aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/block
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2013-02-28 15:52:24 -0500
committerLinus Torvalds <torvalds@linux-foundation.org>2013-02-28 15:52:24 -0500
commitee89f81252179dcbf6cd65bd48299f5e52292d88 (patch)
tree805846cd12821f84cfe619d44c9e3e36e0b0f9e6 /Documentation/block
parent21f3b24da9328415792efc780f50b9f434c12465 (diff)
parentde33127d8d3f1d570aad8c2223cd81b206636bc1 (diff)
Merge branch 'for-3.9/core' of git://git.kernel.dk/linux-block
Pull block IO core bits from Jens Axboe: "Below are the core block IO bits for 3.9. It was delayed a few days since my workstation kept crashing every 2-8h after pulling it into current -git, but turns out it is a bug in the new pstate code (divide by zero, will report separately). In any case, it contains: - The big cfq/blkcg update from Tejun and and Vivek. - Additional block and writeback tracepoints from Tejun. - Improvement of the should sort (based on queues) logic in the plug flushing. - _io() variants of the wait_for_completion() interface, using io_schedule() instead of schedule() to contribute to io wait properly. - Various little fixes. You'll get two trivial merge conflicts, which should be easy enough to fix up" Fix up the trivial conflicts due to hlist traversal cleanups (commit b67bfe0d42ca: "hlist: drop the node parameter from iterators"). * 'for-3.9/core' of git://git.kernel.dk/linux-block: (39 commits) block: remove redundant check to bd_openers() block: use i_size_write() in bd_set_size() cfq: fix lock imbalance with failed allocations drivers/block/swim3.c: fix null pointer dereference block: don't select PERCPU_RWSEM block: account iowait time when waiting for completion of IO request sched: add wait_for_completion_io[_timeout] writeback: add more tracepoints block: add block_{touch|dirty}_buffer tracepoint buffer: make touch_buffer() an exported function block: add @req to bio_{front|back}_merge tracepoints block: add missing block_bio_complete() tracepoint block: Remove should_sort judgement when flush blk_plug block,elevator: use new hashtable implementation cfq-iosched: add hierarchical cfq_group statistics cfq-iosched: collect stats from dead cfqgs cfq-iosched: separate out cfqg_stats_reset() from cfq_pd_reset_stats() blkcg: make blkcg_print_blkgs() grab q locks instead of blkcg lock block: RCU free request_queue blkcg: implement blkg_[rw]stat_recursive_sum() and blkg_[rw]stat_merge() ...
Diffstat (limited to 'Documentation/block')
-rw-r--r--Documentation/block/cfq-iosched.txt58
1 files changed, 58 insertions, 0 deletions
diff --git a/Documentation/block/cfq-iosched.txt b/Documentation/block/cfq-iosched.txt
index d89b4fe724d7..a5eb7d19a65d 100644
--- a/Documentation/block/cfq-iosched.txt
+++ b/Documentation/block/cfq-iosched.txt
@@ -102,6 +102,64 @@ processing of request. Therefore, increasing the value can imporve the
102performace although this can cause the latency of some I/O to increase due 102performace although this can cause the latency of some I/O to increase due
103to more number of requests. 103to more number of requests.
104 104
105CFQ Group scheduling
106====================
107
108CFQ supports blkio cgroup and has "blkio." prefixed files in each
109blkio cgroup directory. It is weight-based and there are four knobs
110for configuration - weight[_device] and leaf_weight[_device].
111Internal cgroup nodes (the ones with children) can also have tasks in
112them, so the former two configure how much proportion the cgroup as a
113whole is entitled to at its parent's level while the latter two
114configure how much proportion the tasks in the cgroup have compared to
115its direct children.
116
117Another way to think about it is assuming that each internal node has
118an implicit leaf child node which hosts all the tasks whose weight is
119configured by leaf_weight[_device]. Let's assume a blkio hierarchy
120composed of five cgroups - root, A, B, AA and AB - with the following
121weights where the names represent the hierarchy.
122
123 weight leaf_weight
124 root : 125 125
125 A : 500 750
126 B : 250 500
127 AA : 500 500
128 AB : 1000 500
129
130root never has a parent making its weight is meaningless. For backward
131compatibility, weight is always kept in sync with leaf_weight. B, AA
132and AB have no child and thus its tasks have no children cgroup to
133compete with. They always get 100% of what the cgroup won at the
134parent level. Considering only the weights which matter, the hierarchy
135looks like the following.
136
137 root
138 / | \
139 A B leaf
140 500 250 125
141 / | \
142 AA AB leaf
143 500 1000 750
144
145If all cgroups have active IOs and competing with each other, disk
146time will be distributed like the following.
147
148Distribution below root. The total active weight at this level is
149A:500 + B:250 + C:125 = 875.
150
151 root-leaf : 125 / 875 =~ 14%
152 A : 500 / 875 =~ 57%
153 B(-leaf) : 250 / 875 =~ 28%
154
155A has children and further distributes its 57% among the children and
156the implicit leaf node. The total active weight at this level is
157AA:500 + AB:1000 + A-leaf:750 = 2250.
158
159 A-leaf : ( 750 / 2250) * A =~ 19%
160 AA(-leaf) : ( 500 / 2250) * A =~ 12%
161 AB(-leaf) : (1000 / 2250) * A =~ 25%
162
105CFQ IOPS Mode for group scheduling 163CFQ IOPS Mode for group scheduling
106=================================== 164===================================
107Basic CFQ design is to provide priority based time slices. Higher priority 165Basic CFQ design is to provide priority based time slices. Higher priority