aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/DocBook/rapidio.tmpl
diff options
context:
space:
mode:
authorDavid Brownell <david-b@pacbell.net>2006-09-02 06:13:45 -0400
committerGreg Kroah-Hartman <gregkh@suse.de>2006-09-27 14:58:57 -0400
commit901b3d75e71535f29b64f352e94ff474d95df475 (patch)
treebc9dd49a1184bac831afb76943661e47f6366ad0 /Documentation/DocBook/rapidio.tmpl
parent80f8af0c59385b41564a3ae670f94a1b4caa43b2 (diff)
USB: net2280: update dma buffer allocation
This updates the code handling dma-coherent buffer allocations, basically reusing code from the musb_hdrc driver. Instead of trying to work around two significant limitations of the dma framework (memory wastage for buffers smaller than a page, and inconsistency between calling context requirements for allocation and free) this just works around one of them (the latter). So count this as two steps forward (bugfixes: the latter issue could cause errors on some platforms, and some MIPS changes broke code for the former), and one step back (increasing cross-platform memory wastage). Plus linelength and whitespace fixes; and minor data segment shrinkage. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Diffstat (limited to 'Documentation/DocBook/rapidio.tmpl')
0 files changed, 0 insertions, 0 deletions
tch */ CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ CPU_PARTIAL_FREE, /* Refill cpu partial on free */ CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ NR_SLUB_STAT_ITEMS }; struct kmem_cache_cpu { void **freelist; /* Pointer to next available object */ unsigned long tid; /* Globally unique transaction id */ struct page *page; /* The slab from which we are allocating */ struct page *partial; /* Partially allocated frozen slabs */ #ifdef CONFIG_SLUB_STATS unsigned stat[NR_SLUB_STAT_ITEMS]; #endif }; /* * Word size structure that can be atomically updated or read and that * contains both the order and the number of objects that a slab of the * given order would contain. */ struct kmem_cache_order_objects { unsigned long x; }; /* * Slab cache management. */ struct kmem_cache { struct kmem_cache_cpu __percpu *cpu_slab; /* Used for retriving partial slabs etc */ unsigned long flags; unsigned long min_partial; int size; /* The size of an object including meta data */ int object_size; /* The size of an object without meta data */ int offset; /* Free pointer offset. */ int cpu_partial; /* Number of per cpu partial objects to keep around */ struct kmem_cache_order_objects oo; /* Allocation and freeing of slabs */ struct kmem_cache_order_objects max; struct kmem_cache_order_objects min; gfp_t allocflags; /* gfp flags to use on each alloc */ int refcount; /* Refcount for slab cache destroy */ void (*ctor)(void *); int inuse; /* Offset to metadata */ int align; /* Alignment */ int reserved; /* Reserved bytes at the end of slabs */ const char *name; /* Name (only for display!) */ struct list_head list; /* List of slab caches */ #ifdef CONFIG_SYSFS struct kobject kobj; /* For sysfs */ #endif #ifdef CONFIG_MEMCG_KMEM struct memcg_cache_params *memcg_params; int max_attr_size; /* for propagation, maximum size of a stored attr */ #endif #ifdef CONFIG_NUMA /* * Defragmentation by allocating from a remote node. */ int remote_node_defrag_ratio; #endif struct kmem_cache_node *node[MAX_NUMNODES]; }; void *kmem_cache_alloc(struct kmem_cache *, gfp_t); void *__kmalloc(size_t size, gfp_t flags); static __always_inline void * kmalloc_order(size_t size, gfp_t flags, unsigned int order) { void *ret; flags |= (__GFP_COMP | __GFP_KMEMCG); ret = (void *) __get_free_pages(flags, order); kmemleak_alloc(ret, size, 1, flags); return ret; } /** * Calling this on allocated memory will check that the memory * is expected to be in use, and print warnings if not. */ #ifdef CONFIG_SLUB_DEBUG extern bool verify_mem_not_deleted(const void *x); #else static inline bool verify_mem_not_deleted(const void *x) { return true; } #endif #ifdef CONFIG_TRACING extern void * kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size); extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order); #else static __always_inline void * kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) { return kmem_cache_alloc(s, gfpflags); } static __always_inline void * kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) { return kmalloc_order(size, flags, order); } #endif static __always_inline void *kmalloc_large(size_t size, gfp_t flags) { unsigned int order = get_order(size); return kmalloc_order_trace(size, flags, order); } static __always_inline void *kmalloc(size_t size, gfp_t flags) { if (__builtin_constant_p(size)) { if (size > KMALLOC_MAX_CACHE_SIZE) return kmalloc_large(size, flags); if (!(flags & GFP_DMA)) { int index = kmalloc_index(size); if (!index) return ZERO_SIZE_PTR; return kmem_cache_alloc_trace(kmalloc_caches[index], flags, size); } } return __kmalloc(size, flags); } #ifdef CONFIG_NUMA void *__kmalloc_node(size_t size, gfp_t flags, int node); void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node); #ifdef CONFIG_TRACING extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size); #else static __always_inline void * kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) { return kmem_cache_alloc_node(s, gfpflags, node); } #endif static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) { if (__builtin_constant_p(size) && size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) { int index = kmalloc_index(size); if (!index) return ZERO_SIZE_PTR; return kmem_cache_alloc_node_trace(kmalloc_caches[index], flags, node, size); } return __kmalloc_node(size, flags, node); } #endif #endif /* _LINUX_SLUB_DEF_H */