aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2013-02-20 12:18:31 -0500
committerLinus Torvalds <torvalds@linux-foundation.org>2013-02-20 12:18:31 -0500
commit9ae46e6702d98d22037368896298d05958ad5737 (patch)
tree019ce8ccff0a88fc7f5ebaf5c052daac5bac3860
parent502b24c23b44fbaa01cc2cbd86d8035845b7811f (diff)
parentd127027baf98dce3ca31bec18c2c0e048ceda7c4 (diff)
Merge branch 'for-3.9-cpuset' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cpuset changes from Tejun Heo: - Synchornization has seen a lot of changes with focus on decoupling cpuset synchronization from cgroup internal locking. After this change, there only remain a couple of mostly trivial dependencies on cgroup_lock outside cgroup core proper. cgroup_lock is scheduled to be unexported in this devel cycle. This will finally remove the fragile locking order around cgroup (cgroup locking wants to / should be one of the outermost but yet has been acquired from deep inside individual controllers). - At this point, Li is most knowlegeable with cpuset and taking over the maintainership of cpuset. * 'for-3.9-cpuset' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cpuset: drop spurious retval assignment in proc_cpuset_show() cpuset: fix RCU lockdep splat cpuset: update MAINTAINERS cpuset: remove cpuset->parent cpuset: replace cpuset->stack_list with cpuset_for_each_descendant_pre() cpuset: replace cgroup_mutex locking with cpuset internal locking cpuset: schedule hotplug propagation from cpuset_attach() if the cpuset is empty cpuset: pin down cpus and mems while a task is being attached cpuset: make CPU / memory hotplug propagation asynchronous cpuset: drop async_rebuild_sched_domains() cpuset: don't nest cgroup_mutex inside get_online_cpus() cpuset: reorganize CPU / memory hotplug handling cpuset: cleanup cpuset[_can]_attach() cpuset: introduce cpuset_for_each_child() cpuset: introduce CS_ONLINE cpuset: introduce ->css_on/offline() cpuset: remove fast exit path from remove_tasks_in_empty_cpuset() cpuset: remove unused cpuset_unlock()
-rw-r--r--MAINTAINERS4
-rw-r--r--kernel/cpuset.c872
2 files changed, 485 insertions, 391 deletions
diff --git a/MAINTAINERS b/MAINTAINERS
index 526fb85f2f7e..b7013e41b623 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -2140,10 +2140,10 @@ S: Maintained
2140F: tools/power/cpupower 2140F: tools/power/cpupower
2141 2141
2142CPUSETS 2142CPUSETS
2143M: Paul Menage <paul@paulmenage.org> 2143M: Li Zefan <lizefan@huawei.com>
2144W: http://www.bullopensource.org/cpuset/ 2144W: http://www.bullopensource.org/cpuset/
2145W: http://oss.sgi.com/projects/cpusets/ 2145W: http://oss.sgi.com/projects/cpusets/
2146S: Supported 2146S: Maintained
2147F: Documentation/cgroups/cpusets.txt 2147F: Documentation/cgroups/cpusets.txt
2148F: include/linux/cpuset.h 2148F: include/linux/cpuset.h
2149F: kernel/cpuset.c 2149F: kernel/cpuset.c
diff --git a/kernel/cpuset.c b/kernel/cpuset.c
index 5bb9bf18438c..4f9dfe43ecbd 100644
--- a/kernel/cpuset.c
+++ b/kernel/cpuset.c
@@ -61,14 +61,6 @@
61#include <linux/cgroup.h> 61#include <linux/cgroup.h>
62 62
63/* 63/*
64 * Workqueue for cpuset related tasks.
65 *
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
68 */
69static struct workqueue_struct *cpuset_wq;
70
71/*
72 * Tracks how many cpusets are currently defined in system. 64 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can 65 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks. 66 * short circuit some hooks.
@@ -95,18 +87,21 @@ struct cpuset {
95 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */ 87 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
96 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */ 88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
97 89
98 struct cpuset *parent; /* my parent */
99
100 struct fmeter fmeter; /* memory_pressure filter */ 90 struct fmeter fmeter; /* memory_pressure filter */
101 91
92 /*
93 * Tasks are being attached to this cpuset. Used to prevent
94 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
95 */
96 int attach_in_progress;
97
102 /* partition number for rebuild_sched_domains() */ 98 /* partition number for rebuild_sched_domains() */
103 int pn; 99 int pn;
104 100
105 /* for custom sched domain */ 101 /* for custom sched domain */
106 int relax_domain_level; 102 int relax_domain_level;
107 103
108 /* used for walking a cpuset hierarchy */ 104 struct work_struct hotplug_work;
109 struct list_head stack_list;
110}; 105};
111 106
112/* Retrieve the cpuset for a cgroup */ 107/* Retrieve the cpuset for a cgroup */
@@ -123,6 +118,15 @@ static inline struct cpuset *task_cs(struct task_struct *task)
123 struct cpuset, css); 118 struct cpuset, css);
124} 119}
125 120
121static inline struct cpuset *parent_cs(const struct cpuset *cs)
122{
123 struct cgroup *pcgrp = cs->css.cgroup->parent;
124
125 if (pcgrp)
126 return cgroup_cs(pcgrp);
127 return NULL;
128}
129
126#ifdef CONFIG_NUMA 130#ifdef CONFIG_NUMA
127static inline bool task_has_mempolicy(struct task_struct *task) 131static inline bool task_has_mempolicy(struct task_struct *task)
128{ 132{
@@ -138,6 +142,7 @@ static inline bool task_has_mempolicy(struct task_struct *task)
138 142
139/* bits in struct cpuset flags field */ 143/* bits in struct cpuset flags field */
140typedef enum { 144typedef enum {
145 CS_ONLINE,
141 CS_CPU_EXCLUSIVE, 146 CS_CPU_EXCLUSIVE,
142 CS_MEM_EXCLUSIVE, 147 CS_MEM_EXCLUSIVE,
143 CS_MEM_HARDWALL, 148 CS_MEM_HARDWALL,
@@ -147,13 +152,12 @@ typedef enum {
147 CS_SPREAD_SLAB, 152 CS_SPREAD_SLAB,
148} cpuset_flagbits_t; 153} cpuset_flagbits_t;
149 154
150/* the type of hotplug event */
151enum hotplug_event {
152 CPUSET_CPU_OFFLINE,
153 CPUSET_MEM_OFFLINE,
154};
155
156/* convenient tests for these bits */ 155/* convenient tests for these bits */
156static inline bool is_cpuset_online(const struct cpuset *cs)
157{
158 return test_bit(CS_ONLINE, &cs->flags);
159}
160
157static inline int is_cpu_exclusive(const struct cpuset *cs) 161static inline int is_cpu_exclusive(const struct cpuset *cs)
158{ 162{
159 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 163 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
@@ -190,27 +194,52 @@ static inline int is_spread_slab(const struct cpuset *cs)
190} 194}
191 195
192static struct cpuset top_cpuset = { 196static struct cpuset top_cpuset = {
193 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), 197 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
198 (1 << CS_MEM_EXCLUSIVE)),
194}; 199};
195 200
201/**
202 * cpuset_for_each_child - traverse online children of a cpuset
203 * @child_cs: loop cursor pointing to the current child
204 * @pos_cgrp: used for iteration
205 * @parent_cs: target cpuset to walk children of
206 *
207 * Walk @child_cs through the online children of @parent_cs. Must be used
208 * with RCU read locked.
209 */
210#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
211 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
212 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
213
214/**
215 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
216 * @des_cs: loop cursor pointing to the current descendant
217 * @pos_cgrp: used for iteration
218 * @root_cs: target cpuset to walk ancestor of
219 *
220 * Walk @des_cs through the online descendants of @root_cs. Must be used
221 * with RCU read locked. The caller may modify @pos_cgrp by calling
222 * cgroup_rightmost_descendant() to skip subtree.
223 */
224#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
225 cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
226 if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
227
196/* 228/*
197 * There are two global mutexes guarding cpuset structures. The first 229 * There are two global mutexes guarding cpuset structures - cpuset_mutex
198 * is the main control groups cgroup_mutex, accessed via 230 * and callback_mutex. The latter may nest inside the former. We also
199 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific 231 * require taking task_lock() when dereferencing a task's cpuset pointer.
200 * callback_mutex, below. They can nest. It is ok to first take 232 * See "The task_lock() exception", at the end of this comment.
201 * cgroup_mutex, then nest callback_mutex. We also require taking 233 *
202 * task_lock() when dereferencing a task's cpuset pointer. See "The 234 * A task must hold both mutexes to modify cpusets. If a task holds
203 * task_lock() exception", at the end of this comment. 235 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
204 * 236 * is the only task able to also acquire callback_mutex and be able to
205 * A task must hold both mutexes to modify cpusets. If a task 237 * modify cpusets. It can perform various checks on the cpuset structure
206 * holds cgroup_mutex, then it blocks others wanting that mutex, 238 * first, knowing nothing will change. It can also allocate memory while
207 * ensuring that it is the only task able to also acquire callback_mutex 239 * just holding cpuset_mutex. While it is performing these checks, various
208 * and be able to modify cpusets. It can perform various checks on 240 * callback routines can briefly acquire callback_mutex to query cpusets.
