diff options
author | Dmitry Torokhov <dtor_core@ameritech.net> | 2005-09-09 21:14:47 -0400 |
---|---|---|
committer | Dmitry Torokhov <dtor_core@ameritech.net> | 2005-09-09 21:14:47 -0400 |
commit | d344c5e0856ad03278d8700b503762dbc8b86e12 (patch) | |
tree | a6d893a643470a3c2580a58f3228a55fa1fd1d82 /Documentation/filesystems/vfs.txt | |
parent | 010988e888a0abbe7118635c1b33d049caae6b29 (diff) | |
parent | 87fc767b832ef5a681a0ff9d203c3289bc3be2bf (diff) |
Manual merge with Linus
Diffstat (limited to 'Documentation/filesystems/vfs.txt')
-rw-r--r-- | Documentation/filesystems/vfs.txt | 435 |
1 files changed, 323 insertions, 112 deletions
diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt index 3f318dd44c77..f042c12e0ed2 100644 --- a/Documentation/filesystems/vfs.txt +++ b/Documentation/filesystems/vfs.txt | |||
@@ -1,35 +1,27 @@ | |||
1 | /* -*- auto-fill -*- */ | ||
2 | 1 | ||
3 | Overview of the Virtual File System | 2 | Overview of the Linux Virtual File System |
4 | 3 | ||
5 | Richard Gooch <rgooch@atnf.csiro.au> | 4 | Original author: Richard Gooch <rgooch@atnf.csiro.au> |
6 | 5 | ||
7 | 5-JUL-1999 | 6 | Last updated on August 25, 2005 |
8 | 7 | ||
8 | Copyright (C) 1999 Richard Gooch | ||
9 | Copyright (C) 2005 Pekka Enberg | ||
9 | 10 | ||
10 | Conventions used in this document <section> | 11 | This file is released under the GPLv2. |
11 | ================================= | ||
12 | 12 | ||
13 | Each section in this document will have the string "<section>" at the | ||
14 | right-hand side of the section title. Each subsection will have | ||
15 | "<subsection>" at the right-hand side. These strings are meant to make | ||
16 | it easier to search through the document. | ||
17 | 13 | ||
18 | NOTE that the master copy of this document is available online at: | 14 | What is it? |
19 | http://www.atnf.csiro.au/~rgooch/linux/docs/vfs.txt | ||
20 | |||
21 | |||
22 | What is it? <section> | ||
23 | =========== | 15 | =========== |
24 | 16 | ||
25 | The Virtual File System (otherwise known as the Virtual Filesystem | 17 | The Virtual File System (otherwise known as the Virtual Filesystem |
26 | Switch) is the software layer in the kernel that provides the | 18 | Switch) is the software layer in the kernel that provides the |
27 | filesystem interface to userspace programs. It also provides an | 19 | filesystem interface to userspace programs. It also provides an |
28 | abstraction within the kernel which allows different filesystem | 20 | abstraction within the kernel which allows different filesystem |
29 | implementations to co-exist. | 21 | implementations to coexist. |
30 | 22 | ||
31 | 23 | ||
32 | A Quick Look At How It Works <section> | 24 | A Quick Look At How It Works |
33 | ============================ | 25 | ============================ |
34 | 26 | ||
35 | In this section I'll briefly describe how things work, before | 27 | In this section I'll briefly describe how things work, before |
@@ -38,7 +30,8 @@ when user programs open and manipulate files, and then look from the | |||
38 | other view which is how a filesystem is supported and subsequently | 30 | other view which is how a filesystem is supported and subsequently |
39 | mounted. | 31 | mounted. |
40 | 32 | ||
41 | Opening a File <subsection> | 33 | |
34 | Opening a File | ||
42 | -------------- | 35 | -------------- |
43 | 36 | ||
44 | The VFS implements the open(2), stat(2), chmod(2) and similar system | 37 | The VFS implements the open(2), stat(2), chmod(2) and similar system |
@@ -77,7 +70,7 @@ back to userspace. | |||
77 | 70 | ||
78 | Opening a file requires another operation: allocation of a file | 71 | Opening a file requires another operation: allocation of a file |
79 | structure (this is the kernel-side implementation of file | 72 | structure (this is the kernel-side implementation of file |
80 | descriptors). The freshly allocated file structure is initialised with | 73 | descriptors). The freshly allocated file structure is initialized with |
81 | a pointer to the dentry and a set of file operation member functions. | 74 | a pointer to the dentry and a set of file operation member functions. |
82 | These are taken from the inode data. The open() file method is then | 75 | These are taken from the inode data. The open() file method is then |
83 | called so the specific filesystem implementation can do it's work. You | 76 | called so the specific filesystem implementation can do it's work. You |
@@ -102,7 +95,8 @@ filesystem or driver code at the same time, on different | |||
102 | processors. You should ensure that access to shared resources is | 95 | processors. You should ensure that access to shared resources is |
103 | protected by appropriate locks. | 96 | protected by appropriate locks. |
104 | 97 | ||
105 | Registering and Mounting a Filesystem <subsection> | 98 | |
99 | Registering and Mounting a Filesystem | ||
106 | ------------------------------------- | 100 | ------------------------------------- |
107 | 101 | ||
108 | If you want to support a new kind of filesystem in the kernel, all you | 102 | If you want to support a new kind of filesystem in the kernel, all you |
@@ -123,17 +117,21 @@ updated to point to the root inode for the new filesystem. | |||
123 | It's now time to look at things in more detail. | 117 | It's now time to look at things in more detail. |
124 | 118 | ||
125 | 119 | ||
126 | struct file_system_type <section> | 120 | struct file_system_type |
127 | ======================= | 121 | ======================= |
128 | 122 | ||
129 | This describes the filesystem. As of kernel 2.1.99, the following | 123 | This describes the filesystem. As of kernel 2.6.13, the following |
130 | members are defined: | 124 | members are defined: |
131 | 125 | ||
132 | struct file_system_type { | 126 | struct file_system_type { |
133 | const char *name; | 127 | const char *name; |
