aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/arm/SH-Mobile
diff options
context:
space:
mode:
authorSimon Horman <horms@verge.net.au>2011-01-10 22:01:08 -0500
committerRussell King <rmk+kernel@arm.linux.org.uk>2011-01-25 10:06:52 -0500
commitf45b1149911cc4c3ab50e56c8844ad4ec04a4575 (patch)
treeb7567322fae765fcc9b24f3ec1604b13c21a5c34 /Documentation/arm/SH-Mobile
parent1bae4ce27c9c90344f23c65ea6966c50ffeae2f5 (diff)
ARM: 6617/1: mmc, Add zboot from MMC support for SuperH Mobile ARM
This allows a ROM-able zImage to be written to MMC and for SuperH Mobile ARM to boot directly from the MMCIF hardware block. This is achieved by the MaskROM loading the first portion of the image into MERAM and then jumping to it. This portion contains loader code which copies the entire image to SDRAM and jumps to it. From there the zImage boot code proceeds as normal, uncompressing the image into its final location and then jumping to it. Cc: Magnus Damm <magnus.damm@gmail.com> Russell, please consider merging this for 2.6.38. This patch depends on: * "mmc, sh: Move MMCIF_PROGRESS_* into sh_mmcif.h" which will be merged though Paul Mundt's rmobile sh-2.6. The absence of this patch will break the build if the (new) CONFIG_ZBOOT_ROM_MMCIF option is set. There are no subtle side-effects. v2: Addressed comments by Magnus Damm * Fix copyright in vrl4.c * Fix use of #define CONFIG_ZBOOT_ROM_MMCIF in mmcif-sh7372.c * Initialise LED GPIO lines in head-ap4evb.txt instead of mmcif-sh7372.c as this is considered board-specific. v3: Addressed comments made in person by Magnus Damm * Move mmcif_loader to be earlier in the image and reduce the number of blocks of boot program loaded by the MaskRom from 40 to 8 accordingly. * Move LED GPIO initialisation into mmcif_progress_init - This leaves the partner jet script unbloated Other * inline mmcif_update_progress so it is a static inline in a header file v4: * Use htole16() and htole32() in v4rl.c to ensure that the output is little endian v5: Addressed comments by Russell King * Simplify assembly code * Jump to code rather than an address <- bug fix * Use (void __iomem *) as appropriate Roll in mackerel support * This was previously a separate patch, only because of the order in which this code was developed Signed-off-by: Simon Horman <horms@verge.net.au> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Diffstat (limited to 'Documentation/arm/SH-Mobile')
-rw-r--r--Documentation/arm/SH-Mobile/Makefile8
-rw-r--r--Documentation/arm/SH-Mobile/vrl4.c169
-rw-r--r--Documentation/arm/SH-Mobile/zboot-rom-mmcif.txt29
3 files changed, 206 insertions, 0 deletions
diff --git a/Documentation/arm/SH-Mobile/Makefile b/Documentation/arm/SH-Mobile/Makefile
new file mode 100644
index 000000000000..8771d832cf8c
--- /dev/null
+++ b/Documentation/arm/SH-Mobile/Makefile
@@ -0,0 +1,8 @@
1BIN := vrl4
2
3.PHONY: all
4all: $(BIN)
5
6.PHONY: clean
7clean:
8 rm -f *.o $(BIN)
diff --git a/Documentation/arm/SH-Mobile/vrl4.c b/Documentation/arm/SH-Mobile/vrl4.c
new file mode 100644
index 000000000000..e8a191358ad2
--- /dev/null
+++ b/Documentation/arm/SH-Mobile/vrl4.c
@@ -0,0 +1,169 @@
1/*
2 * vrl4 format generator
3 *
4 * Copyright (C) 2010 Simon Horman
5 *
6 * This file is subject to the terms and conditions of the GNU General Public
7 * License. See the file "COPYING" in the main directory of this archive
8 * for more details.
9 */
10
11/*
12 * usage: vrl4 < zImage > out
13 * dd if=out of=/dev/sdx bs=512 seek=1 # Write the image to sector 1
14 *
15 * Reads a zImage from stdin and writes a vrl4 image to stdout.
16 * In practice this means writing a padded vrl4 header to stdout followed
17 * by the zImage.
18 *
19 * The padding places the zImage at ALIGN bytes into the output.
20 * The vrl4 uses ALIGN + START_BASE as the start_address.
21 * This is where the mask ROM will jump to after verifying the header.
22 *
23 * The header sets copy_size to min(sizeof(zImage), MAX_BOOT_PROG_LEN) + ALIGN.
24 * That is, the mask ROM will load the padded header (ALIGN bytes)
25 * And then MAX_BOOT_PROG_LEN bytes of the image, or the entire image,
26 * whichever is smaller.
27 *
28 * The zImage is not modified in any way.