209 * the cpuset structure first, knowing nothing will change. It can 241 * Once it is ready to make the changes, it takes callback_mutex, blocking
210 * also allocate memory while just holding cgroup_mutex. While it is 242 * everyone else.
211 * performing these checks, various callback routines can briefly
212 * acquire callback_mutex to query cpusets. Once it is ready to make
213 * the changes, it takes callback_mutex, blocking everyone else.
214 * 243 *
215 * Calls to the kernel memory allocator can not be made while holding 244 * Calls to the kernel memory allocator can not be made while holding
216 * callback_mutex, as that would risk double tripping on callback_mutex 245 * callback_mutex, as that would risk double tripping on callback_mutex
@@ -232,6 +261,7 @@ static struct cpuset top_cpuset = {
232 * guidelines for accessing subsystem state in kernel/cgroup.c 261 * guidelines for accessing subsystem state in kernel/cgroup.c
233 */ 262 */
234 263
264static DEFINE_MUTEX(cpuset_mutex);
235static DEFINE_MUTEX(callback_mutex); 265static DEFINE_MUTEX(callback_mutex);
236 266
237/* 267/*
@@ -246,6 +276,17 @@ static char cpuset_nodelist[CPUSET_NODELIST_LEN];
246static DEFINE_SPINLOCK(cpuset_buffer_lock); 276static DEFINE_SPINLOCK(cpuset_buffer_lock);
247 277
248/* 278/*
279 * CPU / memory hotplug is handled asynchronously.
280 */
281static struct workqueue_struct *cpuset_propagate_hotplug_wq;
282
283static void cpuset_hotplug_workfn(struct work_struct *work);
284static void cpuset_propagate_hotplug_workfn(struct work_struct *work);
285static void schedule_cpuset_propagate_hotplug(struct cpuset *cs);
286
287static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
288
289/*
249 * This is ugly, but preserves the userspace API for existing cpuset 290 * This is ugly, but preserves the userspace API for existing cpuset
250 * users. If someone tries to mount the "cpuset" filesystem, we 291 * users. If someone tries to mount the "cpuset" filesystem, we
251 * silently switch it to mount "cgroup" instead 292 * silently switch it to mount "cgroup" instead
@@ -289,7 +330,7 @@ static void guarantee_online_cpus(const struct cpuset *cs,
289 struct cpumask *pmask) 330 struct cpumask *pmask)
290{ 331{
291 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask)) 332 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
292 cs = cs->parent; 333 cs = parent_cs(cs);
293 if (cs) 334 if (cs)
294 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask); 335 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
295 else 336 else
@@ -314,7 +355,7 @@ static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
314{ 355{
315 while (cs && !nodes_intersects(cs->mems_allowed, 356 while (cs && !nodes_intersects(cs->mems_allowed,
316 node_states[N_MEMORY])) 357 node_states[N_MEMORY]))
317 cs = cs->parent; 358 cs = parent_cs(cs);
318 if (cs) 359 if (cs)
319 nodes_and(*pmask, cs->mems_allowed, 360 nodes_and(*pmask, cs->mems_allowed,
320 node_states[N_MEMORY]); 361 node_states[N_MEMORY]);
@@ -326,7 +367,7 @@ static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
326/* 367/*
327 * update task's spread flag if cpuset's page/slab spread flag is set 368 * update task's spread flag if cpuset's page/slab spread flag is set
328 * 369 *
329 * Called with callback_mutex/cgroup_mutex held 370 * Called with callback_mutex/cpuset_mutex held
330 */ 371 */
331static void cpuset_update_task_spread_flag(struct cpuset *cs, 372static void cpuset_update_task_spread_flag(struct cpuset *cs,
332 struct task_struct *tsk) 373 struct task_struct *tsk)
@@ -346,7 +387,7 @@ static void cpuset_update_task_spread_flag(struct cpuset *cs,
346 * 387 *
347 * One cpuset is a subset of another if all its allowed CPUs and 388 * One cpuset is a subset of another if all its allowed CPUs and
348 * Memory Nodes are a subset of the other, and its exclusive flags 389 * Memory Nodes are a subset of the other, and its exclusive flags
349 * are only set if the other's are set. Call holding cgroup_mutex. 390 * are only set if the other's are set. Call holding cpuset_mutex.
350 */ 391 */
351 392
352static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 393static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
@@ -395,7 +436,7 @@ static void free_trial_cpuset(struct cpuset *trial)
395 * If we replaced the flag and mask values of the current cpuset 436 * If we replaced the flag and mask values of the current cpuset
396 * (cur) with those values in the trial cpuset (trial), would 437 * (cur) with those values in the trial cpuset (trial), would
397 * our various subset and exclusive rules still be valid? Presumes 438 * our various subset and exclusive rules still be valid? Presumes
398 * cgroup_mutex held. 439 * cpuset_mutex held.
399 * 440 *
400 * 'cur' is the address of an actual, in-use cpuset. Operations 441 * 'cur' is the address of an actual, in-use cpuset. Operations
401 * such as list traversal that depend on the actual address of the 442 * such as list traversal that depend on the actual address of the
@@ -412,48 +453,58 @@ static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
412{ 453{
413 struct cgroup *cont; 454 struct cgroup *cont;
414 struct cpuset *c, *par; 455 struct cpuset *c, *par;
456 int ret;
457
458 rcu_read_lock();
415 459
416 /* Each of our child cpusets must be a subset of us */ 460 /* Each of our child cpusets must be a subset of us */
417 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) { 461 ret = -EBUSY;
418 if (!is_cpuset_subset(cgroup_cs(cont), trial)) 462 cpuset_for_each_child(c, cont, cur)
419 return -EBUSY; 463 if (!is_cpuset_subset(c, trial))
420 } 464 goto out;
421 465
422 /* Remaining checks don't apply to root cpuset */ 466 /* Remaining checks don't apply to root cpuset */
467 ret = 0;
423 if (cur == &top_cpuset) 468 if (cur == &top_cpuset)
424 return 0; 469 goto out;
425 470
426 par = cur->parent; 471 par = parent_cs(cur);
427 472
428 /* We must be a subset of our parent cpuset */ 473 /* We must be a subset of our parent cpuset */
474 ret = -EACCES;
429 if (!is_cpuset_subset(trial, par)) 475 if (!is_cpuset_subset(trial, par))
430 return -EACCES; 476 goto out;
431 477
432 /* 478 /*
433 * If either I or some sibling (!= me) is exclusive, we can't 479 * If either I or some sibling (!= me) is exclusive, we can't
434 * overlap 480 * overlap
435 */ 481 */
436 list_for_each_entry(cont, &par->css.cgroup->children, sibling) { 482 ret = -EINVAL;
437 c = cgroup_cs(cont); 483 cpuset_for_each_child(c, cont, par) {
438 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 484 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
439 c != cur && 485 c != cur &&
440 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 486 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
441 return -EINVAL; 487 goto out;
442 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 488 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
443 c != cur && 489 c != cur &&
444 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 490 nodes_intersects(trial->mems_allowed, c->mems_allowed))
445 return -EINVAL; 491 goto out;
446 } 492 }
447 493
448 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */ 494 /*
449 if (cgroup_task_count(cur->css.cgroup)) { 495 * Cpusets with tasks - existing or newly being attached - can't
450 if (cpumask_empty(trial->cpus_allowed) || 496 * have empty cpus_allowed or mems_allowed.
451 nodes_empty(trial->mems_allowed)) { 497 */
452 return -ENOSPC; 498 ret = -ENOSPC;
453 } 499 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
454 } 500 (cpumask_empty(trial->cpus_allowed) ||
501 nodes_empty(trial->mems_allowed)))
502 goto out;
455 503
456 return 0; 504 ret = 0;
505out:
506 rcu_read_unlock();
507 return ret;
457} 508}
458 509
459#ifdef CONFIG_SMP 510#ifdef CONFIG_SMP
@@ -474,31 +525,24 @@ update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
474 return; 525 return;
475} 526}
476 527
477static void 528static void update_domain_attr_tree(struct sched_domain_attr *dattr,
478update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c) 529 struct cpuset *root_cs)
479{ 530{
480 LIST_HEAD(q); 531 struct cpuset *cp;
481 532 struct cgroup *pos_cgrp;
482 list_add(&c->stack_list, &q);
483 while (!list_empty(&q)) {
484 struct cpuset *cp;
485 struct cgroup *cont;
486 struct cpuset *child;
487
488 cp = list_first_entry(&q, struct cpuset, stack_list);
489 list_del(q.next);
490 533
491 if (cpumask_empty(cp->cpus_allowed)) 534 rcu_read_lock();
535 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
536 /* skip the whole subtree if @cp doesn't have any CPU */
537 if (cpumask_empty(cp->cpus_allowed)) {
538 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
492 continue; 539 continue;
540 }
493 541
494 if (is_sched_load_balance(cp)) 542 if (is_sched_load_balance(cp))
495 update_domain_attr(dattr, cp); 543 update_domain_attr(dattr, cp);
496
497 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
498 child = cgroup_cs(cont);
499 list_add_tail(&child->stack_list, &q);
500 }
501 } 544 }
545 rcu_read_unlock();
502} 546}
503 547
504/* 548/*
@@ -520,7 +564,7 @@ update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
520 * domains when operating in the severe memory shortage situations 564 * domains when operating in the severe memory shortage situations
521 * that could cause allocation failures below. 565 * that could cause allocation failures below.
