aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/kdump
diff options
context:
space:
mode:
authorVivek Goyal <vgoyal@in.ibm.com>2005-06-25 17:58:15 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-06-25 19:24:52 -0400
commitb089f4a68eccd9782c89262c0d7cae146d5a8a40 (patch)
treea84874a801e54dd89e5093392aedf49cece4cb11 /Documentation/kdump
parenta3ea8ac8468f5c7fc65684331dfba3260d5b2d93 (diff)
[PATCH] kdump: Documentation for Kdump
This patch contains the documentation for the kexec based crash dump tool. Quick kdump-howto ================================================================ 1) Download and build kexec-tools. 2) Download and build the latest kexec/kdump (-mm) kernel patchset. Two kernels need to be built in order to get this feature working. A) First kernel: a) Enable "kexec system call" feature: CONFIG_KEXEC=y b) Physical load address (use default): CONFIG_PHYSICAL_START=0x100000 c) Enable "sysfs file system support": CONFIG_SYSFS=y d) Boot into first kernel with the command line parameter "crashkernel=Y@X": For example: "crashkernel=64M@16M". B) Second kernel: a) Enable "kernel crash dumps" feature: CONFIG_CRASH_DUMP=y b) Physical load addreess, use same load address as X in "crashkernel" kernel parameter in d) above, e.g., 16 MB or 0x1000000. CONFIG_PHYSICAL_START=0x1000000 c) Enable "/proc/vmcore support" (Optional, in Pseudo filesystems). CONFIG_PROC_VMCORE=y 3) Boot into the first kernel. 4) Load the second kernel to be booted using: kexec -p <second-kernel> --crash-dump --args-linux --append="root=<root-dev> maxcpus=1 init 1" 5) System reboots into the second kernel when a panic occurs. A module can be written to force the panic, for testing purposes. 6) See Documentation/kdump.txt for how to read the first kernel's memory image and how to analyze it. Signed-off-by: Hariprasad Nellitheertha <hari@in.ibm.com> Signed-off-by: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: randy_dunlap <rdunlap@xenotime.net> Signed-off-by: Maneesh Soni <maneesh@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'Documentation/kdump')
-rw-r--r--Documentation/kdump/gdbmacros.txt179
-rw-r--r--Documentation/kdump/kdump.txt135
2 files changed, 314 insertions, 0 deletions
diff --git a/Documentation/kdump/gdbmacros.txt b/Documentation/kdump/gdbmacros.txt
new file mode 100644
index 000000000000..bc1b9eb92ae1
--- /dev/null
+++ b/Documentation/kdump/gdbmacros.txt
@@ -0,0 +1,179 @@
1#
2# This file contains a few gdb macros (user defined commands) to extract
3# useful information from kernel crashdump (kdump) like stack traces of
4# all the processes or a particular process and trapinfo.
