diff options
author | Felipe Cerqueira <felipec@mpi-sws.org> | 2013-02-12 13:17:08 -0500 |
---|---|---|
committer | Bjoern Brandenburg <bbb@mpi-sws.org> | 2013-08-07 03:47:06 -0400 |
commit | 6a24cb19fc7b6d534f9576567eae1b522c12a1b3 (patch) | |
tree | 81627648d12ab6e62093adfd76e6c45d932ebda1 | |
parent | e3697ee7ecbcadf2ae4f17495ce46612c54fad13 (diff) |
Add P-FP scheduler plugin
-rw-r--r-- | litmus/Makefile | 4 | ||||
-rw-r--r-- | litmus/sched_pfp.c | 1746 |
2 files changed, 1749 insertions, 1 deletions
diff --git a/litmus/Makefile b/litmus/Makefile index 8428360eca09..9757399238de 100644 --- a/litmus/Makefile +++ b/litmus/Makefile | |||
@@ -19,7 +19,9 @@ obj-y = sched_plugin.o litmus.o \ | |||
19 | binheap.o \ | 19 | binheap.o \ |
20 | ctrldev.o \ | 20 | ctrldev.o \ |
21 | sched_gsn_edf.o \ | 21 | sched_gsn_edf.o \ |
22 | sched_psn_edf.o | 22 | sched_psn_edf.o \ |
23 | sched_pfp.o | ||
24 | |||
23 | 25 | ||
24 | obj-$(CONFIG_SCHED_CPU_AFFINITY) += affinity.o | 26 | obj-$(CONFIG_SCHED_CPU_AFFINITY) += affinity.o |
25 | 27 | ||
diff --git a/litmus/sched_pfp.c b/litmus/sched_pfp.c new file mode 100644 index 000000000000..01ac97d7f161 --- /dev/null +++ b/litmus/sched_pfp.c | |||
@@ -0,0 +1,1746 @@ | |||
1 | /* | ||
2 | * litmus/sched_pfp.c | ||
3 | * | ||
4 | * Implementation of partitioned fixed-priority scheduling. | ||
5 | * Based on PSN-EDF. | ||
6 | */ | ||
7 | |||
8 | #include <linux/percpu.h> | ||
9 | #include <linux/sched.h> | ||
10 | #include <linux/list.h> | ||
11 | #include <linux/spinlock.h> | ||
12 | #include <linux/module.h> | ||
13 | |||
14 | #include <litmus/litmus.h> | ||
15 | #include <litmus/wait.h> | ||
16 | #include <litmus/jobs.h> | ||
17 | #include <litmus/preempt.h> | ||
18 | #include <litmus/fp_common.h> | ||
19 | #include <litmus/sched_plugin.h> | ||
20 | #include <litmus/sched_trace.h> | ||
21 | #include <litmus/trace.h> | ||
22 | #include <litmus/budget.h> | ||
23 | |||
24 | #include <linux/uaccess.h> | ||
25 | |||
26 | |||
27 | typedef struct { | ||
28 | rt_domain_t domain; | ||
29 | struct fp_prio_queue ready_queue; | ||
30 | int cpu; | ||
31 | struct task_struct* scheduled; /* only RT tasks */ | ||
32 | /* | ||
33 | * scheduling lock slock | ||
34 | * protects the domain and serializes scheduling decisions | ||
35 | */ | ||
36 | #define slock domain.ready_lock | ||
37 | |||
38 | } pfp_domain_t; | ||
39 | |||
40 | DEFINE_PER_CPU(pfp_domain_t, pfp_domains); | ||
41 | |||
42 | pfp_domain_t* pfp_doms[NR_CPUS]; | ||
43 | |||
44 | #define local_pfp (&__get_cpu_var(pfp_domains)) | ||
45 | #define remote_dom(cpu) (&per_cpu(pfp_domains, cpu).domain) | ||
46 | #define remote_pfp(cpu) (&per_cpu(pfp_domains, cpu)) | ||
47 | #define task_dom(task) remote_dom(get_partition(task)) | ||
48 | #define task_pfp(task) remote_pfp(get_partition(task)) | ||
49 | |||
50 | /* we assume the lock is being held */ | ||
51 | static void preempt(pfp_domain_t *pfp) | ||
52 | { | ||
53 | preempt_if_preemptable(pfp->scheduled, pfp->cpu); | ||
54 | } | ||
55 | |||
56 | static unsigned int priority_index(struct task_struct* t) | ||
57 | { | ||
58 | #ifdef CONFIG_LITMUS_LOCKING | ||
59 | if (unlikely(t->rt_param.inh_task)) | ||
60 | /* use effective priority */ | ||
61 | t = t->rt_param.inh_task; | ||
62 | |||
63 | if (is_priority_boosted(t)) { | ||
64 | /* zero is reserved for priority-boosted tasks */ | ||
65 | return 0; | ||
66 | } else | ||
67 | #endif | ||
68 | return get_priority(t); | ||
69 | } | ||
70 | |||
71 | |||
72 | static void pfp_release_jobs(rt_domain_t* rt, struct bheap* tasks) | ||
73 | { | ||
74 | pfp_domain_t *pfp = container_of(rt, pfp_domain_t, domain); | ||
75 | unsigned long flags; | ||
76 | struct task_struct* t; | ||
77 | struct bheap_node* hn; | ||
78 | |||
79 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
80 | |||
81 | while (!bheap_empty(tasks)) { | ||
82 | hn = bheap_take(fp_ready_order, tasks); | ||
83 | t = bheap2task(hn); | ||
84 | TRACE_TASK(t, "released (part:%d prio:%d)\n", | ||
85 | get_partition(t), get_priority(t)); | ||
86 | fp_prio_add(&pfp->ready_queue, t, priority_index(t)); | ||
87 | } | ||
88 | |||
89 | /* do we need to preempt? */ | ||
90 | if (fp_higher_prio(fp_prio_peek(&pfp->ready_queue), pfp->scheduled)) { | ||
91 | TRACE_CUR("preempted by new release\n"); | ||
92 | preempt(pfp); | ||
93 | } | ||
94 | |||
95 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
96 | } | ||
97 | |||
98 | static void pfp_preempt_check(pfp_domain_t *pfp) | ||
99 | { | ||
100 | if (fp_higher_prio(fp_prio_peek(&pfp->ready_queue), pfp->scheduled)) | ||
101 | preempt(pfp); | ||
102 | } | ||
103 | |||
104 | static void pfp_domain_init(pfp_domain_t* pfp, | ||
105 | int cpu) | ||
106 | { | ||
107 | fp_domain_init(&pfp->domain, NULL, pfp_release_jobs); | ||
108 | pfp->cpu = cpu; | ||
109 | pfp->scheduled = NULL; | ||
110 | fp_prio_queue_init(&pfp->ready_queue); | ||
111 | } | ||
112 | |||
113 | static void requeue(struct task_struct* t, pfp_domain_t *pfp) | ||
114 | { | ||
115 | BUG_ON(!is_running(t)); | ||
116 | |||
117 | tsk_rt(t)->completed = 0; | ||
118 | if (is_released(t, litmus_clock())) | ||
119 | fp_prio_add(&pfp->ready_queue, t, priority_index(t)); | ||
120 | else | ||
121 | add_release(&pfp->domain, t); /* it has got to wait */ | ||
122 | } | ||
123 | |||
124 | static void job_completion(struct task_struct* t, int forced) | ||
125 | { | ||
126 | sched_trace_task_completion(t,forced); | ||
127 | TRACE_TASK(t, "job_completion().\n"); | ||
128 | |||
129 | tsk_rt(t)->completed = 0; | ||
130 | prepare_for_next_period(t); | ||
131 | if (is_released(t, litmus_clock())) | ||
132 | sched_trace_task_release(t); | ||
133 | } | ||
134 | |||
135 | static void pfp_tick(struct task_struct *t) | ||
136 | { | ||
137 | pfp_domain_t *pfp = local_pfp; | ||
138 | |||
139 | /* Check for inconsistency. We don't need the lock for this since | ||
140 | * ->scheduled is only changed in schedule, which obviously is not | ||
141 | * executing in parallel on this CPU | ||
142 | */ | ||
143 | BUG_ON(is_realtime(t) && t != pfp->scheduled); | ||
144 | |||
145 | if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) { | ||
146 | if (!is_np(t)) { | ||
147 | litmus_reschedule_local(); | ||
148 | TRACE("pfp_scheduler_tick: " | ||
149 | "%d is preemptable " | ||
150 | " => FORCE_RESCHED\n", t->pid); | ||
151 | } else if (is_user_np(t)) { | ||
152 | TRACE("pfp_scheduler_tick: " | ||
153 | "%d is non-preemptable, " | ||
154 | "preemption delayed.\n", t->pid); | ||
155 | request_exit_np(t); | ||
156 | } | ||
157 | } | ||
158 | } | ||
159 | |||
160 | static struct task_struct* pfp_schedule(struct task_struct * prev) | ||
161 | { | ||
162 | pfp_domain_t* pfp = local_pfp; | ||
163 | struct task_struct* next; | ||
164 | |||
165 | int out_of_time, sleep, preempt, np, exists, blocks, resched, migrate; | ||
166 | |||
167 | raw_spin_lock(&pfp->slock); | ||
168 | |||
169 | /* sanity checking | ||
170 | * differently from gedf, when a task exits (dead) | ||
171 | * pfp->schedule may be null and prev _is_ realtime | ||
172 | */ | ||
173 | BUG_ON(pfp->scheduled && pfp->scheduled != prev); | ||
174 | BUG_ON(pfp->scheduled && !is_realtime(prev)); | ||
175 | |||
176 | /* (0) Determine state */ | ||
177 | exists = pfp->scheduled != NULL; | ||
178 | blocks = exists && !is_running(pfp->scheduled); | ||
179 | out_of_time = exists && | ||