134 | int fs_flags; | 128 | int fs_flags; |
135 | struct super_block *(*read_super) (struct super_block *, void *, int); | 129 | struct super_block *(*get_sb) (struct file_system_type *, int, |
136 | struct file_system_type * next; | 130 | const char *, void *); |
131 | void (*kill_sb) (struct super_block *); | ||
132 | struct module *owner; | ||
133 | struct file_system_type * next; | ||
134 | struct list_head fs_supers; | ||
137 | }; | 135 | }; |
138 | 136 | ||
139 | name: the name of the filesystem type, such as "ext2", "iso9660", | 137 | name: the name of the filesystem type, such as "ext2", "iso9660", |
@@ -141,51 +139,97 @@ struct file_system_type { | |||
141 | 139 | ||
142 | fs_flags: various flags (i.e. FS_REQUIRES_DEV, FS_NO_DCACHE, etc.) | 140 | fs_flags: various flags (i.e. FS_REQUIRES_DEV, FS_NO_DCACHE, etc.) |
143 | 141 | ||
144 | read_super: the method to call when a new instance of this | 142 | get_sb: the method to call when a new instance of this |
145 | filesystem should be mounted | 143 | filesystem should be mounted |
146 | 144 | ||
147 | next: for internal VFS use: you should initialise this to NULL | 145 | kill_sb: the method to call when an instance of this filesystem |
146 | should be unmounted | ||
147 | |||
148 | owner: for internal VFS use: you should initialize this to THIS_MODULE in | ||
149 | most cases. | ||
148 | 150 | ||
149 | The read_super() method has the following arguments: | 151 | next: for internal VFS use: you should initialize this to NULL |
152 | |||
153 | The get_sb() method has the following arguments: | ||
150 | 154 | ||
151 | struct super_block *sb: the superblock structure. This is partially | 155 | struct super_block *sb: the superblock structure. This is partially |
152 | initialised by the VFS and the rest must be initialised by the | 156 | initialized by the VFS and the rest must be initialized by the |
153 | read_super() method | 157 | get_sb() method |
158 | |||
159 | int flags: mount flags | ||
160 | |||
161 | const char *dev_name: the device name we are mounting. | ||
154 | 162 | ||
155 | void *data: arbitrary mount options, usually comes as an ASCII | 163 | void *data: arbitrary mount options, usually comes as an ASCII |
156 | string | 164 | string |
157 | 165 | ||
158 | int silent: whether or not to be silent on error | 166 | int silent: whether or not to be silent on error |
159 | 167 | ||
160 | The read_super() method must determine if the block device specified | 168 | The get_sb() method must determine if the block device specified |
161 | in the superblock contains a filesystem of the type the method | 169 | in the superblock contains a filesystem of the type the method |
162 | supports. On success the method returns the superblock pointer, on | 170 | supports. On success the method returns the superblock pointer, on |
163 | failure it returns NULL. | 171 | failure it returns NULL. |
164 | 172 | ||
165 | The most interesting member of the superblock structure that the | 173 | The most interesting member of the superblock structure that the |
166 | read_super() method fills in is the "s_op" field. This is a pointer to | 174 | get_sb() method fills in is the "s_op" field. This is a pointer to |
167 | a "struct super_operations" which describes the next level of the | 175 | a "struct super_operations" which describes the next level of the |
168 | filesystem implementation. | 176 | filesystem implementation. |
169 | 177 | ||
178 | Usually, a filesystem uses generic one of the generic get_sb() | ||
179 | implementations and provides a fill_super() method instead. The | ||
180 | generic methods are: | ||
181 | |||
182 | get_sb_bdev: mount a filesystem residing on a block device | ||
170 | 183 | ||
171 | struct super_operations <section> | 184 | get_sb_nodev: mount a filesystem that is not backed by a device |
185 | |||
186 | get_sb_single: mount a filesystem which shares the instance between | ||
187 | all mounts | ||
188 | |||
189 | A fill_super() method implementation has the following arguments: | ||
190 | |||
191 | struct super_block *sb: the superblock structure. The method fill_super() | ||
192 | must initialize this properly. | ||
193 | |||
194 | void *data: arbitrary mount options, usually comes as an ASCII | ||
195 | string | ||
196 | |||
197 | int silent: whether or not to be silent on error | ||
198 | |||
199 | |||
200 | struct super_operations | ||
172 | ======================= | 201 | ======================= |
173 | 202 | ||
174 | This describes how the VFS can manipulate the superblock of your | 203 | This describes how the VFS can manipulate the superblock of your |
175 | filesystem. As of kernel 2.1.99, the following members are defined: | 204 | filesystem. As of kernel 2.6.13, the following members are defined: |
176 | 205 | ||
177 | struct super_operations { | 206 | struct super_operations { |
178 | void (*read_inode) (struct inode *); | 207 | struct inode *(*alloc_inode)(struct super_block *sb); |
179 | int (*write_inode) (struct inode *, int); | 208 | void (*destroy_inode)(struct inode *); |
180 | void (*put_inode) (struct inode *); | 209 | |
181 | void (*drop_inode) (struct inode *); | 210 | void (*read_inode) (struct inode *); |
182 | void (*delete_inode) (struct inode *); | 211 | |
183 | int (*notify_change) (struct dentry *, struct iattr *); | 212 | void (*dirty_inode) (struct inode *); |
184 | void (*put_super) (struct super_block *); | 213 | int (*write_inode) (struct inode *, int); |
185 | void (*write_super) (struct super_block *); | 214 | void (*put_inode) (struct inode *); |
186 | int (*statfs) (struct super_block *, struct statfs *, int); | 215 | void (*drop_inode) (struct inode *); |
187 | int (*remount_fs) (struct super_block *, int *, char *); | 216 | void (*delete_inode) (struct inode *); |
188 | void (*clear_inode) (struct inode *); | 217 | void (*put_super) (struct super_block *); |