5#
6# These macros can be used by copying this file in .gdbinit (put in home
7# directory or current directory) or by invoking gdb command with
8# --command=<command-file-name> option
9#
10# Credits:
11# Alexander Nyberg <alexn@telia.com>
12# V Srivatsa <vatsa@in.ibm.com>
13# Maneesh Soni <maneesh@in.ibm.com>
14#
15
16define bttnobp
17 set $tasks_off=((size_t)&((struct task_struct *)0)->tasks)
18 set $pid_off=((size_t)&((struct task_struct *)0)->pids[1].pid_list.next)
19 set $init_t=&init_task
20 set $next_t=(((char *)($init_t->tasks).next) - $tasks_off)
21 while ($next_t != $init_t)
22 set $next_t=(struct task_struct *)$next_t
23 printf "\npid %d; comm %s:\n", $next_t.pid, $next_t.comm
24 printf "===================\n"
25 set var $stackp = $next_t.thread.esp
26 set var $stack_top = ($stackp & ~4095) + 4096
27
28 while ($stackp < $stack_top)
29 if (*($stackp) > _stext && *($stackp) < _sinittext)
30 info symbol *($stackp)
31 end
32 set $stackp += 4
33 end
34 set $next_th=(((char *)$next_t->pids[1].pid_list.next) - $pid_off)
35 while ($next_th != $next_t)
36 set $next_th=(struct task_struct *)$next_th
37 printf "\npid %d; comm %s:\n", $next_t.pid, $next_t.comm
38 printf "===================\n"
39 set var $stackp = $next_t.thread.esp
40 set var $stack_top = ($stackp & ~4095) + 4096
41
42 while ($stackp < $stack_top)
43 if (*($stackp) > _stext && *($stackp) < _sinittext)
44 info symbol *($stackp)
45 end
46 set $stackp += 4
47 end
48 set $next_th=(((char *)$next_th->pids[1].pid_list.next) - $pid_off)
49 end
50 set $next_t=(char *)($next_t->tasks.next) - $tasks_off
51 end
52end
53document bttnobp
54 dump all thread stack traces on a kernel compiled with !CONFIG_FRAME_POINTER
55end
56
57define btt
58 set $tasks_off=((size_t)&((struct task_struct *)0)->tasks)
59 set $pid_off=((size_t)&((struct task_struct *)0)->pids[1].pid_list.next)
60 set $init_t=&init_task
61 set $next_t=(((char *)($init_t->tasks).next) - $tasks_off)
62 while ($next_t != $init_t)
63 set $next_t=(struct task_struct *)$next_t
64 printf "\npid %d; comm %s:\n", $next_t.pid, $next_t.comm
65 printf "===================\n"
66 set var $stackp = $next_t.thread.esp
67 set var $stack_top = ($stackp & ~4095) + 4096
68 set var $stack_bot = ($stackp & ~4095)
69
70 set $stackp = *($stackp)
71 while (($stackp < $stack_top) && ($stackp > $stack_bot))
72 set var $addr = *($stackp + 4)
73 info symbol $addr
74 set $stackp = *($stackp)
75 end
76
77 set $next_th=(((char *)$next_t->pids[1].pid_list.next) - $pid_off)
78 while ($next_th != $next_t)
79 set $next_th=(struct task_struct *)$next_th
80 printf "\npid %d; comm %s:\n", $next_t.pid, $next_t.comm
81 printf "===================\n"
82 set var $stackp = $next_t.thread.esp
83 set var $stack_top = ($stackp & ~4095) + 4096
84 set var $stack_bot = ($stackp & ~4095)
85
86 set $stackp = *($stackp)
87 while (($stackp < $stack_top) && ($stackp > $stack_bot))
88 set var $addr = *($stackp + 4)
89 info symbol $addr
90 set $stackp = *($stackp)
91 end
92 set $next_th=(((char *)$next_th->pids[1].pid_list.next) - $pid_off)
93 end
94 set $next_t=(char *)($next_t->tasks.next) - $tasks_off
95 end
96end
97document btt
98 dump all thread stack traces on a kernel compiled with CONFIG_FRAME_POINTER
99end
100
101define btpid
102 set var $pid = $arg0
103 set $tasks_off=((size_t)&((struct task_struct *)0)->tasks)
104 set $pid_off=((size_t)&((struct task_struct *)0)->pids[1].pid_list.next)
105 set $init_t=&init_task
106 set $next_t=(((char *)($init_t->tasks).next) - $tasks_off)
107 set var $pid_task = 0
108
109 while ($next_t != $init_t)
110 set $next_t=(struct task_struct *)$next_t
111
112 if ($next_t.pid == $pid)
113 set $pid_task = $next_t
114 end
115
116 set $next_th=(((char *)$next_t->pids[1].pid_list.next) - $pid_off)
117 while ($next_th != $next_t)