180 | budget_enforced(pfp->scheduled) && | ||
181 | budget_exhausted(pfp->scheduled); | ||
182 | np = exists && is_np(pfp->scheduled); | ||
183 | sleep = exists && is_completed(pfp->scheduled); | ||
184 | migrate = exists && get_partition(pfp->scheduled) != pfp->cpu; | ||
185 | preempt = !blocks && (migrate || fp_preemption_needed(&pfp->ready_queue, prev)); | ||
186 | |||
187 | /* If we need to preempt do so. | ||
188 | * The following checks set resched to 1 in case of special | ||
189 | * circumstances. | ||
190 | */ | ||
191 | resched = preempt; | ||
192 | |||
193 | /* If a task blocks we have no choice but to reschedule. | ||
194 | */ | ||
195 | if (blocks) | ||
196 | resched = 1; | ||
197 | |||
198 | /* Request a sys_exit_np() call if we would like to preempt but cannot. | ||
199 | * Multiple calls to request_exit_np() don't hurt. | ||
200 | */ | ||
201 | if (np && (out_of_time || preempt || sleep)) | ||
202 | request_exit_np(pfp->scheduled); | ||
203 | |||
204 | /* Any task that is preemptable and either exhausts its execution | ||
205 | * budget or wants to sleep completes. We may have to reschedule after | ||
206 | * this. | ||
207 | */ | ||
208 | if (!np && (out_of_time || sleep) && !blocks && !migrate) { | ||
209 | job_completion(pfp->scheduled, !sleep); | ||
210 | resched = 1; | ||
211 | } | ||
212 | |||
213 | /* The final scheduling decision. Do we need to switch for some reason? | ||
214 | * Switch if we are in RT mode and have no task or if we need to | ||
215 | * resched. | ||
216 | */ | ||
217 | next = NULL; | ||
218 | if ((!np || blocks) && (resched || !exists)) { | ||
219 | /* When preempting a task that does not block, then | ||
220 | * re-insert it into either the ready queue or the | ||
221 | * release queue (if it completed). requeue() picks | ||
222 | * the appropriate queue. | ||
223 | */ | ||
224 | if (pfp->scheduled && !blocks && !migrate) | ||
225 | requeue(pfp->scheduled, pfp); | ||
226 | next = fp_prio_take(&pfp->ready_queue); | ||
227 | if (next == prev) { | ||
228 | struct task_struct *t = fp_prio_peek(&pfp->ready_queue); | ||
229 | TRACE_TASK(next, "next==prev sleep=%d oot=%d np=%d preempt=%d migrate=%d " | ||
230 | "boost=%d empty=%d prio-idx=%u prio=%u\n", | ||
231 | sleep, out_of_time, np, preempt, migrate, | ||
232 | is_priority_boosted(next), | ||
233 | t == NULL, | ||
234 | priority_index(next), | ||
235 | get_priority(next)); | ||
236 | if (t) | ||
237 | TRACE_TASK(t, "waiter boost=%d prio-idx=%u prio=%u\n", | ||
238 | is_priority_boosted(t), | ||
239 | priority_index(t), | ||
240 | get_priority(t)); | ||
241 | } | ||
242 | /* If preempt is set, we should not see the same task again. */ | ||
243 | BUG_ON(preempt && next == prev); | ||
244 | /* Similarly, if preempt is set, then next may not be NULL, | ||
245 | * unless it's a migration. */ | ||
246 | BUG_ON(preempt && !migrate && next == NULL); | ||
247 | } else | ||
248 | /* Only override Linux scheduler if we have a real-time task | ||
249 | * scheduled that needs to continue. | ||
250 | */ | ||
251 | if (exists) | ||
252 | next = prev; | ||
253 | |||
254 | if (next) { | ||
255 | TRACE_TASK(next, "scheduled at %llu\n", litmus_clock()); | ||
256 | } else { | ||
257 | TRACE("becoming idle at %llu\n", litmus_clock()); | ||
258 | } | ||
259 | |||
260 | pfp->scheduled = next; | ||
261 | sched_state_task_picked(); | ||
262 | raw_spin_unlock(&pfp->slock); | ||
263 | |||
264 | return next; | ||
265 | } | ||
266 | |||
267 | #ifdef CONFIG_LITMUS_LOCKING | ||
268 | |||
269 | /* prev is no longer scheduled --- see if it needs to migrate */ | ||
270 | static void pfp_finish_switch(struct task_struct *prev) | ||
271 | { | ||
272 | pfp_domain_t *to; | ||
273 | |||
274 | if (is_realtime(prev) && | ||
275 | is_running(prev) && | ||
276 | get_partition(prev) != smp_processor_id()) { | ||
277 | TRACE_TASK(prev, "needs to migrate from P%d to P%d\n", | ||
278 | smp_processor_id(), get_partition(prev)); | ||
279 | |||
280 | to = task_pfp(prev); | ||
281 | |||
282 | raw_spin_lock(&to->slock); | ||
283 | |||
284 | TRACE_TASK(prev, "adding to queue on P%d\n", to->cpu); | ||
285 | requeue(prev, to); | ||
286 | if (fp_preemption_needed(&to->ready_queue, to->scheduled)) | ||
287 | preempt(to); | ||
288 | |||
289 | raw_spin_unlock(&to->slock); | ||
290 | |||
291 | } | ||
292 | } | ||
293 | |||
294 | #endif | ||
295 | |||
296 | /* Prepare a task for running in RT mode | ||
297 | */ | ||
298 | static void pfp_task_new(struct task_struct * t, int on_rq, int is_scheduled) | ||
299 | { | ||
300 | pfp_domain_t* pfp = task_pfp(t); | ||
301 | unsigned long flags; | ||
302 | |||
303 | TRACE_TASK(t, "P-FP: task new, cpu = %d\n", | ||
304 | t->rt_param.task_params.cpu); | ||
305 | |||
306 | /* setup job parameters */ | ||
307 | release_at(t, litmus_clock()); | ||
308 | |||
309 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
310 | if (is_scheduled) { | ||
311 | /* there shouldn't be anything else running at the time */ | ||
312 | BUG_ON(pfp->scheduled); | ||
313 | pfp->scheduled = t; | ||
314 | } else if (is_running(t)) { | ||
315 | requeue(t, pfp); | ||
316 | /* maybe we have to reschedule */ | ||
317 | pfp_preempt_check(pfp); | ||
318 | } | ||
319 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
320 | } | ||
321 | |||
322 | static void pfp_task_wake_up(struct task_struct *task) | ||
323 | { | ||
324 | unsigned long flags; | ||
325 | pfp_domain_t* pfp = task_pfp(task); | ||
326 | lt_t now; | ||
327 | |||
328 | TRACE_TASK(task, "wake_up at %llu\n", litmus_clock()); | ||
329 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
330 | |||
331 | #ifdef CONFIG_LITMUS_LOCKING | ||
332 | /* Should only be queued when processing a fake-wake up due to a | ||
333 | * migration-related state change. */ | ||
334 | if (unlikely(is_queued(task))) { | ||
335 | TRACE_TASK(task, "WARNING: waking task still queued. Is this right?\n"); | ||
336 | goto out_unlock; | ||
337 | } | ||
338 | #else | ||
339 | BUG_ON(is_queued(task)); | ||
340 | #endif | ||
341 | now = litmus_clock(); | ||
342 | if (is_sporadic(task) && is_tardy(task, now) | ||
343 | #ifdef CONFIG_LITMUS_LOCKING | ||
344 | /* We need to take suspensions because of semaphores into | ||
345 | * account! If a job resumes after being suspended due to acquiring | ||
346 | * a semaphore, it should never be treated as a new job release. | ||
347 | */ | ||
348 | && !is_priority_boosted(task) | ||
349 | #endif | ||
350 | ) { | ||
351 | /* new sporadic release */ | ||
352 | release_at(task, now); | ||
353 | sched_trace_task_release(task); | ||
354 | } | ||
355 | |||
356 | /* Only add to ready queue if it is not the currently-scheduled | ||
357 | * task. This could be the case if a task was woken up concurrently | ||
358 | * on a remote CPU before the executing CPU got around to actually | ||
359 | * de-scheduling the task, i.e., wake_up() raced with schedule() | ||
360 | * and won. Also, don't requeue if it is still queued, which can | ||
361 | * happen under the DPCP due wake-ups racing with migrations. | ||
362 | */ | ||
363 | if (pfp->scheduled != task) { | ||
364 | requeue(task, pfp); | ||
365 | pfp_preempt_check(pfp); | ||
366 | } | ||
367 | |||
368 | #ifdef CONFIG_LITMUS_LOCKING | ||
369 | out_unlock: | ||
370 | #endif | ||
371 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
372 | TRACE_TASK(task, "wake up done\n"); | ||
373 | } | ||
374 | |||