218 | void (*write_super) (struct super_block *); | ||
219 | int (*sync_fs)(struct super_block *sb, int wait); | ||
220 | void (*write_super_lockfs) (struct super_block *); | ||
221 | void (*unlockfs) (struct super_block *); | ||
222 | int (*statfs) (struct super_block *, struct kstatfs *); | ||
223 | int (*remount_fs) (struct super_block *, int *, char *); | ||
224 | void (*clear_inode) (struct inode *); | ||
225 | void (*umount_begin) (struct super_block *); | ||
226 | |||
227 | void (*sync_inodes) (struct super_block *sb, | ||
228 | struct writeback_control *wbc); | ||
229 | int (*show_options)(struct seq_file *, struct vfsmount *); | ||
230 | |||
231 | ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); | ||
232 | ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); | ||
189 | }; | 233 | }; |
190 | 234 | ||
191 | All methods are called without any locks being held, unless otherwise | 235 | All methods are called without any locks being held, unless otherwise |
@@ -193,43 +237,62 @@ noted. This means that most methods can block safely. All methods are | |||
193 | only called from a process context (i.e. not from an interrupt handler | 237 | only called from a process context (i.e. not from an interrupt handler |
194 | or bottom half). | 238 | or bottom half). |
195 | 239 | ||
240 | alloc_inode: this method is called by inode_alloc() to allocate memory | ||
241 | for struct inode and initialize it. | ||
242 | |||
243 | destroy_inode: this method is called by destroy_inode() to release | ||
244 | resources allocated for struct inode. | ||
245 | |||
196 | read_inode: this method is called to read a specific inode from the | 246 | read_inode: this method is called to read a specific inode from the |
197 | mounted filesystem. The "i_ino" member in the "struct inode" | 247 | mounted filesystem. The i_ino member in the struct inode is |
198 | will be initialised by the VFS to indicate which inode to | 248 | initialized by the VFS to indicate which inode to read. Other |
199 | read. Other members are filled in by this method | 249 | members are filled in by this method. |
250 | |||
251 | You can set this to NULL and use iget5_locked() instead of iget() | ||
252 | to read inodes. This is necessary for filesystems for which the | ||
253 | inode number is not sufficient to identify an inode. | ||
254 | |||
255 | dirty_inode: this method is called by the VFS to mark an inode dirty. | ||
200 | 256 | ||
201 | write_inode: this method is called when the VFS needs to write an | 257 | write_inode: this method is called when the VFS needs to write an |
202 | inode to disc. The second parameter indicates whether the write | 258 | inode to disc. The second parameter indicates whether the write |
203 | should be synchronous or not, not all filesystems check this flag. | 259 | should be synchronous or not, not all filesystems check this flag. |
204 | 260 | ||
205 | put_inode: called when the VFS inode is removed from the inode | 261 | put_inode: called when the VFS inode is removed from the inode |
206 | cache. This method is optional | 262 | cache. |
207 | 263 | ||
208 | drop_inode: called when the last access to the inode is dropped, | 264 | drop_inode: called when the last access to the inode is dropped, |
209 | with the inode_lock spinlock held. | 265 | with the inode_lock spinlock held. |
210 | 266 | ||
211 | This method should be either NULL (normal unix filesystem | 267 | This method should be either NULL (normal UNIX filesystem |
212 | semantics) or "generic_delete_inode" (for filesystems that do not | 268 | semantics) or "generic_delete_inode" (for filesystems that do not |
213 | want to cache inodes - causing "delete_inode" to always be | 269 | want to cache inodes - causing "delete_inode" to always be |
214 | called regardless of the value of i_nlink) | 270 | called regardless of the value of i_nlink) |
215 | 271 | ||
216 | The "generic_delete_inode()" behaviour is equivalent to the | 272 | The "generic_delete_inode()" behavior is equivalent to the |
217 | old practice of using "force_delete" in the put_inode() case, | 273 | old practice of using "force_delete" in the put_inode() case, |
218 | but does not have the races that the "force_delete()" approach | 274 | but does not have the races that the "force_delete()" approach |
219 | had. | 275 | had. |
220 | 276 | ||
221 | delete_inode: called when the VFS wants to delete an inode | 277 | delete_inode: called when the VFS wants to delete an inode |
222 | 278 | ||
223 | notify_change: called when VFS inode attributes are changed. If this | ||
224 | is NULL the VFS falls back to the write_inode() method. This | ||
225 | is called with the kernel lock held | ||
226 | |||
227 | put_super: called when the VFS wishes to free the superblock | 279 | put_super: called when the VFS wishes to free the superblock |
228 | (i.e. unmount). This is called with the superblock lock held | 280 | (i.e. unmount). This is called with the superblock lock held |
229 | 281 | ||
230 | write_super: called when the VFS superblock needs to be written to | 282 | write_super: called when the VFS superblock needs to be written to |
231 | disc. This method is optional | 283 | disc. This method is optional |
232 | 284 | ||
285 | sync_fs: called when VFS is writing out all dirty data associated with | ||
286 | a superblock. The second parameter indicates whether the method | ||
287 | should wait until the write out has been completed. Optional. | ||
288 | |||
289 | write_super_lockfs: called when VFS is locking a filesystem and forcing | ||
290 | it into a consistent state. This function is currently used by the | ||
291 | Logical Volume Manager (LVM). | ||
292 | |||
293 | unlockfs: called when VFS is unlocking a filesystem and making it writable | ||
294 | again. | ||
295 | |||