118 set $next_th=(struct task_struct *)$next_th
119 if ($next_th.pid == $pid)
120 set $pid_task = $next_th
121 end
122 set $next_th=(((char *)$next_th->pids[1].pid_list.next) - $pid_off)
123 end
124 set $next_t=(char *)($next_t->tasks.next) - $tasks_off
125 end
126
127 printf "\npid %d; comm %s:\n", $pid_task.pid, $pid_task.comm
128 printf "===================\n"
129 set var $stackp = $pid_task.thread.esp
130 set var $stack_top = ($stackp & ~4095) + 4096
131 set var $stack_bot = ($stackp & ~4095)
132
133 set $stackp = *($stackp)
134 while (($stackp < $stack_top) && ($stackp > $stack_bot))
135 set var $addr = *($stackp + 4)
136 info symbol $addr
137 set $stackp = *($stackp)
138 end
139end
140document btpid
141 backtrace of pid
142end
143
144
145define trapinfo
146 set var $pid = $arg0
147 set $tasks_off=((size_t)&((struct task_struct *)0)->tasks)
148 set $pid_off=((size_t)&((struct task_struct *)0)->pids[1].pid_list.next)
149 set $init_t=&init_task
150 set $next_t=(((char *)($init_t->tasks).next) - $tasks_off)
151 set var $pid_task = 0
152
153 while ($next_t != $init_t)
154 set $next_t=(struct task_struct *)$next_t
155
156 if ($next_t.pid == $pid)
157 set $pid_task = $next_t
158 end
159
160 set $next_th=(((char *)$next_t->pids[1].pid_list.next) - $pid_off)
161 while ($next_th != $next_t)
162 set $next_th=(struct task_struct *)$next_th
163 if ($next_th.pid == $pid)
164 set $pid_task = $next_th
165 end
166 set $next_th=(((char *)$next_th->pids[1].pid_list.next) - $pid_off)
167 end
168 set $next_t=(char *)($next_t->tasks.next) - $tasks_off
169 end
170
171 printf "Trapno %ld, cr2 0x%lx, error_code %ld\n", $pid_task.thread.trap_no, \
172 $pid_task.thread.cr2, $pid_task.thread.error_code
173
174end
175document trapinfo
176 Run info threads and lookup pid of thread #1
177 'trapinfo <pid>' will tell you by which trap & possibly
178 addresthe kernel paniced.
179end
diff --git a/Documentation/kdump/kdump.txt b/Documentation/kdump/kdump.txt
new file mode 100644
index 000000000000..b0f412e42791
--- /dev/null
+++ b/Documentation/kdump/kdump.txt
@@ -0,0 +1,135 @@
1Documentation for kdump - the kexec-based crash dumping solution
2================================================================
3
4DESIGN
5======
6
7Kdump uses kexec to reboot to a second kernel whenever a dump needs to be taken.
8This second kernel is booted with very little memory. The first kernel reserves
9the section of memory that the second kernel uses. This ensures that on-going
10DMA from the first kernel does not corrupt the second kernel.
11
12All the necessary information about Core image is encoded in ELF format and
13stored in reserved area of memory before crash. Physical address of start of
14ELF header is passed to new kernel through command line parameter elfcorehdr=.
15
16On i386, the first 640 KB of physical memory is needed to boot, irrespective
17of where the kernel loads. Hence, this region is backed up by kexec just before
18rebooting into the new kernel.
19
20In the second kernel, "old memory" can be accessed in two ways.
21
22- The first one is through a /dev/oldmem device interface. A capture utility
23 can read the device file and write out the memory in raw format. This is raw
24 dump of memory and analysis/capture tool should be intelligent enough to
25 determine where to look for the right information. ELF headers (elfcorehdr=)
26 can become handy here.
27
28- The second interface is through /proc/vmcore. This exports the dump as an ELF
29 format file which can be written out using any file copy command
30 (cp, scp, etc). Further, gdb can be used to perform limited debugging on
31 the dump file. This method ensures methods ensure that there is correct
32 ordering of the dump pages (corresponding to the first 640 KB that has been
33 relocated).
