1353 if (out_num == 0 || in_num == 0)
1354 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1355 head, out_num, in_num);
1356
1357 out = convert(&iov[0], struct virtio_blk_outhdr);
1358 in = convert(&iov[out_num+in_num-1], struct virtio_blk_inhdr);
1359 off = out->sector * 512;
1360
1361 /* This is how we implement barriers. Pretty poor, no? */
1362 if (out->type & VIRTIO_BLK_T_BARRIER)
1363 fdatasync(vblk->fd);
1364
1365 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1366 fprintf(stderr, "Scsi commands unsupported\n");
1367 in->status = VIRTIO_BLK_S_UNSUPP;
1368 wlen = sizeof(in);
1369 } else if (out->type & VIRTIO_BLK_T_OUT) {
1370 /* Write */
1371
1372 /* Move to the right location in the block file. This can fail
1373 * if they try to write past end. */
1374 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1375 err(1, "Bad seek to sector %llu", out->sector);
1376
1377 ret = writev(vblk->fd, iov+1, out_num-1);
1378 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1379
1380 /* Grr... Now we know how long the descriptor they sent was, we
1381 * make sure they didn't try to write over the end of the block
1382 * file (possibly extending it). */
1383 if (ret > 0 && off + ret > vblk->len) {
1384 /* Trim it back to the correct length */
1385 ftruncate64(vblk->fd, vblk->len);
1386 /* Die, bad Guest, die. */
1387 errx(1, "Write past end %llu+%u", off, ret);
1388 }
1389 wlen = sizeof(in);
1390 in->status = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1391 } else {
1392 /* Read */
1393
1394 /* Move to the right location in the block file. This can fail
1395 * if they try to read past end. */
1396 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1397 err(1, "Bad seek to sector %llu", out->sector);
1398
1399 ret = readv(vblk->fd, iov+1, in_num-1);
1400 verbose("READ from sector %llu: %i\n", out->sector, ret);
1401 if (ret >= 0) {
1402 wlen = sizeof(in) + ret;
1403 in->status = VIRTIO_BLK_S_OK;
1404 } else {
1405 wlen = sizeof(in);
1406 in->status = VIRTIO_BLK_S_IOERR;
1407 }
1408 }
1409
1410 /* We can't trigger an IRQ, because we're not the Launcher. It does
1411 * that when we tell it we're done. */
1412 add_used(dev->vq, head, wlen);
1413 return true;
1414}
1415
1416/* This is the thread which actually services the I/O. */
1417static int io_thread(void *_dev)
1418{
1419 struct device *dev = _dev;
1420 struct vblk_info *vblk = dev->priv;
1421 char c;
1422
1423 /* Close other side of workpipe so we get 0 read when main dies. */
1424 close(vblk->workpipe[1]);
1425 /* Close the other side of the done_fd pipe. */
1426 close(dev->fd);
1427
1428 /* When this read fails, it means Launcher died, so we follow. */
1429 while (read(vblk->workpipe[0], &c, 1) == 1) {
1430 /* We acknowledge each request immediately, to reduce latency,
1431 * rather than waiting until we've done them all. I haven't
1432 * measured to see if it makes any difference. */
1433 while (service_io(dev))
1434 write(vblk->done_fd, &c, 1);
1435 }
1436 return 0;
1437}
1438
1439/* When the thread says some I/O is done, we interrupt the Guest. */
1440static bool handle_io_finish(int fd, struct device *dev)
1441{
1442 char c;
1443
1444 /* If child died, presumably it printed message. */
1445 if (read(dev->fd, &c, 1) != 1)
1446 exit(1);
1447
1448 /* It did some work, so trigger the irq. */
1449 trigger_irq(fd, dev->vq);
1450 return true;
1451}
1452
1453/* When the Guest submits some I/O, we wake the I/O thread. */
1454static void handle_virtblk_output(int fd, struct virtqueue *vq)
1455{
1456 struct vblk_info *vblk = vq->dev->priv;
1457 char c = 0;
1458
1459 /* Wake up I/O thread and tell it to go to work! */
1460 if (write(vblk->workpipe[1], &c, 1) != 1)
1461 /* Presumably it indicated why it died. */
1462 exit(1);
1463}
1464
1465/* This creates a virtual block device. */
1466static void setup_block_file(const char *filename)
1467{
1468 int p[2];
1469 struct device *dev;
1470 struct vblk_info *vblk;
1471 void *stack;
1472 u64 cap;
1473 unsigned int val;
1474
1475 /* This is the pipe the I/O thread will use to tell us I/O is done. */
1476 pipe(p);
1477
1478 /* The device responds to return from I/O thread. */
1479 dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1480
1481 /* The device has a virtqueue. */
1482 add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1483