522 * 566 *
523 * Must be called with cgroup_lock held. 567 * Must be called with cpuset_mutex held.
524 * 568 *
525 * The three key local variables below are: 569 * The three key local variables below are:
526 * q - a linked-list queue of cpuset pointers, used to implement a 570 * q - a linked-list queue of cpuset pointers, used to implement a
@@ -558,7 +602,6 @@ update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
558static int generate_sched_domains(cpumask_var_t **domains, 602static int generate_sched_domains(cpumask_var_t **domains,
559 struct sched_domain_attr **attributes) 603 struct sched_domain_attr **attributes)
560{ 604{
561 LIST_HEAD(q); /* queue of cpusets to be scanned */
562 struct cpuset *cp; /* scans q */ 605 struct cpuset *cp; /* scans q */
563 struct cpuset **csa; /* array of all cpuset ptrs */ 606 struct cpuset **csa; /* array of all cpuset ptrs */
564 int csn; /* how many cpuset ptrs in csa so far */ 607 int csn; /* how many cpuset ptrs in csa so far */
@@ -567,6 +610,7 @@ static int generate_sched_domains(cpumask_var_t **domains,
567 struct sched_domain_attr *dattr; /* attributes for custom domains */ 610 struct sched_domain_attr *dattr; /* attributes for custom domains */
568 int ndoms = 0; /* number of sched domains in result */ 611 int ndoms = 0; /* number of sched domains in result */
569 int nslot; /* next empty doms[] struct cpumask slot */ 612 int nslot; /* next empty doms[] struct cpumask slot */
613 struct cgroup *pos_cgrp;
570 614
571 doms = NULL; 615 doms = NULL;
572 dattr = NULL; 616 dattr = NULL;
@@ -594,33 +638,27 @@ static int generate_sched_domains(cpumask_var_t **domains,
594 goto done; 638 goto done;
595 csn = 0; 639 csn = 0;
596 640
597 list_add(&top_cpuset.stack_list, &q); 641 rcu_read_lock();
598 while (!list_empty(&q)) { 642 cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
599 struct cgroup *cont;
600 struct cpuset *child; /* scans child cpusets of cp */
601
602 cp = list_first_entry(&q, struct cpuset, stack_list);
603 list_del(q.next);
604
605 if (cpumask_empty(cp->cpus_allowed))
606 continue;
607
608 /* 643 /*
609 * All child cpusets contain a subset of the parent's cpus, so 644 * Continue traversing beyond @cp iff @cp has some CPUs and
610 * just skip them, and then we call update_domain_attr_tree() 645 * isn't load balancing. The former is obvious. The
611 * to calc relax_domain_level of the corresponding sched 646 * latter: All child cpusets contain a subset of the
612 * domain. 647 * parent's cpus, so just skip them, and then we call
648 * update_domain_attr_tree() to calc relax_domain_level of
649 * the corresponding sched domain.
613 */ 650 */
614 if (is_sched_load_balance(cp)) { 651 if (!cpumask_empty(cp->cpus_allowed) &&
615 csa[csn++] = cp; 652 !is_sched_load_balance(cp))
616 continue; 653 continue;
617 }
618 654
619 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { 655 if (is_sched_load_balance(cp))
620 child = cgroup_cs(cont); 656 csa[csn++] = cp;
621 list_add_tail(&child->stack_list, &q); 657
622 } 658 /* skip @cp's subtree */
623 } 659 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
660 }
661 rcu_read_unlock();
624 662
625 for (i = 0; i < csn; i++) 663 for (i = 0; i < csn; i++)
626 csa[i]->pn = i; 664 csa[i]->pn = i;
@@ -725,25 +763,25 @@ done:
725/* 763/*
726 * Rebuild scheduler domains. 764 * Rebuild scheduler domains.
727 * 765 *
728 * Call with neither cgroup_mutex held nor within get_online_cpus(). 766 * If the flag 'sched_load_balance' of any cpuset with non-empty
729 * Takes both cgroup_mutex and get_online_cpus(). 767 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
768 * which has that flag enabled, or if any cpuset with a non-empty
769 * 'cpus' is removed, then call this routine to rebuild the
770 * scheduler's dynamic sched domains.
730 * 771 *
731 * Cannot be directly called from cpuset code handling changes 772 * Call with cpuset_mutex held. Takes get_online_cpus().
732 * to the cpuset pseudo-filesystem, because it cannot be called
733 * from code that already holds cgroup_mutex.
734 */ 773 */
735static void do_rebuild_sched_domains(struct work_struct *unused) 774static void rebuild_sched_domains_locked(void)
736{ 775{
737 struct sched_domain_attr *attr; 776 struct sched_domain_attr *attr;
738 cpumask_var_t *doms; 777 cpumask_var_t *doms;
739 int ndoms; 778 int ndoms;
740 779
780 lockdep_assert_held(&cpuset_mutex);
741 get_online_cpus(); 781 get_online_cpus();
742 782
743 /* Generate domain masks and attrs */ 783 /* Generate domain masks and attrs */
744 cgroup_lock();
745 ndoms = generate_sched_domains(&doms, &attr); 784 ndoms = generate_sched_domains(&doms, &attr);
746 cgroup_unlock();
747 785
748 /* Have scheduler rebuild the domains */ 786 /* Have scheduler rebuild the domains */
749 partition_sched_domains(ndoms, doms, attr); 787 partition_sched_domains(ndoms, doms, attr);
@@ -751,7 +789,7 @@ static void do_rebuild_sched_domains(struct work_struct *unused)
751 put_online_cpus(); 789 put_online_cpus();
752} 790}
753#else /* !CONFIG_SMP */ 791#else /* !CONFIG_SMP */
754static void do_rebuild_sched_domains(struct work_struct *unused) 792static void rebuild_sched_domains_locked(void)
755{ 793{
756} 794}
757 795
@@ -763,44 +801,11 @@ static int generate_sched_domains(cpumask_var_t **domains,
763} 801}
764#endif /* CONFIG_SMP */ 802#endif /* CONFIG_SMP */
765 803
766static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
767
768/*
769 * Rebuild scheduler domains, asynchronously via workqueue.
770 *
771 * If the flag 'sched_load_balance' of any cpuset with non-empty
772 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
773 * which has that flag enabled, or if any cpuset with a non-empty
774 * 'cpus' is removed, then call this routine to rebuild the
775 * scheduler's dynamic sched domains.
776 *
777 * The rebuild_sched_domains() and partition_sched_domains()
778 * routines must nest cgroup_lock() inside get_online_cpus(),
779 * but such cpuset changes as these must nest that locking the
780 * other way, holding cgroup_lock() for much of the code.
781 *
782 * So in order to avoid an ABBA deadlock, the cpuset code handling
783 * these user changes delegates the actual sched domain rebuilding
784 * to a separate workqueue thread, which ends up processing the
785 * above do_rebuild_sched_domains() function.
786 */
787static void async_rebuild_sched_domains(void)
788{
789 queue_work(cpuset_wq, &rebuild_sched_domains_work);
790}
791
792/*
793 * Accomplishes the same scheduler domain rebuild as the above
794 * async_rebuild_sched_domains(), however it directly calls the
795 * rebuild routine synchronously rather than calling it via an
796 * asynchronous work thread.
797 *
798 * This can only be called from code that is not holding
799 * cgroup_mutex (not nested in a cgroup_lock() call.)
800 */
801void rebuild_sched_domains(void) 804void rebuild_sched_domains(void)
802{ 805{
803 do_rebuild_sched_domains(NULL); 806 mutex_lock(&cpuset_mutex);
807 rebuild_sched_domains_locked();
808 mutex_unlock(&cpuset_mutex);
804} 809}
805 810
806/** 811/**
@@ -808,7 +813,7 @@ void rebuild_sched_domains(void)
808 * @tsk: task to test 813 * @tsk: task to test
809 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner 814 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
810 * 815 *
811 * Call with cgroup_mutex held. May take callback_mutex during call. 816 * Call with cpuset_mutex held. May take callback_mutex during call.
