diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2009-06-11 13:33:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2009-06-11 13:33:36 -0400 |
commit | c29f5ec022451546be1e0b24c330a0368e63e4a7 (patch) | |
tree | af3c2fc0ba3236fd4c1c2d1a4303fb5a3dc396ab | |
parent | d3d07d941fd80c173b6d690ded00ee5fb8302e06 (diff) | |
parent | c476c23b45a41eb4e3ea63af786cc4d74762fe11 (diff) |
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp: (26 commits)
amd64_edac: add MAINTAINERS entry
EDAC: do not enable modules by default
amd64_edac: do not enable module by default
amd64_edac: add module registration routines
amd64_edac: add ECC reporting initializers
amd64_edac: add EDAC core-related initializers
amd64_edac: add error decoding logic
amd64_edac: add ECC chipkill syndrome mapping table
amd64_edac: add per-family descriptors
amd64_edac: add F10h-and-later methods-p3
amd64_edac: add F10h-and-later methods-p2
amd64_edac: add F10h-and-later methods-p1
amd64_edac: add k8-specific methods
amd64_edac: assign DRAM chip select base and mask in a family-specific way
amd64_edac: add helper to dump relevant registers
amd64_edac: add DRAM address type conversion facilities
amd64_edac: add functionality to compute the DRAM hole
amd64_edac: add sys addr to memory controller mapping helpers
amd64_edac: add memory scrubber interface
amd64_edac: add MCA error types
...
-rw-r--r-- | MAINTAINERS | 10 | ||||
-rw-r--r-- | arch/x86/include/asm/msr.h | 23 | ||||
-rw-r--r-- | arch/x86/lib/Makefile | 2 | ||||
-rw-r--r-- | arch/x86/lib/msr-on-cpu.c | 97 | ||||
-rw-r--r-- | arch/x86/lib/msr.c | 183 | ||||
-rw-r--r-- | drivers/edac/Kconfig | 26 | ||||
-rw-r--r-- | drivers/edac/Makefile | 7 | ||||
-rw-r--r-- | drivers/edac/amd64_edac.c | 3354 | ||||
-rw-r--r-- | drivers/edac/amd64_edac.h | 644 | ||||
-rw-r--r-- | drivers/edac/amd64_edac_dbg.c | 255 | ||||
-rw-r--r-- | drivers/edac/amd64_edac_err_types.c | 161 | ||||
-rw-r--r-- | drivers/edac/amd64_edac_inj.c | 185 | ||||
-rw-r--r-- | drivers/edac/edac_core.h | 9 |
13 files changed, 4853 insertions, 103 deletions
diff --git a/MAINTAINERS b/MAINTAINERS index 84285b5ba359..ccdb57524e3c 100644 --- a/MAINTAINERS +++ b/MAINTAINERS | |||
@@ -1979,6 +1979,16 @@ F: Documentation/edac.txt | |||
1979 | F: drivers/edac/edac_* | 1979 | F: drivers/edac/edac_* |
1980 | F: include/linux/edac.h | 1980 | F: include/linux/edac.h |
1981 | 1981 | ||
1982 | EDAC-AMD64 | ||
1983 | P: Doug Thompson | ||
1984 | M: dougthompson@xmission.com | ||
1985 | P: Borislav Petkov | ||
1986 | M: borislav.petkov@amd.com | ||
1987 | L: bluesmoke-devel@lists.sourceforge.net (moderated for non-subscribers) | ||
1988 | W: bluesmoke.sourceforge.net | ||
1989 | S: Supported | ||
1990 | F: drivers/edac/amd64_edac* | ||
1991 | |||
1982 | EDAC-E752X | 1992 | EDAC-E752X |
1983 | P: Mark Gross | 1993 | P: Mark Gross |
1984 | M: mark.gross@intel.com | 1994 | M: mark.gross@intel.com |
diff --git a/arch/x86/include/asm/msr.h b/arch/x86/include/asm/msr.h index 638bf6241807..22603764e7db 100644 --- a/arch/x86/include/asm/msr.h +++ b/arch/x86/include/asm/msr.h | |||
@@ -12,6 +12,17 @@ | |||
12 | 12 | ||
13 | #include <asm/asm.h> | 13 | #include <asm/asm.h> |
14 | #include <asm/errno.h> | 14 | #include <asm/errno.h> |
15 | #include <asm/cpumask.h> | ||
16 | |||
17 | struct msr { | ||
18 | union { | ||
19 | struct { | ||
20 | u32 l; | ||
21 | u32 h; | ||
22 | }; | ||
23 | u64 q; | ||
24 | }; | ||
25 | }; | ||
15 | 26 | ||
16 | static inline unsigned long long native_read_tscp(unsigned int *aux) | 27 | static inline unsigned long long native_read_tscp(unsigned int *aux) |
17 | { | 28 | { |
@@ -216,6 +227,8 @@ do { \ | |||
216 | #ifdef CONFIG_SMP | 227 | #ifdef CONFIG_SMP |
217 | int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h); | 228 | int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h); |
218 | int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h); | 229 | int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h); |
230 | void rdmsr_on_cpus(const cpumask_t *mask, u32 msr_no, struct msr *msrs); | ||
231 | void wrmsr_on_cpus(const cpumask_t *mask, u32 msr_no, struct msr *msrs); | ||
219 | int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h); | 232 | int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h); |
220 | int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h); | 233 | int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h); |
221 | #else /* CONFIG_SMP */ | 234 | #else /* CONFIG_SMP */ |
@@ -229,6 +242,16 @@ static inline int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h) | |||
229 | wrmsr(msr_no, l, h); | 242 | wrmsr(msr_no, l, h); |
230 | return 0; | 243 | return 0; |
231 | } | 244 | } |
245 | static inline void rdmsr_on_cpus(const cpumask_t *m, u32 msr_no, | ||
246 | struct msr *msrs) | ||
247 | { | ||
248 | rdmsr_on_cpu(0, msr_no, &(msrs[0].l), &(msrs[0].h)); | ||
249 | } | ||
250 | static inline void wrmsr_on_cpus(const cpumask_t *m, u32 msr_no, | ||
251 | struct msr *msrs) | ||
252 | { | ||
253 | wrmsr_on_cpu(0, msr_no, msrs[0].l, msrs[0].h); | ||
254 | } | ||
232 | static inline int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, | 255 | static inline int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, |
233 | u32 *l, u32 *h) | 256 | u32 *l, u32 *h) |
234 | { | 257 | { |
diff --git a/arch/x86/lib/Makefile b/arch/x86/lib/Makefile index 55e11aa6d66c..f9d35632666b 100644 --- a/arch/x86/lib/Makefile +++ b/arch/x86/lib/Makefile | |||
@@ -2,7 +2,7 @@ | |||
2 | # Makefile for x86 specific library files. | 2 | # Makefile for x86 specific library files. |
3 | # | 3 | # |
4 | 4 | ||
5 | obj-$(CONFIG_SMP) := msr-on-cpu.o | 5 | obj-$(CONFIG_SMP) := msr.o |
6 | 6 | ||
7 | lib-y := delay.o | 7 | lib-y := delay.o |
8 | lib-y += thunk_$(BITS).o | 8 | lib-y += thunk_$(BITS).o |
diff --git a/arch/x86/lib/msr-on-cpu.c b/arch/x86/lib/msr-on-cpu.c deleted file mode 100644 index 321cf720dbb6..000000000000 --- a/arch/x86/lib/msr-on-cpu.c +++ /dev/null | |||
@@ -1,97 +0,0 @@ | |||
1 | #include <linux/module.h> | ||
2 | #include <linux/preempt.h> | ||
3 | #include <linux/smp.h> | ||
4 | #include <asm/msr.h> | ||
5 | |||
6 | struct msr_info { | ||
7 | u32 msr_no; | ||
8 | u32 l, h; | ||
9 | int err; | ||
10 | }; | ||
11 | |||
12 | static void __rdmsr_on_cpu(void *info) | ||
13 | { | ||
14 | struct msr_info *rv = info; | ||
15 | |||
16 | rdmsr(rv->msr_no, rv->l, rv->h); | ||
17 | } | ||
18 | |||
19 | static void __wrmsr_on_cpu(void *info) | ||
20 | { | ||
21 | struct msr_info *rv = info; | ||
22 | |||
23 | wrmsr(rv->msr_no, rv->l, rv->h); | ||
24 | } | ||
25 | |||
26 | int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h) | ||
27 | { | ||
28 | int err; | ||
29 | struct msr_info rv; | ||
30 | |||
31 | rv.msr_no = msr_no; | ||
32 | err = smp_call_function_single(cpu, __rdmsr_on_cpu, &rv, 1); | ||
33 | *l = rv.l; | ||
34 | *h = rv.h; | ||
35 | |||
36 | return err; | ||
37 | } | ||
38 | |||
39 | int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h) | ||
40 | { | ||
41 | int err; | ||
42 | struct msr_info rv; | ||
43 | |||
44 | rv.msr_no = msr_no; | ||
45 | rv.l = l; | ||
46 | rv.h = h; | ||
47 | err = smp_call_function_single(cpu, __wrmsr_on_cpu, &rv, 1); | ||
48 | |||
49 | return err; | ||
50 | } | ||
51 | |||
52 | /* These "safe" variants are slower and should be used when the target MSR | ||
53 | may not actually exist. */ | ||
54 | static void __rdmsr_safe_on_cpu(void *info) | ||
55 | { | ||
56 | struct msr_info *rv = info; | ||
57 | |||
58 | rv->err = rdmsr_safe(rv->msr_no, &rv->l, &rv->h); | ||
59 | } | ||
60 | |||
61 | static void __wrmsr_safe_on_cpu(void *info) | ||
62 | { | ||
63 | struct msr_info *rv = info; | ||
64 | |||
65 | rv->err = wrmsr_safe(rv->msr_no, rv->l, rv->h); | ||
66 | } | ||
67 | |||
68 | int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h) | ||
69 | { | ||
70 | int err; | ||
71 | struct msr_info rv; | ||
72 | |||
73 | rv.msr_no = msr_no; | ||
74 | err = smp_call_function_single(cpu, __rdmsr_safe_on_cpu, &rv, 1); | ||
75 | *l = rv.l; | ||
76 | *h = rv.h; | ||
77 | |||
78 | return err ? err : rv.err; | ||
79 | } | ||
80 | |||
81 | int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h) | ||
82 | { | ||
83 | int err; | ||
84 | struct msr_info rv; | ||
85 | |||
86 | rv.msr_no = msr_no; | ||
87 | rv.l = l; | ||
88 | rv.h = h; | ||
89 | err = smp_call_function_single(cpu, __wrmsr_safe_on_cpu, &rv, 1); | ||
90 | |||
91 | return err ? err : rv.err; | ||
92 | } | ||
93 | |||
94 | EXPORT_SYMBOL(rdmsr_on_cpu); | ||
95 | EXPORT_SYMBOL(wrmsr_on_cpu); | ||
96 | EXPORT_SYMBOL(rdmsr_safe_on_cpu); | ||
97 | EXPORT_SYMBOL(wrmsr_safe_on_cpu); | ||
diff --git a/arch/x86/lib/msr.c b/arch/x86/lib/msr.c new file mode 100644 index 000000000000..1440b9c0547e --- /dev/null +++ b/arch/x86/lib/msr.c | |||
@@ -0,0 +1,183 @@ | |||
1 | #include <linux/module.h> | ||
2 | #include <linux/preempt.h> | ||
3 | #include <linux/smp.h> | ||
4 | #include <asm/msr.h> | ||
5 | |||
6 | struct msr_info { | ||
7 | u32 msr_no; | ||
8 | struct msr reg; | ||
9 | struct msr *msrs; | ||
10 | int off; | ||
11 | int err; | ||
12 | }; | ||
13 | |||
14 | static void __rdmsr_on_cpu(void *info) | ||
15 | { | ||
16 | struct msr_info *rv = info; | ||
17 | struct msr *reg; | ||
18 | int this_cpu = raw_smp_processor_id(); | ||
19 | |||
20 | if (rv->msrs) | ||
21 | reg = &rv->msrs[this_cpu - rv->off]; | ||
22 | else | ||
23 | reg = &rv->reg; | ||
24 | |||
25 | rdmsr(rv->msr_no, reg->l, reg->h); | ||
26 | } | ||
27 | |||
28 | static void __wrmsr_on_cpu(void *info) | ||
29 | { | ||
30 | struct msr_info *rv = info; | ||
31 | struct msr *reg; | ||
32 | int this_cpu = raw_smp_processor_id(); | ||
33 | |||
34 | if (rv->msrs) | ||
35 | reg = &rv->msrs[this_cpu - rv->off]; | ||
36 | else | ||
37 | reg = &rv->reg; | ||
38 | |||
39 | wrmsr(rv->msr_no, reg->l, reg->h); | ||
40 | } | ||
41 | |||
42 | int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h) | ||
43 | { | ||
44 | int err; | ||
45 | struct msr_info rv; | ||
46 | |||
47 | memset(&rv, 0, sizeof(rv)); | ||
48 | |||
49 | rv.msr_no = msr_no; | ||
50 | err = smp_call_function_single(cpu, __rdmsr_on_cpu, &rv, 1); | ||
51 | *l = rv.reg.l; | ||
52 | *h = rv.reg.h; | ||
53 | |||
54 | return err; | ||
55 | } | ||
56 | EXPORT_SYMBOL(rdmsr_on_cpu); | ||
57 | |||
58 | int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h) | ||
59 | { | ||
60 | int err; | ||
61 | struct msr_info rv; | ||
62 | |||
63 | memset(&rv, 0, sizeof(rv)); | ||
64 | |||
65 | rv.msr_no = msr_no; | ||
66 | rv.reg.l = l; | ||
67 | rv.reg.h = h; | ||
68 | err = smp_call_function_single(cpu, __wrmsr_on_cpu, &rv, 1); | ||
69 | |||
70 | return err; | ||
71 | } | ||
72 | EXPORT_SYMBOL(wrmsr_on_cpu); | ||
73 | |||
74 | /* rdmsr on a bunch of CPUs | ||
75 | * | ||
76 | * @mask: which CPUs | ||
77 | * @msr_no: which MSR | ||
78 | * @msrs: array of MSR values | ||
79 | * | ||
80 | */ | ||
81 | void rdmsr_on_cpus(const cpumask_t *mask, u32 msr_no, struct msr *msrs) | ||
82 | { | ||
83 | struct msr_info rv; | ||
84 | int this_cpu; | ||
85 | |||
86 | memset(&rv, 0, sizeof(rv)); | ||
87 | |||
88 | rv.off = cpumask_first(mask); | ||
89 | rv.msrs = msrs; | ||
90 | rv.msr_no = msr_no; | ||
91 | |||
92 | preempt_disable(); | ||
93 | /* | ||
94 | * FIXME: handle the CPU we're executing on separately for now until | ||
95 | * smp_call_function_many has been fixed to not skip it. | ||
96 | */ | ||
97 | this_cpu = raw_smp_processor_id(); | ||
98 | smp_call_function_single(this_cpu, __rdmsr_on_cpu, &rv, 1); | ||
99 | |||
100 | smp_call_function_many(mask, __rdmsr_on_cpu, &rv, 1); | ||
101 | preempt_enable(); | ||
102 | } | ||
103 | EXPORT_SYMBOL(rdmsr_on_cpus); | ||
104 | |||
105 | /* | ||
106 | * wrmsr on a bunch of CPUs | ||
107 | * | ||
108 | * @mask: which CPUs | ||
109 | * @msr_no: which MSR | ||
110 | * @msrs: array of MSR values | ||
111 | * | ||
112 | */ | ||
113 | void wrmsr_on_cpus(const cpumask_t *mask, u32 msr_no, struct msr *msrs) | ||
114 | { | ||
115 | struct msr_info rv; | ||
116 | int this_cpu; | ||
117 | |||
118 | memset(&rv, 0, sizeof(rv)); | ||
119 | |||
120 | rv.off = cpumask_first(mask); | ||
121 | rv.msrs = msrs; | ||
122 | rv.msr_no = msr_no; | ||
123 | |||
124 | preempt_disable(); | ||
125 | /* | ||
126 | * FIXME: handle the CPU we're executing on separately for now until | ||
127 | * smp_call_function_many has been fixed to not skip it. | ||
128 | */ | ||
129 | this_cpu = raw_smp_processor_id(); | ||
130 | smp_call_function_single(this_cpu, __wrmsr_on_cpu, &rv, 1); | ||
131 | |||
132 | smp_call_function_many(mask, __wrmsr_on_cpu, &rv, 1); | ||
133 | preempt_enable(); | ||
134 | } | ||
135 | EXPORT_SYMBOL(wrmsr_on_cpus); | ||
136 | |||
137 | /* These "safe" variants are slower and should be used when the target MSR | ||
138 | may not actually exist. */ | ||
139 | static void __rdmsr_safe_on_cpu(void *info) | ||
140 | { | ||
141 | struct msr_info *rv = info; | ||
142 | |||
143 | rv->err = rdmsr_safe(rv->msr_no, &rv->reg.l, &rv->reg.h); | ||
144 | } | ||
145 | |||
146 | static void __wrmsr_safe_on_cpu(void *info) | ||
147 | { | ||
148 | struct msr_info *rv = info; | ||
149 | |||
150 | rv->err = wrmsr_safe(rv->msr_no, rv->reg.l, rv->reg.h); | ||
151 | } | ||
152 | |||
153 | int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h) | ||
154 | { | ||
155 | int err; | ||
156 | struct msr_info rv; | ||
157 | |||
158 | memset(&rv, 0, sizeof(rv)); | ||
159 | |||
160 | rv.msr_no = msr_no; | ||
161 | err = smp_call_function_single(cpu, __rdmsr_safe_on_cpu, &rv, 1); | ||
162 | *l = rv.reg.l; | ||
163 | *h = rv.reg.h; | ||
164 | |||
165 | return err ? err : rv.err; | ||
166 | } | ||
167 | EXPORT_SYMBOL(rdmsr_safe_on_cpu); | ||
168 | |||
169 | int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h) | ||
170 | { | ||
171 | int err; | ||
172 | struct msr_info rv; | ||
173 | |||
174 | memset(&rv, 0, sizeof(rv)); | ||
175 | |||
176 | rv.msr_no = msr_no; | ||
177 | rv.reg.l = l; | ||
178 | rv.reg.h = h; | ||
179 | err = smp_call_function_single(cpu, __wrmsr_safe_on_cpu, &rv, 1); | ||
180 | |||
181 | return err ? err : rv.err; | ||
182 | } | ||
183 | EXPORT_SYMBOL(wrmsr_safe_on_cpu); | ||
diff --git a/drivers/edac/Kconfig b/drivers/edac/Kconfig index 956982f8739b..ab4f3592a11c 100644 --- a/drivers/edac/Kconfig +++ b/drivers/edac/Kconfig | |||
@@ -49,7 +49,6 @@ config EDAC_DEBUG_VERBOSE | |||
49 | 49 | ||
50 | config EDAC_MM_EDAC | 50 | config EDAC_MM_EDAC |
51 | tristate "Main Memory EDAC (Error Detection And Correction) reporting" | 51 | tristate "Main Memory EDAC (Error Detection And Correction) reporting" |
52 | default y | ||
53 | help | 52 | help |
54 | Some systems are able to detect and correct errors in main | 53 | Some systems are able to detect and correct errors in main |
55 | memory. EDAC can report statistics on memory error | 54 | memory. EDAC can report statistics on memory error |
@@ -58,6 +57,31 @@ config EDAC_MM_EDAC | |||
58 | occurred so that a particular failing memory module can be | 57 | occurred so that a particular failing memory module can be |
59 | replaced. If unsure, select 'Y'. | 58 | replaced. If unsure, select 'Y'. |
60 | 59 | ||
60 | config EDAC_AMD64 | ||
61 | tristate "AMD64 (Opteron, Athlon64) K8, F10h, F11h" | ||
62 | depends on EDAC_MM_EDAC && K8_NB && X86_64 && PCI | ||
63 | help | ||
64 | Support for error detection and correction on the AMD 64 | ||
65 | Families of Memory Controllers (K8, F10h and F11h) | ||
66 | |||
67 | config EDAC_AMD64_ERROR_INJECTION | ||
68 | bool "Sysfs Error Injection facilities" | ||
69 | depends on EDAC_AMD64 | ||
70 | help | ||
71 | Recent Opterons (Family 10h and later) provide for Memory Error | ||
72 | Injection into the ECC detection circuits. The amd64_edac module | ||
73 | allows the operator/user to inject Uncorrectable and Correctable | ||
74 | errors into DRAM. | ||
75 | |||
76 | When enabled, in each of the respective memory controller directories | ||
77 | (/sys/devices/system/edac/mc/mcX), there are 3 input files: | ||
78 | |||
79 | - inject_section (0..3, 16-byte section of 64-byte cacheline), | ||
80 | - inject_word (0..8, 16-bit word of 16-byte section), | ||
81 | - inject_ecc_vector (hex ecc vector: select bits of inject word) | ||
82 | |||
83 | In addition, there are two control files, inject_read and inject_write, | ||
84 | which trigger the DRAM ECC Read and Write respectively. | ||
61 | 85 | ||
62 | config EDAC_AMD76X | 86 | config EDAC_AMD76X |
63 | tristate "AMD 76x (760, 762, 768)" | 87 | tristate "AMD 76x (760, 762, 768)" |
diff --git a/drivers/edac/Makefile b/drivers/edac/Makefile index 59076819135d..633dc5604ee3 100644 --- a/drivers/edac/Makefile +++ b/drivers/edac/Makefile | |||
@@ -30,6 +30,13 @@ obj-$(CONFIG_EDAC_I3000) += i3000_edac.o | |||
30 | obj-$(CONFIG_EDAC_X38) += x38_edac.o | 30 | obj-$(CONFIG_EDAC_X38) += x38_edac.o |
31 | obj-$(CONFIG_EDAC_I82860) += i82860_edac.o | 31 | obj-$(CONFIG_EDAC_I82860) += i82860_edac.o |
32 | obj-$(CONFIG_EDAC_R82600) += r82600_edac.o | 32 | obj-$(CONFIG_EDAC_R82600) += r82600_edac.o |
33 | |||
34 | amd64_edac_mod-y := amd64_edac_err_types.o amd64_edac.o | ||
35 | amd64_edac_mod-$(CONFIG_EDAC_DEBUG) += amd64_edac_dbg.o | ||
36 | amd64_edac_mod-$(CONFIG_EDAC_AMD64_ERROR_INJECTION) += amd64_edac_inj.o | ||
37 | |||
38 | obj-$(CONFIG_EDAC_AMD64) += amd64_edac_mod.o | ||
39 | |||
33 | obj-$(CONFIG_EDAC_PASEMI) += pasemi_edac.o | 40 | obj-$(CONFIG_EDAC_PASEMI) += pasemi_edac.o |
34 | obj-$(CONFIG_EDAC_MPC85XX) += mpc85xx_edac.o | 41 | obj-$(CONFIG_EDAC_MPC85XX) += mpc85xx_edac.o |
35 | obj-$(CONFIG_EDAC_MV64X60) += mv64x60_edac.o | 42 | obj-$(CONFIG_EDAC_MV64X60) += mv64x60_edac.o |
diff --git a/drivers/edac/amd64_edac.c b/drivers/edac/amd64_edac.c new file mode 100644 index 000000000000..c36bf40568cf --- /dev/null +++ b/drivers/edac/amd64_edac.c | |||
@@ -0,0 +1,3354 @@ | |||
1 | #include "amd64_edac.h" | ||
2 | #include <asm/k8.h> | ||
3 | |||
4 | static struct edac_pci_ctl_info *amd64_ctl_pci; | ||
5 | |||
6 | static int report_gart_errors; | ||
7 | module_param(report_gart_errors, int, 0644); | ||
8 | |||
9 | /* | ||
10 | * Set by command line parameter. If BIOS has enabled the ECC, this override is | ||
11 | * cleared to prevent re-enabling the hardware by this driver. | ||
12 | */ | ||
13 | static int ecc_enable_override; | ||
14 | module_param(ecc_enable_override, int, 0644); | ||
15 | |||
16 | /* Lookup table for all possible MC control instances */ | ||
17 | struct amd64_pvt; | ||
18 | static struct mem_ctl_info *mci_lookup[MAX_NUMNODES]; | ||
19 | static struct amd64_pvt *pvt_lookup[MAX_NUMNODES]; | ||
20 | |||
21 | /* | ||
22 | * Memory scrubber control interface. For K8, memory scrubbing is handled by | ||
23 | * hardware and can involve L2 cache, dcache as well as the main memory. With | ||
24 | * F10, this is extended to L3 cache scrubbing on CPU models sporting that | ||
25 | * functionality. | ||
26 | * | ||
27 | * This causes the "units" for the scrubbing speed to vary from 64 byte blocks | ||
28 | * (dram) over to cache lines. This is nasty, so we will use bandwidth in | ||
29 | * bytes/sec for the setting. | ||
30 | * | ||
31 | * Currently, we only do dram scrubbing. If the scrubbing is done in software on | ||
32 | * other archs, we might not have access to the caches directly. | ||
33 | */ | ||
34 | |||
35 | /* | ||
36 | * scan the scrub rate mapping table for a close or matching bandwidth value to | ||
37 | * issue. If requested is too big, then use last maximum value found. | ||
38 | */ | ||
39 | static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, | ||
40 | u32 min_scrubrate) | ||
41 | { | ||
42 | u32 scrubval; | ||
43 | int i; | ||
44 | |||
45 | /* | ||
46 | * map the configured rate (new_bw) to a value specific to the AMD64 | ||
47 | * memory controller and apply to register. Search for the first | ||
48 | * bandwidth entry that is greater or equal than the setting requested | ||
49 | * and program that. If at last entry, turn off DRAM scrubbing. | ||
50 | */ | ||
51 | for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { | ||
52 | /* | ||
53 | * skip scrub rates which aren't recommended | ||
54 | * (see F10 BKDG, F3x58) | ||
55 | */ | ||
56 | if (scrubrates[i].scrubval < min_scrubrate) | ||
57 | continue; | ||
58 | |||
59 | if (scrubrates[i].bandwidth <= new_bw) | ||
60 | break; | ||
61 | |||
62 | /* | ||
63 | * if no suitable bandwidth found, turn off DRAM scrubbing | ||
64 | * entirely by falling back to the last element in the | ||
65 | * scrubrates array. | ||
66 | */ | ||
67 | } | ||
68 | |||
69 | scrubval = scrubrates[i].scrubval; | ||
70 | if (scrubval) | ||
71 | edac_printk(KERN_DEBUG, EDAC_MC, | ||
72 | "Setting scrub rate bandwidth: %u\n", | ||
73 | scrubrates[i].bandwidth); | ||
74 | else | ||
75 | edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n"); | ||
76 | |||
77 | pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F); | ||
78 | |||
79 | return 0; | ||
80 | } | ||
81 | |||
82 | static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth) | ||
83 | { | ||
84 | struct amd64_pvt *pvt = mci->pvt_info; | ||
85 | u32 min_scrubrate = 0x0; | ||
86 | |||
87 | switch (boot_cpu_data.x86) { | ||
88 | case 0xf: | ||
89 | min_scrubrate = K8_MIN_SCRUB_RATE_BITS; | ||
90 | break; | ||
91 | case 0x10: | ||
92 | min_scrubrate = F10_MIN_SCRUB_RATE_BITS; | ||
93 | break; | ||
94 | case 0x11: | ||
95 | min_scrubrate = F11_MIN_SCRUB_RATE_BITS; | ||
96 | break; | ||
97 | |||
98 | default: | ||
99 | amd64_printk(KERN_ERR, "Unsupported family!\n"); | ||
100 | break; | ||
101 | } | ||
102 | return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth, | ||
103 | min_scrubrate); | ||
104 | } | ||
105 | |||
106 | static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw) | ||
107 | { | ||
108 | struct amd64_pvt *pvt = mci->pvt_info; | ||
109 | u32 scrubval = 0; | ||
110 | int status = -1, i, ret = 0; | ||
111 | |||
112 | ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval); | ||
113 | if (ret) | ||
114 | debugf0("Reading K8_SCRCTRL failed\n"); | ||
115 | |||
116 | scrubval = scrubval & 0x001F; | ||
117 | |||
118 | edac_printk(KERN_DEBUG, EDAC_MC, | ||
119 | "pci-read, sdram scrub control value: %d \n", scrubval); | ||