233 | statfs: called when the VFS needs to get filesystem statistics. This | 296 | statfs: called when the VFS needs to get filesystem statistics. This |
234 | is called with the kernel lock held | 297 | is called with the kernel lock held |
235 | 298 | ||
@@ -238,21 +301,31 @@ or bottom half). | |||
238 | 301 | ||
239 | clear_inode: called then the VFS clears the inode. Optional | 302 | clear_inode: called then the VFS clears the inode. Optional |
240 | 303 | ||
304 | umount_begin: called when the VFS is unmounting a filesystem. | ||
305 | |||
306 | sync_inodes: called when the VFS is writing out dirty data associated with | ||
307 | a superblock. | ||
308 | |||
309 | show_options: called by the VFS to show mount options for /proc/<pid>/mounts. | ||
310 | |||
311 | quota_read: called by the VFS to read from filesystem quota file. | ||
312 | |||
313 | quota_write: called by the VFS to write to filesystem quota file. | ||
314 | |||
241 | The read_inode() method is responsible for filling in the "i_op" | 315 | The read_inode() method is responsible for filling in the "i_op" |
242 | field. This is a pointer to a "struct inode_operations" which | 316 | field. This is a pointer to a "struct inode_operations" which |
243 | describes the methods that can be performed on individual inodes. | 317 | describes the methods that can be performed on individual inodes. |
244 | 318 | ||
245 | 319 | ||
246 | struct inode_operations <section> | 320 | struct inode_operations |
247 | ======================= | 321 | ======================= |
248 | 322 | ||
249 | This describes how the VFS can manipulate an inode in your | 323 | This describes how the VFS can manipulate an inode in your |
250 | filesystem. As of kernel 2.1.99, the following members are defined: | 324 | filesystem. As of kernel 2.6.13, the following members are defined: |
251 | 325 | ||
252 | struct inode_operations { | 326 | struct inode_operations { |
253 | struct file_operations * default_file_ops; | 327 | int (*create) (struct inode *,struct dentry *,int, struct nameidata *); |
254 | int (*create) (struct inode *,struct dentry *,int); | 328 | struct dentry * (*lookup) (struct inode *,struct dentry *, struct nameidata *); |
255 | int (*lookup) (struct inode *,struct dentry *); | ||
256 | int (*link) (struct dentry *,struct inode *,struct dentry *); | 329 | int (*link) (struct dentry *,struct inode *,struct dentry *); |
257 | int (*unlink) (struct inode *,struct dentry *); | 330 | int (*unlink) (struct inode *,struct dentry *); |
258 | int (*symlink) (struct inode *,struct dentry *,const char *); | 331 | int (*symlink) (struct inode *,struct dentry *,const char *); |
@@ -261,25 +334,22 @@ struct inode_operations { | |||
261 | int (*mknod) (struct inode *,struct dentry *,int,dev_t); | 334 | int (*mknod) (struct inode *,struct dentry *,int,dev_t); |
262 | int (*rename) (struct inode *, struct dentry *, | 335 | int (*rename) (struct inode *, struct dentry *, |
263 | struct inode *, struct dentry *); | 336 | struct inode *, struct dentry *); |
264 | int (*readlink) (struct dentry *, char *,int); | 337 | int (*readlink) (struct dentry *, char __user *,int); |
265 | struct dentry * (*follow_link) (struct dentry *, struct dentry *); | 338 | void * (*follow_link) (struct dentry *, struct nameidata *); |
266 | int (*readpage) (struct file *, struct page *); | 339 | void (*put_link) (struct dentry *, struct nameidata *, void *); |
267 | int (*writepage) (struct page *page, struct writeback_control *wbc); | ||
268 | int (*bmap) (struct inode *,int); | ||
269 | void (*truncate) (struct inode *); | 340 | void (*truncate) (struct inode *); |
270 | int (*permission) (struct inode *, int); | 341 | int (*permission) (struct inode *, int, struct nameidata *); |
271 | int (*smap) (struct inode *,int); | 342 | int (*setattr) (struct dentry *, struct iattr *); |
272 | int (*updatepage) (struct file *, struct page *, const char *, | 343 | int (*getattr) (struct vfsmount *mnt, struct dentry *, struct kstat *); |
273 | unsigned long, unsigned int, int); | 344 | int (*setxattr) (struct dentry *, const char *,const void *,size_t,int); |
274 | int (*revalidate) (struct dentry *); | 345 | ssize_t (*getxattr) (struct dentry *, const char *, void *, size_t); |
346 | ssize_t (*listxattr) (struct dentry *, char *, size_t); | ||
347 | int (*removexattr) (struct dentry *, const char *); | ||
275 | }; | 348 | }; |
276 | 349 | ||
277 | Again, all methods are called without any locks being held, unless | 350 | Again, all methods are called without any locks being held, unless |
278 | otherwise noted. | 351 | otherwise noted. |
279 | 352 | ||
280 | default_file_ops: this is a pointer to a "struct file_operations" | ||
281 | which describes how to open and then manipulate open files | ||
282 | |||
283 | create: called by the open(2) and creat(2) system calls. Only | 353 | create: called by the open(2) and creat(2) system calls. Only |
284 | required if you want to support regular files. The dentry you | 354 | required if you want to support regular files. The dentry you |
285 | get should not have an inode (i.e. it should be a negative | 355 | get should not have an inode (i.e. it should be a negative |
@@ -328,31 +398,143 @@ otherwise noted. | |||
328 | you want to support reading symbolic links | 398 | you want to support reading symbolic links |
329 | 399 | ||
330 | follow_link: called by the VFS to follow a symbolic link to the | 400 | follow_link: called by the VFS to follow a symbolic link to the |
331 | inode it points to. Only required if you want to support | 401 | inode it points to. Only required if you want to support |
332 | symbolic links | 402 | symbolic links. This function returns a void pointer cookie |
403 | that is passed to put_link(). | ||
404 | |||
405 | put_link: called by the VFS to release resources allocated by | ||
406 | follow_link(). The cookie returned by follow_link() is passed to | ||