812 * Called for each task in a cgroup by cgroup_scan_tasks(). 817 * Called for each task in a cgroup by cgroup_scan_tasks().
813 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other 818 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
814 * words, if its mask is not equal to its cpuset's mask). 819 * words, if its mask is not equal to its cpuset's mask).
@@ -829,7 +834,7 @@ static int cpuset_test_cpumask(struct task_struct *tsk,
829 * cpus_allowed mask needs to be changed. 834 * cpus_allowed mask needs to be changed.
830 * 835 *
831 * We don't need to re-check for the cgroup/cpuset membership, since we're 836 * We don't need to re-check for the cgroup/cpuset membership, since we're
832 * holding cgroup_lock() at this point. 837 * holding cpuset_mutex at this point.
833 */ 838 */
834static void cpuset_change_cpumask(struct task_struct *tsk, 839static void cpuset_change_cpumask(struct task_struct *tsk,
835 struct cgroup_scanner *scan) 840 struct cgroup_scanner *scan)
@@ -842,7 +847,7 @@ static void cpuset_change_cpumask(struct task_struct *tsk,
842 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 847 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
843 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() 848 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
844 * 849 *
845 * Called with cgroup_mutex held 850 * Called with cpuset_mutex held
846 * 851 *
847 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, 852 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
848 * calling callback functions for each. 853 * calling callback functions for each.
@@ -920,7 +925,7 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
920 heap_free(&heap); 925 heap_free(&heap);
921 926
922 if (is_load_balanced) 927 if (is_load_balanced)
923 async_rebuild_sched_domains(); 928 rebuild_sched_domains_locked();
924 return 0; 929 return 0;
925} 930}
926 931
@@ -932,7 +937,7 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
932 * Temporarilly set tasks mems_allowed to target nodes of migration, 937 * Temporarilly set tasks mems_allowed to target nodes of migration,
933 * so that the migration code can allocate pages on these nodes. 938 * so that the migration code can allocate pages on these nodes.
934 * 939 *
935 * Call holding cgroup_mutex, so current's cpuset won't change 940 * Call holding cpuset_mutex, so current's cpuset won't change
936 * during this call, as manage_mutex holds off any cpuset_attach() 941 * during this call, as manage_mutex holds off any cpuset_attach()
937 * calls. Therefore we don't need to take task_lock around the 942 * calls. Therefore we don't need to take task_lock around the
938 * call to guarantee_online_mems(), as we know no one is changing 943 * call to guarantee_online_mems(), as we know no one is changing
@@ -1007,7 +1012,7 @@ static void cpuset_change_task_nodemask(struct task_struct *tsk,
1007/* 1012/*
1008 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy 1013 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1009 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if 1014 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1010 * memory_migrate flag is set. Called with cgroup_mutex held. 1015 * memory_migrate flag is set. Called with cpuset_mutex held.
1011 */ 1016 */
1012static void cpuset_change_nodemask(struct task_struct *p, 1017static void cpuset_change_nodemask(struct task_struct *p,
1013 struct cgroup_scanner *scan) 1018 struct cgroup_scanner *scan)
@@ -1016,7 +1021,7 @@ static void cpuset_change_nodemask(struct task_struct *p,
1016 struct cpuset *cs; 1021 struct cpuset *cs;
1017 int migrate; 1022 int migrate;
1018 const nodemask_t *oldmem = scan->data; 1023 const nodemask_t *oldmem = scan->data;
1019 static nodemask_t newmems; /* protected by cgroup_mutex */ 1024 static nodemask_t newmems; /* protected by cpuset_mutex */
1020 1025
1021 cs = cgroup_cs(scan->cg); 1026 cs = cgroup_cs(scan->cg);
1022 guarantee_online_mems(cs, &newmems); 1027 guarantee_online_mems(cs, &newmems);
@@ -1043,7 +1048,7 @@ static void *cpuset_being_rebound;
1043 * @oldmem: old mems_allowed of cpuset cs 1048 * @oldmem: old mems_allowed of cpuset cs
1044 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() 1049 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1045 * 1050 *
1046 * Called with cgroup_mutex held 1051 * Called with cpuset_mutex held
1047 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 1052 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1048 * if @heap != NULL. 1053 * if @heap != NULL.
1049 */ 1054 */
@@ -1065,7 +1070,7 @@ static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1065 * take while holding tasklist_lock. Forks can happen - the 1070 * take while holding tasklist_lock. Forks can happen - the
1066 * mpol_dup() cpuset_being_rebound check will catch such forks, 1071 * mpol_dup() cpuset_being_rebound check will catch such forks,
1067 * and rebind their vma mempolicies too. Because we still hold 1072 * and rebind their vma mempolicies too. Because we still hold
1068 * the global cgroup_mutex, we know that no other rebind effort 1073 * the global cpuset_mutex, we know that no other rebind effort
1069 * will be contending for the global variable cpuset_being_rebound. 1074 * will be contending for the global variable cpuset_being_rebound.
1070 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 1075 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1071 * is idempotent. Also migrate pages in each mm to new nodes. 1076 * is idempotent. Also migrate pages in each mm to new nodes.
@@ -1084,7 +1089,7 @@ static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1084 * mempolicies and if the cpuset is marked 'memory_migrate', 1089 * mempolicies and if the cpuset is marked 'memory_migrate',
1085 * migrate the tasks pages to the new memory. 1090 * migrate the tasks pages to the new memory.
1086 * 1091 *
1087 * Call with cgroup_mutex held. May take callback_mutex during call. 1092 * Call with cpuset_mutex held. May take callback_mutex during call.
1088 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 1093 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1089 * lock each such tasks mm->mmap_sem, scan its vma's and rebind 1094 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1090 * their mempolicies to the cpusets new mems_allowed. 1095 * their mempolicies to the cpusets new mems_allowed.
@@ -1168,7 +1173,7 @@ static int update_relax_domain_level(struct cpuset *cs, s64 val)
1168 cs->relax_domain_level = val; 1173 cs->relax_domain_level = val;
1169 if (!cpumask_empty(cs->cpus_allowed) && 1174 if (!cpumask_empty(cs->cpus_allowed) &&
1170 is_sched_load_balance(cs)) 1175 is_sched_load_balance(cs))
1171 async_rebuild_sched_domains(); 1176 rebuild_sched_domains_locked();
1172 } 1177 }
1173 1178
1174 return 0; 1179 return 0;
@@ -1182,7 +1187,7 @@ static int update_relax_domain_level(struct cpuset *cs, s64 val)
1182 * Called by cgroup_scan_tasks() for each task in a cgroup. 1187 * Called by cgroup_scan_tasks() for each task in a cgroup.
1183 * 1188 *
1184 * We don't need to re-check for the cgroup/cpuset membership, since we're 1189 * We don't need to re-check for the cgroup/cpuset membership, since we're
1185 * holding cgroup_lock() at this point. 1190 * holding cpuset_mutex at this point.
1186 */ 1191 */
1187static void cpuset_change_flag(struct task_struct *tsk, 1192static void cpuset_change_flag(struct task_struct *tsk,
1188 struct cgroup_scanner *scan) 1193 struct cgroup_scanner *scan)
@@ -1195,7 +1200,7 @@ static void cpuset_change_flag(struct task_struct *tsk,
1195 * @cs: the cpuset in which each task's spread flags needs to be changed 1200 * @cs: the cpuset in which each task's spread flags needs to be changed
1196 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() 1201 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1197 * 1202 *
1198 * Called with cgroup_mutex held 1203 * Called with cpuset_mutex held
1199 * 1204 *
1200 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, 1205 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1201 * calling callback functions for each. 1206 * calling callback functions for each.
@@ -1220,7 +1225,7 @@ static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1220 * cs: the cpuset to update 1225 * cs: the cpuset to update
1221 * turning_on: whether the flag is being set or cleared 1226 * turning_on: whether the flag is being set or cleared
1222 * 1227 *
1223 * Call with cgroup_mutex held. 1228 * Call with cpuset_mutex held.
1224 */ 1229 */
1225 1230
1226static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1231static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
@@ -1260,7 +1265,7 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1260 mutex_unlock(&callback_mutex); 1265 mutex_unlock(&callback_mutex);
1261 1266
1262 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 1267 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1263 async_rebuild_sched_domains(); 1268 rebuild_sched_domains_locked();
1264 1269
1265 if (spread_flag_changed) 1270 if (spread_flag_changed)
1266 update_tasks_flags(cs, &heap); 1271 update_tasks_flags(cs, &heap);
@@ -1368,24 +1373,18 @@ static int fmeter_getrate(struct fmeter *fmp)
1368 return val; 1373 return val;
1369} 1374}
1370 1375
1371/* 1376/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1372 * Protected by cgroup_lock. The nodemasks must be stored globally because
1373 * dynamically allocating them is not allowed in can_attach, and they must
1374 * persist until attach.