120 | |||
121 | for (i = 0; ARRAY_SIZE(scrubrates); i++) { | ||
122 | if (scrubrates[i].scrubval == scrubval) { | ||
123 | *bw = scrubrates[i].bandwidth; | ||
124 | status = 0; | ||
125 | break; | ||
126 | } | ||
127 | } | ||
128 | |||
129 | return status; | ||
130 | } | ||
131 | |||
132 | /* Map from a CSROW entry to the mask entry that operates on it */ | ||
133 | static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow) | ||
134 | { | ||
135 | return csrow >> (pvt->num_dcsm >> 3); | ||
136 | } | ||
137 | |||
138 | /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */ | ||
139 | static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow) | ||
140 | { | ||
141 | if (dct == 0) | ||
142 | return pvt->dcsb0[csrow]; | ||
143 | else | ||
144 | return pvt->dcsb1[csrow]; | ||
145 | } | ||
146 | |||
147 | /* | ||
148 | * Return the 'mask' address the i'th CS entry. This function is needed because | ||
149 | * there number of DCSM registers on Rev E and prior vs Rev F and later is | ||
150 | * different. | ||
151 | */ | ||
152 | static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow) | ||
153 | { | ||
154 | if (dct == 0) | ||
155 | return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)]; | ||
156 | else | ||
157 | return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)]; | ||
158 | } | ||
159 | |||
160 | |||
161 | /* | ||
162 | * In *base and *limit, pass back the full 40-bit base and limit physical | ||
163 | * addresses for the node given by node_id. This information is obtained from | ||
164 | * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The | ||
165 | * base and limit addresses are of type SysAddr, as defined at the start of | ||
166 | * section 3.4.4 (p. 70). They are the lowest and highest physical addresses | ||
167 | * in the address range they represent. | ||
168 | */ | ||
169 | static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id, | ||
170 | u64 *base, u64 *limit) | ||
171 | { | ||
172 | *base = pvt->dram_base[node_id]; | ||
173 | *limit = pvt->dram_limit[node_id]; | ||
174 | } | ||
175 | |||
176 | /* | ||
177 | * Return 1 if the SysAddr given by sys_addr matches the base/limit associated | ||
178 | * with node_id | ||
179 | */ | ||
180 | static int amd64_base_limit_match(struct amd64_pvt *pvt, | ||
181 | u64 sys_addr, int node_id) | ||
182 | { | ||
183 | u64 base, limit, addr; | ||
184 | |||
185 | amd64_get_base_and_limit(pvt, node_id, &base, &limit); | ||
186 | |||
187 | /* The K8 treats this as a 40-bit value. However, bits 63-40 will be | ||
188 | * all ones if the most significant implemented address bit is 1. | ||
189 | * Here we discard bits 63-40. See section 3.4.2 of AMD publication | ||
190 | * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 | ||
191 | * Application Programming. | ||
192 | */ | ||
193 | addr = sys_addr & 0x000000ffffffffffull; | ||
194 | |||
195 | return (addr >= base) && (addr <= limit); | ||
196 | } | ||
197 | |||
198 | /* | ||
199 | * Attempt to map a SysAddr to a node. On success, return a pointer to the | ||
200 | * mem_ctl_info structure for the node that the SysAddr maps to. | ||
201 | * | ||
202 | * On failure, return NULL. | ||
203 | */ | ||
204 | static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, | ||
205 | u64 sys_addr) | ||
206 | { | ||
207 | struct amd64_pvt *pvt; | ||
208 | int node_id; | ||
209 | u32 intlv_en, bits; | ||
210 | |||
211 | /* | ||
212 | * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section | ||
213 | * 3.4.4.2) registers to map the SysAddr to a node ID. | ||
214 | */ | ||
215 | pvt = mci->pvt_info; | ||
216 | |||
217 | /* | ||
218 | * The value of this field should be the same for all DRAM Base | ||
219 | * registers. Therefore we arbitrarily choose to read it from the | ||
220 | * register for node 0. | ||
221 | */ | ||
222 | intlv_en = pvt->dram_IntlvEn[0]; | ||
223 | |||
224 | if (intlv_en == 0) { | ||
225 | for (node_id = 0; ; ) { | ||
226 | if (amd64_base_limit_match(pvt, sys_addr, node_id)) | ||
227 | break; | ||
228 | |||
229 | if (++node_id >= DRAM_REG_COUNT) | ||
230 | goto err_no_match; | ||
231 | } | ||
232 | goto found; | ||
233 | } | ||
234 | |||
235 | if (unlikely((intlv_en != (0x01 << 8)) && | ||
236 | (intlv_en != (0x03 << 8)) && | ||
237 | (intlv_en != (0x07 << 8)))) { | ||
238 | amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from " | ||
239 | "IntlvEn field of DRAM Base Register for node 0: " | ||
240 | "This probably indicates a BIOS bug.\n", intlv_en); | ||
241 | return NULL; | ||
242 | } | ||
243 | |||
244 | bits = (((u32) sys_addr) >> 12) & intlv_en; | ||
245 | |||
246 | for (node_id = 0; ; ) { | ||
247 | if ((pvt->dram_limit[node_id] & intlv_en) == bits) | ||
248 | break; /* intlv_sel field matches */ | ||
249 | |||
250 | if (++node_id >= DRAM_REG_COUNT) | ||
251 | goto err_no_match; | ||
252 | } | ||
253 | |||
254 | /* sanity test for sys_addr */ | ||
255 | if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) { | ||
256 | amd64_printk(KERN_WARNING, | ||
257 | "%s(): sys_addr 0x%lx falls outside base/limit " | ||
258 | "address range for node %d with node interleaving " | ||
259 | "enabled.\n", __func__, (unsigned long)sys_addr, | ||
260 | node_id); | ||
261 | return NULL; | ||
262 | } | ||
263 | |||
264 | found: | ||
265 | return edac_mc_find(node_id); | ||
266 | |||
267 | err_no_match: | ||
268 | debugf2("sys_addr 0x%lx doesn't match any node\n", | ||
269 | (unsigned long)sys_addr); | ||
270 | |||
271 | return NULL; | ||
272 | } | ||
273 | |||
274 | /* | ||
275 | * Extract the DRAM CS base address from selected csrow register. | ||
276 | */ | ||
277 | static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow) | ||
278 | { | ||
279 | return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) << | ||
280 | pvt->dcs_shift; | ||
281 | } | ||
282 | |||
283 | /* | ||
284 | * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way. | ||
285 | */ | ||
286 | static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow) | ||
287 | { | ||
288 | u64 dcsm_bits, other_bits; | ||
289 | u64 mask; | ||
290 | |||
291 | /* Extract bits from DRAM CS Mask. */ | ||
292 | dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask; | ||
293 | |||
294 | other_bits = pvt->dcsm_mask; | ||
295 | other_bits = ~(other_bits << pvt->dcs_shift); | ||
296 | |||
297 | /* | ||
298 | * The extracted bits from DCSM belong in the spaces represented by | ||
299 | * the cleared bits in other_bits. | ||
300 | */ | ||
301 | mask = (dcsm_bits << pvt->dcs_shift) | other_bits; | ||
302 | |||
303 | return mask; | ||
304 | } | ||
305 | |||
306 | /* | ||
307 | * @input_addr is an InputAddr associated with the node given by mci. Return the | ||
308 | * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). | ||
309 | */ | ||
310 | static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) | ||
311 | { | ||
312 | struct amd64_pvt *pvt; | ||
313 | int csrow; | ||
314 | u64 base, mask; | ||
315 | |||
316 | pvt = mci->pvt_info; | ||
317 | |||
318 | /* | ||
319 | * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS | ||
320 | * base/mask register pair, test the condition shown near the start of | ||
321 | * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E). | ||
322 | */ | ||
323 | for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) { | ||
324 | |||
325 | /* This DRAM chip select is disabled on this node */ | ||
326 | if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0) | ||
327 | continue; | ||
328 | |||
329 | base = base_from_dct_base(pvt, csrow); | ||
330 | mask = ~mask_from_dct_mask(pvt, csrow); | ||
331 | |||
332 | if ((input_addr & mask) == (base & mask)) { | ||
333 | debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n", | ||
334 | (unsigned long)input_addr, csrow, | ||
335 | pvt->mc_node_id); | ||
336 | |||
337 | return csrow; | ||
338 | } | ||
339 | } | ||
340 | |||
341 | debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n", | ||
342 | (unsigned long)input_addr, pvt->mc_node_id); | ||
343 | |||
344 | return -1; | ||
345 | } | ||
346 | |||
347 | /* | ||
348 | * Return the base value defined by the DRAM Base register for the node | ||
349 | * represented by mci. This function returns the full 40-bit value despite the | ||
350 | * fact that the register only stores bits 39-24 of the value. See section | ||
351 | * 3.4.4.1 (BKDG #26094, K8, revA-E) | ||
352 | */ | ||
353 | static inline u64 get_dram_base(struct mem_ctl_info *mci) | ||
354 | { | ||
355 | struct amd64_pvt *pvt = mci->pvt_info; | ||
356 | |||
357 | return pvt->dram_base[pvt->mc_node_id]; | ||
358 | } | ||
359 | |||
360 | /* | ||
361 | * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) | ||
362 | * for the node represented by mci. Info is passed back in *hole_base, | ||
363 | * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if | ||
364 | * info is invalid. Info may be invalid for either of the following reasons: | ||
365 | * | ||
366 | * - The revision of the node is not E or greater. In this case, the DRAM Hole | ||
367 | * Address Register does not exist. | ||
368 | * | ||
369 | * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, | ||
370 | * indicating that its contents are not valid. | ||
371 | * | ||
372 | * The values passed back in *hole_base, *hole_offset, and *hole_size are | ||
373 | * complete 32-bit values despite the fact that the bitfields in the DHAR | ||
374 | * only represent bits 31-24 of the base and offset values. | ||
375 | */ | ||
376 | int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, | ||
377 | u64 *hole_offset, u64 *hole_size) | ||
378 | { | ||
379 | struct amd64_pvt *pvt = mci->pvt_info; | ||
380 | u64 base; | ||
381 | |||
382 | /* only revE and later have the DRAM Hole Address Register */ | ||
383 | if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) { | ||
384 | debugf1(" revision %d for node %d does not support DHAR\n", | ||
385 | pvt->ext_model, pvt->mc_node_id); | ||
386 | return 1; | ||
387 | } | ||
388 | |||
389 | /* only valid for Fam10h */ | ||
390 | if (boot_cpu_data.x86 == 0x10 && | ||
391 | (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) { | ||
392 | debugf1(" Dram Memory Hoisting is DISABLED on this system\n"); | ||
393 | return 1; | ||
394 | } | ||
395 | |||
396 | if ((pvt->dhar & DHAR_VALID) == 0) { | ||
397 | debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n", | ||
398 | pvt->mc_node_id); | ||
399 | return 1; | ||
400 | } | ||
401 | |||
402 | /* This node has Memory Hoisting */ | ||
403 | |||
404 | /* +------------------+--------------------+--------------------+----- | ||
405 | * | memory | DRAM hole | relocated | | ||
406 | * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | | ||
407 | * | | | DRAM hole | | ||
408 | * | | | [0x100000000, | | ||
409 | * | | | (0x100000000+ | | ||
410 | * | | | (0xffffffff-x))] | | ||
411 | * +------------------+--------------------+--------------------+----- | ||
412 | * | ||
413 | * Above is a diagram of physical memory showing the DRAM hole and the | ||
414 | * relocated addresses from the DRAM hole. As shown, the DRAM hole | ||
415 | * starts at address x (the base address) and extends through address | ||
416 | * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the | ||
417 | * addresses in the hole so that they start at 0x100000000. | ||
418 | */ | ||
419 | |||
420 | base = dhar_base(pvt->dhar); | ||
421 | |||
422 | *hole_base = base; | ||
423 | *hole_size = (0x1ull << 32) - base; | ||
424 | |||
425 | if (boot_cpu_data.x86 > 0xf) | ||
426 | *hole_offset = f10_dhar_offset(pvt->dhar); | ||
427 | else | ||
428 | *hole_offset = k8_dhar_offset(pvt->dhar); | ||
429 | |||
430 | debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", | ||
431 | pvt->mc_node_id, (unsigned long)*hole_base, | ||
432 | (unsigned long)*hole_offset, (unsigned long)*hole_size); | ||
433 | |||
434 | return 0; | ||
435 | } | ||
436 | EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); | ||
437 | |||
438 | /* | ||
439 | * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is | ||
440 | * assumed that sys_addr maps to the node given by mci. | ||
441 | * | ||
442 | * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section | ||
443 | * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a | ||
444 | * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, | ||
445 | * then it is also involved in translating a SysAddr to a DramAddr. Sections | ||
446 | * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. | ||
447 | * These parts of the documentation are unclear. I interpret them as follows: | ||
448 | * | ||
449 | * When node n receives a SysAddr, it processes the SysAddr as follows: | ||
450 | * | ||
451 | * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM | ||
452 | * Limit registers for node n. If the SysAddr is not within the range | ||
453 | * specified by the base and limit values, then node n ignores the Sysaddr | ||
454 | * (since it does not map to node n). Otherwise continue to step 2 below. | ||
455 | * | ||
456 | * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is | ||
457 | * disabled so skip to step 3 below. Otherwise see if the SysAddr is within | ||
458 | * the range of relocated addresses (starting at 0x100000000) from the DRAM | ||
459 | * hole. If not, skip to step 3 below. Else get the value of the | ||
460 | * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the | ||
461 | * offset defined by this value from the SysAddr. | ||
462 | * | ||
463 | * 3. Obtain the base address for node n from the DRAMBase field of the DRAM | ||
464 | * Base register for node n. To obtain the DramAddr, subtract the base | ||
465 | * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). | ||
466 | */ | ||
467 | static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) | ||
468 | { | ||
469 | u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; | ||
470 | int ret = 0; | ||
471 | |||
472 | dram_base = get_dram_base(mci); | ||
473 | |||
474 | ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, | ||
475 | &hole_size); | ||
476 | if (!ret) { | ||
477 | if ((sys_addr >= (1ull << 32)) && | ||
478 | (sys_addr < ((1ull << 32) + hole_size))) { | ||
479 | /* use DHAR to translate SysAddr to DramAddr */ | ||
480 | dram_addr = sys_addr - hole_offset; | ||
481 | |||
482 | debugf2("using DHAR to translate SysAddr 0x%lx to " | ||
483 | "DramAddr 0x%lx\n", | ||
484 | (unsigned long)sys_addr, | ||
485 | (unsigned long)dram_addr); | ||
486 | |||
487 | return dram_addr; | ||
488 | } | ||
489 | } | ||
490 | |||
491 | /* | ||
492 | * Translate the SysAddr to a DramAddr as shown near the start of | ||
493 | * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 | ||
494 | * only deals with 40-bit values. Therefore we discard bits 63-40 of | ||
495 | * sys_addr below. If bit 39 of sys_addr is 1 then the bits we | ||
496 | * discard are all 1s. Otherwise the bits we discard are all 0s. See | ||
497 | * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture | ||
498 | * Programmer's Manual Volume 1 Application Programming. | ||
499 | */ | ||
500 | dram_addr = (sys_addr & 0xffffffffffull) - dram_base; | ||
501 | |||
502 | debugf2("using DRAM Base register to translate SysAddr 0x%lx to " | ||
503 | "DramAddr 0x%lx\n", (unsigned long)sys_addr, | ||
504 | (unsigned long)dram_addr); | ||
505 | return dram_addr; | ||
506 | } | ||
507 | |||
508 | /* | ||
509 | * @intlv_en is the value of the IntlvEn field from a DRAM Base register | ||
510 | * (section 3.4.4.1). Return the number of bits from a SysAddr that are used | ||
511 | * for node interleaving. | ||
512 | */ | ||
513 | static int num_node_interleave_bits(unsigned intlv_en) | ||
514 | { | ||
515 | static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; | ||
516 | int n; | ||
517 | |||
518 | BUG_ON(intlv_en > 7); | ||
519 | n = intlv_shift_table[intlv_en]; | ||
520 | return n; | ||
521 | } | ||
522 | |||
523 | /* Translate the DramAddr given by @dram_addr to an InputAddr. */ | ||
524 | static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) | ||
525 | { | ||
526 | struct amd64_pvt *pvt; | ||
527 | int intlv_shift; | ||
528 | u64 input_addr; | ||
529 | |||
530 | pvt = mci->pvt_info; | ||
531 | |||
532 | /* | ||
533 | * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) | ||
534 | * concerning translating a DramAddr to an InputAddr. | ||
535 | */ | ||
536 | intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]); | ||
537 | input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) + | ||
538 | (dram_addr & 0xfff); | ||
539 | |||
540 | debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", | ||
541 | intlv_shift, (unsigned long)dram_addr, | ||
542 | (unsigned long)input_addr); | ||
543 | |||
544 | return input_addr; | ||
545 | } | ||
546 | |||
547 | /* | ||
548 | * Translate the SysAddr represented by @sys_addr to an InputAddr. It is | ||
549 | * assumed that @sys_addr maps to the node given by mci. | ||
550 | */ | ||
551 | static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) | ||
552 | { | ||
553 | u64 input_addr; | ||
554 | |||
555 | input_addr = | ||
556 | dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); | ||
557 | |||
558 | debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n", | ||
559 | (unsigned long)sys_addr, (unsigned long)input_addr); | ||
560 | |||
561 | return input_addr; | ||
562 | } | ||
563 | |||
564 | |||
565 | /* | ||
566 | * @input_addr is an InputAddr associated with the node represented by mci. | ||
567 | * Translate @input_addr to a DramAddr and return the result. | ||
568 | */ | ||
569 | static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr) | ||
570 | { | ||
571 | struct amd64_pvt *pvt; | ||
572 | int node_id, intlv_shift; | ||
573 | u64 bits, dram_addr; | ||
574 | u32 intlv_sel; | ||
575 | |||
576 | /* | ||
577 | * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) | ||
578 | * shows how to translate a DramAddr to an InputAddr. Here we reverse | ||
579 | * this procedure. When translating from a DramAddr to an InputAddr, the | ||
580 | * bits used for node interleaving are discarded. Here we recover these | ||
581 | * bits from the IntlvSel field of the DRAM Limit register (section | ||
582 | * 3.4.4.2) for the node that input_addr is associated with. | ||
583 | */ | ||
584 | pvt = mci->pvt_info; | ||
585 | node_id = pvt->mc_node_id; | ||
586 | BUG_ON((node_id < 0) || (node_id > 7)); | ||
587 | |||
588 | intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]); | ||
589 | |||
590 | if (intlv_shift == 0) { | ||
591 | debugf1(" InputAddr 0x%lx translates to DramAddr of " | ||
592 | "same value\n", (unsigned long)input_addr); | ||
593 | |||
594 | return input_addr; | ||
595 | } | ||
596 | |||
597 | bits = ((input_addr & 0xffffff000ull) << intlv_shift) + | ||
598 | (input_addr & 0xfff); | ||
599 | |||
600 | intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1); | ||
601 | dram_addr = bits + (intlv_sel << 12); | ||
602 | |||
603 | debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx " | ||
604 | "(%d node interleave bits)\n", (unsigned long)input_addr, | ||
605 | (unsigned long)dram_addr, intlv_shift); | ||
606 | |||
607 | return dram_addr; | ||
608 | } | ||
609 | |||
610 | /* | ||
611 | * @dram_addr is a DramAddr that maps to the node represented by mci. Convert | ||
612 | * @dram_addr to a SysAddr. | ||
613 | */ | ||
614 | static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr) | ||
615 | { | ||
616 | struct amd64_pvt *pvt = mci->pvt_info; | ||
617 | u64 hole_base, hole_offset, hole_size, base, limit, sys_addr; | ||
618 | int ret = 0; | ||
619 | |||
620 | ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, | ||
621 | &hole_size); | ||
622 | if (!ret) { | ||
623 | if ((dram_addr >= hole_base) && | ||
624 | (dram_addr < (hole_base + hole_size))) { | ||
625 | sys_addr = dram_addr + hole_offset; | ||
626 | |||
627 | debugf1("using DHAR to translate DramAddr 0x%lx to " | ||
628 | "SysAddr 0x%lx\n", (unsigned long)dram_addr, | ||
629 | (unsigned long)sys_addr); | ||
630 | |||
631 | return sys_addr; | ||
632 | } | ||
633 | } | ||
634 | |||
635 | amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit); | ||
636 | sys_addr = dram_addr + base; | ||
637 | |||
638 | /* | ||
639 | * The sys_addr we have computed up to this point is a 40-bit value | ||
640 | * because the k8 deals with 40-bit values. However, the value we are | ||
641 | * supposed to return is a full 64-bit physical address. The AMD | ||
642 | * x86-64 architecture specifies that the most significant implemented | ||
643 | * address bit through bit 63 of a physical address must be either all | ||
644 | * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a | ||
645 | * 64-bit value below. See section 3.4.2 of AMD publication 24592: | ||
646 | * AMD x86-64 Architecture Programmer's Manual Volume 1 Application | ||
647 | * Programming. | ||
648 | */ | ||
649 | sys_addr |= ~((sys_addr & (1ull << 39)) - 1); | ||
650 | |||
651 | debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n", | ||
652 | pvt->mc_node_id, (unsigned long)dram_addr, | ||
653 | (unsigned long)sys_addr); | ||
654 | |||
655 | return sys_addr; | ||
656 | } | ||
657 | |||
658 | /* | ||
659 | * @input_addr is an InputAddr associated with the node given by mci. Translate | ||
660 | * @input_addr to a SysAddr. | ||
661 | */ | ||
662 | static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci, | ||
663 | u64 input_addr) | ||
664 | { | ||
665 | return dram_addr_to_sys_addr(mci, | ||
666 | input_addr_to_dram_addr(mci, input_addr)); | ||
667 | } | ||
668 | |||
669 | /* | ||
670 | * Find the minimum and maximum InputAddr values that map to the given @csrow. | ||
671 | * Pass back these values in *input_addr_min and *input_addr_max. | ||
672 | */ | ||
673 | static void find_csrow_limits(struct mem_ctl_info *mci, int csrow, | ||
674 | u64 *input_addr_min, u64 *input_addr_max) | ||
675 | { | ||
676 | struct amd64_pvt *pvt; | ||
677 | u64 base, mask; | ||
678 | |||
679 | pvt = mci->pvt_info; | ||
680 | BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT)); | ||
681 | |||
682 | base = base_from_dct_base(pvt, csrow); | ||
683 | mask = mask_from_dct_mask(pvt, csrow); | ||
684 | |||
685 | *input_addr_min = base & ~mask; | ||