375 | static void pfp_task_block(struct task_struct *t) | ||
376 | { | ||
377 | /* only running tasks can block, thus t is in no queue */ | ||
378 | TRACE_TASK(t, "block at %llu, state=%d\n", litmus_clock(), t->state); | ||
379 | |||
380 | BUG_ON(!is_realtime(t)); | ||
381 | |||
382 | /* If this task blocked normally, it shouldn't be queued. The exception is | ||
383 | * if this is a simulated block()/wakeup() pair from the pull-migration code path. | ||
384 | * This should only happen if the DPCP is being used. | ||
385 | */ | ||
386 | #ifdef CONFIG_LITMUS_LOCKING | ||
387 | if (unlikely(is_queued(t))) | ||
388 | TRACE_TASK(t, "WARNING: blocking task still queued. Is this right?\n"); | ||
389 | #else | ||
390 | BUG_ON(is_queued(t)); | ||
391 | #endif | ||
392 | } | ||
393 | |||
394 | static void pfp_task_exit(struct task_struct * t) | ||
395 | { | ||
396 | unsigned long flags; | ||
397 | pfp_domain_t* pfp = task_pfp(t); | ||
398 | rt_domain_t* dom; | ||
399 | |||
400 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
401 | if (is_queued(t)) { | ||
402 | BUG(); /* This currently doesn't work. */ | ||
403 | /* dequeue */ | ||
404 | dom = task_dom(t); | ||
405 | remove(dom, t); | ||
406 | } | ||
407 | if (pfp->scheduled == t) { | ||
408 | pfp->scheduled = NULL; | ||
409 | preempt(pfp); | ||
410 | } | ||
411 | TRACE_TASK(t, "RIP, now reschedule\n"); | ||
412 | |||
413 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
414 | } | ||
415 | |||
416 | #ifdef CONFIG_LITMUS_LOCKING | ||
417 | |||
418 | #include <litmus/fdso.h> | ||
419 | #include <litmus/srp.h> | ||
420 | |||
421 | static void fp_dequeue(pfp_domain_t* pfp, struct task_struct* t) | ||
422 | { | ||
423 | BUG_ON(pfp->scheduled == t && is_queued(t)); | ||
424 | if (is_queued(t)) | ||
425 | fp_prio_remove(&pfp->ready_queue, t, priority_index(t)); | ||
426 | } | ||
427 | |||
428 | static void fp_set_prio_inh(pfp_domain_t* pfp, struct task_struct* t, | ||
429 | struct task_struct* prio_inh) | ||
430 | { | ||
431 | int requeue; | ||
432 | |||
433 | if (!t || t->rt_param.inh_task == prio_inh) { | ||
434 | /* no update required */ | ||
435 | if (t) | ||
436 | TRACE_TASK(t, "no prio-inh update required\n"); | ||
437 | return; | ||
438 | } | ||
439 | |||
440 | requeue = is_queued(t); | ||
441 | TRACE_TASK(t, "prio-inh: is_queued:%d\n", requeue); | ||
442 | |||
443 | if (requeue) | ||
444 | /* first remove */ | ||
445 | fp_dequeue(pfp, t); | ||
446 | |||
447 | t->rt_param.inh_task = prio_inh; | ||
448 | |||
449 | if (requeue) | ||
450 | /* add again to the right queue */ | ||
451 | fp_prio_add(&pfp->ready_queue, t, priority_index(t)); | ||
452 | } | ||
453 | |||
454 | static int effective_agent_priority(int prio) | ||
455 | { | ||
456 | /* make sure agents have higher priority */ | ||
457 | return prio - LITMUS_MAX_PRIORITY; | ||
458 | } | ||
459 | |||
460 | static lt_t prio_point(int eprio) | ||
461 | { | ||
462 | /* make sure we have non-negative prio points */ | ||
463 | return eprio + LITMUS_MAX_PRIORITY; | ||
464 | } | ||
465 | |||
466 | static int prio_from_point(lt_t prio_point) | ||
467 | { | ||
468 | return ((int) prio_point) - LITMUS_MAX_PRIORITY; | ||
469 | } | ||
470 | |||
471 | static void boost_priority(struct task_struct* t, lt_t priority_point) | ||
472 | { | ||
473 | unsigned long flags; | ||
474 | pfp_domain_t* pfp = task_pfp(t); | ||
475 | |||
476 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
477 | |||
478 | |||
479 | TRACE_TASK(t, "priority boosted at %llu\n", litmus_clock()); | ||
480 | |||
481 | tsk_rt(t)->priority_boosted = 1; | ||
482 | /* tie-break by protocol-specific priority point */ | ||
483 | tsk_rt(t)->boost_start_time = priority_point; | ||
484 | |||
485 | /* Priority boosting currently only takes effect for already-scheduled | ||
486 | * tasks. This is sufficient since priority boosting only kicks in as | ||
487 | * part of lock acquisitions. */ | ||
488 | BUG_ON(pfp->scheduled != t); | ||
489 | |||
490 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
491 | } | ||
492 | |||
493 | static void unboost_priority(struct task_struct* t) | ||
494 | { | ||
495 | unsigned long flags; | ||
496 | pfp_domain_t* pfp = task_pfp(t); | ||
497 | lt_t now; | ||
498 | |||
499 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
500 | now = litmus_clock(); | ||
501 | |||
502 | /* assumption: this only happens when the job is scheduled */ | ||
503 | BUG_ON(pfp->scheduled != t); | ||
504 | |||
505 | TRACE_TASK(t, "priority restored at %llu\n", now); | ||
506 | |||
507 | /* priority boosted jobs must be scheduled */ | ||
508 | BUG_ON(pfp->scheduled != t); | ||
509 | |||
510 | tsk_rt(t)->priority_boosted = 0; | ||
511 | tsk_rt(t)->boost_start_time = 0; | ||
512 | |||
513 | /* check if this changes anything */ | ||
514 | if (fp_preemption_needed(&pfp->ready_queue, pfp->scheduled)) | ||
515 | preempt(pfp); | ||
516 | |||
517 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
518 | } | ||
519 | |||
520 | /* ******************** SRP support ************************ */ | ||
521 | |||
522 | static unsigned int pfp_get_srp_prio(struct task_struct* t) | ||
523 | { | ||
524 | return get_priority(t); | ||
525 | } | ||
526 | |||
527 | /* ******************** FMLP support ********************** */ | ||
528 | |||
529 | struct fmlp_semaphore { | ||
530 | struct litmus_lock litmus_lock; | ||
531 | |||
532 | /* current resource holder */ | ||
533 | struct task_struct *owner; | ||
534 | |||
535 | /* FIFO queue of waiting tasks */ | ||
536 | wait_queue_head_t wait; | ||
537 | }; | ||
538 | |||
539 | static inline struct fmlp_semaphore* fmlp_from_lock(struct litmus_lock* lock) | ||
540 | { | ||
541 | return container_of(lock, struct fmlp_semaphore, litmus_lock); | ||
542 | } | ||
543 | int pfp_fmlp_lock(struct litmus_lock* l) | ||
544 | { | ||
545 | struct task_struct* t = current; | ||
546 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
547 | wait_queue_t wait; | ||
548 | unsigned long flags; | ||
549 | lt_t time_of_request; | ||
550 | |||
551 | if (!is_realtime(t)) | ||
552 | return -EPERM; | ||
553 | |||
554 | /* prevent nested lock acquisition --- not supported by FMLP */ | ||
555 | if (tsk_rt(t)->num_locks_held || | ||
556 | tsk_rt(t)->num_local_locks_held) | ||
557 | return -EBUSY; | ||
558 | |||
559 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
560 | |||
561 | /* tie-break by this point in time */ | ||
562 | time_of_request = litmus_clock(); | ||
563 | |||
564 | /* Priority-boost ourself *before* we suspend so that | ||
565 | * our priority is boosted when we resume. */ | ||
566 | boost_priority(t, time_of_request); | ||
567 | |||
568 | if (sem->owner) { | ||
569 | /* resource is not free => must suspend and wait */ | ||
570 | |||
571 | init_waitqueue_entry(&wait, t); | ||
572 | |||
573 | /* FIXME: interruptible would be nice some day */ | ||
574 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
575 | |||
576 | __add_wait_queue_tail_exclusive(&sem->wait, &wait); | ||
577 | |||
578 | TS_LOCK_SUSPEND; | ||
579 | |||
580 | /* release lock before sleeping */ | ||
581 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
582 | |||
583 | /* We depend on the FIFO order. Thus, we don't need to recheck | ||
584 | * when we wake up; we are guaranteed to have the lock since | ||
585 | * there is only one wake up per release. | ||
586 | */ | ||
587 | |||
588 | schedule(); | ||