1375 */
1376static cpumask_var_t cpus_attach;
1377static nodemask_t cpuset_attach_nodemask_from;
1378static nodemask_t cpuset_attach_nodemask_to;
1379
1380/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1381static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) 1377static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1382{ 1378{
1383 struct cpuset *cs = cgroup_cs(cgrp); 1379 struct cpuset *cs = cgroup_cs(cgrp);
1384 struct task_struct *task; 1380 struct task_struct *task;
1385 int ret; 1381 int ret;
1386 1382
1383 mutex_lock(&cpuset_mutex);
1384
1385 ret = -ENOSPC;
1387 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) 1386 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1388 return -ENOSPC; 1387 goto out_unlock;
1389 1388
1390 cgroup_taskset_for_each(task, cgrp, tset) { 1389 cgroup_taskset_for_each(task, cgrp, tset) {
1391 /* 1390 /*
@@ -1397,25 +1396,45 @@ static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1397 * set_cpus_allowed_ptr() on all attached tasks before 1396 * set_cpus_allowed_ptr() on all attached tasks before
1398 * cpus_allowed may be changed. 1397 * cpus_allowed may be changed.
1399 */ 1398 */
1399 ret = -EINVAL;
1400 if (task->flags & PF_THREAD_BOUND) 1400 if (task->flags & PF_THREAD_BOUND)
1401 return -EINVAL; 1401 goto out_unlock;
1402 if ((ret = security_task_setscheduler(task))) 1402 ret = security_task_setscheduler(task);
1403 return ret; 1403 if (ret)
1404 goto out_unlock;
1404 } 1405 }
1405 1406
1406 /* prepare for attach */ 1407 /*
1407 if (cs == &top_cpuset) 1408 * Mark attach is in progress. This makes validate_change() fail
1408 cpumask_copy(cpus_attach, cpu_possible_mask); 1409 * changes which zero cpus/mems_allowed.
1409 else 1410 */
1410 guarantee_online_cpus(cs, cpus_attach); 1411 cs->attach_in_progress++;
1411 1412 ret = 0;
1412 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 1413out_unlock:
1414 mutex_unlock(&cpuset_mutex);
1415 return ret;
1416}
1413 1417
1414 return 0; 1418static void cpuset_cancel_attach(struct cgroup *cgrp,
1419 struct cgroup_taskset *tset)
1420{
1421 mutex_lock(&cpuset_mutex);
1422 cgroup_cs(cgrp)->attach_in_progress--;
1423 mutex_unlock(&cpuset_mutex);
1415} 1424}
1416 1425
1426/*
1427 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1428 * but we can't allocate it dynamically there. Define it global and
1429 * allocate from cpuset_init().
1430 */
1431static cpumask_var_t cpus_attach;
1432
1417static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) 1433static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1418{ 1434{
1435 /* static bufs protected by cpuset_mutex */
1436 static nodemask_t cpuset_attach_nodemask_from;
1437 static nodemask_t cpuset_attach_nodemask_to;
1419 struct mm_struct *mm; 1438 struct mm_struct *mm;
1420 struct task_struct *task; 1439 struct task_struct *task;
1421 struct task_struct *leader = cgroup_taskset_first(tset); 1440 struct task_struct *leader = cgroup_taskset_first(tset);
@@ -1423,6 +1442,16 @@ static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1423 struct cpuset *cs = cgroup_cs(cgrp); 1442 struct cpuset *cs = cgroup_cs(cgrp);
1424 struct cpuset *oldcs = cgroup_cs(oldcgrp); 1443 struct cpuset *oldcs = cgroup_cs(oldcgrp);
1425 1444
1445 mutex_lock(&cpuset_mutex);
1446
1447 /* prepare for attach */
1448 if (cs == &top_cpuset)
1449 cpumask_copy(cpus_attach, cpu_possible_mask);
1450 else
1451 guarantee_online_cpus(cs, cpus_attach);
1452
1453 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1454
1426 cgroup_taskset_for_each(task, cgrp, tset) { 1455 cgroup_taskset_for_each(task, cgrp, tset) {
1427 /* 1456 /*
1428 * can_attach beforehand should guarantee that this doesn't 1457 * can_attach beforehand should guarantee that this doesn't
@@ -1448,6 +1477,18 @@ static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1448 &cpuset_attach_nodemask_to); 1477 &cpuset_attach_nodemask_to);
1449 mmput(mm); 1478 mmput(mm);
1450 } 1479 }
1480
1481 cs->attach_in_progress--;
1482
1483 /*
1484 * We may have raced with CPU/memory hotunplug. Trigger hotplug
1485 * propagation if @cs doesn't have any CPU or memory. It will move
1486 * the newly added tasks to the nearest parent which can execute.
1487 */
1488 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1489 schedule_cpuset_propagate_hotplug(cs);
1490
1491 mutex_unlock(&cpuset_mutex);
1451} 1492}
1452 1493
1453/* The various types of files and directories in a cpuset file system */ 1494/* The various types of files and directories in a cpuset file system */
@@ -1469,12 +1510,13 @@ typedef enum {
1469 1510
1470static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val) 1511static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1471{ 1512{
1472 int retval = 0;
1473 struct cpuset *cs = cgroup_cs(cgrp); 1513 struct cpuset *cs = cgroup_cs(cgrp);
1474 cpuset_filetype_t type = cft->private; 1514 cpuset_filetype_t type = cft->private;
1515 int retval = -ENODEV;
1475 1516
1476 if (!cgroup_lock_live_group(cgrp)) 1517 mutex_lock(&cpuset_mutex);
1477 return -ENODEV; 1518 if (!is_cpuset_online(cs))
1519 goto out_unlock;
1478 1520
1479 switch (type) { 1521 switch (type) {
1480 case FILE_CPU_EXCLUSIVE: 1522 case FILE_CPU_EXCLUSIVE:
@@ -1508,18 +1550,20 @@ static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1508 retval = -EINVAL; 1550 retval = -EINVAL;
1509 break; 1551 break;
1510 } 1552 }
1511 cgroup_unlock(); 1553out_unlock:
1554 mutex_unlock(&cpuset_mutex);
1512 return retval; 1555 return retval;
1513} 1556}
1514 1557
1515static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val) 1558static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1516{ 1559{
1517 int retval = 0;
1518 struct cpuset *cs = cgroup_cs(cgrp); 1560 struct cpuset *cs = cgroup_cs(cgrp);
1519 cpuset_filetype_t type = cft->private; 1561 cpuset_filetype_t type = cft->private;
1562 int retval = -ENODEV;
1520 1563
1521 if (!cgroup_lock_live_group(cgrp)) 1564 mutex_lock(&cpuset_mutex);
1522 return -ENODEV; 1565 if (!is_cpuset_online(cs))
1566 goto out_unlock;
1523 1567
1524 switch (type) { 1568 switch (type) {
1525 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 1569 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
@@ -1529,7 +1573,8 @@ static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1529 retval = -EINVAL; 1573 retval = -EINVAL;
1530 break; 1574 break;
1531 } 1575 }
1532 cgroup_unlock(); 1576out_unlock:
1577 mutex_unlock(&cpuset_mutex);
1533 return retval; 1578 return retval;
1534} 1579}
1535 1580
@@ -1539,17 +1584,36 @@ static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1539static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft, 1584static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1540 const char *buf) 1585 const char *buf)
1541{ 1586{
1542 int retval = 0;
1543 struct cpuset *cs = cgroup_cs(cgrp); 1587 struct cpuset *cs = cgroup_cs(cgrp);
1544 struct cpuset *trialcs; 1588 struct cpuset *trialcs;
1589 int retval = -ENODEV;
1545 1590
1546 if (!cgroup_lock_live_group(cgrp)) 1591 /*
1547 return -ENODEV; 1592 * CPU or memory hotunplug may leave @cs w/o any execution
1593 * resources, in which case the hotplug code asynchronously updates
1594 * configuration and transfers all tasks to the nearest ancestor
1595 * which can execute.
1596 *
1597 * As writes to "cpus" or "mems" may restore @cs's execution
1598 * resources, wait for the previously scheduled operations before
1599 * proceeding, so that we don't end up keep removing tasks added
1600 * after execution capability is restored.
1601 *
1602 * Flushing cpuset_hotplug_work is enough to synchronize against
1603 * hotplug hanlding; however, cpuset_attach() may schedule
1604 * propagation work directly. Flush the workqueue too.