686 | *input_addr_max = base | mask | pvt->dcs_mask_notused; | ||
687 | } | ||
688 | |||
689 | /* | ||
690 | * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB | ||
691 | * Address High (section 3.6.4.6) register values and return the result. Address | ||
692 | * is located in the info structure (nbeah and nbeal), the encoding is device | ||
693 | * specific. | ||
694 | */ | ||
695 | static u64 extract_error_address(struct mem_ctl_info *mci, | ||
696 | struct amd64_error_info_regs *info) | ||
697 | { | ||
698 | struct amd64_pvt *pvt = mci->pvt_info; | ||
699 | |||
700 | return pvt->ops->get_error_address(mci, info); | ||
701 | } | ||
702 | |||
703 | |||
704 | /* Map the Error address to a PAGE and PAGE OFFSET. */ | ||
705 | static inline void error_address_to_page_and_offset(u64 error_address, | ||
706 | u32 *page, u32 *offset) | ||
707 | { | ||
708 | *page = (u32) (error_address >> PAGE_SHIFT); | ||
709 | *offset = ((u32) error_address) & ~PAGE_MASK; | ||
710 | } | ||
711 | |||
712 | /* | ||
713 | * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address | ||
714 | * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers | ||
715 | * of a node that detected an ECC memory error. mci represents the node that | ||
716 | * the error address maps to (possibly different from the node that detected | ||
717 | * the error). Return the number of the csrow that sys_addr maps to, or -1 on | ||
718 | * error. | ||
719 | */ | ||
720 | static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) | ||
721 | { | ||
722 | int csrow; | ||
723 | |||
724 | csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); | ||
725 | |||
726 | if (csrow == -1) | ||
727 | amd64_mc_printk(mci, KERN_ERR, | ||
728 | "Failed to translate InputAddr to csrow for " | ||
729 | "address 0x%lx\n", (unsigned long)sys_addr); | ||
730 | return csrow; | ||
731 | } | ||
732 | |||
733 | static int get_channel_from_ecc_syndrome(unsigned short syndrome); | ||
734 | |||
735 | static void amd64_cpu_display_info(struct amd64_pvt *pvt) | ||
736 | { | ||
737 | if (boot_cpu_data.x86 == 0x11) | ||
738 | edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n"); | ||
739 | else if (boot_cpu_data.x86 == 0x10) | ||
740 | edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n"); | ||
741 | else if (boot_cpu_data.x86 == 0xf) | ||
742 | edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n", | ||
743 | (pvt->ext_model >= OPTERON_CPU_REV_F) ? | ||
744 | "Rev F or later" : "Rev E or earlier"); | ||
745 | else | ||
746 | /* we'll hardly ever ever get here */ | ||
747 | edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n"); | ||
748 | } | ||
749 | |||
750 | /* | ||
751 | * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs | ||
752 | * are ECC capable. | ||
753 | */ | ||
754 | static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt) | ||
755 | { | ||
756 | int bit; | ||
757 | enum dev_type edac_cap = EDAC_NONE; | ||
758 | |||
759 | bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F) | ||
760 | ? 19 | ||
761 | : 17; | ||
762 | |||
763 | if (pvt->dclr0 >> BIT(bit)) | ||
764 | edac_cap = EDAC_FLAG_SECDED; | ||
765 | |||
766 | return edac_cap; | ||
767 | } | ||
768 | |||
769 | |||
770 | static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt, | ||
771 | int ganged); | ||
772 | |||
773 | /* Display and decode various NB registers for debug purposes. */ | ||
774 | static void amd64_dump_misc_regs(struct amd64_pvt *pvt) | ||
775 | { | ||
776 | int ganged; | ||
777 | |||
778 | debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n", | ||
779 | pvt->nbcap, | ||
780 | (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False", | ||
781 | (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False", | ||
782 | (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False"); | ||
783 | debugf1(" ECC Capable=%s ChipKill Capable=%s\n", | ||
784 | (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False", | ||
785 | (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False"); | ||
786 | debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n", | ||
787 | pvt->dclr0, | ||
788 | (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled", | ||
789 | (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled", | ||
790 | (pvt->dclr0 & BIT(11)) ? "128b" : "64b"); | ||
791 | debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n", | ||
792 | (pvt->dclr0 & BIT(12)) ? "Y" : "N", | ||
793 | (pvt->dclr0 & BIT(13)) ? "Y" : "N", | ||
794 | (pvt->dclr0 & BIT(14)) ? "Y" : "N", | ||
795 | (pvt->dclr0 & BIT(15)) ? "Y" : "N", | ||
796 | (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered"); | ||
797 | |||
798 | |||
799 | debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare); | ||
800 | |||
801 | if (boot_cpu_data.x86 == 0xf) { | ||
802 | debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n", | ||
803 | pvt->dhar, dhar_base(pvt->dhar), | ||
804 | k8_dhar_offset(pvt->dhar)); | ||
805 | debugf1(" DramHoleValid=%s\n", | ||
806 | (pvt->dhar & DHAR_VALID) ? "True" : "False"); | ||
807 | |||
808 | debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0); | ||
809 | |||
810 | /* everything below this point is Fam10h and above */ | ||
811 | return; | ||
812 | |||
813 | } else { | ||
814 | debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n", | ||
815 | pvt->dhar, dhar_base(pvt->dhar), | ||
816 | f10_dhar_offset(pvt->dhar)); | ||
817 | debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n", | ||
818 | (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ? | ||
819 | "True" : "False", | ||
820 | (pvt->dhar & DHAR_VALID) ? | ||
821 | "True" : "False"); | ||
822 | } | ||
823 | |||
824 | /* Only if NOT ganged does dcl1 have valid info */ | ||
825 | if (!dct_ganging_enabled(pvt)) { | ||
826 | debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s " | ||
827 | "Width=%s\n", pvt->dclr1, | ||
828 | (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled", | ||
829 | (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled", | ||
830 | (pvt->dclr1 & BIT(11)) ? "128b" : "64b"); | ||
831 | debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s " | ||
832 | "DIMM Type=%s\n", | ||
833 | (pvt->dclr1 & BIT(12)) ? "Y" : "N", | ||
834 | (pvt->dclr1 & BIT(13)) ? "Y" : "N", | ||
835 | (pvt->dclr1 & BIT(14)) ? "Y" : "N", | ||
836 | (pvt->dclr1 & BIT(15)) ? "Y" : "N", | ||
837 | (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered"); | ||
838 | } | ||
839 | |||
840 | /* | ||
841 | * Determine if ganged and then dump memory sizes for first controller, | ||
842 | * and if NOT ganged dump info for 2nd controller. | ||
843 | */ | ||
844 | ganged = dct_ganging_enabled(pvt); | ||
845 | |||
846 | f10_debug_display_dimm_sizes(0, pvt, ganged); | ||
847 | |||
848 | if (!ganged) | ||
849 | f10_debug_display_dimm_sizes(1, pvt, ganged); | ||
850 | } | ||
851 | |||
852 | /* Read in both of DBAM registers */ | ||
853 | static void amd64_read_dbam_reg(struct amd64_pvt *pvt) | ||
854 | { | ||
855 | int err = 0; | ||
856 | unsigned int reg; | ||
857 | |||
858 | reg = DBAM0; | ||
859 | err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0); | ||
860 | if (err) | ||
861 | goto err_reg; | ||
862 | |||
863 | if (boot_cpu_data.x86 >= 0x10) { | ||
864 | reg = DBAM1; | ||
865 | err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1); | ||
866 | |||
867 | if (err) | ||
868 | goto err_reg; | ||
869 | } | ||
870 | |||
871 | err_reg: | ||
872 | debugf0("Error reading F2x%03x.\n", reg); | ||
873 | } | ||
874 | |||
875 | /* | ||
876 | * NOTE: CPU Revision Dependent code: Rev E and Rev F | ||
877 | * | ||
878 | * Set the DCSB and DCSM mask values depending on the CPU revision value. Also | ||
879 | * set the shift factor for the DCSB and DCSM values. | ||
880 | * | ||
881 | * ->dcs_mask_notused, RevE: | ||
882 | * | ||
883 | * To find the max InputAddr for the csrow, start with the base address and set | ||
884 | * all bits that are "don't care" bits in the test at the start of section | ||
885 | * 3.5.4 (p. 84). | ||
886 | * | ||
887 | * The "don't care" bits are all set bits in the mask and all bits in the gaps | ||
888 | * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS | ||
889 | * represents bits [24:20] and [12:0], which are all bits in the above-mentioned | ||
890 | * gaps. | ||
891 | * | ||
892 | * ->dcs_mask_notused, RevF and later: | ||
893 | * | ||
894 | * To find the max InputAddr for the csrow, start with the base address and set | ||
895 | * all bits that are "don't care" bits in the test at the start of NPT section | ||
896 | * 4.5.4 (p. 87). | ||
897 | * | ||
898 | * The "don't care" bits are all set bits in the mask and all bits in the gaps | ||
899 | * between bit ranges [36:27] and [21:13]. | ||
900 | * | ||
901 | * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0], | ||
902 | * which are all bits in the above-mentioned gaps. | ||
903 | */ | ||
904 | static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt) | ||
905 | { | ||
906 | if (pvt->ext_model >= OPTERON_CPU_REV_F) { | ||
907 | pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS; | ||
908 | pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS; | ||
909 | pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS; | ||
910 | pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT; | ||
911 | |||
912 | switch (boot_cpu_data.x86) { | ||
913 | case 0xf: | ||
914 | pvt->num_dcsm = REV_F_DCSM_COUNT; | ||
915 | break; | ||
916 | |||
917 | case 0x10: | ||
918 | pvt->num_dcsm = F10_DCSM_COUNT; | ||
919 | break; | ||
920 | |||
921 | case 0x11: | ||
922 | pvt->num_dcsm = F11_DCSM_COUNT; | ||
923 | break; | ||
924 | |||
925 | default: | ||
926 | amd64_printk(KERN_ERR, "Unsupported family!\n"); | ||
927 | break; | ||
928 | } | ||
929 | } else { | ||
930 | pvt->dcsb_base = REV_E_DCSB_BASE_BITS; | ||
931 | pvt->dcsm_mask = REV_E_DCSM_MASK_BITS; | ||
932 | pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS; | ||
933 | pvt->dcs_shift = REV_E_DCS_SHIFT; | ||
934 | pvt->num_dcsm = REV_E_DCSM_COUNT; | ||
935 | } | ||
936 | } | ||
937 | |||
938 | /* | ||
939 | * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers | ||
940 | */ | ||
941 | static void amd64_read_dct_base_mask(struct amd64_pvt *pvt) | ||
942 | { | ||
943 | int cs, reg, err = 0; | ||
944 | |||
945 | amd64_set_dct_base_and_mask(pvt); | ||
946 | |||
947 | for (cs = 0; cs < CHIPSELECT_COUNT; cs++) { | ||
948 | reg = K8_DCSB0 + (cs * 4); | ||
949 | err = pci_read_config_dword(pvt->dram_f2_ctl, reg, | ||
950 | &pvt->dcsb0[cs]); | ||
951 | if (unlikely(err)) | ||
952 | debugf0("Reading K8_DCSB0[%d] failed\n", cs); | ||
953 | else | ||
954 | debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n", | ||
955 | cs, pvt->dcsb0[cs], reg); | ||
956 | |||
957 | /* If DCT are NOT ganged, then read in DCT1's base */ | ||
958 | if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) { | ||
959 | reg = F10_DCSB1 + (cs * 4); | ||
960 | err = pci_read_config_dword(pvt->dram_f2_ctl, reg, | ||
961 | &pvt->dcsb1[cs]); | ||
962 | if (unlikely(err)) | ||
963 | debugf0("Reading F10_DCSB1[%d] failed\n", cs); | ||
964 | else | ||
965 | debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n", | ||
966 | cs, pvt->dcsb1[cs], reg); | ||
967 | } else { | ||
968 | pvt->dcsb1[cs] = 0; | ||
969 | } | ||
970 | } | ||
971 | |||
972 | for (cs = 0; cs < pvt->num_dcsm; cs++) { | ||
973 | reg = K8_DCSB0 + (cs * 4); | ||
974 | err = pci_read_config_dword(pvt->dram_f2_ctl, reg, | ||
975 | &pvt->dcsm0[cs]); | ||
976 | if (unlikely(err)) | ||
977 | debugf0("Reading K8_DCSM0 failed\n"); | ||
978 | else | ||
979 | debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n", | ||
980 | cs, pvt->dcsm0[cs], reg); | ||
981 | |||
982 | /* If DCT are NOT ganged, then read in DCT1's mask */ | ||
983 | if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) { | ||
984 | reg = F10_DCSM1 + (cs * 4); | ||
985 | err = pci_read_config_dword(pvt->dram_f2_ctl, reg, | ||
986 | &pvt->dcsm1[cs]); | ||
987 | if (unlikely(err)) | ||
988 | debugf0("Reading F10_DCSM1[%d] failed\n", cs); | ||
989 | else | ||
990 | debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n", | ||
991 | cs, pvt->dcsm1[cs], reg); | ||
992 | } else | ||
993 | pvt->dcsm1[cs] = 0; | ||
994 | } | ||
995 | } | ||
996 | |||
997 | static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt) | ||
998 | { | ||
999 | enum mem_type type; | ||
1000 | |||
1001 | if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) { | ||
1002 | /* Rev F and later */ | ||
1003 | type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; | ||
1004 | } else { | ||
1005 | /* Rev E and earlier */ | ||
1006 | type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; | ||
1007 | } | ||
1008 | |||
1009 | debugf1(" Memory type is: %s\n", | ||
1010 | (type == MEM_DDR2) ? "MEM_DDR2" : | ||
1011 | (type == MEM_RDDR2) ? "MEM_RDDR2" : | ||
1012 | (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR"); | ||
1013 | |||
1014 | return type; | ||
1015 | } | ||
1016 | |||
1017 | /* | ||
1018 | * Read the DRAM Configuration Low register. It differs between CG, D & E revs | ||
1019 | * and the later RevF memory controllers (DDR vs DDR2) | ||
1020 | * | ||
1021 | * Return: | ||
1022 | * number of memory channels in operation | ||
1023 | * Pass back: | ||
1024 | * contents of the DCL0_LOW register | ||
1025 | */ | ||
1026 | static int k8_early_channel_count(struct amd64_pvt *pvt) | ||
1027 | { | ||
1028 | int flag, err = 0; | ||
1029 | |||
1030 | err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0); | ||
1031 | if (err) | ||
1032 | return err; | ||
1033 | |||
1034 | if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) { | ||
1035 | /* RevF (NPT) and later */ | ||
1036 | flag = pvt->dclr0 & F10_WIDTH_128; | ||
1037 | } else { | ||
1038 | /* RevE and earlier */ | ||
1039 | flag = pvt->dclr0 & REVE_WIDTH_128; | ||
1040 | } | ||
1041 | |||
1042 | /* not used */ | ||
1043 | pvt->dclr1 = 0; | ||
1044 | |||
1045 | return (flag) ? 2 : 1; | ||
1046 | } | ||
1047 | |||
1048 | /* extract the ERROR ADDRESS for the K8 CPUs */ | ||
1049 | static u64 k8_get_error_address(struct mem_ctl_info *mci, | ||
1050 | struct amd64_error_info_regs *info) | ||
1051 | { | ||
1052 | return (((u64) (info->nbeah & 0xff)) << 32) + | ||
1053 | (info->nbeal & ~0x03); | ||
1054 | } | ||
1055 | |||
1056 | /* | ||
1057 | * Read the Base and Limit registers for K8 based Memory controllers; extract | ||
1058 | * fields from the 'raw' reg into separate data fields | ||
1059 | * | ||
1060 | * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN | ||
1061 | */ | ||
1062 | static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram) | ||
1063 | { | ||
1064 | u32 low; | ||
1065 | u32 off = dram << 3; /* 8 bytes between DRAM entries */ | ||
1066 | int err; | ||
1067 | |||
1068 | err = pci_read_config_dword(pvt->addr_f1_ctl, | ||
1069 | K8_DRAM_BASE_LOW + off, &low); | ||
1070 | if (err) | ||
1071 | debugf0("Reading K8_DRAM_BASE_LOW failed\n"); | ||
1072 | |||
1073 | /* Extract parts into separate data entries */ | ||
1074 | pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8; | ||
1075 | pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7; | ||
1076 | pvt->dram_rw_en[dram] = (low & 0x3); | ||
1077 | |||
1078 | err = pci_read_config_dword(pvt->addr_f1_ctl, | ||
1079 | K8_DRAM_LIMIT_LOW + off, &low); | ||
1080 | if (err) | ||
1081 | debugf0("Reading K8_DRAM_LIMIT_LOW failed\n"); | ||
1082 | |||
1083 | /* | ||
1084 | * Extract parts into separate data entries. Limit is the HIGHEST memory | ||
1085 | * location of the region, so lower 24 bits need to be all ones | ||
1086 | */ | ||
1087 | pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF; | ||
1088 | pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7; | ||
1089 | pvt->dram_DstNode[dram] = (low & 0x7); | ||
1090 | } | ||
1091 | |||
1092 | static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, | ||
1093 | struct amd64_error_info_regs *info, | ||
1094 | u64 SystemAddress) | ||
1095 | { | ||
1096 | struct mem_ctl_info *src_mci; | ||
1097 | unsigned short syndrome; | ||
1098 | int channel, csrow; | ||
1099 | u32 page, offset; | ||
1100 | |||
1101 | /* Extract the syndrome parts and form a 16-bit syndrome */ | ||
1102 | syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8; | ||
1103 | syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh); | ||
1104 | |||
1105 | /* CHIPKILL enabled */ | ||
1106 | if (info->nbcfg & K8_NBCFG_CHIPKILL) { | ||
1107 | channel = get_channel_from_ecc_syndrome(syndrome); | ||
1108 | if (channel < 0) { | ||
1109 | /* | ||
1110 | * Syndrome didn't map, so we don't know which of the | ||
1111 | * 2 DIMMs is in error. So we need to ID 'both' of them | ||
1112 | * as suspect. | ||
1113 | */ | ||
1114 | amd64_mc_printk(mci, KERN_WARNING, | ||
1115 | "unknown syndrome 0x%x - possible error " | ||
1116 | "reporting race\n", syndrome); | ||
1117 | edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); | ||
1118 | return; | ||
1119 | } | ||
1120 | } else { | ||
1121 | /* | ||
1122 | * non-chipkill ecc mode | ||
1123 | * | ||
1124 | * The k8 documentation is unclear about how to determine the | ||
1125 | * channel number when using non-chipkill memory. This method | ||
1126 | * was obtained from email communication with someone at AMD. | ||
1127 | * (Wish the email was placed in this comment - norsk) | ||
1128 | */ | ||
1129 | channel = ((SystemAddress & BIT(3)) != 0); | ||
1130 | } | ||
1131 | |||
1132 | /* | ||
1133 | * Find out which node the error address belongs to. This may be | ||
1134 | * different from the node that detected the error. | ||
1135 | */ | ||
1136 | src_mci = find_mc_by_sys_addr(mci, SystemAddress); | ||
1137 | if (src_mci) { | ||
1138 | amd64_mc_printk(mci, KERN_ERR, | ||
1139 | "failed to map error address 0x%lx to a node\n", | ||
1140 | (unsigned long)SystemAddress); | ||
1141 | edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); | ||
1142 | return; | ||
1143 | } | ||
1144 | |||
1145 | /* Now map the SystemAddress to a CSROW */ | ||
1146 | csrow = sys_addr_to_csrow(src_mci, SystemAddress); | ||
1147 | if (csrow < 0) { | ||
1148 | edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR); | ||
1149 | } else { | ||
1150 | error_address_to_page_and_offset(SystemAddress, &page, &offset); | ||
1151 | |||
1152 | edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow, | ||
1153 | channel, EDAC_MOD_STR); | ||
1154 | } | ||
1155 | } | ||
1156 | |||
1157 | /* | ||
1158 | * determrine the number of PAGES in for this DIMM's size based on its DRAM | ||
1159 | * Address Mapping. | ||
1160 | * | ||
1161 | * First step is to calc the number of bits to shift a value of 1 left to | ||
1162 | * indicate show many pages. Start with the DBAM value as the starting bits, | ||
1163 | * then proceed to adjust those shift bits, based on CPU rev and the table. | ||
1164 | * See BKDG on the DBAM | ||
1165 | */ | ||
1166 | static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map) | ||
1167 | { | ||
1168 | int nr_pages; | ||
1169 | |||
1170 | if (pvt->ext_model >= OPTERON_CPU_REV_F) { | ||
1171 | nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT); | ||
1172 | } else { | ||
1173 | /* | ||
1174 | * RevE and less section; this line is tricky. It collapses the | ||
1175 | * table used by RevD and later to one that matches revisions CG | ||
1176 | * and earlier. | ||
1177 | */ | ||
1178 | dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ? | ||
1179 | (dram_map > 8 ? 4 : (dram_map > 5 ? | ||
1180 | 3 : (dram_map > 2 ? 1 : 0))) : 0; | ||
1181 | |||
1182 | /* 25 shift is 32MiB minimum DIMM size in RevE and prior */ | ||
1183 | nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT); | ||
1184 | } | ||
1185 | |||
1186 | return nr_pages; | ||
1187 | } | ||
1188 | |||
1189 | /* | ||
1190 | * Get the number of DCT channels in use. | ||
1191 | * | ||
1192 | * Return: | ||
1193 | * number of Memory Channels in operation | ||
1194 | * Pass back: | ||
1195 | * contents of the DCL0_LOW register | ||
1196 | */ | ||
1197 | static int f10_early_channel_count(struct amd64_pvt *pvt) | ||
1198 | { | ||
1199 | int err = 0, channels = 0; | ||
1200 | u32 dbam; | ||
1201 | |||
1202 | err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0); | ||
1203 | if (err) | ||
1204 | goto err_reg; | ||
1205 | |||
1206 | err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1); | ||
1207 | if (err) | ||
1208 | goto err_reg; | ||
1209 | |||
1210 | /* If we are in 128 bit mode, then we are using 2 channels */ | ||
1211 | if (pvt->dclr0 & F10_WIDTH_128) { | ||
1212 | debugf0("Data WIDTH is 128 bits - 2 channels\n"); | ||
1213 | channels = 2; | ||
1214 | return channels; | ||
1215 | } | ||
1216 | |||
1217 | /* | ||
1218 | * Need to check if in UN-ganged mode: In such, there are 2 channels, | ||
1219 | * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit | ||
1220 | * will be OFF. | ||
1221 | * | ||
1222 | * Need to check DCT0[0] and DCT1[0] to see if only one of them has | ||
1223 | * their CSEnable bit on. If so, then SINGLE DIMM case. | ||
1224 | */ | ||
1225 | debugf0("Data WIDTH is NOT 128 bits - need more decoding\n"); | ||
1226 | |||
1227 | /* | ||
1228 | * Check DRAM Bank Address Mapping values for each DIMM to see if there | ||
1229 | * is more than just one DIMM present in unganged mode. Need to check | ||
1230 | * both controllers since DIMMs can be placed in either one. | ||
1231 | */ | ||
1232 | channels = 0; | ||
1233 | err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM0, &dbam); | ||
1234 | if (err) | ||
1235 | goto err_reg; | ||
1236 | |||
1237 | if (DBAM_DIMM(0, dbam) > 0) | ||
1238 | channels++; | ||
1239 | if (DBAM_DIMM(1, dbam) > 0) | ||
1240 | channels++; | ||
1241 | if (DBAM_DIMM(2, dbam) > 0) | ||
1242 | channels++; | ||
1243 | if (DBAM_DIMM(3, dbam) > 0) | ||
1244 | channels++; | ||
1245 | |||
1246 | /* If more than 2 DIMMs are present, then we have 2 channels */ | ||
1247 | if (channels > 2) | ||
1248 | channels = 2; | ||
1249 | else if (channels == 0) { | ||
1250 | /* No DIMMs on DCT0, so look at DCT1 */ | ||
1251 | err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM1, &dbam); | ||
1252 | if (err) | ||
1253 | goto err_reg; | ||