29 */
30
31#define _BSD_SOURCE
32#include <endian.h>
33#include <unistd.h>
34#include <stdint.h>
35#include <stdio.h>
36#include <errno.h>
37
38struct hdr {
39 uint32_t magic1;
40 uint32_t reserved1;
41 uint32_t magic2;
42 uint32_t reserved2;
43 uint16_t copy_size;
44 uint16_t boot_options;
45 uint32_t reserved3;
46 uint32_t start_address;
47 uint32_t reserved4;
48 uint32_t reserved5;
49 char reserved6[308];
50};
51
52#define DECLARE_HDR(h) \
53 struct hdr (h) = { \
54 .magic1 = htole32(0xea000000), \
55 .reserved1 = htole32(0x56), \
56 .magic2 = htole32(0xe59ff008), \
57 .reserved3 = htole16(0x1) }
58
59/* Align to 512 bytes, the MMCIF sector size */
60#define ALIGN_BITS 9
61#define ALIGN (1 << ALIGN_BITS)
62
63#define START_BASE 0xe55b0000
64
65/*
66 * With an alignment of 512 the header uses the first sector.
67 * There is a 128 sector (64kbyte) limit on the data loaded by the mask ROM.
68 * So there are 127 sectors left for the boot programme. But in practice
69 * Only a small portion of a zImage is needed, 16 sectors should be more
70 * than enough.
71 *
72 * Note that this sets how much of the zImage is copied by the mask ROM.
73 * The entire zImage is present after the header and is loaded
74 * by the code in the boot program (which is the first portion of the zImage).
75 */
76#define MAX_BOOT_PROG_LEN (16 * 512)
77
78#define ROUND_UP(x) ((x + ALIGN - 1) & ~(ALIGN - 1))
79
80ssize_t do_read(int fd, void *buf, size_t count)
81{
82 size_t offset = 0;
83 ssize_t l;
84
85 while (offset < count) {
86 l = read(fd, buf + offset, count - offset);
87 if (!l)
88 break;
89 if (l < 0) {
90 if (errno == EAGAIN || errno == EWOULDBLOCK)
91 continue;
92 perror("read");
93 return -1;
94 }
95 offset += l;
96 }
97
98 return offset;
99}
100
101ssize_t do_write(int fd, const void *buf, size_t count)
102{
103 size_t offset = 0;
104 ssize_t l;
105
106 while (offset < count) {
107 l = write(fd, buf + offset, count - offset);
108 if (l < 0) {
109 if (errno == EAGAIN || errno == EWOULDBLOCK)
110 continue;
111 perror("write");
112 return -1;
113 }
114 offset += l;
115 }
116
117 return offset;
118}
119
120ssize_t write_zero(int fd, size_t len)
121{
122 size_t i = len;
123
124 while (i--) {
125 const char x = 0;
126 if (do_write(fd, &x, 1) < 0)
127 return -1;
128 }
129
130 return len;
131}
132
133int main(void)
134{
135 DECLARE_HDR(hdr);
136 char boot_program[MAX_BOOT_PROG_LEN];
137 size_t aligned_hdr_len, alligned_prog_len;
138 ssize_t prog_len;
139
140 prog_len = do_read(0, boot_program, sizeof(boot_program));
141 if (prog_len <= 0)
142 return -1;
143
144 aligned_hdr_len = ROUND_UP(sizeof(hdr));
145 hdr.start_address = htole32(START_BASE + aligned_hdr_len);
146 alligned_prog_len = ROUND_UP(prog_len);
147 hdr.copy_size = htole16(aligned_hdr_len + alligned_prog_len);
148
149 if (do_write(1, &hdr, sizeof(hdr)) < 0)
150 return -1;
151 if (write_zero(1, aligned_hdr_len - sizeof(hdr)) < 0)
152 return -1;
153
154 if (do_write(1, boot_program, prog_len) < 0)
155 return 1;
156
157 /* Write out the rest of the kernel */
158 while (1) {
159 prog_len = do_read(0, boot_program, sizeof(boot_program));
160 if (prog_len < 0)
161 return 1;
162 if (prog_len == 0)
163 break;
164 if (do_write(1, boot_program, prog_len) < 0)
165 return 1;
166 }
167
168 return 0;
169}
diff --git a/Documentation/arm/SH-Mobile/zboot-rom-mmcif.txt b/Documentation/arm/SH-Mobile/zboot-rom-mmcif.txt
new file mode 100644
index 000000000000..efff8ae2713d
--- /dev/null
+++ b/Documentation/arm/SH-Mobile/zboot-rom-mmcif.txt
@@ -0,0 +1,29 @@
1ROM-able zImage boot from MMC
2-----------------------------
3
4An ROM-able zImage compiled with ZBOOT_ROM_MMCIF may be written to MMC and
5SuperH Mobile ARM will to boot directly from the MMCIF hardware block.
6
7This is achieved by the mask ROM loading the first portion of the image into
8MERAM and then jumping to it. This portion contains loader code which
9copies the entire image to SDRAM and jumps to it. From there the zImage
10boot code proceeds as normal, uncompressing the image into its final
11location and then jumping to it.
12
13This code has been tested on an AP4EB board using the developer 1A eMMC
14boot mode which is configured using the following jumper settings.
15The board used for testing required a patched mask ROM in order for
16this mode to function.
17
18 8 7 6 5 4 3 2 1
19 x|x|x|x|x| |x|
20S4 -+-+-+-+-+-+-+-
21 | | | | |x| |x on
22
23The zImage must be written to the MMC card at sector 1 (512 bytes) in
24vrl4 format. A utility vrl4 is supplied to accomplish this.
25
26e.g.
27 vrl4 < zImage | dd of=/dev/sdX bs=512 seek=1
28
29A dual-voltage MMC 4.0 card was used for testing.