1605 */
1606 flush_work(&cpuset_hotplug_work);
1607 flush_workqueue(cpuset_propagate_hotplug_wq);
1608
1609 mutex_lock(&cpuset_mutex);
1610 if (!is_cpuset_online(cs))
1611 goto out_unlock;
1548 1612
1549 trialcs = alloc_trial_cpuset(cs); 1613 trialcs = alloc_trial_cpuset(cs);
1550 if (!trialcs) { 1614 if (!trialcs) {
1551 retval = -ENOMEM; 1615 retval = -ENOMEM;
1552 goto out; 1616 goto out_unlock;
1553 } 1617 }
1554 1618
1555 switch (cft->private) { 1619 switch (cft->private) {
@@ -1565,8 +1629,8 @@ static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1565 } 1629 }
1566 1630
1567 free_trial_cpuset(trialcs); 1631 free_trial_cpuset(trialcs);
1568out: 1632out_unlock:
1569 cgroup_unlock(); 1633 mutex_unlock(&cpuset_mutex);
1570 return retval; 1634 return retval;
1571} 1635}
1572 1636
@@ -1790,15 +1854,12 @@ static struct cftype files[] = {
1790 1854
1791static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont) 1855static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1792{ 1856{
1793 struct cgroup *parent_cg = cont->parent; 1857 struct cpuset *cs;
1794 struct cgroup *tmp_cg;
1795 struct cpuset *parent, *cs;
1796 1858
1797 if (!parent_cg) 1859 if (!cont->parent)
1798 return &top_cpuset.css; 1860 return &top_cpuset.css;
1799 parent = cgroup_cs(parent_cg);
1800 1861
1801 cs = kmalloc(sizeof(*cs), GFP_KERNEL); 1862 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1802 if (!cs) 1863 if (!cs)
1803 return ERR_PTR(-ENOMEM); 1864 return ERR_PTR(-ENOMEM);
1804 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) { 1865 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
@@ -1806,22 +1867,38 @@ static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1806 return ERR_PTR(-ENOMEM); 1867 return ERR_PTR(-ENOMEM);
1807 } 1868 }
1808 1869
1809 cs->flags = 0;
1810 if (is_spread_page(parent))
1811 set_bit(CS_SPREAD_PAGE, &cs->flags);
1812 if (is_spread_slab(parent))
1813 set_bit(CS_SPREAD_SLAB, &cs->flags);
1814 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1870 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1815 cpumask_clear(cs->cpus_allowed); 1871 cpumask_clear(cs->cpus_allowed);
1816 nodes_clear(cs->mems_allowed); 1872 nodes_clear(cs->mems_allowed);
1817 fmeter_init(&cs->fmeter); 1873 fmeter_init(&cs->fmeter);
1874 INIT_WORK(&cs->hotplug_work, cpuset_propagate_hotplug_workfn);
1818 cs->relax_domain_level = -1; 1875 cs->relax_domain_level = -1;
1819 1876
1820 cs->parent = parent; 1877 return &cs->css;
1878}
1879
1880static int cpuset_css_online(struct cgroup *cgrp)
1881{
1882 struct cpuset *cs = cgroup_cs(cgrp);
1883 struct cpuset *parent = parent_cs(cs);
1884 struct cpuset *tmp_cs;
1885 struct cgroup *pos_cg;
1886
1887 if (!parent)
1888 return 0;
1889
1890 mutex_lock(&cpuset_mutex);
1891
1892 set_bit(CS_ONLINE, &cs->flags);
1893 if (is_spread_page(parent))
1894 set_bit(CS_SPREAD_PAGE, &cs->flags);
1895 if (is_spread_slab(parent))
1896 set_bit(CS_SPREAD_SLAB, &cs->flags);
1897
1821 number_of_cpusets++; 1898 number_of_cpusets++;
1822 1899
1823 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cont->flags)) 1900 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
1824 goto skip_clone; 1901 goto out_unlock;
1825 1902
1826 /* 1903 /*
1827 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 1904 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
@@ -1836,35 +1913,49 @@ static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1836 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 1913 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1837 * (and likewise for mems) to the new cgroup. 1914 * (and likewise for mems) to the new cgroup.
1838 */ 1915 */
1839 list_for_each_entry(tmp_cg, &parent_cg->children, sibling) { 1916 rcu_read_lock();
1840 struct cpuset *tmp_cs = cgroup_cs(tmp_cg); 1917 cpuset_for_each_child(tmp_cs, pos_cg, parent) {
1841 1918 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1842 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) 1919 rcu_read_unlock();
1843 goto skip_clone; 1920 goto out_unlock;
1921 }
1844 } 1922 }
1923 rcu_read_unlock();
1845 1924
1846 mutex_lock(&callback_mutex); 1925 mutex_lock(&callback_mutex);
1847 cs->mems_allowed = parent->mems_allowed; 1926 cs->mems_allowed = parent->mems_allowed;
1848 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 1927 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1849 mutex_unlock(&callback_mutex); 1928 mutex_unlock(&callback_mutex);
1850skip_clone: 1929out_unlock:
1851 return &cs->css; 1930 mutex_unlock(&cpuset_mutex);
1931 return 0;
1932}
1933
1934static void cpuset_css_offline(struct cgroup *cgrp)
1935{
1936 struct cpuset *cs = cgroup_cs(cgrp);
1937
1938 mutex_lock(&cpuset_mutex);
1939
1940 if (is_sched_load_balance(cs))
1941 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1942
1943 number_of_cpusets--;
1944 clear_bit(CS_ONLINE, &cs->flags);
1945
1946 mutex_unlock(&cpuset_mutex);
1852} 1947}
1853 1948
1854/* 1949/*
1855 * If the cpuset being removed has its flag 'sched_load_balance' 1950 * If the cpuset being removed has its flag 'sched_load_balance'
1856 * enabled, then simulate turning sched_load_balance off, which 1951 * enabled, then simulate turning sched_load_balance off, which
1857 * will call async_rebuild_sched_domains(). 1952 * will call rebuild_sched_domains_locked().
1858 */ 1953 */
1859 1954
1860static void cpuset_css_free(struct cgroup *cont) 1955static void cpuset_css_free(struct cgroup *cont)
1861{ 1956{
1862 struct cpuset *cs = cgroup_cs(cont); 1957 struct cpuset *cs = cgroup_cs(cont);
1863 1958
1864 if (is_sched_load_balance(cs))
1865 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1866
1867 number_of_cpusets--;
1868 free_cpumask_var(cs->cpus_allowed); 1959 free_cpumask_var(cs->cpus_allowed);
1869 kfree(cs); 1960 kfree(cs);
1870} 1961}
@@ -1872,8 +1963,11 @@ static void cpuset_css_free(struct cgroup *cont)
1872struct cgroup_subsys cpuset_subsys = { 1963struct cgroup_subsys cpuset_subsys = {
1873 .name = "cpuset", 1964 .name = "cpuset",
1874 .css_alloc = cpuset_css_alloc, 1965 .css_alloc = cpuset_css_alloc,
1966 .css_online = cpuset_css_online,
1967 .css_offline = cpuset_css_offline,
1875 .css_free = cpuset_css_free, 1968 .css_free = cpuset_css_free,
1876 .can_attach = cpuset_can_attach, 1969 .can_attach = cpuset_can_attach,
1970 .cancel_attach = cpuset_cancel_attach,
1877 .attach = cpuset_attach, 1971 .attach = cpuset_attach,
1878 .subsys_id = cpuset_subsys_id, 1972 .subsys_id = cpuset_subsys_id,
1879 .base_cftypes = files, 1973 .base_cftypes = files,
@@ -1924,7 +2018,9 @@ static void cpuset_do_move_task(struct task_struct *tsk,
1924{ 2018{
1925 struct cgroup *new_cgroup = scan->data; 2019 struct cgroup *new_cgroup = scan->data;
1926 2020
2021 cgroup_lock();
1927 cgroup_attach_task(new_cgroup, tsk); 2022 cgroup_attach_task(new_cgroup, tsk);
2023 cgroup_unlock();
1928} 2024}
1929 2025
1930/** 2026/**
@@ -1932,7 +2028,7 @@ static void cpuset_do_move_task(struct task_struct *tsk,
1932 * @from: cpuset in which the tasks currently reside 2028 * @from: cpuset in which the tasks currently reside
1933 * @to: cpuset to which the tasks will be moved 2029 * @to: cpuset to which the tasks will be moved
1934 * 2030 *
1935 * Called with cgroup_mutex held 2031 * Called with cpuset_mutex held
1936 * callback_mutex must not be held, as cpuset_attach() will take it. 2032 * callback_mutex must not be held, as cpuset_attach() will take it.
1937 * 2033 *
1938 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, 2034 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
@@ -1959,169 +2055,200 @@ static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1959 * removing that CPU or node from all cpusets. If this removes the 2055 * removing that CPU or node from all cpusets. If this removes the
1960 * last CPU or node from a cpuset, then move the tasks in the empty 2056 * last CPU or node from a cpuset, then move the tasks in the empty
1961 * cpuset to its next-highest non-empty parent. 2057 * cpuset to its next-highest non-empty parent.
1962 *
1963 * Called with cgroup_mutex held
1964 * callback_mutex must not be held, as cpuset_attach() will take it.