1254 | |||
1255 | if (DBAM_DIMM(0, dbam) > 0) | ||
1256 | channels++; | ||
1257 | if (DBAM_DIMM(1, dbam) > 0) | ||
1258 | channels++; | ||
1259 | if (DBAM_DIMM(2, dbam) > 0) | ||
1260 | channels++; | ||
1261 | if (DBAM_DIMM(3, dbam) > 0) | ||
1262 | channels++; | ||
1263 | |||
1264 | if (channels > 2) | ||
1265 | channels = 2; | ||
1266 | } | ||
1267 | |||
1268 | /* If we found ALL 0 values, then assume just ONE DIMM-ONE Channel */ | ||
1269 | if (channels == 0) | ||
1270 | channels = 1; | ||
1271 | |||
1272 | debugf0("DIMM count= %d\n", channels); | ||
1273 | |||
1274 | return channels; | ||
1275 | |||
1276 | err_reg: | ||
1277 | return -1; | ||
1278 | |||
1279 | } | ||
1280 | |||
1281 | static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map) | ||
1282 | { | ||
1283 | return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT); | ||
1284 | } | ||
1285 | |||
1286 | /* Enable extended configuration access via 0xCF8 feature */ | ||
1287 | static void amd64_setup(struct amd64_pvt *pvt) | ||
1288 | { | ||
1289 | u32 reg; | ||
1290 | |||
1291 | pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, ®); | ||
1292 | |||
1293 | pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG); | ||
1294 | reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG; | ||
1295 | pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg); | ||
1296 | } | ||
1297 | |||
1298 | /* Restore the extended configuration access via 0xCF8 feature */ | ||
1299 | static void amd64_teardown(struct amd64_pvt *pvt) | ||
1300 | { | ||
1301 | u32 reg; | ||
1302 | |||
1303 | pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, ®); | ||
1304 | |||
1305 | reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG; | ||
1306 | if (pvt->flags.cf8_extcfg) | ||
1307 | reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG; | ||
1308 | pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg); | ||
1309 | } | ||
1310 | |||
1311 | static u64 f10_get_error_address(struct mem_ctl_info *mci, | ||
1312 | struct amd64_error_info_regs *info) | ||
1313 | { | ||
1314 | return (((u64) (info->nbeah & 0xffff)) << 32) + | ||
1315 | (info->nbeal & ~0x01); | ||
1316 | } | ||
1317 | |||
1318 | /* | ||
1319 | * Read the Base and Limit registers for F10 based Memory controllers. Extract | ||
1320 | * fields from the 'raw' reg into separate data fields. | ||
1321 | * | ||
1322 | * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN. | ||
1323 | */ | ||
1324 | static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram) | ||
1325 | { | ||
1326 | u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit; | ||
1327 | |||
1328 | low_offset = K8_DRAM_BASE_LOW + (dram << 3); | ||
1329 | high_offset = F10_DRAM_BASE_HIGH + (dram << 3); | ||
1330 | |||
1331 | /* read the 'raw' DRAM BASE Address register */ | ||
1332 | pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base); | ||
1333 | |||
1334 | /* Read from the ECS data register */ | ||
1335 | pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base); | ||
1336 | |||
1337 | /* Extract parts into separate data entries */ | ||
1338 | pvt->dram_rw_en[dram] = (low_base & 0x3); | ||
1339 | |||
1340 | if (pvt->dram_rw_en[dram] == 0) | ||
1341 | return; | ||
1342 | |||
1343 | pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7; | ||
1344 | |||
1345 | pvt->dram_base[dram] = (((((u64) high_base & 0x000000FF) << 32) | | ||
1346 | ((u64) low_base & 0xFFFF0000))) << 8; | ||
1347 | |||
1348 | low_offset = K8_DRAM_LIMIT_LOW + (dram << 3); | ||
1349 | high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3); | ||
1350 | |||
1351 | /* read the 'raw' LIMIT registers */ | ||
1352 | pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit); | ||
1353 | |||
1354 | /* Read from the ECS data register for the HIGH portion */ | ||
1355 | pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit); | ||
1356 | |||
1357 | debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n", | ||
1358 | high_base, low_base, high_limit, low_limit); | ||
1359 | |||
1360 | pvt->dram_DstNode[dram] = (low_limit & 0x7); | ||
1361 | pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7; | ||
1362 | |||
1363 | /* | ||
1364 | * Extract address values and form a LIMIT address. Limit is the HIGHEST | ||
1365 | * memory location of the region, so low 24 bits need to be all ones. | ||
1366 | */ | ||
1367 | low_limit |= 0x0000FFFF; | ||
1368 | pvt->dram_limit[dram] = | ||
1369 | ((((u64) high_limit << 32) + (u64) low_limit) << 8) | (0xFF); | ||
1370 | } | ||
1371 | |||
1372 | static void f10_read_dram_ctl_register(struct amd64_pvt *pvt) | ||
1373 | { | ||
1374 | int err = 0; | ||
1375 | |||
1376 | err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW, | ||
1377 | &pvt->dram_ctl_select_low); | ||
1378 | if (err) { | ||
1379 | debugf0("Reading F10_DCTL_SEL_LOW failed\n"); | ||
1380 | } else { | ||
1381 | debugf0("DRAM_DCTL_SEL_LOW=0x%x DctSelBaseAddr=0x%x\n", | ||
1382 | pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt)); | ||
1383 | |||
1384 | debugf0(" DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-" | ||
1385 | "sel-hi-range=%s\n", | ||
1386 | (dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"), | ||
1387 | (dct_dram_enabled(pvt) ? "Enabled" : "Disabled"), | ||
1388 | (dct_high_range_enabled(pvt) ? "Enabled" : "Disabled")); | ||
1389 | |||
1390 | debugf0(" DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n", | ||
1391 | (dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"), | ||
1392 | (dct_memory_cleared(pvt) ? "True " : "False "), | ||
1393 | dct_sel_interleave_addr(pvt)); | ||
1394 | } | ||
1395 | |||
1396 | err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH, | ||
1397 | &pvt->dram_ctl_select_high); | ||
1398 | if (err) | ||
1399 | debugf0("Reading F10_DCTL_SEL_HIGH failed\n"); | ||
1400 | } | ||
1401 | |||
1402 | /* | ||
1403 | * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory | ||
1404 | * Interleaving Modes. | ||
1405 | */ | ||
1406 | static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, | ||
1407 | int hi_range_sel, u32 intlv_en) | ||
1408 | { | ||
1409 | u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1; | ||
1410 | |||
1411 | if (dct_ganging_enabled(pvt)) | ||
1412 | cs = 0; | ||
1413 | else if (hi_range_sel) | ||
1414 | cs = dct_sel_high; | ||
1415 | else if (dct_interleave_enabled(pvt)) { | ||
1416 | /* | ||
1417 | * see F2x110[DctSelIntLvAddr] - channel interleave mode | ||
1418 | */ | ||
1419 | if (dct_sel_interleave_addr(pvt) == 0) | ||
1420 | cs = sys_addr >> 6 & 1; | ||
1421 | else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) { | ||
1422 | temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2; | ||
1423 | |||
1424 | if (dct_sel_interleave_addr(pvt) & 1) | ||
1425 | cs = (sys_addr >> 9 & 1) ^ temp; | ||
1426 | else | ||
1427 | cs = (sys_addr >> 6 & 1) ^ temp; | ||
1428 | } else if (intlv_en & 4) | ||
1429 | cs = sys_addr >> 15 & 1; | ||
1430 | else if (intlv_en & 2) | ||
1431 | cs = sys_addr >> 14 & 1; | ||
1432 | else if (intlv_en & 1) | ||
1433 | cs = sys_addr >> 13 & 1; | ||
1434 | else | ||
1435 | cs = sys_addr >> 12 & 1; | ||
1436 | } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt)) | ||
1437 | cs = ~dct_sel_high & 1; | ||
1438 | else | ||
1439 | cs = 0; | ||
1440 | |||
1441 | return cs; | ||
1442 | } | ||
1443 | |||
1444 | static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en) | ||
1445 | { | ||
1446 | if (intlv_en == 1) | ||
1447 | return 1; | ||
1448 | else if (intlv_en == 3) | ||
1449 | return 2; | ||
1450 | else if (intlv_en == 7) | ||
1451 | return 3; | ||
1452 | |||
1453 | return 0; | ||
1454 | } | ||
1455 | |||
1456 | /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */ | ||
1457 | static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel, | ||
1458 | u32 dct_sel_base_addr, | ||
1459 | u64 dct_sel_base_off, | ||
1460 | u32 hole_valid, u32 hole_off, | ||
1461 | u64 dram_base) | ||
1462 | { | ||
1463 | u64 chan_off; | ||
1464 | |||
1465 | if (hi_range_sel) { | ||
1466 | if (!(dct_sel_base_addr & 0xFFFFF800) && | ||
1467 | hole_valid && (sys_addr >= 0x100000000ULL)) | ||
1468 | chan_off = hole_off << 16; | ||
1469 | else | ||
1470 | chan_off = dct_sel_base_off; | ||
1471 | } else { | ||
1472 | if (hole_valid && (sys_addr >= 0x100000000ULL)) | ||
1473 | chan_off = hole_off << 16; | ||
1474 | else | ||
1475 | chan_off = dram_base & 0xFFFFF8000000ULL; | ||
1476 | } | ||
1477 | |||
1478 | return (sys_addr & 0x0000FFFFFFFFFFC0ULL) - | ||
1479 | (chan_off & 0x0000FFFFFF800000ULL); | ||
1480 | } | ||
1481 | |||
1482 | /* Hack for the time being - Can we get this from BIOS?? */ | ||
1483 | #define CH0SPARE_RANK 0 | ||
1484 | #define CH1SPARE_RANK 1 | ||
1485 | |||
1486 | /* | ||
1487 | * checks if the csrow passed in is marked as SPARED, if so returns the new | ||
1488 | * spare row | ||
1489 | */ | ||
1490 | static inline int f10_process_possible_spare(int csrow, | ||
1491 | u32 cs, struct amd64_pvt *pvt) | ||
1492 | { | ||
1493 | u32 swap_done; | ||
1494 | u32 bad_dram_cs; | ||
1495 | |||
1496 | /* Depending on channel, isolate respective SPARING info */ | ||
1497 | if (cs) { | ||
1498 | swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare); | ||
1499 | bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare); | ||
1500 | if (swap_done && (csrow == bad_dram_cs)) | ||
1501 | csrow = CH1SPARE_RANK; | ||
1502 | } else { | ||
1503 | swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare); | ||
1504 | bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare); | ||
1505 | if (swap_done && (csrow == bad_dram_cs)) | ||
1506 | csrow = CH0SPARE_RANK; | ||
1507 | } | ||
1508 | return csrow; | ||
1509 | } | ||
1510 | |||
1511 | /* | ||
1512 | * Iterate over the DRAM DCT "base" and "mask" registers looking for a | ||
1513 | * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' | ||
1514 | * | ||
1515 | * Return: | ||
1516 | * -EINVAL: NOT FOUND | ||
1517 | * 0..csrow = Chip-Select Row | ||
1518 | */ | ||
1519 | static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs) | ||
1520 | { | ||
1521 | struct mem_ctl_info *mci; | ||
1522 | struct amd64_pvt *pvt; | ||
1523 | u32 cs_base, cs_mask; | ||
1524 | int cs_found = -EINVAL; | ||
1525 | int csrow; | ||
1526 | |||
1527 | mci = mci_lookup[nid]; | ||
1528 | if (!mci) | ||
1529 | return cs_found; | ||
1530 | |||
1531 | pvt = mci->pvt_info; | ||
1532 | |||
1533 | debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs); | ||
1534 | |||
1535 | for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) { | ||
1536 | |||
1537 | cs_base = amd64_get_dct_base(pvt, cs, csrow); | ||
1538 | if (!(cs_base & K8_DCSB_CS_ENABLE)) | ||
1539 | continue; | ||
1540 | |||
1541 | /* | ||
1542 | * We have an ENABLED CSROW, Isolate just the MASK bits of the | ||
1543 | * target: [28:19] and [13:5], which map to [36:27] and [21:13] | ||
1544 | * of the actual address. | ||
1545 | */ | ||
1546 | cs_base &= REV_F_F1Xh_DCSB_BASE_BITS; | ||
1547 | |||
1548 | /* | ||
1549 | * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and | ||
1550 | * [4:0] to become ON. Then mask off bits [28:0] ([36:8]) | ||
1551 | */ | ||
1552 | cs_mask = amd64_get_dct_mask(pvt, cs, csrow); | ||
1553 | |||
1554 | debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n", | ||
1555 | csrow, cs_base, cs_mask); | ||
1556 | |||
1557 | cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF; | ||
1558 | |||
1559 | debugf1(" Final CSMask=0x%x\n", cs_mask); | ||
1560 | debugf1(" (InputAddr & ~CSMask)=0x%x " | ||
1561 | "(CSBase & ~CSMask)=0x%x\n", | ||
1562 | (in_addr & ~cs_mask), (cs_base & ~cs_mask)); | ||
1563 | |||
1564 | if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) { | ||
1565 | cs_found = f10_process_possible_spare(csrow, cs, pvt); | ||
1566 | |||
1567 | debugf1(" MATCH csrow=%d\n", cs_found); | ||
1568 | break; | ||
1569 | } | ||
1570 | } | ||
1571 | return cs_found; | ||
1572 | } | ||
1573 | |||
1574 | /* For a given @dram_range, check if @sys_addr falls within it. */ | ||
1575 | static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range, | ||
1576 | u64 sys_addr, int *nid, int *chan_sel) | ||
1577 | { | ||
1578 | int node_id, cs_found = -EINVAL, high_range = 0; | ||
1579 | u32 intlv_en, intlv_sel, intlv_shift, hole_off; | ||
1580 | u32 hole_valid, tmp, dct_sel_base, channel; | ||
1581 | u64 dram_base, chan_addr, dct_sel_base_off; | ||
1582 | |||
1583 | dram_base = pvt->dram_base[dram_range]; | ||
1584 | intlv_en = pvt->dram_IntlvEn[dram_range]; | ||
1585 | |||
1586 | node_id = pvt->dram_DstNode[dram_range]; | ||
1587 | intlv_sel = pvt->dram_IntlvSel[dram_range]; | ||
1588 | |||
1589 | debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n", | ||
1590 | dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]); | ||
1591 | |||
1592 | /* | ||
1593 | * This assumes that one node's DHAR is the same as all the other | ||
1594 | * nodes' DHAR. | ||
1595 | */ | ||
1596 | hole_off = (pvt->dhar & 0x0000FF80); | ||
1597 | hole_valid = (pvt->dhar & 0x1); | ||
1598 | dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16; | ||
1599 | |||
1600 | debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n", | ||
1601 | hole_off, hole_valid, intlv_sel); | ||
1602 | |||
1603 | if (intlv_en || | ||
1604 | (intlv_sel != ((sys_addr >> 12) & intlv_en))) | ||
1605 | return -EINVAL; | ||
1606 | |||
1607 | dct_sel_base = dct_sel_baseaddr(pvt); | ||
1608 | |||
1609 | /* | ||
1610 | * check whether addresses >= DctSelBaseAddr[47:27] are to be used to | ||
1611 | * select between DCT0 and DCT1. | ||
1612 | */ | ||
1613 | if (dct_high_range_enabled(pvt) && | ||
1614 | !dct_ganging_enabled(pvt) && | ||
1615 | ((sys_addr >> 27) >= (dct_sel_base >> 11))) | ||
1616 | high_range = 1; | ||
1617 | |||
1618 | channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en); | ||
1619 | |||
1620 | chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base, | ||
1621 | dct_sel_base_off, hole_valid, | ||
1622 | hole_off, dram_base); | ||
1623 | |||
1624 | intlv_shift = f10_map_intlv_en_to_shift(intlv_en); | ||
1625 | |||
1626 | /* remove Node ID (in case of memory interleaving) */ | ||
1627 | tmp = chan_addr & 0xFC0; | ||
1628 | |||
1629 | chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp; | ||
1630 | |||
1631 | /* remove channel interleave and hash */ | ||
1632 | if (dct_interleave_enabled(pvt) && | ||
1633 | !dct_high_range_enabled(pvt) && | ||
1634 | !dct_ganging_enabled(pvt)) { | ||
1635 | if (dct_sel_interleave_addr(pvt) != 1) | ||
1636 | chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL; | ||
1637 | else { | ||
1638 | tmp = chan_addr & 0xFC0; | ||
1639 | chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1) | ||
1640 | | tmp; | ||
1641 | } | ||
1642 | } | ||
1643 | |||
1644 | debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n", | ||
1645 | chan_addr, (u32)(chan_addr >> 8)); | ||
1646 | |||
1647 | cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel); | ||
1648 | |||
1649 | if (cs_found >= 0) { | ||
1650 | *nid = node_id; | ||
1651 | *chan_sel = channel; | ||
1652 | } | ||
1653 | return cs_found; | ||
1654 | } | ||
1655 | |||
1656 | static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr, | ||
1657 | int *node, int *chan_sel) | ||
1658 | { | ||
1659 | int dram_range, cs_found = -EINVAL; | ||
1660 | u64 dram_base, dram_limit; | ||
1661 | |||
1662 | for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) { | ||
1663 | |||
1664 | if (!pvt->dram_rw_en[dram_range]) | ||
1665 | continue; | ||
1666 | |||
1667 | dram_base = pvt->dram_base[dram_range]; | ||
1668 | dram_limit = pvt->dram_limit[dram_range]; | ||
1669 | |||
1670 | if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) { | ||
1671 | |||
1672 | cs_found = f10_match_to_this_node(pvt, dram_range, | ||
1673 | sys_addr, node, | ||
1674 | chan_sel); | ||
1675 | if (cs_found >= 0) | ||
1676 | break; | ||
1677 | } | ||
1678 | } | ||
1679 | return cs_found; | ||
1680 | } | ||
1681 | |||
1682 | /* | ||
1683 | * This the F10h reference code from AMD to map a @sys_addr to NodeID, | ||
1684 | * CSROW, Channel. | ||
1685 | * | ||
1686 | * The @sys_addr is usually an error address received from the hardware. | ||
1687 | */ | ||
1688 | static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci, | ||
1689 | struct amd64_error_info_regs *info, | ||
1690 | u64 sys_addr) | ||
1691 | { | ||
1692 | struct amd64_pvt *pvt = mci->pvt_info; | ||
1693 | u32 page, offset; | ||
1694 | unsigned short syndrome; | ||
1695 | int nid, csrow, chan = 0; | ||
1696 | |||
1697 | csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan); | ||
1698 | |||
1699 | if (csrow >= 0) { | ||
1700 | error_address_to_page_and_offset(sys_addr, &page, &offset); | ||
1701 | |||
1702 | syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8; | ||
1703 | syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh); | ||
1704 | |||
1705 | /* | ||
1706 | * Is CHIPKILL on? If so, then we can attempt to use the | ||
1707 | * syndrome to isolate which channel the error was on. | ||
1708 | */ | ||
1709 | if (pvt->nbcfg & K8_NBCFG_CHIPKILL) | ||
1710 | chan = get_channel_from_ecc_syndrome(syndrome); | ||
1711 | |||
1712 | if (chan >= 0) { | ||
1713 | edac_mc_handle_ce(mci, page, offset, syndrome, | ||
1714 | csrow, chan, EDAC_MOD_STR); | ||
1715 | } else { | ||
1716 | /* | ||
1717 | * Channel unknown, report all channels on this | ||
1718 | * CSROW as failed. | ||
1719 | */ | ||
1720 | for (chan = 0; chan < mci->csrows[csrow].nr_channels; | ||
1721 | chan++) { | ||
1722 | edac_mc_handle_ce(mci, page, offset, | ||
1723 | syndrome, | ||
1724 | csrow, chan, | ||
1725 | EDAC_MOD_STR); | ||
1726 | } | ||
1727 | } | ||
1728 | |||
1729 | } else { | ||
1730 | edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); | ||
1731 | } | ||
1732 | } | ||
1733 | |||
1734 | /* | ||
1735 | * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift | ||
1736 | * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0 | ||
1737 | * indicates an empty DIMM slot, as reported by Hardware on empty slots. | ||
1738 | * | ||
1739 | * Normalize to 128MB by subracting 27 bit shift. | ||
1740 | */ | ||
1741 | static int map_dbam_to_csrow_size(int index) | ||
1742 | { | ||
1743 | int mega_bytes = 0; | ||
1744 | |||
1745 | if (index > 0 && index <= DBAM_MAX_VALUE) | ||
1746 | mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27))); | ||
1747 | |||
1748 | return mega_bytes; | ||
1749 | } | ||
1750 | |||
1751 | /* | ||
1752 | * debug routine to display the memory sizes of a DIMM (ganged or not) and it | ||
1753 | * CSROWs as well | ||
1754 | */ | ||
1755 | static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt, | ||
1756 | int ganged) | ||
1757 | { | ||
1758 | int dimm, size0, size1; | ||
1759 | u32 dbam; | ||
1760 | u32 *dcsb; | ||
1761 | |||
1762 | debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl, | ||
1763 | ctrl ? pvt->dbam1 : pvt->dbam0, | ||
1764 | ganged ? "GANGED - dbam1 not used" : "NON-GANGED"); | ||
1765 | |||
1766 | dbam = ctrl ? pvt->dbam1 : pvt->dbam0; | ||
1767 | dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0; | ||
1768 | |||
1769 | /* Dump memory sizes for DIMM and its CSROWs */ | ||
1770 | for (dimm = 0; dimm < 4; dimm++) { | ||
1771 | |||
1772 | size0 = 0; | ||
1773 | if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE) | ||
1774 | size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam)); | ||
1775 | |||
1776 | size1 = 0; | ||
1777 | if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE) | ||
1778 | size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam)); | ||
1779 | |||
1780 | debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB " | ||
1781 | "CSROW-%d=%5dMB\n", | ||
1782 | ctrl, | ||
1783 | dimm, | ||
1784 | size0 + size1, | ||
1785 | dimm * 2, | ||
1786 | size0, | ||
1787 | dimm * 2 + 1, | ||
1788 | size1); | ||
1789 | } | ||
1790 | } | ||
1791 | |||
1792 | /* | ||
1793 | * Very early hardware probe on pci_probe thread to determine if this module | ||
1794 | * supports the hardware. | ||
1795 | * | ||
1796 | * Return: | ||
1797 | * 0 for OK | ||
1798 | * 1 for error | ||
1799 | */ | ||
1800 | static int f10_probe_valid_hardware(struct amd64_pvt *pvt) | ||
1801 | { | ||
1802 | int ret = 0; | ||
1803 | |||
1804 | /* | ||
1805 | * If we are on a DDR3 machine, we don't know yet if | ||
1806 | * we support that properly at this time | ||
1807 | */ | ||
1808 | if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) || | ||
1809 | (pvt->dchr1 & F10_DCHR_Ddr3Mode)) { | ||
1810 | |||
1811 | amd64_printk(KERN_WARNING, | ||
1812 | "%s() This machine is running with DDR3 memory. " | ||
1813 | "This is not currently supported. " | ||
1814 | "DCHR0=0x%x DCHR1=0x%x\n", | ||
1815 | __func__, pvt->dchr0, pvt->dchr1); | ||
1816 | |||
1817 | amd64_printk(KERN_WARNING, | ||
1818 | " Contact '%s' module MAINTAINER to help add" | ||
1819 | " support.\n", | ||
1820 | EDAC_MOD_STR); | ||
1821 | |||
1822 | ret = 1; | ||
1823 | |||
1824 | } | ||
1825 | return ret; | ||
1826 | } | ||
1827 | |||
1828 | /* | ||
1829 | * There currently are 3 types type of MC devices for AMD Athlon/Opterons | ||
1830 | * (as per PCI DEVICE_IDs): | ||
1831 | * | ||
1832 | * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI | ||
1833 | * DEVICE ID, even though there is differences between the different Revisions | ||
1834 | * (CG,D,E,F). | ||
1835 | * | ||
1836 | * Family F10h and F11h. | ||
1837 | * | ||
1838 | */ | ||
1839 | static struct amd64_family_type amd64_family_types[] = { | ||
1840 | [K8_CPUS] = { | ||
1841 | .ctl_name = "RevF", | ||
1842 | .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, | ||
1843 | .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC, | ||
1844 | .ops = { | ||
1845 | .early_channel_count = k8_early_channel_count, | ||
1846 | .get_error_address = k8_get_error_address, | ||
1847 | .read_dram_base_limit = k8_read_dram_base_limit, | ||
1848 | .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow, | ||
1849 | .dbam_map_to_pages = k8_dbam_map_to_pages, | ||
1850 | } | ||
1851 | }, | ||
1852 | [F10_CPUS] = { | ||
1853 | .ctl_name = "Family 10h", | ||
1854 | .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP, | ||
1855 | .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC, | ||
