aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/device-mapper
diff options
context:
space:
mode:
authorJonthan Brassow <jbrassow@redhat.com>2009-06-22 05:12:35 -0400
committerAlasdair G Kergon <agk@redhat.com>2009-06-22 05:12:35 -0400
commitf5db4af466e2dca0fe822019812d586ca910b00c (patch)
tree1bbaaa36509df9f7eecc19ccffa434048cf4b555 /Documentation/device-mapper
parent754c5fc7ebb417b23601a6222a6005cc2e7f2913 (diff)
dm raid1: add userspace log
This patch contains a device-mapper mirror log module that forwards requests to userspace for processing. The structures used for communication between kernel and userspace are located in include/linux/dm-log-userspace.h. Due to the frequency, diversity, and 2-way communication nature of the exchanges between kernel and userspace, 'connector' was chosen as the interface for communication. The first log implementations written in userspace - "clustered-disk" and "clustered-core" - support clustered shared storage. A userspace daemon (in the LVM2 source code repository) uses openAIS/corosync to process requests in an ordered fashion with the rest of the nodes in the cluster so as to prevent log state corruption. Other implementations with no association to LVM or openAIS/corosync, are certainly possible. (Imagine if two machines are writing to the same region of a mirror. They would both mark the region dirty, but you need a cluster-aware entity that can handle properly marking the region clean when they are done. Otherwise, you might clear the region when the first machine is done, not the second.) Signed-off-by: Jonathan Brassow <jbrassow@redhat.com> Cc: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Diffstat (limited to 'Documentation/device-mapper')
-rw-r--r--Documentation/device-mapper/dm-log.txt54
1 files changed, 54 insertions, 0 deletions
diff --git a/Documentation/device-mapper/dm-log.txt b/Documentation/device-mapper/dm-log.txt
new file mode 100644
index 000000000000..994dd75475a6
--- /dev/null
+++ b/Documentation/device-mapper/dm-log.txt
@@ -0,0 +1,54 @@
1Device-Mapper Logging
2=====================
3The device-mapper logging code is used by some of the device-mapper
4RAID targets to track regions of the disk that are not consistent.
5A region (or portion of the address space) of the disk may be
6inconsistent because a RAID stripe is currently being operated on or
7a machine died while the region was being altered. In the case of
8mirrors, a region would be considered dirty/inconsistent while you
9are writing to it because the writes need to be replicated for all
10the legs of the mirror and may not reach the legs at the same time.
11Once all writes are complete, the region is considered clean again.
12
13There is a generic logging interface that the device-mapper RAID
14implementations use to perform logging operations (see
15dm_dirty_log_type in include/linux/dm-dirty-log.h). Various different
16logging implementations are available and provide different
17capabilities. The list includes:
18
19Type Files
20==== =====
21disk drivers/md/dm-log.c
22core drivers/md/dm-log.c
23userspace drivers/md/dm-log-userspace* include/linux/dm-log-userspace.h
24
25The "disk" log type
26-------------------
27This log implementation commits the log state to disk. This way, the
28logging state survives reboots/crashes.
29
30The "core" log type
31-------------------
32This log implementation keeps the log state in memory. The log state
33will not survive a reboot or crash, but there may be a small boost in
34performance. This method can also be used if no storage device is
35available for storing log state.
36
37The "userspace" log type
38------------------------
39This log type simply provides a way to export the log API to userspace,
40so log implementations can be done there. This is done by forwarding most
41logging requests to userspace, where a daemon receives and processes the
42request.
43
44The structure used for communication between kernel and userspace are
45located in include/linux/dm-log-userspace.h. Due to the frequency,
46diversity, and 2-way communication nature of the exchanges between
47kernel and userspace, 'connector' is used as the interface for
48communication.
49
50There are currently two userspace log implementations that leverage this
51framework - "clustered_disk" and "clustered_core". These implementations
52provide a cluster-coherent log for shared-storage. Device-mapper mirroring
53can be used in a shared-storage environment when the cluster log implementations
54are employed.