diff options
author | J. Bruce Fields <bfields@citi.umich.edu> | 2009-11-06 13:59:43 -0500 |
---|---|---|
committer | J. Bruce Fields <bfields@citi.umich.edu> | 2009-11-06 14:01:02 -0500 |
commit | ea4878a24d7e6a467d369b962bab95bd6a12cbe0 (patch) | |
tree | 4f937b8dfa658b16779ae2267d450b53fb035fe7 /Documentation/filesystems/nfs/rpc-cache.txt | |
parent | 8c10cbdb4af642d9a2efb45ea89251aaab905360 (diff) |
nfs: move more to Documentation/filesystems/nfs
Oops: I missed two files in the first commit that created this
directory.
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Diffstat (limited to 'Documentation/filesystems/nfs/rpc-cache.txt')
-rw-r--r-- | Documentation/filesystems/nfs/rpc-cache.txt | 202 |
1 files changed, 202 insertions, 0 deletions
diff --git a/Documentation/filesystems/nfs/rpc-cache.txt b/Documentation/filesystems/nfs/rpc-cache.txt new file mode 100644 index 000000000000..8a382bea6808 --- /dev/null +++ b/Documentation/filesystems/nfs/rpc-cache.txt | |||
@@ -0,0 +1,202 @@ | |||
1 | This document gives a brief introduction to the caching | ||
2 | mechanisms in the sunrpc layer that is used, in particular, | ||
3 | for NFS authentication. | ||
4 | |||
5 | CACHES | ||
6 | ====== | ||
7 | The caching replaces the old exports table and allows for | ||
8 | a wide variety of values to be caches. | ||
9 | |||
10 | There are a number of caches that are similar in structure though | ||
11 | quite possibly very different in content and use. There is a corpus | ||
12 | of common code for managing these caches. | ||
13 | |||
14 | Examples of caches that are likely to be needed are: | ||
15 | - mapping from IP address to client name | ||
16 | - mapping from client name and filesystem to export options | ||
17 | - mapping from UID to list of GIDs, to work around NFS's limitation | ||
18 | of 16 gids. | ||
19 | - mappings between local UID/GID and remote UID/GID for sites that | ||
20 | do not have uniform uid assignment | ||
21 | - mapping from network identify to public key for crypto authentication. | ||
22 | |||
23 | The common code handles such things as: | ||
24 | - general cache lookup with correct locking | ||
25 | - supporting 'NEGATIVE' as well as positive entries | ||
26 | - allowing an EXPIRED time on cache items, and removing | ||
27 | items after they expire, and are no longer in-use. | ||
28 | - making requests to user-space to fill in cache entries | ||
29 | - allowing user-space to directly set entries in the cache | ||
30 | - delaying RPC requests that depend on as-yet incomplete | ||
31 | cache entries, and replaying those requests when the cache entry | ||
32 | is complete. | ||
33 | - clean out old entries as they expire. | ||
34 | |||
35 | Creating a Cache | ||
36 | ---------------- | ||
37 | |||
38 | 1/ A cache needs a datum to store. This is in the form of a | ||
39 | structure definition that must contain a | ||
40 | struct cache_head | ||
41 | as an element, usually the first. | ||
42 | It will also contain a key and some content. | ||
43 | Each cache element is reference counted and contains | ||
44 | expiry and update times for use in cache management. | ||
45 | 2/ A cache needs a "cache_detail" structure that | ||
46 | describes the cache. This stores the hash table, some | ||
47 | parameters for cache management, and some operations detailing how | ||
48 | to work with particular cache items. | ||
49 | The operations requires are: | ||
50 | struct cache_head *alloc(void) | ||
51 | This simply allocates appropriate memory and returns | ||
52 | a pointer to the cache_detail embedded within the | ||
53 | structure | ||
54 | void cache_put(struct kref *) | ||
55 | This is called when the last reference to an item is | ||
56 | dropped. The pointer passed is to the 'ref' field | ||
57 | in the cache_head. cache_put should release any | ||
58 | references create by 'cache_init' and, if CACHE_VALID | ||
59 | is set, any references created by cache_update. | ||
60 | It should then release the memory allocated by | ||
61 | 'alloc'. | ||
62 | int match(struct cache_head *orig, struct cache_head *new) | ||
63 | test if the keys in the two structures match. Return | ||
64 | 1 if they do, 0 if they don't. | ||
65 | void init(struct cache_head *orig, struct cache_head *new) | ||
66 | Set the 'key' fields in 'new' from 'orig'. This may | ||
67 | include taking references to shared objects. | ||
68 | void update(struct cache_head *orig, struct cache_head *new) | ||
69 | Set the 'content' fileds in 'new' from 'orig'. | ||
70 | int cache_show(struct seq_file *m, struct cache_detail *cd, | ||
71 | struct cache_head *h) | ||
72 | Optional. Used to provide a /proc file that lists the | ||
73 | contents of a cache. This should show one item, | ||
74 | usually on just one line. | ||
75 | int cache_request(struct cache_detail *cd, struct cache_head *h, | ||
76 | char **bpp, int *blen) | ||
77 | Format a request to be send to user-space for an item | ||
78 | to be instantiated. *bpp is a buffer of size *blen. | ||
79 | bpp should be moved forward over the encoded message, | ||
80 | and *blen should be reduced to show how much free | ||
81 | space remains. Return 0 on success or <0 if not | ||
82 | enough room or other problem. | ||
83 | int cache_parse(struct cache_detail *cd, char *buf, int len) | ||
84 | A message from user space has arrived to fill out a | ||
85 | cache entry. It is in 'buf' of length 'len'. | ||
86 | cache_parse should parse this, find the item in the | ||
87 | cache with sunrpc_cache_lookup, and update the item | ||
88 | with sunrpc_cache_update. | ||
89 | |||
90 | |||
91 | 3/ A cache needs to be registered using cache_register(). This | ||
92 | includes it on a list of caches that will be regularly | ||
93 | cleaned to discard old data. | ||
94 | |||
95 | Using a cache | ||
96 | ------------- | ||