1856 | .ops = { | ||
1857 | .probe_valid_hardware = f10_probe_valid_hardware, | ||
1858 | .early_channel_count = f10_early_channel_count, | ||
1859 | .get_error_address = f10_get_error_address, | ||
1860 | .read_dram_base_limit = f10_read_dram_base_limit, | ||
1861 | .read_dram_ctl_register = f10_read_dram_ctl_register, | ||
1862 | .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow, | ||
1863 | .dbam_map_to_pages = f10_dbam_map_to_pages, | ||
1864 | } | ||
1865 | }, | ||
1866 | [F11_CPUS] = { | ||
1867 | .ctl_name = "Family 11h", | ||
1868 | .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP, | ||
1869 | .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC, | ||
1870 | .ops = { | ||
1871 | .probe_valid_hardware = f10_probe_valid_hardware, | ||
1872 | .early_channel_count = f10_early_channel_count, | ||
1873 | .get_error_address = f10_get_error_address, | ||
1874 | .read_dram_base_limit = f10_read_dram_base_limit, | ||
1875 | .read_dram_ctl_register = f10_read_dram_ctl_register, | ||
1876 | .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow, | ||
1877 | .dbam_map_to_pages = f10_dbam_map_to_pages, | ||
1878 | } | ||
1879 | }, | ||
1880 | }; | ||
1881 | |||
1882 | static struct pci_dev *pci_get_related_function(unsigned int vendor, | ||
1883 | unsigned int device, | ||
1884 | struct pci_dev *related) | ||
1885 | { | ||
1886 | struct pci_dev *dev = NULL; | ||
1887 | |||
1888 | dev = pci_get_device(vendor, device, dev); | ||
1889 | while (dev) { | ||
1890 | if ((dev->bus->number == related->bus->number) && | ||
1891 | (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) | ||
1892 | break; | ||
1893 | dev = pci_get_device(vendor, device, dev); | ||
1894 | } | ||
1895 | |||
1896 | return dev; | ||
1897 | } | ||
1898 | |||
1899 | /* | ||
1900 | * syndrome mapping table for ECC ChipKill devices | ||
1901 | * | ||
1902 | * The comment in each row is the token (nibble) number that is in error. | ||
1903 | * The least significant nibble of the syndrome is the mask for the bits | ||
1904 | * that are in error (need to be toggled) for the particular nibble. | ||
1905 | * | ||
1906 | * Each row contains 16 entries. | ||
1907 | * The first entry (0th) is the channel number for that row of syndromes. | ||
1908 | * The remaining 15 entries are the syndromes for the respective Error | ||
1909 | * bit mask index. | ||
1910 | * | ||
1911 | * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the | ||
1912 | * bit in error. | ||
1913 | * The 2nd index entry is 0x0010 that the second bit is damaged. | ||
1914 | * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits | ||
1915 | * are damaged. | ||
1916 | * Thus so on until index 15, 0x1111, whose entry has the syndrome | ||
1917 | * indicating that all 4 bits are damaged. | ||
1918 | * | ||
1919 | * A search is performed on this table looking for a given syndrome. | ||
1920 | * | ||
1921 | * See the AMD documentation for ECC syndromes. This ECC table is valid | ||
1922 | * across all the versions of the AMD64 processors. | ||
1923 | * | ||
1924 | * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a | ||
1925 | * COLUMN index, then search all ROWS of that column, looking for a match | ||
1926 | * with the input syndrome. The ROW value will be the token number. | ||
1927 | * | ||
1928 | * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this | ||
1929 | * error. | ||
1930 | */ | ||
1931 | #define NUMBER_ECC_ROWS 36 | ||
1932 | static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = { | ||
1933 | /* Channel 0 syndromes */ | ||
1934 | {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57, | ||
1935 | 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df }, | ||
1936 | {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7, | ||
1937 | 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f }, | ||
1938 | {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007, | ||
1939 | 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f }, | ||
1940 | {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057, | ||
1941 | 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df }, | ||
1942 | {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097, | ||
1943 | 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f }, | ||
1944 | {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857, | ||
1945 | 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf }, | ||
1946 | {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467, | ||
1947 | 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f }, | ||
1948 | {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27, | ||
1949 | 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff }, | ||
1950 | {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177, | ||
1951 | 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f }, | ||
1952 | {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07, | ||
1953 | 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f }, | ||
1954 | {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07, | ||
1955 | 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f }, | ||
1956 | {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7, | ||
1957 | 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f }, | ||
1958 | {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87, | ||
1959 | 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f }, | ||
1960 | {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067, | ||
1961 | 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f }, | ||
1962 | {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77, | ||
1963 | 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f }, | ||
1964 | {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77, | ||
1965 | 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f }, | ||
1966 | |||
1967 | /* Channel 1 syndromes */ | ||
1968 | {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187, | ||
1969 | 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f }, | ||
1970 | {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627, | ||
1971 | 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff }, | ||
1972 | {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97, | ||
1973 | 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f }, | ||
1974 | {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97, | ||
1975 | 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f }, | ||
1976 | {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987, | ||
1977 | 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f }, | ||
1978 | {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677, | ||
1979 | 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f }, | ||
1980 | {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387, | ||
1981 | 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f }, | ||
1982 | {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17, | ||
1983 | 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf }, | ||
1984 | {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7, | ||
1985 | 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f }, | ||
1986 | {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397, | ||
1987 | 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f }, | ||
1988 | {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617, | ||
1989 | 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf }, | ||
1990 | {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527, | ||
1991 | 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff }, | ||
1992 | {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7, | ||
1993 | 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef }, | ||
1994 | {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7, | ||
1995 | 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def }, | ||
1996 | {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67, | ||
1997 | 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f }, | ||
1998 | {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377, | ||
1999 | 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f }, | ||
2000 | |||
2001 | /* ECC bits are also in the set of tokens and they too can go bad | ||
2002 | * first 2 cover channel 0, while the second 2 cover channel 1 | ||
2003 | */ | ||
2004 | {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807, | ||
2005 | 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f }, | ||
2006 | {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07, | ||
2007 | 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f }, | ||
2008 | {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97, | ||
2009 | 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f }, | ||
2010 | {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757, | ||
2011 | 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df } | ||
2012 | }; | ||
2013 | |||
2014 | /* | ||
2015 | * Given the syndrome argument, scan each of the channel tables for a syndrome | ||
2016 | * match. Depending on which table it is found, return the channel number. | ||
2017 | */ | ||
2018 | static int get_channel_from_ecc_syndrome(unsigned short syndrome) | ||
2019 | { | ||
2020 | int row; | ||
2021 | int column; | ||
2022 | |||
2023 | /* Determine column to scan */ | ||
2024 | column = syndrome & 0xF; | ||
2025 | |||
2026 | /* Scan all rows, looking for syndrome, or end of table */ | ||
2027 | for (row = 0; row < NUMBER_ECC_ROWS; row++) { | ||
2028 | if (ecc_chipkill_syndromes[row][column] == syndrome) | ||
2029 | return ecc_chipkill_syndromes[row][0]; | ||
2030 | } | ||
2031 | |||
2032 | debugf0("syndrome(%x) not found\n", syndrome); | ||
2033 | return -1; | ||
2034 | } | ||
2035 | |||
2036 | /* | ||
2037 | * Check for valid error in the NB Status High register. If so, proceed to read | ||
2038 | * NB Status Low, NB Address Low and NB Address High registers and store data | ||
2039 | * into error structure. | ||
2040 | * | ||
2041 | * Returns: | ||
2042 | * - 1: if hardware regs contains valid error info | ||
2043 | * - 0: if no valid error is indicated | ||
2044 | */ | ||
2045 | static int amd64_get_error_info_regs(struct mem_ctl_info *mci, | ||
2046 | struct amd64_error_info_regs *regs) | ||
2047 | { | ||
2048 | struct amd64_pvt *pvt; | ||
2049 | struct pci_dev *misc_f3_ctl; | ||
2050 | int err = 0; | ||
2051 | |||
2052 | pvt = mci->pvt_info; | ||
2053 | misc_f3_ctl = pvt->misc_f3_ctl; | ||
2054 | |||
2055 | err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, ®s->nbsh); | ||
2056 | if (err) | ||
2057 | goto err_reg; | ||
2058 | |||
2059 | if (!(regs->nbsh & K8_NBSH_VALID_BIT)) | ||
2060 | return 0; | ||
2061 | |||
2062 | /* valid error, read remaining error information registers */ | ||
2063 | err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, ®s->nbsl); | ||
2064 | if (err) | ||
2065 | goto err_reg; | ||
2066 | |||
2067 | err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, ®s->nbeal); | ||
2068 | if (err) | ||
2069 | goto err_reg; | ||
2070 | |||
2071 | err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, ®s->nbeah); | ||
2072 | if (err) | ||
2073 | goto err_reg; | ||
2074 | |||
2075 | err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, ®s->nbcfg); | ||
2076 | if (err) | ||
2077 | goto err_reg; | ||
2078 | |||
2079 | return 1; | ||
2080 | |||
2081 | err_reg: | ||
2082 | debugf0("Reading error info register failed\n"); | ||
2083 | return 0; | ||
2084 | } | ||
2085 | |||
2086 | /* | ||
2087 | * This function is called to retrieve the error data from hardware and store it | ||
2088 | * in the info structure. | ||
2089 | * | ||
2090 | * Returns: | ||
2091 | * - 1: if a valid error is found | ||
2092 | * - 0: if no error is found | ||
2093 | */ | ||
2094 | static int amd64_get_error_info(struct mem_ctl_info *mci, | ||
2095 | struct amd64_error_info_regs *info) | ||
2096 | { | ||
2097 | struct amd64_pvt *pvt; | ||
2098 | struct amd64_error_info_regs regs; | ||
2099 | |||
2100 | pvt = mci->pvt_info; | ||
2101 | |||
2102 | if (!amd64_get_error_info_regs(mci, info)) | ||
2103 | return 0; | ||
2104 | |||
2105 | /* | ||
2106 | * Here's the problem with the K8's EDAC reporting: There are four | ||
2107 | * registers which report pieces of error information. They are shared | ||
2108 | * between CEs and UEs. Furthermore, contrary to what is stated in the | ||
2109 | * BKDG, the overflow bit is never used! Every error always updates the | ||
2110 | * reporting registers. | ||
2111 | * | ||
2112 | * Can you see the race condition? All four error reporting registers | ||
2113 | * must be read before a new error updates them! There is no way to read | ||
2114 | * all four registers atomically. The best than can be done is to detect | ||
2115 | * that a race has occured and then report the error without any kind of | ||
2116 | * precision. | ||
2117 | * | ||
2118 | * What is still positive is that errors are still reported and thus | ||
2119 | * problems can still be detected - just not localized because the | ||
2120 | * syndrome and address are spread out across registers. | ||
2121 | * | ||
2122 | * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev. | ||
2123 | * UEs and CEs should have separate register sets with proper overflow | ||
2124 | * bits that are used! At very least the problem can be fixed by | ||
2125 | * honoring the ErrValid bit in 'nbsh' and not updating registers - just | ||
2126 | * set the overflow bit - unless the current error is CE and the new | ||
2127 | * error is UE which would be the only situation for overwriting the | ||
2128 | * current values. | ||
2129 | */ | ||
2130 | |||
2131 | regs = *info; | ||
2132 | |||
2133 | /* Use info from the second read - most current */ | ||
2134 | if (unlikely(!amd64_get_error_info_regs(mci, info))) | ||
2135 | return 0; | ||
2136 | |||
2137 | /* clear the error bits in hardware */ | ||
2138 | pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT); | ||
2139 | |||
2140 | /* Check for the possible race condition */ | ||
2141 | if ((regs.nbsh != info->nbsh) || | ||
2142 | (regs.nbsl != info->nbsl) || | ||
2143 | (regs.nbeah != info->nbeah) || | ||
2144 | (regs.nbeal != info->nbeal)) { | ||
2145 | amd64_mc_printk(mci, KERN_WARNING, | ||
2146 | "hardware STATUS read access race condition " | ||
2147 | "detected!\n"); | ||
2148 | return 0; | ||
2149 | } | ||
2150 | return 1; | ||
2151 | } | ||
2152 | |||
2153 | static inline void amd64_decode_gart_tlb_error(struct mem_ctl_info *mci, | ||
2154 | struct amd64_error_info_regs *info) | ||
2155 | { | ||
2156 | u32 err_code; | ||
2157 | u32 ec_tt; /* error code transaction type (2b) */ | ||
2158 | u32 ec_ll; /* error code cache level (2b) */ | ||
2159 | |||
2160 | err_code = EXTRACT_ERROR_CODE(info->nbsl); | ||
2161 | ec_ll = EXTRACT_LL_CODE(err_code); | ||
2162 | ec_tt = EXTRACT_TT_CODE(err_code); | ||
2163 | |||
2164 | amd64_mc_printk(mci, KERN_ERR, | ||
2165 | "GART TLB event: transaction type(%s), " | ||
2166 | "cache level(%s)\n", tt_msgs[ec_tt], ll_msgs[ec_ll]); | ||
2167 | } | ||
2168 | |||
2169 | static inline void amd64_decode_mem_cache_error(struct mem_ctl_info *mci, | ||
2170 | struct amd64_error_info_regs *info) | ||
2171 | { | ||
2172 | u32 err_code; | ||
2173 | u32 ec_rrrr; /* error code memory transaction (4b) */ | ||
2174 | u32 ec_tt; /* error code transaction type (2b) */ | ||
2175 | u32 ec_ll; /* error code cache level (2b) */ | ||
2176 | |||
2177 | err_code = EXTRACT_ERROR_CODE(info->nbsl); | ||
2178 | ec_ll = EXTRACT_LL_CODE(err_code); | ||
2179 | ec_tt = EXTRACT_TT_CODE(err_code); | ||
2180 | ec_rrrr = EXTRACT_RRRR_CODE(err_code); | ||
2181 | |||
2182 | amd64_mc_printk(mci, KERN_ERR, | ||
2183 | "cache hierarchy error: memory transaction type(%s), " | ||
2184 | "transaction type(%s), cache level(%s)\n", | ||
2185 | rrrr_msgs[ec_rrrr], tt_msgs[ec_tt], ll_msgs[ec_ll]); | ||
2186 | } | ||
2187 | |||
2188 | |||
2189 | /* | ||
2190 | * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR | ||
2191 | * ADDRESS and process. | ||
2192 | */ | ||
2193 | static void amd64_handle_ce(struct mem_ctl_info *mci, | ||
2194 | struct amd64_error_info_regs *info) | ||
2195 | { | ||
2196 | struct amd64_pvt *pvt = mci->pvt_info; | ||
2197 | u64 SystemAddress; | ||
2198 | |||
2199 | /* Ensure that the Error Address is VALID */ | ||
2200 | if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) { | ||
2201 | amd64_mc_printk(mci, KERN_ERR, | ||
2202 | "HW has no ERROR_ADDRESS available\n"); | ||
2203 | edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); | ||
2204 | return; | ||
2205 | } | ||
2206 | |||
2207 | SystemAddress = extract_error_address(mci, info); | ||
2208 | |||
2209 | amd64_mc_printk(mci, KERN_ERR, | ||
2210 | "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress); | ||
2211 | |||
2212 | pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress); | ||
2213 | } | ||
2214 | |||
2215 | /* Handle any Un-correctable Errors (UEs) */ | ||
2216 | static void amd64_handle_ue(struct mem_ctl_info *mci, | ||
2217 | struct amd64_error_info_regs *info) | ||
2218 | { | ||
2219 | int csrow; | ||
2220 | u64 SystemAddress; | ||
2221 | u32 page, offset; | ||
2222 | struct mem_ctl_info *log_mci, *src_mci = NULL; | ||
2223 | |||
2224 | log_mci = mci; | ||
2225 | |||
2226 | if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) { | ||
2227 | amd64_mc_printk(mci, KERN_CRIT, | ||
2228 | "HW has no ERROR_ADDRESS available\n"); | ||
2229 | edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); | ||
2230 | return; | ||
2231 | } | ||
2232 | |||
2233 | SystemAddress = extract_error_address(mci, info); | ||
2234 | |||
2235 | /* | ||
2236 | * Find out which node the error address belongs to. This may be | ||
2237 | * different from the node that detected the error. | ||
2238 | */ | ||
2239 | src_mci = find_mc_by_sys_addr(mci, SystemAddress); | ||
2240 | if (!src_mci) { | ||
2241 | amd64_mc_printk(mci, KERN_CRIT, | ||
2242 | "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n", | ||
2243 | (unsigned long)SystemAddress); | ||
2244 | edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); | ||
2245 | return; | ||
2246 | } | ||
2247 | |||
2248 | log_mci = src_mci; | ||
2249 | |||
2250 | csrow = sys_addr_to_csrow(log_mci, SystemAddress); | ||
2251 | if (csrow < 0) { | ||
2252 | amd64_mc_printk(mci, KERN_CRIT, | ||
2253 | "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n", | ||
2254 | (unsigned long)SystemAddress); | ||
2255 | edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); | ||
2256 | } else { | ||
2257 | error_address_to_page_and_offset(SystemAddress, &page, &offset); | ||
2258 | edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR); | ||
2259 | } | ||
2260 | } | ||
2261 | |||
2262 | static void amd64_decode_bus_error(struct mem_ctl_info *mci, | ||
2263 | struct amd64_error_info_regs *info) | ||
2264 | { | ||
2265 | u32 err_code, ext_ec; | ||
2266 | u32 ec_pp; /* error code participating processor (2p) */ | ||
2267 | u32 ec_to; /* error code timed out (1b) */ | ||
2268 | u32 ec_rrrr; /* error code memory transaction (4b) */ | ||
2269 | u32 ec_ii; /* error code memory or I/O (2b) */ | ||
2270 | u32 ec_ll; /* error code cache level (2b) */ | ||
2271 | |||
2272 | ext_ec = EXTRACT_EXT_ERROR_CODE(info->nbsl); | ||
2273 | err_code = EXTRACT_ERROR_CODE(info->nbsl); | ||
2274 | |||
2275 | ec_ll = EXTRACT_LL_CODE(err_code); | ||
2276 | ec_ii = EXTRACT_II_CODE(err_code); | ||
2277 | ec_rrrr = EXTRACT_RRRR_CODE(err_code); | ||
2278 | ec_to = EXTRACT_TO_CODE(err_code); | ||
2279 | ec_pp = EXTRACT_PP_CODE(err_code); | ||
2280 | |||
2281 | amd64_mc_printk(mci, KERN_ERR, | ||
2282 | "BUS ERROR:\n" | ||
2283 | " time-out(%s) mem or i/o(%s)\n" | ||
2284 | " participating processor(%s)\n" | ||
2285 | " memory transaction type(%s)\n" | ||
2286 | " cache level(%s) Error Found by: %s\n", | ||
2287 | to_msgs[ec_to], | ||
2288 | ii_msgs[ec_ii], | ||
2289 | pp_msgs[ec_pp], | ||
2290 | rrrr_msgs[ec_rrrr], | ||
2291 | ll_msgs[ec_ll], | ||
2292 | (info->nbsh & K8_NBSH_ERR_SCRUBER) ? | ||
2293 | "Scrubber" : "Normal Operation"); | ||
2294 | |||
2295 | /* If this was an 'observed' error, early out */ | ||
2296 | if (ec_pp == K8_NBSL_PP_OBS) | ||
2297 | return; /* We aren't the node involved */ | ||
2298 | |||
2299 | /* Parse out the extended error code for ECC events */ | ||
2300 | switch (ext_ec) { | ||
2301 | /* F10 changed to one Extended ECC error code */ | ||
2302 | case F10_NBSL_EXT_ERR_RES: /* Reserved field */ | ||
2303 | case F10_NBSL_EXT_ERR_ECC: /* F10 ECC ext err code */ | ||
2304 | break; | ||
2305 | |||
2306 | default: | ||
2307 | amd64_mc_printk(mci, KERN_ERR, "NOT ECC: no special error " | ||
2308 | "handling for this error\n"); | ||
2309 | return; | ||
2310 | } | ||
2311 | |||
2312 | if (info->nbsh & K8_NBSH_CECC) | ||
2313 | amd64_handle_ce(mci, info); | ||
2314 | else if (info->nbsh & K8_NBSH_UECC) | ||
2315 | amd64_handle_ue(mci, info); | ||
2316 | |||
2317 | /* | ||
2318 | * If main error is CE then overflow must be CE. If main error is UE | ||
2319 | * then overflow is unknown. We'll call the overflow a CE - if | ||
2320 | * panic_on_ue is set then we're already panic'ed and won't arrive | ||
2321 | * here. Else, then apparently someone doesn't think that UE's are | ||
2322 | * catastrophic. | ||
2323 | */ | ||
2324 | if (info->nbsh & K8_NBSH_OVERFLOW) | ||
2325 | edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR | ||
2326 | "Error Overflow set"); | ||
2327 | } | ||
2328 | |||
2329 | int amd64_process_error_info(struct mem_ctl_info *mci, | ||
2330 | struct amd64_error_info_regs *info, | ||
2331 | int handle_errors) | ||
2332 | { | ||
2333 | struct amd64_pvt *pvt; | ||
2334 | struct amd64_error_info_regs *regs; | ||
2335 | u32 err_code, ext_ec; | ||
2336 | int gart_tlb_error = 0; | ||
2337 | |||
2338 | pvt = mci->pvt_info; | ||
2339 | |||
2340 | /* If caller doesn't want us to process the error, return */ | ||
2341 | if (!handle_errors) | ||
2342 | return 1; | ||
2343 | |||
2344 | regs = info; | ||
2345 | |||
2346 | debugf1("NorthBridge ERROR: mci(0x%p)\n", mci); | ||
2347 | debugf1(" MC node(%d) Error-Address(0x%.8x-%.8x)\n", | ||
2348 | pvt->mc_node_id, regs->nbeah, regs->nbeal); | ||