589 | |||
590 | TS_LOCK_RESUME; | ||
591 | |||
592 | /* Since we hold the lock, no other task will change | ||
593 | * ->owner. We can thus check it without acquiring the spin | ||
594 | * lock. */ | ||
595 | BUG_ON(sem->owner != t); | ||
596 | } else { | ||
597 | /* it's ours now */ | ||
598 | sem->owner = t; | ||
599 | |||
600 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
601 | } | ||
602 | |||
603 | tsk_rt(t)->num_locks_held++; | ||
604 | |||
605 | return 0; | ||
606 | } | ||
607 | |||
608 | int pfp_fmlp_unlock(struct litmus_lock* l) | ||
609 | { | ||
610 | struct task_struct *t = current, *next; | ||
611 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
612 | unsigned long flags; | ||
613 | int err = 0; | ||
614 | |||
615 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
616 | |||
617 | if (sem->owner != t) { | ||
618 | err = -EINVAL; | ||
619 | goto out; | ||
620 | } | ||
621 | |||
622 | tsk_rt(t)->num_locks_held--; | ||
623 | |||
624 | /* we lose the benefit of priority boosting */ | ||
625 | |||
626 | unboost_priority(t); | ||
627 | |||
628 | /* check if there are jobs waiting for this resource */ | ||
629 | next = __waitqueue_remove_first(&sem->wait); | ||
630 | if (next) { | ||
631 | /* next becomes the resouce holder */ | ||
632 | sem->owner = next; | ||
633 | |||
634 | /* Wake up next. The waiting job is already priority-boosted. */ | ||
635 | wake_up_process(next); | ||
636 | } else | ||
637 | /* resource becomes available */ | ||
638 | sem->owner = NULL; | ||
639 | |||
640 | out: | ||
641 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
642 | return err; | ||
643 | } | ||
644 | |||
645 | int pfp_fmlp_close(struct litmus_lock* l) | ||
646 | { | ||
647 | struct task_struct *t = current; | ||
648 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
649 | unsigned long flags; | ||
650 | |||
651 | int owner; | ||
652 | |||
653 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
654 | |||
655 | owner = sem->owner == t; | ||
656 | |||
657 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
658 | |||
659 | if (owner) | ||
660 | pfp_fmlp_unlock(l); | ||
661 | |||
662 | return 0; | ||
663 | } | ||
664 | |||
665 | void pfp_fmlp_free(struct litmus_lock* lock) | ||
666 | { | ||
667 | kfree(fmlp_from_lock(lock)); | ||
668 | } | ||
669 | |||
670 | static struct litmus_lock_ops pfp_fmlp_lock_ops = { | ||
671 | .close = pfp_fmlp_close, | ||
672 | .lock = pfp_fmlp_lock, | ||
673 | .unlock = pfp_fmlp_unlock, | ||
674 | .deallocate = pfp_fmlp_free, | ||
675 | }; | ||
676 | |||
677 | static struct litmus_lock* pfp_new_fmlp(void) | ||
678 | { | ||
679 | struct fmlp_semaphore* sem; | ||
680 | |||
681 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
682 | if (!sem) | ||
683 | return NULL; | ||
684 | |||
685 | sem->owner = NULL; | ||
686 | init_waitqueue_head(&sem->wait); | ||
687 | sem->litmus_lock.ops = &pfp_fmlp_lock_ops; | ||
688 | |||
689 | return &sem->litmus_lock; | ||
690 | } | ||
691 | |||
692 | /* ******************** MPCP support ********************** */ | ||
693 | |||
694 | struct mpcp_semaphore { | ||
695 | struct litmus_lock litmus_lock; | ||
696 | |||
697 | /* current resource holder */ | ||
698 | struct task_struct *owner; | ||
699 | |||
700 | /* priority queue of waiting tasks */ | ||
701 | wait_queue_head_t wait; | ||
702 | |||
703 | /* priority ceiling per cpu */ | ||
704 | unsigned int prio_ceiling[NR_CPUS]; | ||
705 | |||
706 | /* should jobs spin "virtually" for this resource? */ | ||
707 | int vspin; | ||
708 | }; | ||
709 | |||
710 | #define OMEGA_CEILING UINT_MAX | ||
711 | |||
712 | /* Since jobs spin "virtually" while waiting to acquire a lock, | ||
713 | * they first must aquire a local per-cpu resource. | ||
714 | */ | ||
715 | static DEFINE_PER_CPU(wait_queue_head_t, mpcpvs_vspin_wait); | ||
716 | static DEFINE_PER_CPU(struct task_struct*, mpcpvs_vspin); | ||
717 | |||
718 | /* called with preemptions off <=> no local modifications */ | ||
719 | static void mpcp_vspin_enter(void) | ||
720 | { | ||
721 | struct task_struct* t = current; | ||
722 | |||
723 | while (1) { | ||
724 | if (__get_cpu_var(mpcpvs_vspin) == NULL) { | ||
725 | /* good, we get to issue our request */ | ||
726 | __get_cpu_var(mpcpvs_vspin) = t; | ||
727 | break; | ||
728 | } else { | ||
729 | /* some job is spinning => enqueue in request queue */ | ||
730 | prio_wait_queue_t wait; | ||
731 | wait_queue_head_t* vspin = &__get_cpu_var(mpcpvs_vspin_wait); | ||
732 | unsigned long flags; | ||
733 | |||
734 | /* ordered by regular priority */ | ||
735 | init_prio_waitqueue_entry(&wait, t, prio_point(get_priority(t))); | ||
736 | |||
737 | spin_lock_irqsave(&vspin->lock, flags); | ||
738 | |||
739 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
740 | |||
741 | __add_wait_queue_prio_exclusive(vspin, &wait); | ||
742 | |||
743 | spin_unlock_irqrestore(&vspin->lock, flags); | ||
744 | |||
745 | TS_LOCK_SUSPEND; | ||
746 | |||
747 | preempt_enable_no_resched(); | ||
748 | |||
749 | schedule(); | ||
750 | |||
751 | preempt_disable(); | ||
752 | |||
753 | TS_LOCK_RESUME; | ||
754 | /* Recheck if we got it --- some higher-priority process might | ||
755 | * have swooped in. */ | ||
756 | } | ||
757 | } | ||
758 | /* ok, now it is ours */ | ||
759 | } | ||
760 | |||
761 | /* called with preemptions off */ | ||
762 | static void mpcp_vspin_exit(void) | ||
763 | { | ||
764 | struct task_struct* t = current, *next; | ||
765 | unsigned long flags; | ||
766 | wait_queue_head_t* vspin = &__get_cpu_var(mpcpvs_vspin_wait); | ||
767 | |||
768 | BUG_ON(__get_cpu_var(mpcpvs_vspin) != t); | ||
769 | |||
770 | /* no spinning job */ | ||
771 | __get_cpu_var(mpcpvs_vspin) = NULL; | ||
772 | |||
773 | /* see if anyone is waiting for us to stop "spinning" */ | ||
774 | spin_lock_irqsave(&vspin->lock, flags); | ||
775 | next = __waitqueue_remove_first(vspin); | ||
776 | |||
777 | if (next) | ||
778 | wake_up_process(next); | ||
779 | |||
780 | spin_unlock_irqrestore(&vspin->lock, flags); | ||
781 | } | ||
782 | |||
783 | static inline struct mpcp_semaphore* mpcp_from_lock(struct litmus_lock* lock) | ||
784 | { | ||
785 | return container_of(lock, struct mpcp_semaphore, litmus_lock); | ||
786 | } | ||
787 | |||
788 | int pfp_mpcp_lock(struct litmus_lock* l) | ||
789 | { | ||
790 | struct task_struct* t = current; | ||
791 | struct mpcp_semaphore *sem = mpcp_from_lock(l); | ||
792 | prio_wait_queue_t wait; | ||
793 | unsigned long flags; | ||
794 | |||
795 | if (!is_realtime(t)) | ||
796 | return -EPERM; | ||
797 | |||
798 | /* prevent nested lock acquisition */ | ||
799 | if (tsk_rt(t)->num_locks_held || | ||
800 | tsk_rt(t)->num_local_locks_held) | ||
801 | return -EBUSY; | ||
802 | |||
803 | preempt_disable(); | ||
804 | |||
805 | if (sem->vspin) | ||
806 | mpcp_vspin_enter(); | ||
807 | |||
808 | /* Priority-boost ourself *before* we suspend so that | ||
809 | * our priority is boosted when we resume. Use the priority | ||
810 | * ceiling for the local partition. */ | ||
811 | boost_priority(t, sem->prio_ceiling[get_partition(t)]); | ||
812 | |||
813 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
814 | |||
815 | preempt_enable_no_resched(); | ||
816 | |||
817 | if (sem->owner) { | ||
818 | /* resource is not free => must suspend and wait */ | ||
819 | |||
820 | /* ordered by regular priority */ | ||