34
35SETUP
36=====
37
381) Download http://www.xmission.com/~ebiederm/files/kexec/kexec-tools-1.101.tar.gz
39 and apply http://lse.sourceforge.net/kdump/patches/kexec-tools-1.101-kdump.patch
40 and after that build the source.
41
422) Download and build the appropriate (latest) kexec/kdump (-mm) kernel
43 patchset and apply it to the vanilla kernel tree.
44
45 Two kernels need to be built in order to get this feature working.
46
47 A) First kernel:
48 a) Enable "kexec system call" feature (in Processor type and features).
49 CONFIG_KEXEC=y
50 b) This kernel's physical load address should be the default value of
51 0x100000 (0x100000, 1 MB) (in Processor type and features).
52 CONFIG_PHYSICAL_START=0x100000
53 c) Enable "sysfs file system support" (in Pseudo filesystems).
54 CONFIG_SYSFS=y
55 d) Boot into first kernel with the command line parameter "crashkernel=Y@X".
56 Use appropriate values for X and Y. Y denotes how much memory to reserve
57 for the second kernel, and X denotes at what physical address the reserved
58 memory section starts. For example: "crashkernel=64M@16M".
59
60 B) Second kernel:
61 a) Enable "kernel crash dumps" feature (in Processor type and features).
62 CONFIG_CRASH_DUMP=y
63 b) Specify a suitable value for "Physical address where the kernel is
64 loaded" (in Processor type and features). Typically this value
65 should be same as X (See option d) above, e.g., 16 MB or 0x1000000.
66 CONFIG_PHYSICAL_START=0x1000000
67 c) Enable "/proc/vmcore support" (Optional, in Pseudo filesystems).
68 CONFIG_PROC_VMCORE=y
69
70 Note: Options a) and b) depend upon "Configure standard kernel features
71 (for small systems)" (under General setup).
72 Option a) also depends on CONFIG_HIGHMEM (under Processor
73 type and features).
74 Both option a) and b) are under "Processor type and features".
75
763) Boot into the first kernel. You are now ready to try out kexec-based crash
77 dumps.
78
794) Load the second kernel to be booted using:
80
81 kexec -p <second-kernel> --crash-dump --args-linux --append="root=<root-dev>
82 maxcpus=1 init 1"
83
84 Note: i) <second-kernel> has to be a vmlinux image. bzImage will not work,
85 as of now.
86 ii) By default ELF headers are stored in ELF32 format (for i386). This
87 is sufficient to represent the physical memory up to 4GB. To store
88 headers in ELF64 format, specifiy "--elf64-core-headers" on the
89 kexec command line additionally.
90 iii) For now (or until it is fixed), it's best to build the
91 second-kernel without multi-processor support, i.e., make it
92 a uniprocessor kernel.
93
945) System reboots into the second kernel when a panic occurs. A module can be
95 written to force the panic, for testing purposes.
96
976) Write out the dump file using
98
99 cp /proc/vmcore <dump-file>
100
101 Dump memory can also be accessed as a /dev/oldmem device for a linear/raw
102 view. To create the device, type:
103
104 mknod /dev/oldmem c 1 12
105
106 Use "dd" with suitable options for count, bs and skip to access specific
107 portions of the dump.
108
109 Entire memory: dd if=/dev/oldmem of=oldmem.001
110
111ANALYSIS
112========
113
114Limited analysis can be done using gdb on the dump file copied out of
115/proc/vmcore. Use vmlinux built with -g and run
116
117 gdb vmlinux <dump-file>
118
119Stack trace for the task on processor 0, register display, memory display
120work fine.
121
122Note: gdb cannot analyse core files generated in ELF64 format for i386.
123
124TODO
125====
126
1271) Provide a kernel pages filtering mechanism so that core file size is not
128 insane on systems having huge memory banks.
1292) Modify "crash" tool to make it recognize this dump.
130
131CONTACT
132=======
133
134Hariprasad Nellitheertha - hari at in dot ibm dot com
135Vivek Goyal (vgoyal@in.ibm.com)