2349 | debugf1(" nbsh(0x%.8x) nbsl(0x%.8x)\n", | ||
2350 | regs->nbsh, regs->nbsl); | ||
2351 | debugf1(" Valid Error=%s Overflow=%s\n", | ||
2352 | (regs->nbsh & K8_NBSH_VALID_BIT) ? "True" : "False", | ||
2353 | (regs->nbsh & K8_NBSH_OVERFLOW) ? "True" : "False"); | ||
2354 | debugf1(" Err Uncorrected=%s MCA Error Reporting=%s\n", | ||
2355 | (regs->nbsh & K8_NBSH_UNCORRECTED_ERR) ? | ||
2356 | "True" : "False", | ||
2357 | (regs->nbsh & K8_NBSH_ERR_ENABLE) ? | ||
2358 | "True" : "False"); | ||
2359 | debugf1(" MiscErr Valid=%s ErrAddr Valid=%s PCC=%s\n", | ||
2360 | (regs->nbsh & K8_NBSH_MISC_ERR_VALID) ? | ||
2361 | "True" : "False", | ||
2362 | (regs->nbsh & K8_NBSH_VALID_ERROR_ADDR) ? | ||
2363 | "True" : "False", | ||
2364 | (regs->nbsh & K8_NBSH_PCC) ? | ||
2365 | "True" : "False"); | ||
2366 | debugf1(" CECC=%s UECC=%s Found by Scruber=%s\n", | ||
2367 | (regs->nbsh & K8_NBSH_CECC) ? | ||
2368 | "True" : "False", | ||
2369 | (regs->nbsh & K8_NBSH_UECC) ? | ||
2370 | "True" : "False", | ||
2371 | (regs->nbsh & K8_NBSH_ERR_SCRUBER) ? | ||
2372 | "True" : "False"); | ||
2373 | debugf1(" CORE0=%s CORE1=%s CORE2=%s CORE3=%s\n", | ||
2374 | (regs->nbsh & K8_NBSH_CORE0) ? "True" : "False", | ||
2375 | (regs->nbsh & K8_NBSH_CORE1) ? "True" : "False", | ||
2376 | (regs->nbsh & K8_NBSH_CORE2) ? "True" : "False", | ||
2377 | (regs->nbsh & K8_NBSH_CORE3) ? "True" : "False"); | ||
2378 | |||
2379 | |||
2380 | err_code = EXTRACT_ERROR_CODE(regs->nbsl); | ||
2381 | |||
2382 | /* Determine which error type: | ||
2383 | * 1) GART errors - non-fatal, developmental events | ||
2384 | * 2) MEMORY errors | ||
2385 | * 3) BUS errors | ||
2386 | * 4) Unknown error | ||
2387 | */ | ||
2388 | if (TEST_TLB_ERROR(err_code)) { | ||
2389 | /* | ||
2390 | * GART errors are intended to help graphics driver developers | ||
2391 | * to detect bad GART PTEs. It is recommended by AMD to disable | ||
2392 | * GART table walk error reporting by default[1] (currently | ||
2393 | * being disabled in mce_cpu_quirks()) and according to the | ||
2394 | * comment in mce_cpu_quirks(), such GART errors can be | ||
2395 | * incorrectly triggered. We may see these errors anyway and | ||
2396 | * unless requested by the user, they won't be reported. | ||
2397 | * | ||
2398 | * [1] section 13.10.1 on BIOS and Kernel Developers Guide for | ||
2399 | * AMD NPT family 0Fh processors | ||
2400 | */ | ||
2401 | if (report_gart_errors == 0) | ||
2402 | return 1; | ||
2403 | |||
2404 | /* | ||
2405 | * Only if GART error reporting is requested should we generate | ||
2406 | * any logs. | ||
2407 | */ | ||
2408 | gart_tlb_error = 1; | ||
2409 | |||
2410 | debugf1("GART TLB error\n"); | ||
2411 | amd64_decode_gart_tlb_error(mci, info); | ||
2412 | } else if (TEST_MEM_ERROR(err_code)) { | ||
2413 | debugf1("Memory/Cache error\n"); | ||
2414 | amd64_decode_mem_cache_error(mci, info); | ||
2415 | } else if (TEST_BUS_ERROR(err_code)) { | ||
2416 | debugf1("Bus (Link/DRAM) error\n"); | ||
2417 | amd64_decode_bus_error(mci, info); | ||
2418 | } else { | ||
2419 | /* shouldn't reach here! */ | ||
2420 | amd64_mc_printk(mci, KERN_WARNING, | ||
2421 | "%s(): unknown MCE error 0x%x\n", __func__, | ||
2422 | err_code); | ||
2423 | } | ||
2424 | |||
2425 | ext_ec = EXTRACT_EXT_ERROR_CODE(regs->nbsl); | ||
2426 | amd64_mc_printk(mci, KERN_ERR, | ||
2427 | "ExtErr=(0x%x) %s\n", ext_ec, ext_msgs[ext_ec]); | ||
2428 | |||
2429 | if (((ext_ec >= F10_NBSL_EXT_ERR_CRC && | ||
2430 | ext_ec <= F10_NBSL_EXT_ERR_TGT) || | ||
2431 | (ext_ec == F10_NBSL_EXT_ERR_RMW)) && | ||
2432 | EXTRACT_LDT_LINK(info->nbsh)) { | ||
2433 | |||
2434 | amd64_mc_printk(mci, KERN_ERR, | ||
2435 | "Error on hypertransport link: %s\n", | ||
2436 | htlink_msgs[ | ||
2437 | EXTRACT_LDT_LINK(info->nbsh)]); | ||
2438 | } | ||
2439 | |||
2440 | /* | ||
2441 | * Check the UE bit of the NB status high register, if set generate some | ||
2442 | * logs. If NOT a GART error, then process the event as a NO-INFO event. | ||
2443 | * If it was a GART error, skip that process. | ||
2444 | */ | ||
2445 | if (regs->nbsh & K8_NBSH_UNCORRECTED_ERR) { | ||
2446 | amd64_mc_printk(mci, KERN_CRIT, "uncorrected error\n"); | ||
2447 | if (!gart_tlb_error) | ||
2448 | edac_mc_handle_ue_no_info(mci, "UE bit is set\n"); | ||
2449 | } | ||
2450 | |||
2451 | if (regs->nbsh & K8_NBSH_PCC) | ||
2452 | amd64_mc_printk(mci, KERN_CRIT, | ||
2453 | "PCC (processor context corrupt) set\n"); | ||
2454 | |||
2455 | return 1; | ||
2456 | } | ||
2457 | EXPORT_SYMBOL_GPL(amd64_process_error_info); | ||
2458 | |||
2459 | /* | ||
2460 | * The main polling 'check' function, called FROM the edac core to perform the | ||
2461 | * error checking and if an error is encountered, error processing. | ||
2462 | */ | ||
2463 | static void amd64_check(struct mem_ctl_info *mci) | ||
2464 | { | ||
2465 | struct amd64_error_info_regs info; | ||
2466 | |||
2467 | if (amd64_get_error_info(mci, &info)) | ||
2468 | amd64_process_error_info(mci, &info, 1); | ||
2469 | } | ||
2470 | |||
2471 | /* | ||
2472 | * Input: | ||
2473 | * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer | ||
2474 | * 2) AMD Family index value | ||
2475 | * | ||
2476 | * Ouput: | ||
2477 | * Upon return of 0, the following filled in: | ||
2478 | * | ||
2479 | * struct pvt->addr_f1_ctl | ||
2480 | * struct pvt->misc_f3_ctl | ||
2481 | * | ||
2482 | * Filled in with related device funcitions of 'dram_f2_ctl' | ||
2483 | * These devices are "reserved" via the pci_get_device() | ||
2484 | * | ||
2485 | * Upon return of 1 (error status): | ||
2486 | * | ||
2487 | * Nothing reserved | ||
2488 | */ | ||
2489 | static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx) | ||
2490 | { | ||
2491 | const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx]; | ||
2492 | |||
2493 | /* Reserve the ADDRESS MAP Device */ | ||
2494 | pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor, | ||
2495 | amd64_dev->addr_f1_ctl, | ||
2496 | pvt->dram_f2_ctl); | ||
2497 | |||
2498 | if (!pvt->addr_f1_ctl) { | ||
2499 | amd64_printk(KERN_ERR, "error address map device not found: " | ||
2500 | "vendor %x device 0x%x (broken BIOS?)\n", | ||
2501 | PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl); | ||
2502 | return 1; | ||
2503 | } | ||
2504 | |||
2505 | /* Reserve the MISC Device */ | ||
2506 | pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor, | ||
2507 | amd64_dev->misc_f3_ctl, | ||
2508 | pvt->dram_f2_ctl); | ||
2509 | |||
2510 | if (!pvt->misc_f3_ctl) { | ||
2511 | pci_dev_put(pvt->addr_f1_ctl); | ||
2512 | pvt->addr_f1_ctl = NULL; | ||
2513 | |||
2514 | amd64_printk(KERN_ERR, "error miscellaneous device not found: " | ||
2515 | "vendor %x device 0x%x (broken BIOS?)\n", | ||
2516 | PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl); | ||
2517 | return 1; | ||
2518 | } | ||
2519 | |||
2520 | debugf1(" Addr Map device PCI Bus ID:\t%s\n", | ||
2521 | pci_name(pvt->addr_f1_ctl)); | ||
2522 | debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n", | ||
2523 | pci_name(pvt->dram_f2_ctl)); | ||
2524 | debugf1(" Misc device PCI Bus ID:\t%s\n", | ||
2525 | pci_name(pvt->misc_f3_ctl)); | ||
2526 | |||
2527 | return 0; | ||
2528 | } | ||
2529 | |||
2530 | static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt) | ||
2531 | { | ||
2532 | pci_dev_put(pvt->addr_f1_ctl); | ||
2533 | pci_dev_put(pvt->misc_f3_ctl); | ||
2534 | } | ||
2535 | |||
2536 | /* | ||
2537 | * Retrieve the hardware registers of the memory controller (this includes the | ||
2538 | * 'Address Map' and 'Misc' device regs) | ||
2539 | */ | ||
2540 | static void amd64_read_mc_registers(struct amd64_pvt *pvt) | ||
2541 | { | ||
2542 | u64 msr_val; | ||
2543 | int dram, err = 0; | ||
2544 | |||
2545 | /* | ||
2546 | * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since | ||
2547 | * those are Read-As-Zero | ||
2548 | */ | ||
2549 | rdmsrl(MSR_K8_TOP_MEM1, msr_val); | ||
2550 | pvt->top_mem = msr_val >> 23; | ||
2551 | debugf0(" TOP_MEM=0x%08llx\n", pvt->top_mem); | ||
2552 | |||
2553 | /* check first whether TOP_MEM2 is enabled */ | ||
2554 | rdmsrl(MSR_K8_SYSCFG, msr_val); | ||
2555 | if (msr_val & (1U << 21)) { | ||
2556 | rdmsrl(MSR_K8_TOP_MEM2, msr_val); | ||
2557 | pvt->top_mem2 = msr_val >> 23; | ||
2558 | debugf0(" TOP_MEM2=0x%08llx\n", pvt->top_mem2); | ||
2559 | } else | ||
2560 | debugf0(" TOP_MEM2 disabled.\n"); | ||
2561 | |||
2562 | amd64_cpu_display_info(pvt); | ||
2563 | |||
2564 | err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap); | ||
2565 | if (err) | ||
2566 | goto err_reg; | ||
2567 | |||
2568 | if (pvt->ops->read_dram_ctl_register) | ||
2569 | pvt->ops->read_dram_ctl_register(pvt); | ||
2570 | |||
2571 | for (dram = 0; dram < DRAM_REG_COUNT; dram++) { | ||
2572 | /* | ||
2573 | * Call CPU specific READ function to get the DRAM Base and | ||
2574 | * Limit values from the DCT. | ||
2575 | */ | ||
2576 | pvt->ops->read_dram_base_limit(pvt, dram); | ||
2577 | |||
2578 | /* | ||
2579 | * Only print out debug info on rows with both R and W Enabled. | ||
2580 | * Normal processing, compiler should optimize this whole 'if' | ||
2581 | * debug output block away. | ||
2582 | */ | ||
2583 | if (pvt->dram_rw_en[dram] != 0) { | ||
2584 | debugf1(" DRAM_BASE[%d]: 0x%8.08x-%8.08x " | ||
2585 | "DRAM_LIMIT: 0x%8.08x-%8.08x\n", | ||
2586 | dram, | ||
2587 | (u32)(pvt->dram_base[dram] >> 32), | ||
2588 | (u32)(pvt->dram_base[dram] & 0xFFFFFFFF), | ||
2589 | (u32)(pvt->dram_limit[dram] >> 32), | ||
2590 | (u32)(pvt->dram_limit[dram] & 0xFFFFFFFF)); | ||
2591 | debugf1(" IntlvEn=%s %s %s " | ||
2592 | "IntlvSel=%d DstNode=%d\n", | ||
2593 | pvt->dram_IntlvEn[dram] ? | ||
2594 | "Enabled" : "Disabled", | ||
2595 | (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W", | ||
2596 | (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R", | ||
2597 | pvt->dram_IntlvSel[dram], | ||
2598 | pvt->dram_DstNode[dram]); | ||
2599 | } | ||
2600 | } | ||
2601 | |||
2602 | amd64_read_dct_base_mask(pvt); | ||
2603 | |||
2604 | err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar); | ||
2605 | if (err) | ||
2606 | goto err_reg; | ||
2607 | |||
2608 | amd64_read_dbam_reg(pvt); | ||
2609 | |||
2610 | err = pci_read_config_dword(pvt->misc_f3_ctl, | ||
2611 | F10_ONLINE_SPARE, &pvt->online_spare); | ||
2612 | if (err) | ||
2613 | goto err_reg; | ||
2614 | |||
2615 | err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0); | ||
2616 | if (err) | ||
2617 | goto err_reg; | ||
2618 | |||
2619 | err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0); | ||
2620 | if (err) | ||
2621 | goto err_reg; | ||
2622 | |||
2623 | if (!dct_ganging_enabled(pvt)) { | ||
2624 | err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, | ||
2625 | &pvt->dclr1); | ||
2626 | if (err) | ||
2627 | goto err_reg; | ||
2628 | |||
2629 | err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1, | ||
2630 | &pvt->dchr1); | ||
2631 | if (err) | ||
2632 | goto err_reg; | ||
2633 | } | ||
2634 | |||
2635 | amd64_dump_misc_regs(pvt); | ||
2636 | |||
2637 | err_reg: | ||
2638 | debugf0("Reading an MC register failed\n"); | ||
2639 | |||
2640 | } | ||
2641 | |||
2642 | /* | ||
2643 | * NOTE: CPU Revision Dependent code | ||
2644 | * | ||
2645 | * Input: | ||
2646 | * @csrow_nr ChipSelect Row Number (0..CHIPSELECT_COUNT-1) | ||
2647 | * k8 private pointer to --> | ||
2648 | * DRAM Bank Address mapping register | ||
2649 | * node_id | ||
2650 | * DCL register where dual_channel_active is | ||
2651 | * | ||
2652 | * The DBAM register consists of 4 sets of 4 bits each definitions: | ||
2653 | * | ||
2654 | * Bits: CSROWs | ||
2655 | * 0-3 CSROWs 0 and 1 | ||
2656 | * 4-7 CSROWs 2 and 3 | ||
2657 | * 8-11 CSROWs 4 and 5 | ||
2658 | * 12-15 CSROWs 6 and 7 | ||
2659 | * | ||
2660 | * Values range from: 0 to 15 | ||
2661 | * The meaning of the values depends on CPU revision and dual-channel state, | ||
2662 | * see relevant BKDG more info. | ||
2663 | * | ||
2664 | * The memory controller provides for total of only 8 CSROWs in its current | ||
2665 | * architecture. Each "pair" of CSROWs normally represents just one DIMM in | ||
2666 | * single channel or two (2) DIMMs in dual channel mode. | ||
2667 | * | ||
2668 | * The following code logic collapses the various tables for CSROW based on CPU | ||
2669 | * revision. | ||
2670 | * | ||
2671 | * Returns: | ||
2672 | * The number of PAGE_SIZE pages on the specified CSROW number it | ||
2673 | * encompasses | ||
2674 | * | ||
2675 | */ | ||
2676 | static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt) | ||
2677 | { | ||
2678 | u32 dram_map, nr_pages; | ||
2679 | |||
2680 | /* | ||
2681 | * The math on this doesn't look right on the surface because x/2*4 can | ||
2682 | * be simplified to x*2 but this expression makes use of the fact that | ||
2683 | * it is integral math where 1/2=0. This intermediate value becomes the | ||
2684 | * number of bits to shift the DBAM register to extract the proper CSROW | ||
2685 | * field. | ||
2686 | */ | ||
2687 | dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF; | ||
2688 | |||
2689 | nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map); | ||
2690 | |||
2691 | /* | ||
2692 | * If dual channel then double the memory size of single channel. | ||
2693 | * Channel count is 1 or 2 | ||
2694 | */ | ||
2695 | nr_pages <<= (pvt->channel_count - 1); | ||
2696 | |||
2697 | debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map); | ||
2698 | debugf0(" nr_pages= %u channel-count = %d\n", | ||
2699 | nr_pages, pvt->channel_count); | ||
2700 | |||
2701 | return nr_pages; | ||
2702 | } | ||
2703 | |||
2704 | /* | ||
2705 | * Initialize the array of csrow attribute instances, based on the values | ||
2706 | * from pci config hardware registers. | ||
2707 | */ | ||
2708 | static int amd64_init_csrows(struct mem_ctl_info *mci) | ||
2709 | { | ||
2710 | struct csrow_info *csrow; | ||
2711 | struct amd64_pvt *pvt; | ||
2712 | u64 input_addr_min, input_addr_max, sys_addr; | ||
2713 | int i, err = 0, empty = 1; | ||
2714 | |||
2715 | pvt = mci->pvt_info; | ||
2716 | |||
2717 | err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg); | ||
2718 | if (err) | ||
2719 | debugf0("Reading K8_NBCFG failed\n"); | ||
2720 | |||
2721 | debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg, | ||
2722 | (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled", | ||
2723 | (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled" | ||
2724 | ); | ||
2725 | |||
2726 | for (i = 0; i < CHIPSELECT_COUNT; i++) { | ||
2727 | csrow = &mci->csrows[i]; | ||
2728 | |||
2729 | if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) { | ||
2730 | debugf1("----CSROW %d EMPTY for node %d\n", i, | ||
2731 | pvt->mc_node_id); | ||
2732 | continue; | ||
2733 | } | ||
2734 | |||
2735 | debugf1("----CSROW %d VALID for MC node %d\n", | ||
2736 | i, pvt->mc_node_id); | ||
2737 | |||
2738 | empty = 0; | ||
2739 | csrow->nr_pages = amd64_csrow_nr_pages(i, pvt); | ||
2740 | find_csrow_limits(mci, i, &input_addr_min, &input_addr_max); | ||
2741 | sys_addr = input_addr_to_sys_addr(mci, input_addr_min); | ||
2742 | csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT); | ||
2743 | sys_addr = input_addr_to_sys_addr(mci, input_addr_max); | ||
2744 | csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT); | ||
2745 | csrow->page_mask = ~mask_from_dct_mask(pvt, i); | ||
2746 | /* 8 bytes of resolution */ | ||
2747 | |||
2748 | csrow->mtype = amd64_determine_memory_type(pvt); | ||
2749 | |||
2750 | debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i); | ||
2751 | debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n", | ||
2752 | (unsigned long)input_addr_min, | ||
2753 | (unsigned long)input_addr_max); | ||
2754 | debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n", | ||
2755 | (unsigned long)sys_addr, csrow->page_mask); | ||
2756 | debugf1(" nr_pages: %u first_page: 0x%lx " | ||
2757 | "last_page: 0x%lx\n", | ||
2758 | (unsigned)csrow->nr_pages, | ||
2759 | csrow->first_page, csrow->last_page); | ||
2760 | |||
2761 | /* | ||
2762 | * determine whether CHIPKILL or JUST ECC or NO ECC is operating | ||
2763 | */ | ||
2764 | if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) | ||
2765 | csrow->edac_mode = | ||
2766 | (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? | ||
2767 | EDAC_S4ECD4ED : EDAC_SECDED; | ||
2768 | else | ||
2769 | csrow->edac_mode = EDAC_NONE; | ||
2770 | } | ||
2771 | |||
2772 | return empty; | ||
2773 | } | ||
2774 | |||
2775 | /* | ||
2776 | * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we" | ||
2777 | * enable it. | ||
2778 | */ | ||
2779 | static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci) | ||
2780 | { | ||
2781 | struct amd64_pvt *pvt = mci->pvt_info; | ||
2782 | const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id); | ||
2783 | int cpu, idx = 0, err = 0; | ||
2784 | struct msr msrs[cpumask_weight(cpumask)]; | ||
2785 | u32 value; | ||
2786 | u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn; | ||
2787 | |||
2788 | if (!ecc_enable_override) | ||
2789 | return; | ||
2790 | |||
2791 | memset(msrs, 0, sizeof(msrs)); | ||
2792 | |||
2793 | amd64_printk(KERN_WARNING, | ||
2794 | "'ecc_enable_override' parameter is active, " | ||
2795 | "Enabling AMD ECC hardware now: CAUTION\n"); | ||
2796 | |||
2797 | err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value); | ||
2798 | if (err) | ||
2799 | debugf0("Reading K8_NBCTL failed\n"); | ||
2800 | |||
2801 | /* turn on UECCn and CECCEn bits */ | ||
2802 | pvt->old_nbctl = value & mask; | ||
2803 | pvt->nbctl_mcgctl_saved = 1; | ||
2804 | |||
2805 | value |= mask; | ||
2806 | pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value); | ||
2807 | |||
2808 | rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs); | ||
2809 | |||
2810 | for_each_cpu(cpu, cpumask) { | ||
2811 | if (msrs[idx].l & K8_MSR_MCGCTL_NBE) | ||
2812 | set_bit(idx, &pvt->old_mcgctl); | ||
2813 | |||
2814 | msrs[idx].l |= K8_MSR_MCGCTL_NBE; | ||
2815 | idx++; | ||
2816 | } | ||
2817 | wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs); | ||
2818 | |||
2819 | err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value); | ||
2820 | if (err) | ||
2821 | debugf0("Reading K8_NBCFG failed\n"); | ||
2822 | |||
2823 | debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value, | ||
2824 | (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled", | ||
2825 | (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"); | ||
2826 | |||
2827 | if (!(value & K8_NBCFG_ECC_ENABLE)) { | ||
2828 | amd64_printk(KERN_WARNING, | ||
2829 | "This node reports that DRAM ECC is " | ||
2830 | "currently Disabled; ENABLING now\n"); | ||
2831 | |||
2832 | /* Attempt to turn on DRAM ECC Enable */ | ||
2833 | value |= K8_NBCFG_ECC_ENABLE; | ||
2834 | pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value); | ||
2835 | |||
2836 | err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value); | ||
2837 | if (err) | ||
2838 | debugf0("Reading K8_NBCFG failed\n"); | ||
2839 | |||
2840 | if (!(value & K8_NBCFG_ECC_ENABLE)) { | ||
2841 | amd64_printk(KERN_WARNING, | ||
2842 | "Hardware rejects Enabling DRAM ECC checking\n" | ||
2843 | "Check memory DIMM configuration\n"); | ||
2844 | } else { | ||
2845 | amd64_printk(KERN_DEBUG, | ||
2846 | "Hardware accepted DRAM ECC Enable\n"); | ||
2847 | } | ||
2848 | } | ||
2849 | debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value, | ||
2850 | (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled", | ||
2851 | (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"); | ||
2852 | |||
2853 | pvt->ctl_error_info.nbcfg = value; | ||
2854 | } | ||
2855 | |||
2856 | static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt) | ||
2857 | { | ||
2858 | const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id); | ||
2859 | int cpu, idx = 0, err = 0; | ||
2860 | struct msr msrs[cpumask_weight(cpumask)]; | ||
2861 | u32 value; | ||
2862 | u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn; | ||
2863 | |||
2864 | if (!pvt->nbctl_mcgctl_saved) | ||
2865 | return; | ||
2866 | |||
2867 | memset(msrs, 0, sizeof(msrs)); | ||
2868 | |||
2869 | err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value); | ||
2870 | if (err) | ||
2871 | debugf0("Reading K8_NBCTL failed\n"); | ||
2872 | value &= ~mask; | ||
2873 | value |= pvt->old_nbctl; | ||
2874 | |||
2875 | /* restore the NB Enable MCGCTL bit */ | ||
2876 | pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value); | ||
2877 | |||
2878 | rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs); | ||
2879 | |||
2880 | for_each_cpu(cpu, cpumask) { | ||
2881 | msrs[idx].l &= ~K8_MSR_MCGCTL_NBE; | ||
2882 | msrs[idx].l |= | ||
2883 | test_bit(idx, &pvt->old_mcgctl) << K8_MSR_MCGCTL_NBE; | ||
2884 | idx++; | ||
2885 | } | ||
2886 | |||
2887 | wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs); | ||
2888 | } | ||
2889 | |||
2890 | static void check_mcg_ctl(void *ret) | ||
2891 | { | ||
2892 | u64 msr_val = 0; | ||
2893 | u8 nbe; | ||
2894 | |||
2895 | rdmsrl(MSR_IA32_MCG_CTL, msr_val); | ||
2896 | nbe = msr_val & K8_MSR_MCGCTL_NBE; | ||
2897 | |||
2898 | debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", | ||
2899 | raw_smp_processor_id(), msr_val, | ||
2900 | (nbe ? "enabled" : "disabled")); | ||
2901 | |||
2902 | if (!nbe) | ||
2903 | *(int *)ret = 0; | ||
2904 | } | ||
2905 | |||
2906 | /* check MCG_CTL on all the cpus on this node */ | ||
2907 | static int amd64_mcg_ctl_enabled_on_cpus(const cpumask_t *mask) | ||
2908 | { | ||
2909 | int ret = 1; | ||
2910 | preempt_disable(); | ||
2911 | smp_call_function_many(mask, check_mcg_ctl, &ret, 1); | ||
2912 | preempt_enable(); | ||
2913 | |||
2914 | return ret; | ||
2915 | } | ||
2916 | |||
2917 | /* | ||
2918 | * EDAC requires that the BIOS have ECC enabled before taking over the | ||
2919 | * processing of ECC errors. This is because the BIOS can properly initialize | ||
2920 | * the memory system completely. A command line option allows to force-enable | ||
2921 | * hardware ECC later in amd64_enable_ecc_error_reporting(). | ||
2922 | */ | ||
2923 | static int amd64_check_ecc_enabled(struct amd64_pvt *pvt) | ||