821 | init_prio_waitqueue_entry(&wait, t, prio_point(get_priority(t))); | ||
822 | |||
823 | /* FIXME: interruptible would be nice some day */ | ||
824 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
825 | |||
826 | __add_wait_queue_prio_exclusive(&sem->wait, &wait); | ||
827 | |||
828 | TS_LOCK_SUSPEND; | ||
829 | |||
830 | /* release lock before sleeping */ | ||
831 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
832 | |||
833 | /* We depend on the FIFO order. Thus, we don't need to recheck | ||
834 | * when we wake up; we are guaranteed to have the lock since | ||
835 | * there is only one wake up per release. | ||
836 | */ | ||
837 | |||
838 | schedule(); | ||
839 | |||
840 | TS_LOCK_RESUME; | ||
841 | |||
842 | /* Since we hold the lock, no other task will change | ||
843 | * ->owner. We can thus check it without acquiring the spin | ||
844 | * lock. */ | ||
845 | BUG_ON(sem->owner != t); | ||
846 | } else { | ||
847 | /* it's ours now */ | ||
848 | sem->owner = t; | ||
849 | |||
850 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
851 | } | ||
852 | |||
853 | tsk_rt(t)->num_locks_held++; | ||
854 | |||
855 | return 0; | ||
856 | } | ||
857 | |||
858 | int pfp_mpcp_unlock(struct litmus_lock* l) | ||
859 | { | ||
860 | struct task_struct *t = current, *next; | ||
861 | struct mpcp_semaphore *sem = mpcp_from_lock(l); | ||
862 | unsigned long flags; | ||
863 | int err = 0; | ||
864 | |||
865 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
866 | |||
867 | if (sem->owner != t) { | ||
868 | err = -EINVAL; | ||
869 | goto out; | ||
870 | } | ||
871 | |||
872 | |||
873 | tsk_rt(t)->num_locks_held--; | ||
874 | |||
875 | /* we lose the benefit of priority boosting */ | ||
876 | |||
877 | unboost_priority(t); | ||
878 | |||
879 | /* check if there are jobs waiting for this resource */ | ||
880 | next = __waitqueue_remove_first(&sem->wait); | ||
881 | if (next) { | ||
882 | /* next becomes the resouce holder */ | ||
883 | sem->owner = next; | ||
884 | |||
885 | /* Wake up next. The waiting job is already priority-boosted. */ | ||
886 | wake_up_process(next); | ||
887 | } else | ||
888 | /* resource becomes available */ | ||
889 | sem->owner = NULL; | ||
890 | |||
891 | out: | ||
892 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
893 | |||
894 | if (sem->vspin && err == 0) { | ||
895 | preempt_disable(); | ||
896 | mpcp_vspin_exit(); | ||
897 | preempt_enable(); | ||
898 | } | ||
899 | |||
900 | return err; | ||
901 | } | ||
902 | |||
903 | int pfp_mpcp_open(struct litmus_lock* l, void* config) | ||
904 | { | ||
905 | struct task_struct *t = current; | ||
906 | struct mpcp_semaphore *sem = mpcp_from_lock(l); | ||
907 | int cpu, local_cpu; | ||
908 | unsigned long flags; | ||
909 | |||
910 | if (!is_realtime(t)) | ||
911 | /* we need to know the real-time priority */ | ||
912 | return -EPERM; | ||
913 | |||
914 | local_cpu = get_partition(t); | ||
915 | |||
916 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
917 | |||
918 | for (cpu = 0; cpu < NR_CPUS; cpu++) | ||
919 | if (cpu != local_cpu) | ||
920 | { | ||
921 | sem->prio_ceiling[cpu] = min(sem->prio_ceiling[cpu], | ||
922 | get_priority(t)); | ||
923 | TRACE_CUR("priority ceiling for sem %p is now %d on cpu %d\n", | ||
924 | sem, sem->prio_ceiling[cpu], cpu); | ||
925 | } | ||
926 | |||
927 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
928 | |||
929 | return 0; | ||
930 | } | ||
931 | |||
932 | int pfp_mpcp_close(struct litmus_lock* l) | ||
933 | { | ||
934 | struct task_struct *t = current; | ||
935 | struct mpcp_semaphore *sem = mpcp_from_lock(l); | ||
936 | unsigned long flags; | ||
937 | |||
938 | int owner; | ||
939 | |||
940 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
941 | |||
942 | owner = sem->owner == t; | ||
943 | |||
944 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
945 | |||
946 | if (owner) | ||
947 | pfp_mpcp_unlock(l); | ||
948 | |||
949 | return 0; | ||
950 | } | ||
951 | |||
952 | void pfp_mpcp_free(struct litmus_lock* lock) | ||
953 | { | ||
954 | kfree(mpcp_from_lock(lock)); | ||
955 | } | ||
956 | |||
957 | static struct litmus_lock_ops pfp_mpcp_lock_ops = { | ||
958 | .close = pfp_mpcp_close, | ||
959 | .lock = pfp_mpcp_lock, | ||
960 | .open = pfp_mpcp_open, | ||
961 | .unlock = pfp_mpcp_unlock, | ||
962 | .deallocate = pfp_mpcp_free, | ||
963 | }; | ||
964 | |||
965 | static struct litmus_lock* pfp_new_mpcp(int vspin) | ||
966 | { | ||
967 | struct mpcp_semaphore* sem; | ||
968 | int cpu; | ||
969 | |||
970 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
971 | if (!sem) | ||
972 | return NULL; | ||
973 | |||
974 | sem->owner = NULL; | ||
975 | init_waitqueue_head(&sem->wait); | ||
976 | sem->litmus_lock.ops = &pfp_mpcp_lock_ops; | ||
977 | |||
978 | for (cpu = 0; cpu < NR_CPUS; cpu++) | ||
979 | sem->prio_ceiling[cpu] = OMEGA_CEILING; | ||
980 | |||
981 | /* mark as virtual spinning */ | ||
982 | sem->vspin = vspin; | ||
983 | |||
984 | return &sem->litmus_lock; | ||
985 | } | ||
986 | |||
987 | |||
988 | /* ******************** PCP support ********************** */ | ||
989 | |||
990 | |||
991 | struct pcp_semaphore { | ||
992 | struct litmus_lock litmus_lock; | ||
993 | |||
994 | struct list_head ceiling; | ||
995 | |||
996 | /* current resource holder */ | ||
997 | struct task_struct *owner; | ||
998 | |||
999 | /* priority ceiling --- can be negative due to DPCP support */ | ||
1000 | int prio_ceiling; | ||
1001 | |||
1002 | /* on which processor is this PCP semaphore allocated? */ | ||
1003 | int on_cpu; | ||
1004 | }; | ||
1005 | |||
1006 | static inline struct pcp_semaphore* pcp_from_lock(struct litmus_lock* lock) | ||
1007 | { | ||
1008 | return container_of(lock, struct pcp_semaphore, litmus_lock); | ||
1009 | } | ||
1010 | |||
1011 | |||
1012 | struct pcp_state { | ||
1013 | struct list_head system_ceiling; | ||
1014 | |||
1015 | /* highest-priority waiting task */ | ||
1016 | struct task_struct* hp_waiter; | ||
1017 | |||
1018 | /* list of jobs waiting to get past the system ceiling */ | ||
1019 | wait_queue_head_t ceiling_blocked; | ||
1020 | }; | ||
1021 | |||
1022 | static void pcp_init_state(struct pcp_state* s) | ||
1023 | { | ||
1024 | INIT_LIST_HEAD(&s->system_ceiling); | ||
1025 | s->hp_waiter = NULL; | ||
1026 | init_waitqueue_head(&s->ceiling_blocked); | ||
1027 | } | ||
1028 | |||
1029 | static DEFINE_PER_CPU(struct pcp_state, pcp_state); | ||
1030 | |||
1031 | /* assumes preemptions are off */ | ||
1032 | static struct pcp_semaphore* pcp_get_ceiling(void) | ||
1033 | { | ||
1034 | struct list_head* top = __get_cpu_var(pcp_state).system_ceiling.next; | ||
1035 | |||
1036 | if (top) | ||
1037 | return list_entry(top, struct pcp_semaphore, ceiling); | ||
1038 | else | ||
1039 | return NULL; | ||
1040 | } | ||
1041 | |||
1042 | /* assumes preempt off */ | ||
1043 | static void pcp_add_ceiling(struct pcp_semaphore* sem) | ||
1044 | { | ||
1045 | struct list_head *pos; | ||
1046 | struct list_head *in_use = &__get_cpu_var(pcp_state).system_ceiling; | ||
1047 | struct pcp_semaphore* held; | ||
1048 | |||
1049 | BUG_ON(sem->on_cpu != smp_processor_id()); | ||
1050 | BUG_ON(in_list(&sem->ceiling)); | ||
1051 | |||
1052 | list_for_each(pos, in_use) { | ||
1053 | held = list_entry(pos, struct pcp_semaphore, ceiling); | ||
1054 | if (held->prio_ceiling >= sem->prio_ceiling) { | ||
1055 | __list_add(&sem->ceiling, pos->prev, pos); | ||