407 | to this function as the last parameter. It is used by filesystems | ||
408 | such as NFS where page cache is not stable (i.e. page that was | ||
409 | installed when the symbolic link walk started might not be in the | ||
410 | page cache at the end of the walk). | ||
411 | |||
412 | truncate: called by the VFS to change the size of a file. The i_size | ||
413 | field of the inode is set to the desired size by the VFS before | ||
414 | this function is called. This function is called by the truncate(2) | ||
415 | system call and related functionality. | ||
416 | |||
417 | permission: called by the VFS to check for access rights on a POSIX-like | ||
418 | filesystem. | ||
419 | |||
420 | setattr: called by the VFS to set attributes for a file. This function is | ||
421 | called by chmod(2) and related system calls. | ||
422 | |||
423 | getattr: called by the VFS to get attributes of a file. This function is | ||
424 | called by stat(2) and related system calls. | ||
425 | |||
426 | setxattr: called by the VFS to set an extended attribute for a file. | ||
427 | Extended attribute is a name:value pair associated with an inode. This | ||
428 | function is called by setxattr(2) system call. | ||
429 | |||
430 | getxattr: called by the VFS to retrieve the value of an extended attribute | ||
431 | name. This function is called by getxattr(2) function call. | ||
432 | |||
433 | listxattr: called by the VFS to list all extended attributes for a given | ||
434 | file. This function is called by listxattr(2) system call. | ||
435 | |||
436 | removexattr: called by the VFS to remove an extended attribute from a file. | ||
437 | This function is called by removexattr(2) system call. | ||
438 | |||
439 | |||
440 | struct address_space_operations | ||
441 | =============================== | ||
442 | |||
443 | This describes how the VFS can manipulate mapping of a file to page cache in | ||
444 | your filesystem. As of kernel 2.6.13, the following members are defined: | ||
445 | |||
446 | struct address_space_operations { | ||
447 | int (*writepage)(struct page *page, struct writeback_control *wbc); | ||
448 | int (*readpage)(struct file *, struct page *); | ||
449 | int (*sync_page)(struct page *); | ||
450 | int (*writepages)(struct address_space *, struct writeback_control *); | ||
451 | int (*set_page_dirty)(struct page *page); | ||
452 | int (*readpages)(struct file *filp, struct address_space *mapping, | ||
453 | struct list_head *pages, unsigned nr_pages); | ||
454 | int (*prepare_write)(struct file *, struct page *, unsigned, unsigned); | ||
455 | int (*commit_write)(struct file *, struct page *, unsigned, unsigned); | ||
456 | sector_t (*bmap)(struct address_space *, sector_t); | ||
457 | int (*invalidatepage) (struct page *, unsigned long); | ||
458 | int (*releasepage) (struct page *, int); | ||
459 | ssize_t (*direct_IO)(int, struct kiocb *, const struct iovec *iov, | ||
460 | loff_t offset, unsigned long nr_segs); | ||
461 | struct page* (*get_xip_page)(struct address_space *, sector_t, | ||
462 | int); | ||
463 | }; | ||
464 | |||
465 | writepage: called by the VM write a dirty page to backing store. | ||
466 | |||
467 | readpage: called by the VM to read a page from backing store. | ||
468 | |||
469 | sync_page: called by the VM to notify the backing store to perform all | ||
470 | queued I/O operations for a page. I/O operations for other pages | ||
471 | associated with this address_space object may also be performed. | ||
472 | |||
473 | writepages: called by the VM to write out pages associated with the | ||
474 | address_space object. | ||
475 | |||
476 | set_page_dirty: called by the VM to set a page dirty. | ||
477 | |||
478 | readpages: called by the VM to read pages associated with the address_space | ||
479 | object. | ||
333 | 480 | ||
481 | prepare_write: called by the generic write path in VM to set up a write | ||
482 | request for a page. | ||
334 | 483 | ||
335 | struct file_operations <section> | 484 | commit_write: called by the generic write path in VM to write page to |
485 | its backing store. | ||
486 | |||
487 | bmap: called by the VFS to map a logical block offset within object to | ||
488 | physical block number. This method is use by for the legacy FIBMAP | ||
489 | ioctl. Other uses are discouraged. | ||
490 | |||
491 | invalidatepage: called by the VM on truncate to disassociate a page from its | ||
492 | address_space mapping. | ||
493 | |||
494 | releasepage: called by the VFS to release filesystem specific metadata from | ||
495 | a page. | ||
496 | |||
497 | direct_IO: called by the VM for direct I/O writes and reads. | ||
498 | |||
499 | get_xip_page: called by the VM to translate a block number to a page. | ||
500 | The page is valid until the corresponding filesystem is unmounted. | ||
501 | Filesystems that want to use execute-in-place (XIP) need to implement | ||
502 | it. An example implementation can be found in fs/ext2/xip.c. | ||
503 | |||
504 | |||
505 | struct file_operations | ||
336 | ====================== | 506 | ====================== |
337 | 507 | ||
338 | This describes how the VFS can manipulate an open file. As of kernel | 508 | This describes how the VFS can manipulate an open file. As of kernel |
339 | 2.1.99, the following members are defined: | 509 | 2.6.13, the following members are defined: |
340 | 510 | ||
341 | struct file_operations { | 511 | struct file_operations { |
342 | loff_t (*llseek) (struct file *, loff_t, int); | 512 | loff_t (*llseek) (struct file *, loff_t, int); |
343 | ssize_t (*read) (struct file *, char *, size_t, loff_t *); | 513 | ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); |
344 | ssize_t (*write) (struct file *, const char *, size_t, loff_t *); | 514 | ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t); |
515 | ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); | ||