1965 */ 2058 */
1966static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 2059static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1967{ 2060{
1968 struct cpuset *parent; 2061 struct cpuset *parent;
1969 2062
1970 /* 2063 /*
1971 * The cgroup's css_sets list is in use if there are tasks
1972 * in the cpuset; the list is empty if there are none;
1973 * the cs->css.refcnt seems always 0.
1974 */
1975 if (list_empty(&cs->css.cgroup->css_sets))
1976 return;
1977
1978 /*
1979 * Find its next-highest non-empty parent, (top cpuset 2064 * Find its next-highest non-empty parent, (top cpuset
1980 * has online cpus, so can't be empty). 2065 * has online cpus, so can't be empty).
1981 */ 2066 */
1982 parent = cs->parent; 2067 parent = parent_cs(cs);
1983 while (cpumask_empty(parent->cpus_allowed) || 2068 while (cpumask_empty(parent->cpus_allowed) ||
1984 nodes_empty(parent->mems_allowed)) 2069 nodes_empty(parent->mems_allowed))
1985 parent = parent->parent; 2070 parent = parent_cs(parent);
1986 2071
1987 move_member_tasks_to_cpuset(cs, parent); 2072 move_member_tasks_to_cpuset(cs, parent);
1988} 2073}
1989 2074
1990/* 2075/**
1991 * Helper function to traverse cpusets. 2076 * cpuset_propagate_hotplug_workfn - propagate CPU/memory hotplug to a cpuset
1992 * It can be used to walk the cpuset tree from top to bottom, completing 2077 * @cs: cpuset in interest
1993 * one layer before dropping down to the next (thus always processing a 2078 *
1994 * node before any of its children). 2079 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2080 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2081 * all its tasks are moved to the nearest ancestor with both resources.
1995 */ 2082 */
1996static struct cpuset *cpuset_next(struct list_head *queue) 2083static void cpuset_propagate_hotplug_workfn(struct work_struct *work)
1997{ 2084{
1998 struct cpuset *cp; 2085 static cpumask_t off_cpus;
1999 struct cpuset *child; /* scans child cpusets of cp */ 2086 static nodemask_t off_mems, tmp_mems;
2000 struct cgroup *cont; 2087 struct cpuset *cs = container_of(work, struct cpuset, hotplug_work);
2088 bool is_empty;
2001 2089
2002 if (list_empty(queue)) 2090 mutex_lock(&cpuset_mutex);
2003 return NULL; 2091
2092 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2093 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2004 2094
2005 cp = list_first_entry(queue, struct cpuset, stack_list); 2095 /* remove offline cpus from @cs */
2006 list_del(queue->next); 2096 if (!cpumask_empty(&off_cpus)) {
2007 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { 2097 mutex_lock(&callback_mutex);
2008 child = cgroup_cs(cont); 2098 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2009 list_add_tail(&child->stack_list, queue); 2099 mutex_unlock(&callback_mutex);
2100 update_tasks_cpumask(cs, NULL);
2010 } 2101 }
2011 2102
2012 return cp; 2103 /* remove offline mems from @cs */
2104 if (!nodes_empty(off_mems)) {
2105 tmp_mems = cs->mems_allowed;
2106 mutex_lock(&callback_mutex);
2107 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2108 mutex_unlock(&callback_mutex);
2109 update_tasks_nodemask(cs, &tmp_mems, NULL);
2110 }
2111
2112 is_empty = cpumask_empty(cs->cpus_allowed) ||
2113 nodes_empty(cs->mems_allowed);
2114
2115 mutex_unlock(&cpuset_mutex);
2116
2117 /*
2118 * If @cs became empty, move tasks to the nearest ancestor with
2119 * execution resources. This is full cgroup operation which will
2120 * also call back into cpuset. Should be done outside any lock.
2121 */
2122 if (is_empty)
2123 remove_tasks_in_empty_cpuset(cs);
2124
2125 /* the following may free @cs, should be the last operation */
2126 css_put(&cs->css);
2013} 2127}
2014 2128
2129/**
2130 * schedule_cpuset_propagate_hotplug - schedule hotplug propagation to a cpuset
2131 * @cs: cpuset of interest
2132 *
2133 * Schedule cpuset_propagate_hotplug_workfn() which will update CPU and
2134 * memory masks according to top_cpuset.
2135 */
2136static void schedule_cpuset_propagate_hotplug(struct cpuset *cs)
2137{
2138 /*
2139 * Pin @cs. The refcnt will be released when the work item
2140 * finishes executing.
2141 */
2142 if (!css_tryget(&cs->css))
2143 return;
2015 2144
2016/* 2145 /*
2017 * Walk the specified cpuset subtree upon a hotplug operation (CPU/Memory 2146 * Queue @cs->hotplug_work. If already pending, lose the css ref.
2018 * online/offline) and update the cpusets accordingly. 2147 * cpuset_propagate_hotplug_wq is ordered and propagation will
2019 * For regular CPU/Mem hotplug, look for empty cpusets; the tasks of such 2148 * happen in the order this function is called.
2020 * cpuset must be moved to a parent cpuset. 2149 */
2150 if (!queue_work(cpuset_propagate_hotplug_wq, &cs->hotplug_work))
2151 css_put(&cs->css);
2152}
2153
2154/**
2155 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2021 * 2156 *
2022 * Called with cgroup_mutex held. We take callback_mutex to modify 2157 * This function is called after either CPU or memory configuration has
2023 * cpus_allowed and mems_allowed. 2158 * changed and updates cpuset accordingly. The top_cpuset is always
2159 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2160 * order to make cpusets transparent (of no affect) on systems that are
2161 * actively using CPU hotplug but making no active use of cpusets.
2024 * 2162 *
2025 * This walk processes the tree from top to bottom, completing one layer 2163 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2026 * before dropping down to the next. It always processes a node before 2164 * nodes have been taken down, cpuset_propagate_hotplug() is invoked on all
2027 * any of its children. 2165 * descendants.
2028 * 2166 *
2029 * In the case of memory hot-unplug, it will remove nodes from N_MEMORY 2167 * Note that CPU offlining during suspend is ignored. We don't modify
2030 * if all present pages from a node are offlined. 2168 * cpusets across suspend/resume cycles at all.
2031 */ 2169 */
2032static void 2170static void cpuset_hotplug_workfn(struct work_struct *work)
2033scan_cpusets_upon_hotplug(struct cpuset *root, enum hotplug_event event)
2034{ 2171{
2035 LIST_HEAD(queue); 2172 static cpumask_t new_cpus, tmp_cpus;
2036 struct cpuset *cp; /* scans cpusets being updated */ 2173 static nodemask_t new_mems, tmp_mems;
2037 static nodemask_t oldmems; /* protected by cgroup_mutex */ 2174 bool cpus_updated, mems_updated;
2175 bool cpus_offlined, mems_offlined;
2038 2176
2039 list_add_tail((struct list_head *)&root->stack_list, &queue); 2177 mutex_lock(&cpuset_mutex);
2040 2178
2041 switch (event) { 2179 /* fetch the available cpus/mems and find out which changed how */
2042 case CPUSET_CPU_OFFLINE: 2180 cpumask_copy(&new_cpus, cpu_active_mask);
2043 while ((cp = cpuset_next(&queue)) != NULL) { 2181 new_mems = node_states[N_MEMORY];
2044 2182
2045 /* Continue past cpusets with all cpus online */ 2183 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2046 if (cpumask_subset(cp->cpus_allowed, cpu_active_mask)) 2184 cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
2047 continue; 2185 &new_cpus);
2048 2186
2049 /* Remove offline cpus from this cpuset. */ 2187 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2050 mutex_lock(&callback_mutex); 2188 nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
2051 cpumask_and(cp->cpus_allowed, cp->cpus_allowed, 2189 mems_offlined = !nodes_empty(tmp_mems);
2052 cpu_active_mask);
2053 mutex_unlock(&callback_mutex);
2054 2190
2055 /* Move tasks from the empty cpuset to a parent */ 2191 /* synchronize cpus_allowed to cpu_active_mask */
2056 if (cpumask_empty(cp->cpus_allowed)) 2192 if (cpus_updated) {
2057 remove_tasks_in_empty_cpuset(cp); 2193 mutex_lock(&callback_mutex);
2058 else 2194 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2059 update_tasks_cpumask(cp, NULL); 2195 mutex_unlock(&callback_mutex);
2060 } 2196 /* we don't mess with cpumasks of tasks in top_cpuset */
2061 break; 2197 }
2062 2198
2063 case CPUSET_MEM_OFFLINE: 2199 /* synchronize mems_allowed to N_MEMORY */
2064 while ((cp = cpuset_next(&queue)) != NULL) { 2200 if (mems_updated) {
2201 tmp_mems = top_cpuset.mems_allowed;
2202 mutex_lock(&callback_mutex);
2203 top_cpuset.mems_allowed = new_mems;
2204 mutex_unlock(&callback_mutex);
2205 update_tasks_nodemask(&top_cpuset, &tmp_mems, NULL);
2206 }
2065 2207
2066 /* Continue past cpusets with all mems online */ 2208 /* if cpus or mems went down, we need to propagate to descendants */
2067 if (nodes_subset(cp->mems_allowed, 2209 if (cpus_offlined || mems_offlined) {
2068 node_states[N_MEMORY])) 2210 struct cpuset *cs;
2069 continue; 2211 struct cgroup *pos_cgrp;
2070 2212
2071 oldmems = cp->mems_allowed; 2213 rcu_read_lock();
2214 cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset)
2215 schedule_cpuset_propagate_hotplug(cs);
2216 rcu_read_unlock();
2217 }
2072 2218
2073 /* Remove offline mems from this cpuset. */ 2219 mutex_unlock(&cpuset_mutex);
2074 mutex_lock(&callback_mutex);
2075 nodes_and(cp->mems_allowed, cp->mems_allowed,
2076 node_states[N_MEMORY]);
2077 mutex_unlock(&callback_mutex);
2078 2220
2079 /* Move tasks from the empty cpuset to a parent */ 2221 /* wait for propagations to finish */
2080 if (nodes_empty(cp->mems_allowed)) 2222 flush_workqueue(cpuset_propagate_hotplug_wq);
2081 remove_tasks_in_empty_cpuset(cp); 2223
2082 else 2224 /* rebuild sched domains if cpus_allowed has changed */
2083 update_tasks_nodemask(cp, &oldmems, NULL); 2225 if (cpus_updated) {
2084 } 2226 struct sched_domain_attr *attr;
2227 cpumask_var_t *doms;
2228 int ndoms;
2229
2230 mutex_lock(&cpuset_mutex);
2231 ndoms = generate_sched_domains(&doms, &attr);
2232 mutex_unlock(&cpuset_mutex);
2233
2234 partition_sched_domains(ndoms, doms, attr);
2085 } 2235 }
2086} 2236}
2087 2237
2088/*
2089 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2090 * period. This is necessary in order to make cpusets transparent
2091 * (of no affect) on systems that are actively using CPU hotplug
2092 * but making no active use of cpusets.