2924 | { | ||
2925 | u32 value; | ||
2926 | int err = 0, ret = 0; | ||
2927 | u8 ecc_enabled = 0; | ||
2928 | |||
2929 | err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value); | ||
2930 | if (err) | ||
2931 | debugf0("Reading K8_NBCTL failed\n"); | ||
2932 | |||
2933 | ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE); | ||
2934 | |||
2935 | ret = amd64_mcg_ctl_enabled_on_cpus(cpumask_of_node(pvt->mc_node_id)); | ||
2936 | |||
2937 | debugf0("K8_NBCFG=0x%x, DRAM ECC is %s\n", value, | ||
2938 | (value & K8_NBCFG_ECC_ENABLE ? "enabled" : "disabled")); | ||
2939 | |||
2940 | if (!ecc_enabled || !ret) { | ||
2941 | if (!ecc_enabled) { | ||
2942 | amd64_printk(KERN_WARNING, "This node reports that " | ||
2943 | "Memory ECC is currently " | ||
2944 | "disabled.\n"); | ||
2945 | |||
2946 | amd64_printk(KERN_WARNING, "bit 0x%lx in register " | ||
2947 | "F3x%x of the MISC_CONTROL device (%s) " | ||
2948 | "should be enabled\n", K8_NBCFG_ECC_ENABLE, | ||
2949 | K8_NBCFG, pci_name(pvt->misc_f3_ctl)); | ||
2950 | } | ||
2951 | if (!ret) { | ||
2952 | amd64_printk(KERN_WARNING, "bit 0x%016lx in MSR 0x%08x " | ||
2953 | "of node %d should be enabled\n", | ||
2954 | K8_MSR_MCGCTL_NBE, MSR_IA32_MCG_CTL, | ||
2955 | pvt->mc_node_id); | ||
2956 | } | ||
2957 | if (!ecc_enable_override) { | ||
2958 | amd64_printk(KERN_WARNING, "WARNING: ECC is NOT " | ||
2959 | "currently enabled by the BIOS. Module " | ||
2960 | "will NOT be loaded.\n" | ||
2961 | " Either Enable ECC in the BIOS, " | ||
2962 | "or use the 'ecc_enable_override' " | ||
2963 | "parameter.\n" | ||
2964 | " Might be a BIOS bug, if BIOS says " | ||
2965 | "ECC is enabled\n" | ||
2966 | " Use of the override can cause " | ||
2967 | "unknown side effects.\n"); | ||
2968 | ret = -ENODEV; | ||
2969 | } | ||
2970 | } else { | ||
2971 | amd64_printk(KERN_INFO, | ||
2972 | "ECC is enabled by BIOS, Proceeding " | ||
2973 | "with EDAC module initialization\n"); | ||
2974 | |||
2975 | /* CLEAR the override, since BIOS controlled it */ | ||
2976 | ecc_enable_override = 0; | ||
2977 | } | ||
2978 | |||
2979 | return ret; | ||
2980 | } | ||
2981 | |||
2982 | struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) + | ||
2983 | ARRAY_SIZE(amd64_inj_attrs) + | ||
2984 | 1]; | ||
2985 | |||
2986 | struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } }; | ||
2987 | |||
2988 | static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci) | ||
2989 | { | ||
2990 | unsigned int i = 0, j = 0; | ||
2991 | |||
2992 | for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++) | ||
2993 | sysfs_attrs[i] = amd64_dbg_attrs[i]; | ||
2994 | |||
2995 | for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++) | ||
2996 | sysfs_attrs[i] = amd64_inj_attrs[j]; | ||
2997 | |||
2998 | sysfs_attrs[i] = terminator; | ||
2999 | |||
3000 | mci->mc_driver_sysfs_attributes = sysfs_attrs; | ||
3001 | } | ||
3002 | |||
3003 | static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci) | ||
3004 | { | ||
3005 | struct amd64_pvt *pvt = mci->pvt_info; | ||
3006 | |||
3007 | mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; | ||
3008 | mci->edac_ctl_cap = EDAC_FLAG_NONE; | ||
3009 | mci->edac_cap = EDAC_FLAG_NONE; | ||
3010 | |||
3011 | if (pvt->nbcap & K8_NBCAP_SECDED) | ||
3012 | mci->edac_ctl_cap |= EDAC_FLAG_SECDED; | ||
3013 | |||
3014 | if (pvt->nbcap & K8_NBCAP_CHIPKILL) | ||
3015 | mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; | ||
3016 | |||
3017 | mci->edac_cap = amd64_determine_edac_cap(pvt); | ||
3018 | mci->mod_name = EDAC_MOD_STR; | ||
3019 | mci->mod_ver = EDAC_AMD64_VERSION; | ||
3020 | mci->ctl_name = get_amd_family_name(pvt->mc_type_index); | ||
3021 | mci->dev_name = pci_name(pvt->dram_f2_ctl); | ||
3022 | mci->ctl_page_to_phys = NULL; | ||
3023 | |||
3024 | /* IMPORTANT: Set the polling 'check' function in this module */ | ||
3025 | mci->edac_check = amd64_check; | ||
3026 | |||
3027 | /* memory scrubber interface */ | ||
3028 | mci->set_sdram_scrub_rate = amd64_set_scrub_rate; | ||
3029 | mci->get_sdram_scrub_rate = amd64_get_scrub_rate; | ||
3030 | } | ||
3031 | |||
3032 | /* | ||
3033 | * Init stuff for this DRAM Controller device. | ||
3034 | * | ||
3035 | * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration | ||
3036 | * Space feature MUST be enabled on ALL Processors prior to actually reading | ||
3037 | * from the ECS registers. Since the loading of the module can occur on any | ||
3038 | * 'core', and cores don't 'see' all the other processors ECS data when the | ||
3039 | * others are NOT enabled. Our solution is to first enable ECS access in this | ||
3040 | * routine on all processors, gather some data in a amd64_pvt structure and | ||
3041 | * later come back in a finish-setup function to perform that final | ||
3042 | * initialization. See also amd64_init_2nd_stage() for that. | ||
3043 | */ | ||
3044 | static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl, | ||
3045 | int mc_type_index) | ||
3046 | { | ||
3047 | struct amd64_pvt *pvt = NULL; | ||
3048 | int err = 0, ret; | ||
3049 | |||
3050 | ret = -ENOMEM; | ||
3051 | pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); | ||
3052 | if (!pvt) | ||
3053 | goto err_exit; | ||
3054 | |||
3055 | pvt->mc_node_id = get_mc_node_id_from_pdev(dram_f2_ctl); | ||
3056 | |||
3057 | pvt->dram_f2_ctl = dram_f2_ctl; | ||
3058 | pvt->ext_model = boot_cpu_data.x86_model >> 4; | ||
3059 | pvt->mc_type_index = mc_type_index; | ||
3060 | pvt->ops = family_ops(mc_type_index); | ||
3061 | pvt->old_mcgctl = 0; | ||
3062 | |||
3063 | /* | ||
3064 | * We have the dram_f2_ctl device as an argument, now go reserve its | ||
3065 | * sibling devices from the PCI system. | ||
3066 | */ | ||
3067 | ret = -ENODEV; | ||
3068 | err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index); | ||
3069 | if (err) | ||
3070 | goto err_free; | ||
3071 | |||
3072 | ret = -EINVAL; | ||
3073 | err = amd64_check_ecc_enabled(pvt); | ||
3074 | if (err) | ||
3075 | goto err_put; | ||
3076 | |||
3077 | /* | ||
3078 | * Key operation here: setup of HW prior to performing ops on it. Some | ||
3079 | * setup is required to access ECS data. After this is performed, the | ||
3080 | * 'teardown' function must be called upon error and normal exit paths. | ||
3081 | */ | ||
3082 | if (boot_cpu_data.x86 >= 0x10) | ||
3083 | amd64_setup(pvt); | ||
3084 | |||
3085 | /* | ||
3086 | * Save the pointer to the private data for use in 2nd initialization | ||
3087 | * stage | ||
3088 | */ | ||
3089 | pvt_lookup[pvt->mc_node_id] = pvt; | ||
3090 | |||
3091 | return 0; | ||
3092 | |||
3093 | err_put: | ||
3094 | amd64_free_mc_sibling_devices(pvt); | ||
3095 | |||
3096 | err_free: | ||
3097 | kfree(pvt); | ||
3098 | |||
3099 | err_exit: | ||
3100 | return ret; | ||
3101 | } | ||
3102 | |||
3103 | /* | ||
3104 | * This is the finishing stage of the init code. Needs to be performed after all | ||
3105 | * MCs' hardware have been prepped for accessing extended config space. | ||
3106 | */ | ||
3107 | static int amd64_init_2nd_stage(struct amd64_pvt *pvt) | ||
3108 | { | ||
3109 | int node_id = pvt->mc_node_id; | ||
3110 | struct mem_ctl_info *mci; | ||
3111 | int ret, err = 0; | ||
3112 | |||
3113 | amd64_read_mc_registers(pvt); | ||
3114 | |||
3115 | ret = -ENODEV; | ||
3116 | if (pvt->ops->probe_valid_hardware) { | ||
3117 | err = pvt->ops->probe_valid_hardware(pvt); | ||
3118 | if (err) | ||
3119 | goto err_exit; | ||
3120 | } | ||
3121 | |||
3122 | /* | ||
3123 | * We need to determine how many memory channels there are. Then use | ||
3124 | * that information for calculating the size of the dynamic instance | ||
3125 | * tables in the 'mci' structure | ||
3126 | */ | ||
3127 | pvt->channel_count = pvt->ops->early_channel_count(pvt); | ||
3128 | if (pvt->channel_count < 0) | ||
3129 | goto err_exit; | ||
3130 | |||
3131 | ret = -ENOMEM; | ||
3132 | mci = edac_mc_alloc(0, CHIPSELECT_COUNT, pvt->channel_count, node_id); | ||
3133 | if (!mci) | ||
3134 | goto err_exit; | ||
3135 | |||
3136 | mci->pvt_info = pvt; | ||
3137 | |||
3138 | mci->dev = &pvt->dram_f2_ctl->dev; | ||
3139 | amd64_setup_mci_misc_attributes(mci); | ||
3140 | |||
3141 | if (amd64_init_csrows(mci)) | ||
3142 | mci->edac_cap = EDAC_FLAG_NONE; | ||
3143 | |||
3144 | amd64_enable_ecc_error_reporting(mci); | ||
3145 | amd64_set_mc_sysfs_attributes(mci); | ||
3146 | |||
3147 | ret = -ENODEV; | ||
3148 | if (edac_mc_add_mc(mci)) { | ||
3149 | debugf1("failed edac_mc_add_mc()\n"); | ||
3150 | goto err_add_mc; | ||
3151 | } | ||
3152 | |||
3153 | mci_lookup[node_id] = mci; | ||
3154 | pvt_lookup[node_id] = NULL; | ||
3155 | return 0; | ||
3156 | |||
3157 | err_add_mc: | ||
3158 | edac_mc_free(mci); | ||
3159 | |||
3160 | err_exit: | ||
3161 | debugf0("failure to init 2nd stage: ret=%d\n", ret); | ||
3162 | |||
3163 | amd64_restore_ecc_error_reporting(pvt); | ||
3164 | |||
3165 | if (boot_cpu_data.x86 > 0xf) | ||
3166 | amd64_teardown(pvt); | ||
3167 | |||
3168 | amd64_free_mc_sibling_devices(pvt); | ||
3169 | |||
3170 | kfree(pvt_lookup[pvt->mc_node_id]); | ||
3171 | pvt_lookup[node_id] = NULL; | ||
3172 | |||
3173 | return ret; | ||
3174 | } | ||
3175 | |||
3176 | |||
3177 | static int __devinit amd64_init_one_instance(struct pci_dev *pdev, | ||
3178 | const struct pci_device_id *mc_type) | ||
3179 | { | ||
3180 | int ret = 0; | ||
3181 | |||
3182 | debugf0("(MC node=%d,mc_type='%s')\n", | ||
3183 | get_mc_node_id_from_pdev(pdev), | ||
3184 | get_amd_family_name(mc_type->driver_data)); | ||
3185 | |||
3186 | ret = pci_enable_device(pdev); | ||
3187 | if (ret < 0) | ||
3188 | ret = -EIO; | ||
3189 | else | ||
3190 | ret = amd64_probe_one_instance(pdev, mc_type->driver_data); | ||
3191 | |||
3192 | if (ret < 0) | ||
3193 | debugf0("ret=%d\n", ret); | ||
3194 | |||
3195 | return ret; | ||
3196 | } | ||
3197 | |||
3198 | static void __devexit amd64_remove_one_instance(struct pci_dev *pdev) | ||
3199 | { | ||
3200 | struct mem_ctl_info *mci; | ||
3201 | struct amd64_pvt *pvt; | ||
3202 | |||
3203 | /* Remove from EDAC CORE tracking list */ | ||
3204 | mci = edac_mc_del_mc(&pdev->dev); | ||
3205 | if (!mci) | ||
3206 | return; | ||
3207 | |||
3208 | pvt = mci->pvt_info; | ||
3209 | |||
3210 | amd64_restore_ecc_error_reporting(pvt); | ||
3211 | |||
3212 | if (boot_cpu_data.x86 > 0xf) | ||
3213 | amd64_teardown(pvt); | ||
3214 | |||
3215 | amd64_free_mc_sibling_devices(pvt); | ||
3216 | |||
3217 | kfree(pvt); | ||
3218 | mci->pvt_info = NULL; | ||
3219 | |||
3220 | mci_lookup[pvt->mc_node_id] = NULL; | ||
3221 | |||
3222 | /* Free the EDAC CORE resources */ | ||
3223 | edac_mc_free(mci); | ||
3224 | } | ||
3225 | |||
3226 | /* | ||
3227 | * This table is part of the interface for loading drivers for PCI devices. The | ||
3228 | * PCI core identifies what devices are on a system during boot, and then | ||
3229 | * inquiry this table to see if this driver is for a given device found. | ||
3230 | */ | ||
3231 | static const struct pci_device_id amd64_pci_table[] __devinitdata = { | ||
3232 | { | ||
3233 | .vendor = PCI_VENDOR_ID_AMD, | ||
3234 | .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL, | ||
3235 | .subvendor = PCI_ANY_ID, | ||
3236 | .subdevice = PCI_ANY_ID, | ||
3237 | .class = 0, | ||
3238 | .class_mask = 0, | ||
3239 | .driver_data = K8_CPUS | ||
3240 | }, | ||
3241 | { | ||
3242 | .vendor = PCI_VENDOR_ID_AMD, | ||
3243 | .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM, | ||
3244 | .subvendor = PCI_ANY_ID, | ||
3245 | .subdevice = PCI_ANY_ID, | ||
3246 | .class = 0, | ||
3247 | .class_mask = 0, | ||
3248 | .driver_data = F10_CPUS | ||
3249 | }, | ||
3250 | { | ||
3251 | .vendor = PCI_VENDOR_ID_AMD, | ||
3252 | .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM, | ||
3253 | .subvendor = PCI_ANY_ID, | ||
3254 | .subdevice = PCI_ANY_ID, | ||
3255 | .class = 0, | ||
3256 | .class_mask = 0, | ||
3257 | .driver_data = F11_CPUS | ||
3258 | }, | ||
3259 | {0, } | ||
3260 | }; | ||
3261 | MODULE_DEVICE_TABLE(pci, amd64_pci_table); | ||
3262 | |||
3263 | static struct pci_driver amd64_pci_driver = { | ||
3264 | .name = EDAC_MOD_STR, | ||
3265 | .probe = amd64_init_one_instance, | ||
3266 | .remove = __devexit_p(amd64_remove_one_instance), | ||
3267 | .id_table = amd64_pci_table, | ||
3268 | }; | ||
3269 | |||
3270 | static void amd64_setup_pci_device(void) | ||
3271 | { | ||
3272 | struct mem_ctl_info *mci; | ||
3273 | struct amd64_pvt *pvt; | ||
3274 | |||
3275 | if (amd64_ctl_pci) | ||
3276 | return; | ||
3277 | |||
3278 | mci = mci_lookup[0]; | ||
3279 | if (mci) { | ||
3280 | |||
3281 | pvt = mci->pvt_info; | ||
3282 | amd64_ctl_pci = | ||
3283 | edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev, | ||
3284 | EDAC_MOD_STR); | ||
3285 | |||
3286 | if (!amd64_ctl_pci) { | ||
3287 | pr_warning("%s(): Unable to create PCI control\n", | ||
3288 | __func__); | ||
3289 | |||
3290 | pr_warning("%s(): PCI error report via EDAC not set\n", | ||
3291 | __func__); | ||
3292 | } | ||
3293 | } | ||
3294 | } | ||
3295 | |||
3296 | static int __init amd64_edac_init(void) | ||
3297 | { | ||
3298 | int nb, err = -ENODEV; | ||
3299 | |||
3300 | edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n"); | ||
3301 | |||
3302 | opstate_init(); | ||
3303 | |||
3304 | if (cache_k8_northbridges() < 0) | ||
3305 | goto err_exit; | ||
3306 | |||
3307 | err = pci_register_driver(&amd64_pci_driver); | ||
3308 | if (err) | ||
3309 | return err; | ||
3310 | |||
3311 | /* | ||
3312 | * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd | ||
3313 | * amd64_pvt structs. These will be used in the 2nd stage init function | ||
3314 | * to finish initialization of the MC instances. | ||
3315 | */ | ||
3316 | for (nb = 0; nb < num_k8_northbridges; nb++) { | ||
3317 | if (!pvt_lookup[nb]) | ||
3318 | continue; | ||
3319 | |||
3320 | err = amd64_init_2nd_stage(pvt_lookup[nb]); | ||
3321 | if (err) | ||
3322 | goto err_exit; | ||
3323 | } | ||
3324 | |||
3325 | amd64_setup_pci_device(); | ||
3326 | |||
3327 | return 0; | ||
3328 | |||
3329 | err_exit: | ||
3330 | debugf0("'finish_setup' stage failed\n"); | ||
3331 | pci_unregister_driver(&amd64_pci_driver); | ||
3332 | |||
3333 | return err; | ||
3334 | } | ||
3335 | |||
3336 | static void __exit amd64_edac_exit(void) | ||
3337 | { | ||
3338 | if (amd64_ctl_pci) | ||
3339 | edac_pci_release_generic_ctl(amd64_ctl_pci); | ||
3340 | |||
3341 | pci_unregister_driver(&amd64_pci_driver); | ||
3342 | } | ||
3343 | |||
3344 | module_init(amd64_edac_init); | ||
3345 | module_exit(amd64_edac_exit); | ||
3346 | |||
3347 | MODULE_LICENSE("GPL"); | ||
3348 | MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " | ||
3349 | "Dave Peterson, Thayne Harbaugh"); | ||
3350 | MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " | ||
3351 | EDAC_AMD64_VERSION); | ||
3352 | |||
3353 | module_param(edac_op_state, int, 0444); | ||
3354 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); | ||
diff --git a/drivers/edac/amd64_edac.h b/drivers/edac/amd64_edac.h new file mode 100644 index 000000000000..a159957e167b --- /dev/null +++ b/drivers/edac/amd64_edac.h | |||
@@ -0,0 +1,644 @@ | |||
1 | /* | ||
2 | * AMD64 class Memory Controller kernel module | ||
3 | * | ||
4 | * Copyright (c) 2009 SoftwareBitMaker. | ||
5 | * Copyright (c) 2009 Advanced Micro Devices, Inc. | ||
6 | * | ||
7 | * This file may be distributed under the terms of the | ||
8 | * GNU General Public License. | ||
9 | * | ||
10 | * Originally Written by Thayne Harbaugh | ||
11 | * | ||
12 | * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>: | ||
13 | * - K8 CPU Revision D and greater support | ||
14 | * | ||
15 | * Changes by Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>: | ||
16 | * - Module largely rewritten, with new (and hopefully correct) | ||
17 | * code for dealing with node and chip select interleaving, | ||
18 | * various code cleanup, and bug fixes | ||
19 | * - Added support for memory hoisting using DRAM hole address | ||
20 | * register | ||
21 | * | ||
22 | * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>: | ||
23 | * -K8 Rev (1207) revision support added, required Revision | ||
24 | * specific mini-driver code to support Rev F as well as | ||
25 | * prior revisions | ||
26 | * | ||
27 | * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>: | ||
28 | * -Family 10h revision support added. New PCI Device IDs, | ||
29 | * indicating new changes. Actual registers modified | ||
30 | * were slight, less than the Rev E to Rev F transition | ||
31 | * but changing the PCI Device ID was the proper thing to | ||
32 | * do, as it provides for almost automactic family | ||
33 | * detection. The mods to Rev F required more family | ||
34 | * information detection. | ||
35 | * | ||
36 | * Changes/Fixes by Borislav Petkov <borislav.petkov@amd.com>: | ||
37 | * - misc fixes and code cleanups | ||
38 | * | ||
39 | * This module is based on the following documents | ||
40 | * (available from http://www.amd.com/): | ||
41 | * | ||
42 | * Title: BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD | ||
43 | * Opteron Processors | ||
44 | * AMD publication #: 26094 | ||
45 | *` Revision: 3.26 | ||
46 | * | ||
47 | * Title: BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh | ||
48 | * Processors | ||
49 | * AMD publication #: 32559 | ||
50 | * Revision: 3.00 | ||
51 | * Issue Date: May 2006 | ||
52 | * | ||
53 | * Title: BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h | ||
54 | * Processors | ||
55 | * AMD publication #: 31116 | ||
56 | * Revision: 3.00 | ||
57 | * Issue Date: September 07, 2007 | ||
58 | * | ||
59 | * Sections in the first 2 documents are no longer in sync with each other. | ||
60 | * The Family 10h BKDG was totally re-written from scratch with a new | ||
61 | * presentation model. | ||
62 | * Therefore, comments that refer to a Document section might be off. | ||
63 | */ | ||
64 | |||
65 | #include <linux/module.h> | ||
66 | #include <linux/ctype.h> | ||
67 | #include <linux/init.h> | ||
68 | #include <linux/pci.h> | ||
69 | #include <linux/pci_ids.h> | ||
70 | #include <linux/slab.h> | ||
71 | #include <linux/mmzone.h> | ||
72 | #include <linux/edac.h> | ||
73 | #include <asm/msr.h> | ||
74 | #include "edac_core.h" | ||
75 | |||
76 | #define amd64_printk(level, fmt, arg...) \ | ||
77 | edac_printk(level, "amd64", fmt, ##arg) | ||
78 | |||
79 | #define amd64_mc_printk(mci, level, fmt, arg...) \ | ||
80 | edac_mc_chipset_printk(mci, level, "amd64", fmt, ##arg) | ||
81 | |||
82 | /* | ||
83 | * Throughout the comments in this code, the following terms are used: | ||
84 | * | ||
85 | * SysAddr, DramAddr, and InputAddr | ||
86 | * | ||
87 | * These terms come directly from the amd64 documentation | ||
88 | * (AMD publication #26094). They are defined as follows: | ||
89 | * | ||
90 | * SysAddr: | ||
91 | * This is a physical address generated by a CPU core or a device | ||
92 | * doing DMA. If generated by a CPU core, a SysAddr is the result of | ||
93 | * a virtual to physical address translation by the CPU core's address | ||
94 | * translation mechanism (MMU). | ||
95 | * | ||
96 | * DramAddr: | ||
97 | * A DramAddr is derived from a SysAddr by subtracting an offset that | ||
98 | * depends on which node the SysAddr maps to and whether the SysAddr | ||
99 | * is within a range affected by memory hoisting. The DRAM Base | ||
100 | * (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers | ||
101 | * determine which node a SysAddr maps to. | ||
102 | * | ||
103 | * If the DRAM Hole Address Register (DHAR) is enabled and the SysAddr | ||
104 | * is within the range of addresses specified by this register, then | ||
105 | * a value x from the DHAR is subtracted from the SysAddr to produce a | ||
106 | * DramAddr. Here, x represents the base address for the node that | ||
107 | * the SysAddr maps to plus an offset due to memory hoisting. See | ||
108 | * section 3.4.8 and the comments in amd64_get_dram_hole_info() and | ||
109 | * sys_addr_to_dram_addr() below for more information. | ||
110 | * | ||
111 | * If the SysAddr is not affected by the DHAR then a value y is | ||
112 | * subtracted from the SysAddr to produce a DramAddr. Here, y is the | ||
113 | * base address for the node that the SysAddr maps to. See section | ||
114 | * 3.4.4 and the comments in sys_addr_to_dram_addr() below for more | ||
115 | * information. | ||
116 | * | ||
117 | * InputAddr: | ||
118 | * A DramAddr is translated to an InputAddr before being passed to the | ||
119 | * memory controller for the node that the DramAddr is associated | ||
120 | * with. The memory controller then maps the InputAddr to a csrow. | ||
121 | * If node interleaving is not in use, then the InputAddr has the same | ||
122 | * value as the DramAddr. Otherwise, the InputAddr is produced by | ||
123 | * discarding the bits used for node interleaving from the DramAddr. | ||
124 | * See section 3.4.4 for more information. | ||
125 | * | ||
126 | * The memory controller for a given node uses its DRAM CS Base and | ||
127 | * DRAM CS Mask registers to map an InputAddr to a csrow. See | ||
128 | * sections 3.5.4 and 3.5.5 for more information. | ||
129 | */ | ||
130 | |||
131 | #define EDAC_AMD64_VERSION " Ver: 3.2.0 " __DATE__ | ||
132 | #define EDAC_MOD_STR "amd64_edac" | ||
133 | |||
134 | /* Extended Model from CPUID, for CPU Revision numbers */ | ||
135 | #define OPTERON_CPU_LE_REV_C 0 | ||
136 | #define OPTERON_CPU_REV_D 1 | ||
137 | #define OPTERON_CPU_REV_E 2 | ||
138 | |||
139 | /* NPT processors have the following Extended Models */ | ||
140 | #define OPTERON_CPU_REV_F 4 | ||
141 | #define OPTERON_CPU_REV_FA 5 | ||
142 | |||
143 | /* Hardware limit on ChipSelect rows per MC and processors per system */ | ||
144 | #define CHIPSELECT_COUNT 8 | ||
145 | #define DRAM_REG_COUNT 8 | ||
146 | |||
147 | |||
148 | /* | ||
149 | * PCI-defined configuration space registers | ||
150 | */ | ||
151 | |||
152 | |||
153 | /* | ||
154 | * Function 1 - Address Map | ||
155 | */ | ||
156 | #define K8_DRAM_BASE_LOW 0x40 | ||
157 | #define K8_DRAM_LIMIT_LOW 0x44 | ||
158 | #define K8_DHAR 0xf0 | ||
159 | |||
160 | #define DHAR_VALID BIT(0) | ||
161 | #define F10_DRAM_MEM_HOIST_VALID BIT(1) | ||