516 | ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t); | ||
345 | int (*readdir) (struct file *, void *, filldir_t); | 517 | int (*readdir) (struct file *, void *, filldir_t); |
346 | unsigned int (*poll) (struct file *, struct poll_table_struct *); | 518 | unsigned int (*poll) (struct file *, struct poll_table_struct *); |
347 | int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long); | 519 | int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long); |
520 | long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); | ||
521 | long (*compat_ioctl) (struct file *, unsigned int, unsigned long); | ||
348 | int (*mmap) (struct file *, struct vm_area_struct *); | 522 | int (*mmap) (struct file *, struct vm_area_struct *); |
349 | int (*open) (struct inode *, struct file *); | 523 | int (*open) (struct inode *, struct file *); |
524 | int (*flush) (struct file *); | ||
350 | int (*release) (struct inode *, struct file *); | 525 | int (*release) (struct inode *, struct file *); |
351 | int (*fsync) (struct file *, struct dentry *); | 526 | int (*fsync) (struct file *, struct dentry *, int datasync); |
352 | int (*fasync) (struct file *, int); | 527 | int (*aio_fsync) (struct kiocb *, int datasync); |
353 | int (*check_media_change) (kdev_t dev); | 528 | int (*fasync) (int, struct file *, int); |
354 | int (*revalidate) (kdev_t dev); | ||
355 | int (*lock) (struct file *, int, struct file_lock *); | 529 | int (*lock) (struct file *, int, struct file_lock *); |
530 | ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *); | ||
531 | ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *); | ||
532 | ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t, void *); | ||
533 | ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int); | ||
534 | unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); | ||
535 | int (*check_flags)(int); | ||
536 | int (*dir_notify)(struct file *filp, unsigned long arg); | ||
537 | int (*flock) (struct file *, int, struct file_lock *); | ||
356 | }; | 538 | }; |
357 | 539 | ||
358 | Again, all methods are called without any locks being held, unless | 540 | Again, all methods are called without any locks being held, unless |
@@ -362,8 +544,12 @@ otherwise noted. | |||
362 | 544 | ||
363 | read: called by read(2) and related system calls | 545 | read: called by read(2) and related system calls |
364 | 546 | ||
547 | aio_read: called by io_submit(2) and other asynchronous I/O operations | ||
548 | |||
365 | write: called by write(2) and related system calls | 549 | write: called by write(2) and related system calls |
366 | 550 | ||
551 | aio_write: called by io_submit(2) and other asynchronous I/O operations | ||
552 | |||
367 | readdir: called when the VFS needs to read the directory contents | 553 | readdir: called when the VFS needs to read the directory contents |
368 | 554 | ||
369 | poll: called by the VFS when a process wants to check if there is | 555 | poll: called by the VFS when a process wants to check if there is |
@@ -372,18 +558,25 @@ otherwise noted. | |||
372 | 558 | ||
373 | ioctl: called by the ioctl(2) system call | 559 | ioctl: called by the ioctl(2) system call |
374 | 560 | ||
561 | unlocked_ioctl: called by the ioctl(2) system call. Filesystems that do not | ||
562 | require the BKL should use this method instead of the ioctl() above. | ||
563 | |||
564 | compat_ioctl: called by the ioctl(2) system call when 32 bit system calls | ||
565 | are used on 64 bit kernels. | ||
566 | |||
375 | mmap: called by the mmap(2) system call | 567 | mmap: called by the mmap(2) system call |
376 | 568 | ||
377 | open: called by the VFS when an inode should be opened. When the VFS | 569 | open: called by the VFS when an inode should be opened. When the VFS |
378 | opens a file, it creates a new "struct file" and initialises | 570 | opens a file, it creates a new "struct file". It then calls the |
379 | the "f_op" file operations member with the "default_file_ops" | 571 | open method for the newly allocated file structure. You might |
380 | field in the inode structure. It then calls the open method | 572 | think that the open method really belongs in |
381 | for the newly allocated file structure. You might think that | 573 | "struct inode_operations", and you may be right. I think it's |
382 | the open method really belongs in "struct inode_operations", | 574 | done the way it is because it makes filesystems simpler to |
383 | and you may be right. I think it's done the way it is because | 575 | implement. The open() method is a good place to initialize the |
384 | it makes filesystems simpler to implement. The open() method | 576 | "private_data" member in the file structure if you want to point |
385 | is a good place to initialise the "private_data" member in the | 577 | to a device structure |
386 | file structure if you want to point to a device structure | 578 | |
579 | flush: called by the close(2) system call to flush a file | ||
387 | 580 | ||
388 | release: called when the last reference to an open file is closed | 581 | release: called when the last reference to an open file is closed |
389 | 582 | ||
@@ -392,6 +585,23 @@ otherwise noted. | |||
392 | fasync: called by the fcntl(2) system call when asynchronous | 585 | fasync: called by the fcntl(2) system call when asynchronous |
393 | (non-blocking) mode is enabled for a file | 586 | (non-blocking) mode is enabled for a file |
394 | 587 | ||
588 | lock: called by the fcntl(2) system call for F_GETLK, F_SETLK, and F_SETLKW | ||
589 | commands | ||
590 | |||
591 | readv: called by the readv(2) system call | ||
592 | |||
593 | writev: called by the writev(2) system call | ||
594 | |||
595 | sendfile: called by the sendfile(2) system call | ||
596 | |||
597 | get_unmapped_area: called by the mmap(2) system call | ||
598 | |||