1484 /* Allocate the room for our own bookkeeping */
1485 vblk = dev->priv = malloc(sizeof(*vblk));
1486
1487 /* First we open the file and store the length. */
1488 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1489 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1490
1491 /* Tell Guest how many sectors this device has. */
1492 cap = cpu_to_le64(vblk->len / 512);
1493 add_desc_field(dev, VIRTIO_CONFIG_BLK_F_CAPACITY, sizeof(cap), &cap);
1494
1495 /* Tell Guest not to put in too many descriptors at once: two are used
1496 * for the in and out elements. */
1497 val = cpu_to_le32(VIRTQUEUE_NUM - 2);
1498 add_desc_field(dev, VIRTIO_CONFIG_BLK_F_SEG_MAX, sizeof(val), &val);
1499
1500 /* The I/O thread writes to this end of the pipe when done. */
1501 vblk->done_fd = p[1];
1502
1503 /* This is how we tell the I/O thread about more work. */
1504 pipe(vblk->workpipe);
1505
1506 /* Create stack for thread and run it */
1507 stack = malloc(32768);
1508 if (clone(io_thread, stack + 32768, CLONE_VM, dev) == -1)
1509 err(1, "Creating clone");
1510
1511 /* We don't need to keep the I/O thread's end of the pipes open. */
1512 close(vblk->done_fd);
1513 close(vblk->workpipe[0]);
1514
1515 verbose("device %u: virtblock %llu sectors\n",
1516 devices.device_num, cap);
1517}
1290/* That's the end of device setup. */ 1518/* That's the end of device setup. */
1291 1519
1292/*L:220 Finally we reach the core of the Launcher, which runs the Guest, serves 1520/*L:220 Finally we reach the core of the Launcher, which runs the Guest, serves
1293 * its input and output, and finally, lays it to rest. */ 1521 * its input and output, and finally, lays it to rest. */
1294static void __attribute__((noreturn)) 1522static void __attribute__((noreturn)) run_guest(int lguest_fd)
1295run_guest(int lguest_fd, struct device_list *device_list)
1296{ 1523{
1297 for (;;) { 1524 for (;;) {
1298 unsigned long args[] = { LHREQ_BREAK, 0 }; 1525 unsigned long args[] = { LHREQ_BREAK, 0 };
1299 unsigned long arr[2]; 1526 unsigned long notify_addr;
1300 int readval; 1527 int readval;
1301 1528
1302 /* We read from the /dev/lguest device to run the Guest. */ 1529 /* We read from the /dev/lguest device to run the Guest. */
1303 readval = read(lguest_fd, arr, sizeof(arr)); 1530 readval = read(lguest_fd, &notify_addr, sizeof(notify_addr));
1304 1531
1305 /* The read can only really return sizeof(arr) (the Guest did a 1532 /* One unsigned long means the Guest did HCALL_NOTIFY */
1306 * SEND_DMA to us), or an error. */ 1533 if (readval == sizeof(notify_addr)) {
1307 1534 verbose("Notify on address %#lx\n", notify_addr);
1308 /* For a successful read, arr[0] is the address of the "struct 1535 handle_output(lguest_fd, notify_addr);
1309 * lguest_dma", and arr[1] is the key the Guest sent to. */
1310 if (readval == sizeof(arr)) {
1311 handle_output(lguest_fd, arr[0], arr[1], device_list);
1312 continue; 1536 continue;
1313 /* ENOENT means the Guest died. Reading tells us why. */ 1537 /* ENOENT means the Guest died. Reading tells us why. */
1314 } else if (errno == ENOENT) { 1538 } else if (errno == ENOENT) {
@@ -1322,7 +1546,7 @@ run_guest(int lguest_fd, struct device_list *device_list)
1322 1546
1323 /* Service input, then unset the BREAK which releases 1547 /* Service input, then unset the BREAK which releases
1324 * the Waker. */ 1548 * the Waker. */
1325 handle_input(lguest_fd, device_list); 1549 handle_input(lguest_fd);
1326 if (write(lguest_fd, args, sizeof(args)) < 0) 1550 if (write(lguest_fd, args, sizeof(args)) < 0)
1327 err(1, "Resetting break"); 1551 err(1, "Resetting break");
1328 } 1552 }
@@ -1336,7 +1560,6 @@ run_guest(int lguest_fd, struct device_list *device_list)
1336 1560
1337static struct option opts[] = { 1561static struct option opts[] = {
1338 { "verbose", 0, NULL, 'v' }, 1562 { "verbose", 0, NULL, 'v' },
1339 { "sharenet", 1, NULL, 's' },
1340 { "tunnet", 1, NULL, 't' }, 1563 { "tunnet", 1, NULL, 't' },
1341 { "block", 1, NULL, 'b' }, 1564 { "block", 1, NULL, 'b' },
1342 { "initrd", 1, NULL, 'i' }, 1565 { "initrd", 1, NULL, 'i' },
@@ -1345,7 +1568,7 @@ static struct option opts[] = {
1345static void usage(void) 1568static void usage(void)
1346{ 1569{
1347 errx(1, "Usage: lguest [--verbose] " 1570 errx(1, "Usage: lguest [--verbose] "
1348 "[--sharenet=<filename>|--tunnet=(<ipaddr>|bridge:<bridgename>)\n" 1571 "[--tunnet=(<ipaddr>|bridge:<bridgename>)\n"