1056 | return; | ||
1057 | } | ||
1058 | } | ||
1059 | |||
1060 | /* we hit the end of the list */ | ||
1061 | |||
1062 | list_add_tail(&sem->ceiling, in_use); | ||
1063 | } | ||
1064 | |||
1065 | /* assumes preempt off */ | ||
1066 | static int pcp_exceeds_ceiling(struct pcp_semaphore* ceiling, | ||
1067 | struct task_struct* task, | ||
1068 | int effective_prio) | ||
1069 | { | ||
1070 | return ceiling == NULL || | ||
1071 | ceiling->prio_ceiling > effective_prio || | ||
1072 | ceiling->owner == task; | ||
1073 | } | ||
1074 | |||
1075 | /* assumes preempt off */ | ||
1076 | static void pcp_priority_inheritance(void) | ||
1077 | { | ||
1078 | unsigned long flags; | ||
1079 | pfp_domain_t* pfp = local_pfp; | ||
1080 | |||
1081 | struct pcp_semaphore* ceiling = pcp_get_ceiling(); | ||
1082 | struct task_struct *blocker, *blocked; | ||
1083 | |||
1084 | blocker = ceiling ? ceiling->owner : NULL; | ||
1085 | blocked = __get_cpu_var(pcp_state).hp_waiter; | ||
1086 | |||
1087 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
1088 | |||
1089 | /* Current is no longer inheriting anything by default. This should be | ||
1090 | * the currently scheduled job, and hence not currently queued. */ | ||
1091 | BUG_ON(current != pfp->scheduled); | ||
1092 | |||
1093 | fp_set_prio_inh(pfp, current, NULL); | ||
1094 | fp_set_prio_inh(pfp, blocked, NULL); | ||
1095 | fp_set_prio_inh(pfp, blocker, NULL); | ||
1096 | |||
1097 | |||
1098 | /* Let blocking job inherit priority of blocked job, if required. */ | ||
1099 | if (blocker && blocked && | ||
1100 | fp_higher_prio(blocked, blocker)) { | ||
1101 | TRACE_TASK(blocker, "PCP inherits from %s/%d (prio %u -> %u) \n", | ||
1102 | blocked->comm, blocked->pid, | ||
1103 | get_priority(blocker), get_priority(blocked)); | ||
1104 | fp_set_prio_inh(pfp, blocker, blocked); | ||
1105 | } | ||
1106 | |||
1107 | /* Check if anything changed. If the blocked job is current, then it is | ||
1108 | * just blocking and hence is going to call the scheduler anyway. */ | ||
1109 | if (blocked != current && | ||
1110 | fp_higher_prio(fp_prio_peek(&pfp->ready_queue), pfp->scheduled)) | ||
1111 | preempt(pfp); | ||
1112 | |||
1113 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
1114 | } | ||
1115 | |||
1116 | /* called with preemptions off */ | ||
1117 | static void pcp_raise_ceiling(struct pcp_semaphore* sem, | ||
1118 | int effective_prio) | ||
1119 | { | ||
1120 | struct task_struct* t = current; | ||
1121 | struct pcp_semaphore* ceiling; | ||
1122 | prio_wait_queue_t wait; | ||
1123 | unsigned int waiting_higher_prio; | ||
1124 | |||
1125 | do { | ||
1126 | ceiling = pcp_get_ceiling(); | ||
1127 | if (pcp_exceeds_ceiling(ceiling, t, effective_prio)) | ||
1128 | break; | ||
1129 | |||
1130 | TRACE_CUR("PCP ceiling-blocked, wanted sem %p, but %s/%d has the ceiling \n", | ||
1131 | sem, ceiling->owner->comm, ceiling->owner->pid); | ||
1132 | |||
1133 | /* we need to wait until the ceiling is lowered */ | ||
1134 | |||
1135 | /* enqueue in priority order */ | ||
1136 | init_prio_waitqueue_entry(&wait, t, prio_point(effective_prio)); | ||
1137 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
1138 | waiting_higher_prio = add_wait_queue_prio_exclusive( | ||
1139 | &__get_cpu_var(pcp_state).ceiling_blocked, &wait); | ||
1140 | |||
1141 | if (waiting_higher_prio == 0) { | ||
1142 | TRACE_CUR("PCP new highest-prio waiter => prio inheritance\n"); | ||
1143 | |||
1144 | /* we are the new highest-priority waiting job | ||
1145 | * => update inheritance */ | ||
1146 | __get_cpu_var(pcp_state).hp_waiter = t; | ||
1147 | pcp_priority_inheritance(); | ||
1148 | } | ||
1149 | |||
1150 | TS_LOCK_SUSPEND; | ||
1151 | |||
1152 | preempt_enable_no_resched(); | ||
1153 | schedule(); | ||
1154 | preempt_disable(); | ||
1155 | |||
1156 | /* pcp_resume_unblocked() removed us from wait queue */ | ||
1157 | |||
1158 | TS_LOCK_RESUME; | ||
1159 | } while(1); | ||
1160 | |||
1161 | TRACE_CUR("PCP got the ceiling and sem %p\n", sem); | ||
1162 | |||
1163 | /* We are good to go. The semaphore should be available. */ | ||
1164 | BUG_ON(sem->owner != NULL); | ||
1165 | |||
1166 | sem->owner = t; | ||
1167 | |||
1168 | pcp_add_ceiling(sem); | ||
1169 | } | ||
1170 | |||
1171 | static void pcp_resume_unblocked(void) | ||
1172 | { | ||
1173 | wait_queue_head_t *blocked = &__get_cpu_var(pcp_state).ceiling_blocked; | ||
1174 | unsigned long flags; | ||
1175 | prio_wait_queue_t* q; | ||
1176 | struct task_struct* t = NULL; | ||
1177 | |||
1178 | struct pcp_semaphore* ceiling = pcp_get_ceiling(); | ||
1179 | |||
1180 | spin_lock_irqsave(&blocked->lock, flags); | ||
1181 | |||
1182 | while (waitqueue_active(blocked)) { | ||
1183 | /* check first == highest-priority waiting job */ | ||
1184 | q = list_entry(blocked->task_list.next, | ||
1185 | prio_wait_queue_t, wq.task_list); | ||
1186 | t = (struct task_struct*) q->wq.private; | ||
1187 | |||
1188 | /* can it proceed now? => let it go */ | ||
1189 | if (pcp_exceeds_ceiling(ceiling, t, | ||
1190 | prio_from_point(q->priority))) { | ||
1191 | __remove_wait_queue(blocked, &q->wq); | ||
1192 | wake_up_process(t); | ||
1193 | } else { | ||
1194 | /* We are done. Update highest-priority waiter. */ | ||
1195 | __get_cpu_var(pcp_state).hp_waiter = t; | ||
1196 | goto out; | ||
1197 | } | ||
1198 | } | ||
1199 | /* If we get here, then there are no more waiting | ||
1200 | * jobs. */ | ||
1201 | __get_cpu_var(pcp_state).hp_waiter = NULL; | ||
1202 | out: | ||
1203 | spin_unlock_irqrestore(&blocked->lock, flags); | ||
1204 | } | ||
1205 | |||
1206 | /* assumes preempt off */ | ||
1207 | static void pcp_lower_ceiling(struct pcp_semaphore* sem) | ||
1208 | { | ||
1209 | BUG_ON(!in_list(&sem->ceiling)); | ||
1210 | BUG_ON(sem->owner != current); | ||
1211 | BUG_ON(sem->on_cpu != smp_processor_id()); | ||
1212 | |||
1213 | /* remove from ceiling list */ | ||
1214 | list_del(&sem->ceiling); | ||
1215 | |||
1216 | /* release */ | ||
1217 | sem->owner = NULL; | ||
1218 | |||
1219 | TRACE_CUR("PCP released sem %p\n", sem); | ||
1220 | |||
1221 | pcp_priority_inheritance(); | ||
1222 | |||
1223 | /* Wake up all ceiling-blocked jobs that now pass the ceiling. */ | ||
1224 | pcp_resume_unblocked(); | ||
1225 | } | ||
1226 | |||
1227 | static void pcp_update_prio_ceiling(struct pcp_semaphore* sem, | ||
1228 | int effective_prio) | ||
1229 | { | ||
1230 | /* This needs to be synchronized on something. | ||
1231 | * Might as well use waitqueue lock for the processor. | ||
1232 | * We assume this happens only before the task set starts execution, | ||
1233 | * (i.e., during initialization), but it may happen on multiple processors | ||
1234 | * at the same time. | ||
1235 | */ | ||
1236 | unsigned long flags; | ||
1237 | |||
1238 | struct pcp_state* s = &per_cpu(pcp_state, sem->on_cpu); | ||
1239 | |||
1240 | spin_lock_irqsave(&s->ceiling_blocked.lock, flags); | ||
1241 | |||
1242 | sem->prio_ceiling = min(sem->prio_ceiling, effective_prio); | ||
1243 | |||
1244 | spin_unlock_irqrestore(&s->ceiling_blocked.lock, flags); | ||
1245 | } | ||
1246 | |||
1247 | static void pcp_init_semaphore(struct pcp_semaphore* sem, int cpu) | ||
1248 | { | ||
1249 | sem->owner = NULL; | ||
1250 | INIT_LIST_HEAD(&sem->ceiling); | ||
1251 | sem->prio_ceiling = INT_MAX; | ||
1252 | sem->on_cpu = cpu; | ||
1253 | } | ||
1254 | |||