599 | check_flags: called by the fcntl(2) system call for F_SETFL command | ||
600 | |||
601 | dir_notify: called by the fcntl(2) system call for F_NOTIFY command | ||
602 | |||
603 | flock: called by the flock(2) system call | ||
604 | |||
395 | Note that the file operations are implemented by the specific | 605 | Note that the file operations are implemented by the specific |
396 | filesystem in which the inode resides. When opening a device node | 606 | filesystem in which the inode resides. When opening a device node |
397 | (character or block special) most filesystems will call special | 607 | (character or block special) most filesystems will call special |
@@ -400,29 +610,28 @@ driver information. These support routines replace the filesystem file | |||
400 | operations with those for the device driver, and then proceed to call | 610 | operations with those for the device driver, and then proceed to call |
401 | the new open() method for the file. This is how opening a device file | 611 | the new open() method for the file. This is how opening a device file |
402 | in the filesystem eventually ends up calling the device driver open() | 612 | in the filesystem eventually ends up calling the device driver open() |
403 | method. Note the devfs (the Device FileSystem) has a more direct path | 613 | method. |
404 | from device node to device driver (this is an unofficial kernel | ||
405 | patch). | ||
406 | 614 | ||
407 | 615 | ||
408 | Directory Entry Cache (dcache) <section> | 616 | Directory Entry Cache (dcache) |
409 | ------------------------------ | 617 | ============================== |
618 | |||
410 | 619 | ||
411 | struct dentry_operations | 620 | struct dentry_operations |
412 | ======================== | 621 | ------------------------ |
413 | 622 | ||
414 | This describes how a filesystem can overload the standard dentry | 623 | This describes how a filesystem can overload the standard dentry |
415 | operations. Dentries and the dcache are the domain of the VFS and the | 624 | operations. Dentries and the dcache are the domain of the VFS and the |
416 | individual filesystem implementations. Device drivers have no business | 625 | individual filesystem implementations. Device drivers have no business |
417 | here. These methods may be set to NULL, as they are either optional or | 626 | here. These methods may be set to NULL, as they are either optional or |
418 | the VFS uses a default. As of kernel 2.1.99, the following members are | 627 | the VFS uses a default. As of kernel 2.6.13, the following members are |
419 | defined: | 628 | defined: |
420 | 629 | ||
421 | struct dentry_operations { | 630 | struct dentry_operations { |
422 | int (*d_revalidate)(struct dentry *); | 631 | int (*d_revalidate)(struct dentry *, struct nameidata *); |
423 | int (*d_hash) (struct dentry *, struct qstr *); | 632 | int (*d_hash) (struct dentry *, struct qstr *); |
424 | int (*d_compare) (struct dentry *, struct qstr *, struct qstr *); | 633 | int (*d_compare) (struct dentry *, struct qstr *, struct qstr *); |
425 | void (*d_delete)(struct dentry *); | 634 | int (*d_delete)(struct dentry *); |
426 | void (*d_release)(struct dentry *); | 635 | void (*d_release)(struct dentry *); |
427 | void (*d_iput)(struct dentry *, struct inode *); | 636 | void (*d_iput)(struct dentry *, struct inode *); |
428 | }; | 637 | }; |
@@ -451,6 +660,7 @@ Each dentry has a pointer to its parent dentry, as well as a hash list | |||
451 | of child dentries. Child dentries are basically like files in a | 660 | of child dentries. Child dentries are basically like files in a |
452 | directory. | 661 | directory. |
453 | 662 | ||
663 | |||
454 | Directory Entry Cache APIs | 664 | Directory Entry Cache APIs |
455 | -------------------------- | 665 | -------------------------- |
456 | 666 | ||
@@ -471,7 +681,7 @@ manipulate dentries: | |||
471 | "d_delete" method is called | 681 | "d_delete" method is called |
472 | 682 | ||
473 | d_drop: this unhashes a dentry from its parents hash list. A | 683 | d_drop: this unhashes a dentry from its parents hash list. A |
474 | subsequent call to dput() will dellocate the dentry if its | 684 | subsequent call to dput() will deallocate the dentry if its |
475 | usage count drops to 0 | 685 | usage count drops to 0 |
476 | 686 | ||
477 | d_delete: delete a dentry. If there are no other open references to | 687 | d_delete: delete a dentry. If there are no other open references to |
@@ -507,16 +717,16 @@ up by walking the tree starting with the first component | |||
507 | of the pathname and using that dentry along with the next | 717 | of the pathname and using that dentry along with the next |
508 | component to look up the next level and so on. Since it | 718 | component to look up the next level and so on. Since it |
509 | is a frequent operation for workloads like multiuser | 719 | is a frequent operation for workloads like multiuser |
510 | environments and webservers, it is important to optimize | 720 | environments and web servers, it is important to optimize |
511 | this path. | 721 | this path. |
512 | 722 | ||
513 | Prior to 2.5.10, dcache_lock was acquired in d_lookup and thus | 723 | Prior to 2.5.10, dcache_lock was acquired in d_lookup and thus |
514 | in every component during path look-up. Since 2.5.10 onwards, | 724 | in every component during path look-up. Since 2.5.10 onwards, |
515 | fastwalk algorithm changed this by holding the dcache_lock | 725 | fast-walk algorithm changed this by holding the dcache_lock |
516 | at the beginning and walking as many cached path component | 726 | at the beginning and walking as many cached path component |
517 | dentries as possible. This signficantly decreases the number | 727 | dentries as possible. This significantly decreases the number |
518 | of acquisition of dcache_lock. However it also increases the | 728 | of acquisition of dcache_lock. However it also increases the |