97 | |||
98 | To find a value in a cache, call sunrpc_cache_lookup passing a pointer | ||
99 | to the cache_head in a sample item with the 'key' fields filled in. | ||
100 | This will be passed to ->match to identify the target entry. If no | ||
101 | entry is found, a new entry will be create, added to the cache, and | ||
102 | marked as not containing valid data. | ||
103 | |||
104 | The item returned is typically passed to cache_check which will check | ||
105 | if the data is valid, and may initiate an up-call to get fresh data. | ||
106 | cache_check will return -ENOENT in the entry is negative or if an up | ||
107 | call is needed but not possible, -EAGAIN if an upcall is pending, | ||
108 | or 0 if the data is valid; | ||
109 | |||
110 | cache_check can be passed a "struct cache_req *". This structure is | ||
111 | typically embedded in the actual request and can be used to create a | ||
112 | deferred copy of the request (struct cache_deferred_req). This is | ||
113 | done when the found cache item is not uptodate, but the is reason to | ||
114 | believe that userspace might provide information soon. When the cache | ||
115 | item does become valid, the deferred copy of the request will be | ||
116 | revisited (->revisit). It is expected that this method will | ||
117 | reschedule the request for processing. | ||
118 | |||
119 | The value returned by sunrpc_cache_lookup can also be passed to | ||
120 | sunrpc_cache_update to set the content for the item. A second item is | ||
121 | passed which should hold the content. If the item found by _lookup | ||
122 | has valid data, then it is discarded and a new item is created. This | ||
123 | saves any user of an item from worrying about content changing while | ||
124 | it is being inspected. If the item found by _lookup does not contain | ||
125 | valid data, then the content is copied across and CACHE_VALID is set. | ||
126 | |||
127 | Populating a cache | ||
128 | ------------------ | ||
129 | |||
130 | Each cache has a name, and when the cache is registered, a directory | ||
131 | with that name is created in /proc/net/rpc | ||
132 | |||
133 | This directory contains a file called 'channel' which is a channel | ||
134 | for communicating between kernel and user for populating the cache. | ||
135 | This directory may later contain other files of interacting | ||
136 | with the cache. | ||
137 | |||
138 | The 'channel' works a bit like a datagram socket. Each 'write' is | ||
139 | passed as a whole to the cache for parsing and interpretation. | ||
140 | Each cache can treat the write requests differently, but it is | ||
141 | expected that a message written will contain: | ||
142 | - a key | ||
143 | - an expiry time | ||
144 | - a content. | ||
145 | with the intention that an item in the cache with the give key | ||
146 | should be create or updated to have the given content, and the | ||
147 | expiry time should be set on that item. | ||
148 | |||
149 | Reading from a channel is a bit more interesting. When a cache | ||
150 | lookup fails, or when it succeeds but finds an entry that may soon | ||
151 | expire, a request is lodged for that cache item to be updated by | ||
152 | user-space. These requests appear in the channel file. | ||
153 | |||
154 | Successive reads will return successive requests. | ||
155 | If there are no more requests to return, read will return EOF, but a | ||
156 | select or poll for read will block waiting for another request to be | ||
157 | added. | ||
158 | |||
159 | Thus a user-space helper is likely to: | ||
160 | open the channel. | ||
161 | select for readable | ||
162 | read a request | ||
163 | write a response | ||
164 | loop. | ||
165 | |||
166 | If it dies and needs to be restarted, any requests that have not been | ||
167 | answered will still appear in the file and will be read by the new | ||
168 | instance of the helper. | ||
169 | |||
170 | Each cache should define a "cache_parse" method which takes a message | ||
171 | written from user-space and processes it. It should return an error | ||
172 | (which propagates back to the write syscall) or 0. | ||
173 | |||
174 | Each cache should also define a "cache_request" method which | ||
175 | takes a cache item and encodes a request into the buffer | ||
176 | provided. | ||
177 | |||
178 | Note: If a cache has no active readers on the channel, and has had not | ||
179 | active readers for more than 60 seconds, further requests will not be | ||
180 | added to the channel but instead all lookups that do not find a valid | ||
181 | entry will fail. This is partly for backward compatibility: The | ||
182 | previous nfs exports table was deemed to be authoritative and a | ||
183 | failed lookup meant a definite 'no'. | ||
184 | |||
185 | request/response format | ||
186 | ----------------------- | ||
187 | |||
188 | While each cache is free to use it's own format for requests | ||
189 | and responses over channel, the following is recommended as | ||
190 | appropriate and support routines are available to help: | ||
191 | Each request or response record should be printable ASCII | ||
192 | with precisely one newline character which should be at the end. | ||
193 | Fields within the record should be separated by spaces, normally one. | ||
194 | If spaces, newlines, or nul characters are needed in a field they | ||
195 | much be quoted. two mechanisms are available: | ||
196 | 1/ If a field begins '\x' then it must contain an even number of | ||
197 | hex digits, and pairs of these digits provide the bytes in the | ||
198 | field. | ||
199 | 2/ otherwise a \ in the field must be followed by 3 octal digits | ||
200 | which give the code for a byte. Other characters are treated | ||
201 | as them selves. At the very least, space, newline, nul, and | ||
202 | '\' must be quoted in this way. | ||