1255 | int pfp_pcp_lock(struct litmus_lock* l) | ||
1256 | { | ||
1257 | struct task_struct* t = current; | ||
1258 | struct pcp_semaphore *sem = pcp_from_lock(l); | ||
1259 | |||
1260 | int eprio = effective_agent_priority(get_priority(t)); | ||
1261 | int from = get_partition(t); | ||
1262 | int to = sem->on_cpu; | ||
1263 | |||
1264 | if (!is_realtime(t) || from != to) | ||
1265 | return -EPERM; | ||
1266 | |||
1267 | /* prevent nested lock acquisition in global critical section */ | ||
1268 | if (tsk_rt(t)->num_locks_held) | ||
1269 | return -EBUSY; | ||
1270 | |||
1271 | preempt_disable(); | ||
1272 | |||
1273 | pcp_raise_ceiling(sem, eprio); | ||
1274 | |||
1275 | preempt_enable(); | ||
1276 | |||
1277 | tsk_rt(t)->num_local_locks_held++; | ||
1278 | |||
1279 | return 0; | ||
1280 | } | ||
1281 | |||
1282 | int pfp_pcp_unlock(struct litmus_lock* l) | ||
1283 | { | ||
1284 | struct task_struct *t = current; | ||
1285 | struct pcp_semaphore *sem = pcp_from_lock(l); | ||
1286 | |||
1287 | int err = 0; | ||
1288 | |||
1289 | preempt_disable(); | ||
1290 | |||
1291 | if (sem->on_cpu != smp_processor_id() || sem->owner != t) { | ||
1292 | err = -EINVAL; | ||
1293 | goto out; | ||
1294 | } | ||
1295 | |||
1296 | tsk_rt(t)->num_local_locks_held--; | ||
1297 | |||
1298 | /* give it back */ | ||
1299 | pcp_lower_ceiling(sem); | ||
1300 | |||
1301 | out: | ||
1302 | preempt_enable(); | ||
1303 | |||
1304 | return err; | ||
1305 | } | ||
1306 | |||
1307 | int pfp_pcp_open(struct litmus_lock* l, void* __user config) | ||
1308 | { | ||
1309 | struct task_struct *t = current; | ||
1310 | struct pcp_semaphore *sem = pcp_from_lock(l); | ||
1311 | |||
1312 | int cpu, eprio; | ||
1313 | |||
1314 | if (!is_realtime(t)) | ||
1315 | /* we need to know the real-time priority */ | ||
1316 | return -EPERM; | ||
1317 | |||
1318 | if (!config) | ||
1319 | cpu = get_partition(t); | ||
1320 | else if (get_user(cpu, (int*) config)) | ||
1321 | return -EFAULT; | ||
1322 | |||
1323 | /* make sure the resource location matches */ | ||
1324 | if (cpu != sem->on_cpu) | ||
1325 | return -EINVAL; | ||
1326 | |||
1327 | eprio = effective_agent_priority(get_priority(t)); | ||
1328 | |||
1329 | pcp_update_prio_ceiling(sem, eprio); | ||
1330 | |||
1331 | return 0; | ||
1332 | } | ||
1333 | |||
1334 | int pfp_pcp_close(struct litmus_lock* l) | ||
1335 | { | ||
1336 | struct task_struct *t = current; | ||
1337 | struct pcp_semaphore *sem = pcp_from_lock(l); | ||
1338 | |||
1339 | int owner = 0; | ||
1340 | |||
1341 | preempt_disable(); | ||
1342 | |||
1343 | if (sem->on_cpu == smp_processor_id()) | ||
1344 | owner = sem->owner == t; | ||
1345 | |||
1346 | preempt_enable(); | ||
1347 | |||
1348 | if (owner) | ||
1349 | pfp_pcp_unlock(l); | ||
1350 | |||
1351 | return 0; | ||
1352 | } | ||
1353 | |||
1354 | void pfp_pcp_free(struct litmus_lock* lock) | ||
1355 | { | ||
1356 | kfree(pcp_from_lock(lock)); | ||
1357 | } | ||
1358 | |||
1359 | |||
1360 | static struct litmus_lock_ops pfp_pcp_lock_ops = { | ||
1361 | .close = pfp_pcp_close, | ||
1362 | .lock = pfp_pcp_lock, | ||
1363 | .open = pfp_pcp_open, | ||
1364 | .unlock = pfp_pcp_unlock, | ||
1365 | .deallocate = pfp_pcp_free, | ||
1366 | }; | ||
1367 | |||
1368 | |||
1369 | static struct litmus_lock* pfp_new_pcp(int on_cpu) | ||
1370 | { | ||
1371 | struct pcp_semaphore* sem; | ||
1372 | |||
1373 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
1374 | if (!sem) | ||
1375 | return NULL; | ||
1376 | |||
1377 | sem->litmus_lock.ops = &pfp_pcp_lock_ops; | ||
1378 | pcp_init_semaphore(sem, on_cpu); | ||
1379 | |||
1380 | return &sem->litmus_lock; | ||
1381 | } | ||
1382 | |||
1383 | /* ******************** DPCP support ********************** */ | ||
1384 | |||
1385 | struct dpcp_semaphore { | ||
1386 | struct litmus_lock litmus_lock; | ||
1387 | struct pcp_semaphore pcp; | ||
1388 | int owner_cpu; | ||
1389 | }; | ||
1390 | |||
1391 | static inline struct dpcp_semaphore* dpcp_from_lock(struct litmus_lock* lock) | ||
1392 | { | ||
1393 | return container_of(lock, struct dpcp_semaphore, litmus_lock); | ||
1394 | } | ||
1395 | |||
1396 | /* called with preemptions disabled */ | ||
1397 | static void pfp_migrate_to(int target_cpu) | ||
1398 | { | ||
1399 | struct task_struct* t = current; | ||
1400 | pfp_domain_t *from; | ||
1401 | |||
1402 | if (get_partition(t) == target_cpu) | ||
1403 | return; | ||
1404 | |||
1405 | /* make sure target_cpu makes sense */ | ||
1406 | BUG_ON(!cpu_online(target_cpu)); | ||
1407 | |||
1408 | local_irq_disable(); | ||
1409 | |||
1410 | /* scheduled task should not be in any ready or release queue */ | ||
1411 | BUG_ON(is_queued(t)); | ||
1412 | |||
1413 | /* lock both pfp domains in order of address */ | ||
1414 | from = task_pfp(t); | ||
1415 | |||
1416 | raw_spin_lock(&from->slock); | ||
1417 | |||
1418 | /* switch partitions */ | ||
1419 | tsk_rt(t)->task_params.cpu = target_cpu; | ||
1420 | |||
1421 | raw_spin_unlock(&from->slock); | ||
1422 | |||
1423 | /* Don't trace scheduler costs as part of | ||
1424 | * locking overhead. Scheduling costs are accounted for | ||
1425 | * explicitly. */ | ||
1426 | TS_LOCK_SUSPEND; | ||
1427 | |||
1428 | local_irq_enable(); | ||
1429 | preempt_enable_no_resched(); | ||
1430 | |||
1431 | /* deschedule to be migrated */ | ||
1432 | schedule(); | ||
1433 | |||
1434 | /* we are now on the target processor */ | ||
1435 | preempt_disable(); | ||
1436 | |||
1437 | /* start recording costs again */ | ||
1438 | TS_LOCK_RESUME; | ||
1439 | |||
1440 | BUG_ON(smp_processor_id() != target_cpu); | ||
1441 | } | ||
1442 | |||
1443 | int pfp_dpcp_lock(struct litmus_lock* l) | ||
1444 | { | ||
1445 | struct task_struct* t = current; | ||
1446 | struct dpcp_semaphore *sem = dpcp_from_lock(l); | ||
1447 | int eprio = effective_agent_priority(get_priority(t)); | ||
1448 | int from = get_partition(t); | ||
1449 | int to = sem->pcp.on_cpu; | ||
1450 | |||
1451 | if (!is_realtime(t)) | ||
1452 | return -EPERM; | ||
1453 | |||
1454 | /* prevent nested lock accquisition */ | ||
1455 | if (tsk_rt(t)->num_locks_held || | ||
1456 | tsk_rt(t)->num_local_locks_held) | ||
1457 | return -EBUSY; | ||
1458 | |||
1459 | preempt_disable(); | ||
1460 | |||
1461 | /* Priority-boost ourself *before* we suspend so that | ||
1462 | * our priority is boosted when we resume. */ | ||
1463 | |||
1464 | boost_priority(t, get_priority(t)); | ||
1465 | |||
1466 | pfp_migrate_to(to); | ||
1467 | |||
1468 | pcp_raise_ceiling(&sem->pcp, eprio); | ||
1469 | |||
1470 | /* yep, we got it => execute request */ | ||
1471 | sem->owner_cpu = from; | ||
1472 | |||
1473 | preempt_enable(); | ||
1474 | |||
1475 | tsk_rt(t)->num_locks_held++; | ||
1476 | |||
1477 | return 0; | ||
1478 | } | ||
1479 | |||
1480 | int pfp_dpcp_unlock(struct litmus_lock* l) | ||
1481 | { | ||
1482 | struct task_struct *t = current; | ||
1483 | struct dpcp_semaphore *sem = dpcp_from_lock(l); | ||
1484 | int err = 0; | ||
1485 | int home; | ||
1486 | |||
1487 | preempt_disable(); | ||
1488 | |||
1489 | if (sem->pcp.on_cpu != smp_processor_id() || sem->pcp.owner != t) { | ||
1490 | err = -EINVAL; | ||
1491 | goto out; | ||
1492 | } | ||
1493 | |||
1494 | tsk_rt(t)->num_locks_held--; | ||
1495 | |||
1496 | home = sem->owner_cpu; | ||
1497 | |||
1498 | /* give it back */ | ||
1499 | pcp_lower_ceiling(&sem->pcp); | ||
1500 | |||