519 | lock hold time signficantly and affects performance in large | 729 | lock hold time significantly and affects performance in large |
520 | SMP machines. Since 2.5.62 kernel, dcache has been using | 730 | SMP machines. Since 2.5.62 kernel, dcache has been using |
521 | a new locking model that uses RCU to make dcache look-up | 731 | a new locking model that uses RCU to make dcache look-up |
522 | lock-free. | 732 | lock-free. |
@@ -527,7 +737,7 @@ protected the hash chain, d_child, d_alias, d_lru lists as well | |||
527 | as d_inode and several other things like mount look-up. RCU-based | 737 | as d_inode and several other things like mount look-up. RCU-based |
528 | changes affect only the way the hash chain is protected. For everything | 738 | changes affect only the way the hash chain is protected. For everything |
529 | else the dcache_lock must be taken for both traversing as well as | 739 | else the dcache_lock must be taken for both traversing as well as |
530 | updating. The hash chain updations too take the dcache_lock. | 740 | updating. The hash chain updates too take the dcache_lock. |
531 | The significant change is the way d_lookup traverses the hash chain, | 741 | The significant change is the way d_lookup traverses the hash chain, |
532 | it doesn't acquire the dcache_lock for this and rely on RCU to | 742 | it doesn't acquire the dcache_lock for this and rely on RCU to |
533 | ensure that the dentry has not been *freed*. | 743 | ensure that the dentry has not been *freed*. |
@@ -535,14 +745,15 @@ ensure that the dentry has not been *freed*. | |||
535 | 745 | ||
536 | Dcache locking details | 746 | Dcache locking details |
537 | ---------------------- | 747 | ---------------------- |
748 | |||
538 | For many multi-user workloads, open() and stat() on files are | 749 | For many multi-user workloads, open() and stat() on files are |
539 | very frequently occurring operations. Both involve walking | 750 | very frequently occurring operations. Both involve walking |
540 | of path names to find the dentry corresponding to the | 751 | of path names to find the dentry corresponding to the |
541 | concerned file. In 2.4 kernel, dcache_lock was held | 752 | concerned file. In 2.4 kernel, dcache_lock was held |
542 | during look-up of each path component. Contention and | 753 | during look-up of each path component. Contention and |
543 | cacheline bouncing of this global lock caused significant | 754 | cache-line bouncing of this global lock caused significant |
544 | scalability problems. With the introduction of RCU | 755 | scalability problems. With the introduction of RCU |
545 | in linux kernel, this was worked around by making | 756 | in Linux kernel, this was worked around by making |
546 | the look-up of path components during path walking lock-free. | 757 | the look-up of path components during path walking lock-free. |
547 | 758 | ||
548 | 759 | ||
@@ -562,7 +773,7 @@ Some of the important changes are : | |||
562 | 2. Insertion of a dentry into the hash table is done using | 773 | 2. Insertion of a dentry into the hash table is done using |
563 | hlist_add_head_rcu() which take care of ordering the writes - | 774 | hlist_add_head_rcu() which take care of ordering the writes - |
564 | the writes to the dentry must be visible before the dentry | 775 | the writes to the dentry must be visible before the dentry |
565 | is inserted. This works in conjuction with hlist_for_each_rcu() | 776 | is inserted. This works in conjunction with hlist_for_each_rcu() |
566 | while walking the hash chain. The only requirement is that | 777 | while walking the hash chain. The only requirement is that |
567 | all initialization to the dentry must be done before hlist_add_head_rcu() | 778 | all initialization to the dentry must be done before hlist_add_head_rcu() |
568 | since we don't have dcache_lock protection while traversing | 779 | since we don't have dcache_lock protection while traversing |
@@ -584,7 +795,7 @@ Some of the important changes are : | |||
584 | the same. In some sense, dcache_rcu path walking looks like | 795 | the same. In some sense, dcache_rcu path walking looks like |
585 | the pre-2.5.10 version. | 796 | the pre-2.5.10 version. |
586 | 797 | ||
587 | 5. All dentry hash chain updations must take the dcache_lock as well as | 798 | 5. All dentry hash chain updates must take the dcache_lock as well as |
588 | the per-dentry lock in that order. dput() does this to ensure | 799 | the per-dentry lock in that order. dput() does this to ensure |
589 | that a dentry that has just been looked up in another CPU | 800 | that a dentry that has just been looked up in another CPU |
590 | doesn't get deleted before dget() can be done on it. | 801 | doesn't get deleted before dget() can be done on it. |
@@ -640,10 +851,10 @@ handled as described below : | |||
640 | Since we redo the d_parent check and compare name while holding | 851 | Since we redo the d_parent check and compare name while holding |
641 | d_lock, lock-free look-up will not race against d_move(). | 852 | d_lock, lock-free look-up will not race against d_move(). |
642 | 853 | ||
643 | 4. There can be a theoritical race when a dentry keeps coming back | 854 | 4. There can be a theoretical race when a dentry keeps coming back |
644 | to original bucket due to double moves. Due to this look-up may | 855 | to original bucket due to double moves. Due to this look-up may |
645 | consider that it has never moved and can end up in a infinite loop. | 856 | consider that it has never moved and can end up in a infinite loop. |
646 | But this is not any worse that theoritical livelocks we already | 857 | But this is not any worse that theoretical livelocks we already |
647 | have in the kernel. | 858 | have in the kernel. |
648 | 859 | ||
649 | 860 | ||