1349 "|--block=<filename>|--initrd=<filename>]...\n" 1572 "|--block=<filename>|--initrd=<filename>]...\n"
1350 "<mem-in-mb> vmlinux [args...]"); 1573 "<mem-in-mb> vmlinux [args...]");
1351} 1574}
@@ -1358,8 +1581,6 @@ int main(int argc, char *argv[])
1358 unsigned long mem = 0, pgdir, start, initrd_size = 0; 1581 unsigned long mem = 0, pgdir, start, initrd_size = 0;
1359 /* A temporary and the /dev/lguest file descriptor. */ 1582 /* A temporary and the /dev/lguest file descriptor. */
1360 int i, c, lguest_fd; 1583 int i, c, lguest_fd;
1361 /* The list of Guest devices, based on command line arguments. */
1362 struct device_list device_list;
1363 /* The boot information for the Guest. */ 1584 /* The boot information for the Guest. */
1364 void *boot; 1585 void *boot;
1365 /* If they specify an initrd file to load. */ 1586 /* If they specify an initrd file to load. */
@@ -1369,11 +1590,12 @@ int main(int argc, char *argv[])
1369 * device receive input from a file descriptor, we keep an fdset 1590 * device receive input from a file descriptor, we keep an fdset
1370 * (infds) and the maximum fd number (max_infd) with the head of the 1591 * (infds) and the maximum fd number (max_infd) with the head of the
1371 * list. We also keep a pointer to the last device, for easy appending 1592 * list. We also keep a pointer to the last device, for easy appending
1372 * to the list. */ 1593 * to the list. Finally, we keep the next interrupt number to hand out
1373 device_list.max_infd = -1; 1594 * (1: remember that 0 is used by the timer). */
1374 device_list.dev = NULL; 1595 FD_ZERO(&devices.infds);
1375 device_list.lastdev = &device_list.dev; 1596 devices.max_infd = -1;
1376 FD_ZERO(&device_list.infds); 1597 devices.lastdev = &devices.dev;
1598 devices.next_irq = 1;
1377 1599
1378 /* We need to know how much memory so we can set up the device 1600 /* We need to know how much memory so we can set up the device
1379 * descriptor and memory pages for the devices as we parse the command 1601 * descriptor and memory pages for the devices as we parse the command
@@ -1390,7 +1612,7 @@ int main(int argc, char *argv[])
1390 + DEVICE_PAGES); 1612 + DEVICE_PAGES);
1391 guest_limit = mem; 1613 guest_limit = mem;
1392 guest_max = mem + DEVICE_PAGES*getpagesize(); 1614 guest_max = mem + DEVICE_PAGES*getpagesize();
1393 device_list.descs = get_pages(1); 1615 devices.descpage = get_pages(1);
1394 break; 1616 break;
1395 } 1617 }
1396 } 1618 }
@@ -1401,14 +1623,11 @@ int main(int argc, char *argv[])
1401 case 'v': 1623 case 'v':
1402 verbose = true; 1624 verbose = true;
1403 break; 1625 break;
1404 case 's':
1405 setup_net_file(optarg, &device_list);
1406 break;
1407 case 't': 1626 case 't':
1408 setup_tun_net(optarg, &device_list); 1627 setup_tun_net(optarg);
1409 break; 1628 break;
1410 case 'b': 1629 case 'b':
1411 setup_block_file(optarg, &device_list); 1630 setup_block_file(optarg);
1412 break; 1631 break;
1413 case 'i': 1632 case 'i':
1414 initrd_name = optarg; 1633 initrd_name = optarg;
@@ -1426,7 +1645,7 @@ int main(int argc, char *argv[])
1426 verbose("Guest base is at %p\n", guest_base); 1645 verbose("Guest base is at %p\n", guest_base);
1427 1646
1428 /* We always have a console device */ 1647 /* We always have a console device */
1429 setup_console(&device_list); 1648 setup_console();
1430 1649
1431 /* Now we load the kernel */ 1650 /* Now we load the kernel */
1432 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY)); 1651 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
@@ -1468,10 +1687,10 @@ int main(int argc, char *argv[])
1468 /* We fork off a child process, which wakes the Launcher whenever one 1687 /* We fork off a child process, which wakes the Launcher whenever one
1469 * of the input file descriptors needs attention. Otherwise we would 1688 * of the input file descriptors needs attention. Otherwise we would
1470 * run the Guest until it tries to output something. */ 1689 * run the Guest until it tries to output something. */
1471 waker_fd = setup_waker(lguest_fd, &device_list); 1690 waker_fd = setup_waker(lguest_fd);
1472 1691
1473 /* Finally, run the Guest. This doesn't return. */ 1692 /* Finally, run the Guest. This doesn't return. */
1474 run_guest(lguest_fd, &device_list); 1693 run_guest(lguest_fd);
1475} 1694}
1476/*:*/ 1695/*:*/
1477 1696