1501 | /* we lose the benefit of priority boosting */ | ||
1502 | unboost_priority(t); | ||
1503 | |||
1504 | pfp_migrate_to(home); | ||
1505 | |||
1506 | out: | ||
1507 | preempt_enable(); | ||
1508 | |||
1509 | return err; | ||
1510 | } | ||
1511 | |||
1512 | int pfp_dpcp_open(struct litmus_lock* l, void* __user config) | ||
1513 | { | ||
1514 | struct task_struct *t = current; | ||
1515 | struct dpcp_semaphore *sem = dpcp_from_lock(l); | ||
1516 | int cpu, eprio; | ||
1517 | |||
1518 | if (!is_realtime(t)) | ||
1519 | /* we need to know the real-time priority */ | ||
1520 | return -EPERM; | ||
1521 | |||
1522 | if (get_user(cpu, (int*) config)) | ||
1523 | return -EFAULT; | ||
1524 | |||
1525 | /* make sure the resource location matches */ | ||
1526 | if (cpu != sem->pcp.on_cpu) | ||
1527 | return -EINVAL; | ||
1528 | |||
1529 | eprio = effective_agent_priority(get_priority(t)); | ||
1530 | |||
1531 | pcp_update_prio_ceiling(&sem->pcp, eprio); | ||
1532 | |||
1533 | return 0; | ||
1534 | } | ||
1535 | |||
1536 | int pfp_dpcp_close(struct litmus_lock* l) | ||
1537 | { | ||
1538 | struct task_struct *t = current; | ||
1539 | struct dpcp_semaphore *sem = dpcp_from_lock(l); | ||
1540 | int owner = 0; | ||
1541 | |||
1542 | preempt_disable(); | ||
1543 | |||
1544 | if (sem->pcp.on_cpu == smp_processor_id()) | ||
1545 | owner = sem->pcp.owner == t; | ||
1546 | |||
1547 | preempt_enable(); | ||
1548 | |||
1549 | if (owner) | ||
1550 | pfp_dpcp_unlock(l); | ||
1551 | |||
1552 | return 0; | ||
1553 | } | ||
1554 | |||
1555 | void pfp_dpcp_free(struct litmus_lock* lock) | ||
1556 | { | ||
1557 | kfree(dpcp_from_lock(lock)); | ||
1558 | } | ||
1559 | |||
1560 | static struct litmus_lock_ops pfp_dpcp_lock_ops = { | ||
1561 | .close = pfp_dpcp_close, | ||
1562 | .lock = pfp_dpcp_lock, | ||
1563 | .open = pfp_dpcp_open, | ||
1564 | .unlock = pfp_dpcp_unlock, | ||
1565 | .deallocate = pfp_dpcp_free, | ||
1566 | }; | ||
1567 | |||
1568 | static struct litmus_lock* pfp_new_dpcp(int on_cpu) | ||
1569 | { | ||
1570 | struct dpcp_semaphore* sem; | ||
1571 | |||
1572 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
1573 | if (!sem) | ||
1574 | return NULL; | ||
1575 | |||
1576 | sem->litmus_lock.ops = &pfp_dpcp_lock_ops; | ||
1577 | sem->owner_cpu = NO_CPU; | ||
1578 | pcp_init_semaphore(&sem->pcp, on_cpu); | ||
1579 | |||
1580 | return &sem->litmus_lock; | ||
1581 | } | ||
1582 | |||
1583 | |||
1584 | /* **** lock constructor **** */ | ||
1585 | |||
1586 | |||
1587 | static long pfp_allocate_lock(struct litmus_lock **lock, int type, | ||
1588 | void* __user config) | ||
1589 | { | ||
1590 | int err = -ENXIO, cpu; | ||
1591 | struct srp_semaphore* srp; | ||
1592 | |||
1593 | /* P-FP currently supports the SRP for local resources and the FMLP | ||
1594 | * for global resources. */ | ||
1595 | switch (type) { | ||
1596 | case FMLP_SEM: | ||
1597 | /* FIFO Mutex Locking Protocol */ | ||
1598 | *lock = pfp_new_fmlp(); | ||
1599 | if (*lock) | ||
1600 | err = 0; | ||
1601 | else | ||
1602 | err = -ENOMEM; | ||
1603 | break; | ||
1604 | |||
1605 | case MPCP_SEM: | ||
1606 | /* Multiprocesor Priority Ceiling Protocol */ | ||
1607 | *lock = pfp_new_mpcp(0); | ||
1608 | if (*lock) | ||
1609 | err = 0; | ||
1610 | else | ||
1611 | err = -ENOMEM; | ||
1612 | break; | ||
1613 | |||
1614 | case MPCP_VS_SEM: | ||
1615 | /* Multiprocesor Priority Ceiling Protocol with virtual spinning */ | ||
1616 | *lock = pfp_new_mpcp(1); | ||
1617 | if (*lock) | ||
1618 | err = 0; | ||
1619 | else | ||
1620 | err = -ENOMEM; | ||
1621 | break; | ||
1622 | |||
1623 | case DPCP_SEM: | ||
1624 | /* Distributed Priority Ceiling Protocol */ | ||
1625 | if (get_user(cpu, (int*) config)) | ||
1626 | return -EFAULT; | ||
1627 | |||
1628 | if (!cpu_online(cpu)) | ||
1629 | return -EINVAL; | ||
1630 | |||
1631 | *lock = pfp_new_dpcp(cpu); | ||
1632 | if (*lock) | ||
1633 | err = 0; | ||
1634 | else | ||
1635 | err = -ENOMEM; | ||
1636 | break; | ||
1637 | |||
1638 | case SRP_SEM: | ||
1639 | /* Baker's Stack Resource Policy */ | ||
1640 | srp = allocate_srp_semaphore(); | ||
1641 | if (srp) { | ||
1642 | *lock = &srp->litmus_lock; | ||
1643 | err = 0; | ||
1644 | } else | ||
1645 | err = -ENOMEM; | ||
1646 | break; | ||
1647 | |||
1648 | case PCP_SEM: | ||
1649 | /* Priority Ceiling Protocol */ | ||
1650 | if (!config) | ||
1651 | cpu = get_partition(current); | ||
1652 | else if (get_user(cpu, (int*) config)) | ||
1653 | return -EFAULT; | ||
1654 | |||
1655 | if (!cpu_online(cpu)) | ||
1656 | return -EINVAL; | ||
1657 | |||
1658 | *lock = pfp_new_pcp(cpu); | ||
1659 | if (*lock) | ||
1660 | err = 0; | ||
1661 | else | ||
1662 | err = -ENOMEM; | ||
1663 | break; | ||
1664 | }; | ||
1665 | |||
1666 | return err; | ||
1667 | } | ||
1668 | |||
1669 | #endif | ||
1670 | |||
1671 | static long pfp_admit_task(struct task_struct* tsk) | ||
1672 | { | ||
1673 | if (task_cpu(tsk) == tsk->rt_param.task_params.cpu && | ||
1674 | #ifdef CONFIG_RELEASE_MASTER | ||
1675 | /* don't allow tasks on release master CPU */ | ||
1676 | task_cpu(tsk) != remote_dom(task_cpu(tsk))->release_master && | ||
1677 | #endif | ||
1678 | litmus_is_valid_fixed_prio(get_priority(tsk))) | ||
1679 | return 0; | ||
1680 | else | ||
1681 | return -EINVAL; | ||
1682 | } | ||
1683 | |||
1684 | static long pfp_activate_plugin(void) | ||
1685 | { | ||
1686 | #if defined(CONFIG_RELEASE_MASTER) || defined(CONFIG_LITMUS_LOCKING) | ||
1687 | int cpu; | ||
1688 | #endif | ||
1689 | |||
1690 | #ifdef CONFIG_RELEASE_MASTER | ||
1691 | for_each_online_cpu(cpu) { | ||
1692 | remote_dom(cpu)->release_master = atomic_read(&release_master_cpu); | ||
1693 | } | ||
1694 | #endif | ||
1695 | |||
1696 | #ifdef CONFIG_LITMUS_LOCKING | ||
1697 | get_srp_prio = pfp_get_srp_prio; | ||
1698 | |||
1699 | for_each_online_cpu(cpu) { | ||
1700 | init_waitqueue_head(&per_cpu(mpcpvs_vspin_wait, cpu)); | ||
1701 | per_cpu(mpcpvs_vspin, cpu) = NULL; | ||
1702 | |||
1703 | pcp_init_state(&per_cpu(pcp_state, cpu)); | ||
1704 | pfp_doms[cpu] = remote_pfp(cpu); | ||
1705 | } | ||
1706 | |||
1707 | #endif | ||
1708 | |||
1709 | return 0; | ||
1710 | } | ||
1711 | |||
1712 | |||
1713 | /* Plugin object */ | ||
1714 | static struct sched_plugin pfp_plugin __cacheline_aligned_in_smp = { | ||
1715 | .plugin_name = "P-FP", | ||
1716 | .tick = pfp_tick, | ||
1717 | .task_new = pfp_task_new, | ||
1718 | .complete_job = complete_job, | ||
1719 | .task_exit = pfp_task_exit, | ||
1720 | .schedule = pfp_schedule, | ||
1721 | .task_wake_up = pfp_task_wake_up, | ||
1722 | .task_block = pfp_task_block, | ||
1723 | .admit_task = pfp_admit_task, | ||
1724 | .activate_plugin = pfp_activate_plugin, | ||
1725 | #ifdef CONFIG_LITMUS_LOCKING | ||
1726 | .allocate_lock = pfp_allocate_lock, | ||
1727 | .finish_switch = pfp_finish_switch, | ||
1728 | #endif | ||
1729 | }; | ||
1730 | |||
1731 | |||
1732 | static int __init init_pfp(void) | ||
1733 | { | ||
1734 | int i; | ||
1735 | |||
1736 | /* We do not really want to support cpu hotplug, do we? ;) | ||
1737 | * However, if we are so crazy to do so, | ||
1738 | * we cannot use num_online_cpu() | ||
1739 | */ | ||
1740 | for (i = 0; i < num_online_cpus(); i++) { | ||
1741 | pfp_domain_init(remote_pfp(i), i); | ||
1742 | } | ||
1743 | return register_sched_plugin(&pfp_plugin); | ||
1744 | } | ||
1745 | |||
1746 | module_init(init_pfp); | ||