2093 *
2094 * The only exception to this is suspend/resume, where we don't
2095 * modify cpusets at all.
2096 *
2097 * This routine ensures that top_cpuset.cpus_allowed tracks
2098 * cpu_active_mask on each CPU hotplug (cpuhp) event.
2099 *
2100 * Called within get_online_cpus(). Needs to call cgroup_lock()
2101 * before calling generate_sched_domains().
2102 *
2103 * @cpu_online: Indicates whether this is a CPU online event (true) or
2104 * a CPU offline event (false).
2105 */
2106void cpuset_update_active_cpus(bool cpu_online) 2238void cpuset_update_active_cpus(bool cpu_online)
2107{ 2239{
2108 struct sched_domain_attr *attr; 2240 /*
2109 cpumask_var_t *doms; 2241 * We're inside cpu hotplug critical region which usually nests
2110 int ndoms; 2242 * inside cgroup synchronization. Bounce actual hotplug processing
2111 2243 * to a work item to avoid reverse locking order.
2112 cgroup_lock(); 2244 *
2113 mutex_lock(&callback_mutex); 2245 * We still need to do partition_sched_domains() synchronously;
2114 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); 2246 * otherwise, the scheduler will get confused and put tasks to the
2115 mutex_unlock(&callback_mutex); 2247 * dead CPU. Fall back to the default single domain.
2116 2248 * cpuset_hotplug_workfn() will rebuild it as necessary.
2117 if (!cpu_online) 2249 */
2118 scan_cpusets_upon_hotplug(&top_cpuset, CPUSET_CPU_OFFLINE); 2250 partition_sched_domains(1, NULL, NULL);
2119 2251 schedule_work(&cpuset_hotplug_work);
2120 ndoms = generate_sched_domains(&doms, &attr);
2121 cgroup_unlock();
2122
2123 /* Have scheduler rebuild the domains */
2124 partition_sched_domains(ndoms, doms, attr);
2125} 2252}
2126 2253
2127#ifdef CONFIG_MEMORY_HOTPLUG 2254#ifdef CONFIG_MEMORY_HOTPLUG
@@ -2133,29 +2260,7 @@ void cpuset_update_active_cpus(bool cpu_online)
2133static int cpuset_track_online_nodes(struct notifier_block *self, 2260static int cpuset_track_online_nodes(struct notifier_block *self,
2134 unsigned long action, void *arg) 2261 unsigned long action, void *arg)
2135{ 2262{
2136 static nodemask_t oldmems; /* protected by cgroup_mutex */ 2263 schedule_work(&cpuset_hotplug_work);
2137
2138 cgroup_lock();
2139 switch (action) {
2140 case MEM_ONLINE:
2141 oldmems = top_cpuset.mems_allowed;
2142 mutex_lock(&callback_mutex);
2143 top_cpuset.mems_allowed = node_states[N_MEMORY];
2144 mutex_unlock(&callback_mutex);
2145 update_tasks_nodemask(&top_cpuset, &oldmems, NULL);
2146 break;
2147 case MEM_OFFLINE:
2148 /*
2149 * needn't update top_cpuset.mems_allowed explicitly because
2150 * scan_cpusets_upon_hotplug() will update it.
2151 */
2152 scan_cpusets_upon_hotplug(&top_cpuset, CPUSET_MEM_OFFLINE);
2153 break;
2154 default:
2155 break;
2156 }
2157 cgroup_unlock();
2158
2159 return NOTIFY_OK; 2264 return NOTIFY_OK;
2160} 2265}
2161#endif 2266#endif
@@ -2173,8 +2278,9 @@ void __init cpuset_init_smp(void)
2173 2278
2174 hotplug_memory_notifier(cpuset_track_online_nodes, 10); 2279 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2175 2280
2176 cpuset_wq = create_singlethread_workqueue("cpuset"); 2281 cpuset_propagate_hotplug_wq =
2177 BUG_ON(!cpuset_wq); 2282 alloc_ordered_workqueue("cpuset_hotplug", 0);
2283 BUG_ON(!cpuset_propagate_hotplug_wq);
2178} 2284}
2179 2285
2180/** 2286/**
@@ -2273,8 +2379,8 @@ int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2273 */ 2379 */
2274static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs) 2380static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2275{ 2381{
2276 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent) 2382 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2277 cs = cs->parent; 2383 cs = parent_cs(cs);
2278 return cs; 2384 return cs;
2279} 2385}
2280 2386
@@ -2412,17 +2518,6 @@ int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2412} 2518}
2413 2519
2414/** 2520/**
2415 * cpuset_unlock - release lock on cpuset changes
2416 *
2417 * Undo the lock taken in a previous cpuset_lock() call.
2418 */
2419
2420void cpuset_unlock(void)
2421{
2422 mutex_unlock(&callback_mutex);
2423}
2424
2425/**
2426 * cpuset_mem_spread_node() - On which node to begin search for a file page 2521 * cpuset_mem_spread_node() - On which node to begin search for a file page
2427 * cpuset_slab_spread_node() - On which node to begin search for a slab page 2522 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2428 * 2523 *
@@ -2568,7 +2663,7 @@ void __cpuset_memory_pressure_bump(void)
2568 * - Used for /proc/<pid>/cpuset. 2663 * - Used for /proc/<pid>/cpuset.
2569 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 2664 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2570 * doesn't really matter if tsk->cpuset changes after we read it, 2665 * doesn't really matter if tsk->cpuset changes after we read it,
2571 * and we take cgroup_mutex, keeping cpuset_attach() from changing it 2666 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2572 * anyway. 2667 * anyway.
2573 */ 2668 */
2574static int proc_cpuset_show(struct seq_file *m, void *unused_v) 2669static int proc_cpuset_show(struct seq_file *m, void *unused_v)
@@ -2590,16 +2685,15 @@ static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2590 if (!tsk) 2685 if (!tsk)
2591 goto out_free; 2686 goto out_free;
2592 2687
2593 retval = -EINVAL; 2688 rcu_read_lock();
2594 cgroup_lock();
2595 css = task_subsys_state(tsk, cpuset_subsys_id); 2689 css = task_subsys_state(tsk, cpuset_subsys_id);
2596 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE); 2690 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2691 rcu_read_unlock();
2597 if (retval < 0) 2692 if (retval < 0)
2598 goto out_unlock; 2693 goto out_put_task;
2599 seq_puts(m, buf); 2694 seq_puts(m, buf);
2600 seq_putc(m, '\n'); 2695 seq_putc(m, '\n');
2601out_unlock: 2696out_put_task:
2602 cgroup_unlock();
2603 put_task_struct(tsk); 2697 put_task_struct(tsk);
2604out_free: 2698out_free:
2605 kfree(buf); 2699 kfree(buf);