162 | |||
163 | #define DHAR_BASE_MASK 0xff000000 | ||
164 | #define dhar_base(dhar) (dhar & DHAR_BASE_MASK) | ||
165 | |||
166 | #define K8_DHAR_OFFSET_MASK 0x0000ff00 | ||
167 | #define k8_dhar_offset(dhar) ((dhar & K8_DHAR_OFFSET_MASK) << 16) | ||
168 | |||
169 | #define F10_DHAR_OFFSET_MASK 0x0000ff80 | ||
170 | /* NOTE: Extra mask bit vs K8 */ | ||
171 | #define f10_dhar_offset(dhar) ((dhar & F10_DHAR_OFFSET_MASK) << 16) | ||
172 | |||
173 | |||
174 | /* F10 High BASE/LIMIT registers */ | ||
175 | #define F10_DRAM_BASE_HIGH 0x140 | ||
176 | #define F10_DRAM_LIMIT_HIGH 0x144 | ||
177 | |||
178 | |||
179 | /* | ||
180 | * Function 2 - DRAM controller | ||
181 | */ | ||
182 | #define K8_DCSB0 0x40 | ||
183 | #define F10_DCSB1 0x140 | ||
184 | |||
185 | #define K8_DCSB_CS_ENABLE BIT(0) | ||
186 | #define K8_DCSB_NPT_SPARE BIT(1) | ||
187 | #define K8_DCSB_NPT_TESTFAIL BIT(2) | ||
188 | |||
189 | /* | ||
190 | * REV E: select [31:21] and [15:9] from DCSB and the shift amount to form | ||
191 | * the address | ||
192 | */ | ||
193 | #define REV_E_DCSB_BASE_BITS (0xFFE0FE00ULL) | ||
194 | #define REV_E_DCS_SHIFT 4 | ||
195 | #define REV_E_DCSM_COUNT 8 | ||
196 | |||
197 | #define REV_F_F1Xh_DCSB_BASE_BITS (0x1FF83FE0ULL) | ||
198 | #define REV_F_F1Xh_DCS_SHIFT 8 | ||
199 | |||
200 | /* | ||
201 | * REV F and later: selects [28:19] and [13:5] from DCSB and the shift amount | ||
202 | * to form the address | ||
203 | */ | ||
204 | #define REV_F_DCSB_BASE_BITS (0x1FF83FE0ULL) | ||
205 | #define REV_F_DCS_SHIFT 8 | ||
206 | #define REV_F_DCSM_COUNT 4 | ||
207 | #define F10_DCSM_COUNT 4 | ||
208 | #define F11_DCSM_COUNT 2 | ||
209 | |||
210 | /* DRAM CS Mask Registers */ | ||
211 | #define K8_DCSM0 0x60 | ||
212 | #define F10_DCSM1 0x160 | ||
213 | |||
214 | /* REV E: select [29:21] and [15:9] from DCSM */ | ||
215 | #define REV_E_DCSM_MASK_BITS 0x3FE0FE00 | ||
216 | |||
217 | /* unused bits [24:20] and [12:0] */ | ||
218 | #define REV_E_DCS_NOTUSED_BITS 0x01F01FFF | ||
219 | |||
220 | /* REV F and later: select [28:19] and [13:5] from DCSM */ | ||
221 | #define REV_F_F1Xh_DCSM_MASK_BITS 0x1FF83FE0 | ||
222 | |||
223 | /* unused bits [26:22] and [12:0] */ | ||
224 | #define REV_F_F1Xh_DCS_NOTUSED_BITS 0x07C01FFF | ||
225 | |||
226 | #define DBAM0 0x80 | ||
227 | #define DBAM1 0x180 | ||
228 | |||
229 | /* Extract the DIMM 'type' on the i'th DIMM from the DBAM reg value passed */ | ||
230 | #define DBAM_DIMM(i, reg) ((((reg) >> (4*i))) & 0xF) | ||
231 | |||
232 | #define DBAM_MAX_VALUE 11 | ||
233 | |||
234 | |||
235 | #define F10_DCLR_0 0x90 | ||
236 | #define F10_DCLR_1 0x190 | ||
237 | #define REVE_WIDTH_128 BIT(16) | ||
238 | #define F10_WIDTH_128 BIT(11) | ||
239 | |||
240 | |||
241 | #define F10_DCHR_0 0x94 | ||
242 | #define F10_DCHR_1 0x194 | ||
243 | |||
244 | #define F10_DCHR_FOUR_RANK_DIMM BIT(18) | ||
245 | #define F10_DCHR_Ddr3Mode BIT(8) | ||
246 | #define F10_DCHR_MblMode BIT(6) | ||
247 | |||
248 | |||
249 | #define F10_DCTL_SEL_LOW 0x110 | ||
250 | |||
251 | #define dct_sel_baseaddr(pvt) \ | ||
252 | ((pvt->dram_ctl_select_low) & 0xFFFFF800) | ||
253 | |||
254 | #define dct_sel_interleave_addr(pvt) \ | ||
255 | (((pvt->dram_ctl_select_low) >> 6) & 0x3) | ||
256 | |||
257 | enum { | ||
258 | F10_DCTL_SEL_LOW_DctSelHiRngEn = BIT(0), | ||
259 | F10_DCTL_SEL_LOW_DctSelIntLvEn = BIT(2), | ||
260 | F10_DCTL_SEL_LOW_DctGangEn = BIT(4), | ||
261 | F10_DCTL_SEL_LOW_DctDatIntLv = BIT(5), | ||
262 | F10_DCTL_SEL_LOW_DramEnable = BIT(8), | ||
263 | F10_DCTL_SEL_LOW_MemCleared = BIT(10), | ||
264 | }; | ||
265 | |||
266 | #define dct_high_range_enabled(pvt) \ | ||
267 | (pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctSelHiRngEn) | ||
268 | |||
269 | #define dct_interleave_enabled(pvt) \ | ||
270 | (pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctSelIntLvEn) | ||
271 | |||
272 | #define dct_ganging_enabled(pvt) \ | ||
273 | (pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctGangEn) | ||
274 | |||
275 | #define dct_data_intlv_enabled(pvt) \ | ||
276 | (pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctDatIntLv) | ||
277 | |||
278 | #define dct_dram_enabled(pvt) \ | ||
279 | (pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DramEnable) | ||
280 | |||
281 | #define dct_memory_cleared(pvt) \ | ||
282 | (pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_MemCleared) | ||
283 | |||
284 | |||
285 | #define F10_DCTL_SEL_HIGH 0x114 | ||
286 | |||
287 | |||
288 | /* | ||
289 | * Function 3 - Misc Control | ||
290 | */ | ||
291 | #define K8_NBCTL 0x40 | ||
292 | |||
293 | /* Correctable ECC error reporting enable */ | ||
294 | #define K8_NBCTL_CECCEn BIT(0) | ||
295 | |||
296 | /* UnCorrectable ECC error reporting enable */ | ||
297 | #define K8_NBCTL_UECCEn BIT(1) | ||
298 | |||
299 | #define K8_NBCFG 0x44 | ||
300 | #define K8_NBCFG_CHIPKILL BIT(23) | ||
301 | #define K8_NBCFG_ECC_ENABLE BIT(22) | ||
302 | |||
303 | #define K8_NBSL 0x48 | ||
304 | |||
305 | |||
306 | #define EXTRACT_HIGH_SYNDROME(x) (((x) >> 24) & 0xff) | ||
307 | #define EXTRACT_EXT_ERROR_CODE(x) (((x) >> 16) & 0x1f) | ||
308 | |||
309 | /* Family F10h: Normalized Extended Error Codes */ | ||
310 | #define F10_NBSL_EXT_ERR_RES 0x0 | ||
311 | #define F10_NBSL_EXT_ERR_CRC 0x1 | ||
312 | #define F10_NBSL_EXT_ERR_SYNC 0x2 | ||
313 | #define F10_NBSL_EXT_ERR_MST 0x3 | ||
314 | #define F10_NBSL_EXT_ERR_TGT 0x4 | ||
315 | #define F10_NBSL_EXT_ERR_GART 0x5 | ||
316 | #define F10_NBSL_EXT_ERR_RMW 0x6 | ||
317 | #define F10_NBSL_EXT_ERR_WDT 0x7 | ||
318 | #define F10_NBSL_EXT_ERR_ECC 0x8 | ||
319 | #define F10_NBSL_EXT_ERR_DEV 0x9 | ||
320 | #define F10_NBSL_EXT_ERR_LINK_DATA 0xA | ||
321 | |||
322 | /* Next two are overloaded values */ | ||
323 | #define F10_NBSL_EXT_ERR_LINK_PROTO 0xB | ||
324 | #define F10_NBSL_EXT_ERR_L3_PROTO 0xB | ||
325 | |||
326 | #define F10_NBSL_EXT_ERR_NB_ARRAY 0xC | ||
327 | #define F10_NBSL_EXT_ERR_DRAM_PARITY 0xD | ||
328 | #define F10_NBSL_EXT_ERR_LINK_RETRY 0xE | ||
329 | |||
330 | /* Next two are overloaded values */ | ||
331 | #define F10_NBSL_EXT_ERR_GART_WALK 0xF | ||
332 | #define F10_NBSL_EXT_ERR_DEV_WALK 0xF | ||
333 | |||
334 | /* 0x10 to 0x1B: Reserved */ | ||
335 | #define F10_NBSL_EXT_ERR_L3_DATA 0x1C | ||
336 | #define F10_NBSL_EXT_ERR_L3_TAG 0x1D | ||
337 | #define F10_NBSL_EXT_ERR_L3_LRU 0x1E | ||
338 | |||
339 | /* K8: Normalized Extended Error Codes */ | ||
340 | #define K8_NBSL_EXT_ERR_ECC 0x0 | ||
341 | #define K8_NBSL_EXT_ERR_CRC 0x1 | ||
342 | #define K8_NBSL_EXT_ERR_SYNC 0x2 | ||
343 | #define K8_NBSL_EXT_ERR_MST 0x3 | ||
344 | #define K8_NBSL_EXT_ERR_TGT 0x4 | ||
345 | #define K8_NBSL_EXT_ERR_GART 0x5 | ||
346 | #define K8_NBSL_EXT_ERR_RMW 0x6 | ||
347 | #define K8_NBSL_EXT_ERR_WDT 0x7 | ||
348 | #define K8_NBSL_EXT_ERR_CHIPKILL_ECC 0x8 | ||
349 | #define K8_NBSL_EXT_ERR_DRAM_PARITY 0xD | ||
350 | |||
351 | #define EXTRACT_ERROR_CODE(x) ((x) & 0xffff) | ||
352 | #define TEST_TLB_ERROR(x) (((x) & 0xFFF0) == 0x0010) | ||
353 | #define TEST_MEM_ERROR(x) (((x) & 0xFF00) == 0x0100) | ||
354 | #define TEST_BUS_ERROR(x) (((x) & 0xF800) == 0x0800) | ||
355 | #define EXTRACT_TT_CODE(x) (((x) >> 2) & 0x3) | ||
356 | #define EXTRACT_II_CODE(x) (((x) >> 2) & 0x3) | ||
357 | #define EXTRACT_LL_CODE(x) (((x) >> 0) & 0x3) | ||
358 | #define EXTRACT_RRRR_CODE(x) (((x) >> 4) & 0xf) | ||
359 | #define EXTRACT_TO_CODE(x) (((x) >> 8) & 0x1) | ||
360 | #define EXTRACT_PP_CODE(x) (((x) >> 9) & 0x3) | ||
361 | |||
362 | /* | ||
363 | * The following are for BUS type errors AFTER values have been normalized by | ||
364 | * shifting right | ||
365 | */ | ||
366 | #define K8_NBSL_PP_SRC 0x0 | ||
367 | #define K8_NBSL_PP_RES 0x1 | ||
368 | #define K8_NBSL_PP_OBS 0x2 | ||
369 | #define K8_NBSL_PP_GENERIC 0x3 | ||
370 | |||
371 | |||
372 | #define K8_NBSH 0x4C | ||
373 | |||
374 | #define K8_NBSH_VALID_BIT BIT(31) | ||
375 | #define K8_NBSH_OVERFLOW BIT(30) | ||
376 | #define K8_NBSH_UNCORRECTED_ERR BIT(29) | ||
377 | #define K8_NBSH_ERR_ENABLE BIT(28) | ||
378 | #define K8_NBSH_MISC_ERR_VALID BIT(27) | ||
379 | #define K8_NBSH_VALID_ERROR_ADDR BIT(26) | ||
380 | #define K8_NBSH_PCC BIT(25) | ||
381 | #define K8_NBSH_CECC BIT(14) | ||
382 | #define K8_NBSH_UECC BIT(13) | ||
383 | #define K8_NBSH_ERR_SCRUBER BIT(8) | ||
384 | #define K8_NBSH_CORE3 BIT(3) | ||
385 | #define K8_NBSH_CORE2 BIT(2) | ||
386 | #define K8_NBSH_CORE1 BIT(1) | ||
387 | #define K8_NBSH_CORE0 BIT(0) | ||
388 | |||
389 | #define EXTRACT_LDT_LINK(x) (((x) >> 4) & 0x7) | ||
390 | #define EXTRACT_ERR_CPU_MAP(x) ((x) & 0xF) | ||
391 | #define EXTRACT_LOW_SYNDROME(x) (((x) >> 15) & 0xff) | ||
392 | |||
393 | |||
394 | #define K8_NBEAL 0x50 | ||
395 | #define K8_NBEAH 0x54 | ||
396 | #define K8_SCRCTRL 0x58 | ||
397 | |||
398 | #define F10_NB_CFG_LOW 0x88 | ||
399 | #define F10_NB_CFG_LOW_ENABLE_EXT_CFG BIT(14) | ||
400 | |||
401 | #define F10_NB_CFG_HIGH 0x8C | ||
402 | |||
403 | #define F10_ONLINE_SPARE 0xB0 | ||
404 | #define F10_ONLINE_SPARE_SWAPDONE0(x) ((x) & BIT(1)) | ||
405 | #define F10_ONLINE_SPARE_SWAPDONE1(x) ((x) & BIT(3)) | ||
406 | #define F10_ONLINE_SPARE_BADDRAM_CS0(x) (((x) >> 4) & 0x00000007) | ||
407 | #define F10_ONLINE_SPARE_BADDRAM_CS1(x) (((x) >> 8) & 0x00000007) | ||
408 | |||
409 | #define F10_NB_ARRAY_ADDR 0xB8 | ||
410 | |||
411 | #define F10_NB_ARRAY_DRAM_ECC 0x80000000 | ||
412 | |||
413 | /* Bits [2:1] are used to select 16-byte section within a 64-byte cacheline */ | ||
414 | #define SET_NB_ARRAY_ADDRESS(section) (((section) & 0x3) << 1) | ||
415 | |||
416 | #define F10_NB_ARRAY_DATA 0xBC | ||
417 | |||
418 | #define SET_NB_DRAM_INJECTION_WRITE(word, bits) \ | ||
419 | (BIT(((word) & 0xF) + 20) | \ | ||
420 | BIT(17) | \ | ||
421 | ((bits) & 0xF)) | ||
422 | |||
423 | #define SET_NB_DRAM_INJECTION_READ(word, bits) \ | ||
424 | (BIT(((word) & 0xF) + 20) | \ | ||
425 | BIT(16) | \ | ||
426 | ((bits) & 0xF)) | ||
427 | |||
428 | #define K8_NBCAP 0xE8 | ||
429 | #define K8_NBCAP_CORES (BIT(12)|BIT(13)) | ||
430 | #define K8_NBCAP_CHIPKILL BIT(4) | ||
431 | #define K8_NBCAP_SECDED BIT(3) | ||
432 | #define K8_NBCAP_8_NODE BIT(2) | ||
433 | #define K8_NBCAP_DUAL_NODE BIT(1) | ||
434 | #define K8_NBCAP_DCT_DUAL BIT(0) | ||
435 | |||
436 | /* | ||
437 | * MSR Regs | ||
438 | */ | ||
439 | #define K8_MSR_MCGCTL 0x017b | ||
440 | #define K8_MSR_MCGCTL_NBE BIT(4) | ||
441 | |||
442 | #define K8_MSR_MC4CTL 0x0410 | ||
443 | #define K8_MSR_MC4STAT 0x0411 | ||
444 | #define K8_MSR_MC4ADDR 0x0412 | ||
445 | |||
446 | /* AMD sets the first MC device at device ID 0x18. */ | ||
447 | static inline int get_mc_node_id_from_pdev(struct pci_dev *pdev) | ||
448 | { | ||
449 | return PCI_SLOT(pdev->devfn) - 0x18; | ||
450 | } | ||
451 | |||
452 | enum amd64_chipset_families { | ||
453 | K8_CPUS = 0, | ||
454 | F10_CPUS, | ||
455 | F11_CPUS, | ||
456 | }; | ||
457 | |||
458 | /* | ||
459 | * Structure to hold: | ||
460 | * | ||
461 | * 1) dynamically read status and error address HW registers | ||
462 | * 2) sysfs entered values | ||
463 | * 3) MCE values | ||
464 | * | ||
465 | * Depends on entry into the modules | ||
466 | */ | ||
467 | struct amd64_error_info_regs { | ||
468 | u32 nbcfg; | ||
469 | u32 nbsh; | ||
470 | u32 nbsl; | ||
471 | u32 nbeah; | ||
472 | u32 nbeal; | ||
473 | }; | ||
474 | |||
475 | /* Error injection control structure */ | ||
476 | struct error_injection { | ||
477 | u32 section; | ||
478 | u32 word; | ||
479 | u32 bit_map; | ||
480 | }; | ||
481 | |||
482 | struct amd64_pvt { | ||
483 | /* pci_device handles which we utilize */ | ||
484 | struct pci_dev *addr_f1_ctl; | ||
485 | struct pci_dev *dram_f2_ctl; | ||
486 | struct pci_dev *misc_f3_ctl; | ||
487 | |||
488 | int mc_node_id; /* MC index of this MC node */ | ||
489 | int ext_model; /* extended model value of this node */ | ||
490 | |||
491 | struct low_ops *ops; /* pointer to per PCI Device ID func table */ | ||
492 | |||
493 | int channel_count; | ||
494 | |||
495 | /* Raw registers */ | ||
496 | u32 dclr0; /* DRAM Configuration Low DCT0 reg */ | ||
497 | u32 dclr1; /* DRAM Configuration Low DCT1 reg */ | ||
498 | u32 dchr0; /* DRAM Configuration High DCT0 reg */ | ||
499 | u32 dchr1; /* DRAM Configuration High DCT1 reg */ | ||
500 | u32 nbcap; /* North Bridge Capabilities */ | ||
501 | u32 nbcfg; /* F10 North Bridge Configuration */ | ||
502 | u32 ext_nbcfg; /* Extended F10 North Bridge Configuration */ | ||
503 | u32 dhar; /* DRAM Hoist reg */ | ||
504 | u32 dbam0; /* DRAM Base Address Mapping reg for DCT0 */ | ||
505 | u32 dbam1; /* DRAM Base Address Mapping reg for DCT1 */ | ||
506 | |||
507 | /* DRAM CS Base Address Registers F2x[1,0][5C:40] */ | ||
508 | u32 dcsb0[CHIPSELECT_COUNT]; | ||
509 | u32 dcsb1[CHIPSELECT_COUNT]; | ||
510 | |||
511 | /* DRAM CS Mask Registers F2x[1,0][6C:60] */ | ||
512 | u32 dcsm0[CHIPSELECT_COUNT]; | ||
513 | u32 dcsm1[CHIPSELECT_COUNT]; | ||
514 | |||
515 | /* | ||
516 | * Decoded parts of DRAM BASE and LIMIT Registers | ||
517 | * F1x[78,70,68,60,58,50,48,40] | ||
518 | */ | ||
519 | u64 dram_base[DRAM_REG_COUNT]; | ||
520 | u64 dram_limit[DRAM_REG_COUNT]; | ||
521 | u8 dram_IntlvSel[DRAM_REG_COUNT]; | ||
522 | u8 dram_IntlvEn[DRAM_REG_COUNT]; | ||
523 | u8 dram_DstNode[DRAM_REG_COUNT]; | ||
524 | u8 dram_rw_en[DRAM_REG_COUNT]; | ||
525 | |||
526 | /* | ||
527 | * The following fields are set at (load) run time, after CPU revision | ||
528 | * has been determined, since the dct_base and dct_mask registers vary | ||
529 | * based on revision | ||
530 | */ | ||
531 | u32 dcsb_base; /* DCSB base bits */ | ||
532 | u32 dcsm_mask; /* DCSM mask bits */ | ||
533 | u32 num_dcsm; /* Number of DCSM registers */ | ||
534 | u32 dcs_mask_notused; /* DCSM notused mask bits */ | ||
535 | u32 dcs_shift; /* DCSB and DCSM shift value */ | ||
536 | |||
537 | u64 top_mem; /* top of memory below 4GB */ | ||
538 | u64 top_mem2; /* top of memory above 4GB */ | ||
539 | |||
540 | u32 dram_ctl_select_low; /* DRAM Controller Select Low Reg */ | ||
541 | u32 dram_ctl_select_high; /* DRAM Controller Select High Reg */ | ||
542 | u32 online_spare; /* On-Line spare Reg */ | ||
543 | |||
544 | /* temp storage for when input is received from sysfs */ | ||
545 | struct amd64_error_info_regs ctl_error_info; | ||
546 | |||
547 | /* place to store error injection parameters prior to issue */ | ||
548 | struct error_injection injection; | ||
549 | |||
550 | /* Save old hw registers' values before we modified them */ | ||
551 | u32 nbctl_mcgctl_saved; /* When true, following 2 are valid */ | ||
552 | u32 old_nbctl; | ||
553 | unsigned long old_mcgctl; /* per core on this node */ | ||
554 | |||
555 | /* MC Type Index value: socket F vs Family 10h */ | ||
556 | u32 mc_type_index; | ||
557 | |||
558 | /* misc settings */ | ||
559 | struct flags { | ||
560 | unsigned long cf8_extcfg:1; | ||
561 | } flags; | ||
562 | }; | ||
563 | |||
564 | struct scrubrate { | ||
565 | u32 scrubval; /* bit pattern for scrub rate */ | ||
566 | u32 bandwidth; /* bandwidth consumed (bytes/sec) */ | ||
567 | }; | ||
568 | |||
569 | extern struct scrubrate scrubrates[23]; | ||
570 | extern u32 revf_quad_ddr2_shift[16]; | ||
571 | extern const char *tt_msgs[4]; | ||
572 | extern const char *ll_msgs[4]; | ||
573 | extern const char *rrrr_msgs[16]; | ||
574 | extern const char *to_msgs[2]; | ||
575 | extern const char *pp_msgs[4]; | ||
576 | extern const char *ii_msgs[4]; | ||
577 | extern const char *ext_msgs[32]; | ||
578 | extern const char *htlink_msgs[8]; | ||
579 | |||
580 | #ifdef CONFIG_EDAC_DEBUG | ||
581 | #define NUM_DBG_ATTRS 9 | ||
582 | #else | ||
583 | #define NUM_DBG_ATTRS 0 | ||
584 | #endif | ||
585 | |||
586 | #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION | ||
587 | #define NUM_INJ_ATTRS 5 | ||
588 | #else | ||
589 | #define NUM_INJ_ATTRS 0 | ||
590 | #endif | ||
591 | |||
592 | extern struct mcidev_sysfs_attribute amd64_dbg_attrs[NUM_DBG_ATTRS], | ||
593 | amd64_inj_attrs[NUM_INJ_ATTRS]; | ||
594 | |||
595 | /* | ||
596 | * Each of the PCI Device IDs types have their own set of hardware accessor | ||
597 | * functions and per device encoding/decoding logic. | ||
598 | */ | ||
599 | struct low_ops { | ||
600 | int (*probe_valid_hardware)(struct amd64_pvt *pvt); | ||
601 | int (*early_channel_count)(struct amd64_pvt *pvt); | ||
602 | |||
603 | u64 (*get_error_address)(struct mem_ctl_info *mci, | ||
604 | struct amd64_error_info_regs *info); | ||
605 | void (*read_dram_base_limit)(struct amd64_pvt *pvt, int dram); | ||
606 | void (*read_dram_ctl_register)(struct amd64_pvt *pvt); | ||
607 | void (*map_sysaddr_to_csrow)(struct mem_ctl_info *mci, | ||
608 | struct amd64_error_info_regs *info, | ||
609 | u64 SystemAddr); | ||
610 | int (*dbam_map_to_pages)(struct amd64_pvt *pvt, int dram_map); | ||
611 | }; | ||
612 | |||
613 | struct amd64_family_type { | ||
614 | const char *ctl_name; | ||
615 | u16 addr_f1_ctl; | ||
616 | u16 misc_f3_ctl; | ||
617 | struct low_ops ops; | ||
618 | }; | ||
619 | |||
620 | static struct amd64_family_type amd64_family_types[]; | ||
621 | |||
622 | static inline const char *get_amd_family_name(int index) | ||
623 | { | ||
624 | return amd64_family_types[index].ctl_name; | ||
625 | } | ||
626 | |||
627 | static inline struct low_ops *family_ops(int index) | ||
628 | { | ||
629 | return &amd64_family_types[index].ops; | ||
630 | } | ||
631 | |||
632 | /* | ||
633 | * For future CPU versions, verify the following as new 'slow' rates appear and | ||
634 | * modify the necessary skip values for the supported CPU. | ||
635 | */ | ||
636 | #define K8_MIN_SCRUB_RATE_BITS 0x0 | ||
637 | #define F10_MIN_SCRUB_RATE_BITS 0x5 | ||
638 | #define F11_MIN_SCRUB_RATE_BITS 0x6 | ||
639 | |||
640 | int amd64_process_error_info(struct mem_ctl_info *mci, | ||
641 | struct amd64_error_info_regs *info, | ||
642 | int handle_errors); | ||
643 | int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, | ||
644 | u64 *hole_offset, u64 *hole_size); | ||
diff --git a/drivers/edac/amd64_edac_dbg.c b/drivers/edac/amd64_edac_dbg.c new file mode 100644 index 000000000000..0a41b248a4ad --- /dev/null +++ b/drivers/edac/amd64_edac_dbg.c | |||
@@ -0,0 +1,255 @@ | |||
1 | #include "amd64_edac.h" | ||
2 | |||
3 | /* | ||
4 | * accept a hex value and store it into the virtual error register file, field: | ||
5 | * nbeal and nbeah. Assume virtual error values have already been set for: NBSL, | ||
6 | * NBSH and NBCFG. Then proceed to map the error values to a MC, CSROW and | ||
7 | * CHANNEL | ||
8 | */ | ||
9 | static ssize_t amd64_nbea_store(struct mem_ctl_info *mci, const char *data, | ||
10 | size_t count) | ||
11 | { | ||
12 | struct amd64_pvt *pvt = mci->pvt_info; | ||
13 | unsigned long long value; | ||
14 | int ret = 0; | ||
15 | |||
16 | ret = strict_strtoull(data, 16, &value); | ||
17 | if (ret != -EINVAL) { | ||
18 | debugf0("received NBEA= 0x%llx\n", value); | ||
19 | |||
20 | /* place the value into the virtual error packet */ | ||
21 | pvt->ctl_error_info.nbeal = (u32) value; | ||
22 | value >>= 32; | ||
23 | pvt->ctl_error_info.nbeah = (u32) value; | ||
24 | |||
25 | /* Process the Mapping request */ | ||
26 | /* TODO: Add race prevention */ | ||
27 | amd64_process_error_info(mci, &pvt->ctl_error_info, 1); | ||
28 | |||
29 | return count; | ||
30 | } | ||
31 | return ret; | ||
32 | } | ||
33 | |||
34 | /* display back what the last NBEA (MCA NB Address (MC4_ADDR)) was written */ | ||
35 | static ssize_t amd64_nbea_show(struct mem_ctl_info *mci, char *data) | ||
36 | { | ||
37 | struct amd64_pvt *pvt = mci->pvt_info; | ||
38 | u64 value; | ||
39 | |||
40 | value = pvt->ctl_error_info.nbeah; | ||
41 | value <<= 32; | ||
42 | value |= pvt->ctl_error_info.nbeal; | ||
43 | |||
44 | return sprintf(data, "%llx\n", value); | ||
45 | } | ||
46 | |||
47 | /* store the NBSL (MCA NB Status Low (MC4_STATUS)) value user desires */ | ||
48 | static ssize_t amd64_nbsl_store(struct mem_ctl_info *mci, const char *data, | ||
49 | size_t count) | ||
50 | { | ||
51 | struct amd64_pvt *pvt = mci->pvt_info; | ||
52 | unsigned long value; | ||
53 | int ret = 0; | ||
54 | |||
55 | ret = strict_strtoul(data, 16, &value); | ||
56 | if (ret != -EINVAL) { | ||
57 | debugf0("received NBSL= 0x%lx\n", value); | ||
58 | |||
59 | pvt->ctl_error_info.nbsl = (u32) value; | ||
60 | |||
61 | return count; | ||
62 | } | ||
63 | return ret; | ||
64 | } | ||
65 | |||
66 | /* display back what the last NBSL value written */ | ||
67 | static ssize_t amd64_nbsl_show(struct mem_ctl_info *mci, char *data) | ||
68 | { | ||
69 | struct amd64_pvt *pvt = mci->pvt_info; | ||
70 | u32 value; | ||
71 | |||
72 | value = pvt->ctl_error_info.nbsl; | ||
73 | |||
74 | return sprintf(data, "%x\n", value); | ||
75 | } | ||
76 | |||
77 | /* store the NBSH (MCA NB Status High) value user desires */ | ||
78 | static ssize_t amd64_nbsh_store(struct mem_ctl_info *mci, const char *data, | ||
79 | size_t count) | ||
80 | { | ||
81 | struct amd64_pvt *pvt = mci->pvt_info; | ||
82 | unsigned long value; | ||
83 | int ret = 0; | ||
84 | |||
85 | ret = strict_strtoul(data, 16, &value); | ||
86 | if (ret != -EINVAL) { | ||
87 | debugf0("received NBSH= 0x%lx\n", value); | ||
88 | |||
89 | pvt->ctl_error_info.nbsh = (u32) value; | ||
90 | |||
91 | return count; | ||
92 | } | ||
93 | return ret; | ||
94 | } | ||
95 | |||
96 | /* display back what the last NBSH value written */ | ||
97 | static ssize_t amd64_nbsh_show(struct mem_ctl_info *mci, char *data) | ||
98 | { | ||
99 | struct amd64_pvt *pvt = mci->pvt_info; | ||
100 | u32 value; | ||
101 | |||
102 | value = pvt->ctl_error_info.nbsh; | ||
103 | |||
104 | return sprintf(data, "%x\n", value); | ||
105 | } | ||
106 | |||
107 | /* accept and store the NBCFG (MCA NB Configuration) value user desires */ | ||
108 | static ssize_t amd64_nbcfg_store(struct mem_ctl_info *mci, | ||
109 | const char *data, size_t count) | ||
110 | { | ||
111 | struct amd64_pvt *pvt = mci->pvt_info; | ||
112 | unsigned long value; | ||
113 | int ret = 0; | ||
114 | |||
115 | ret = strict_strtoul(data, 16, &value); | ||
116 | if (ret != -EINVAL) { | ||
117 | debugf0("received NBCFG= 0x%lx\n", value); | ||
118 | |||
119 | pvt->ctl_error_info.nbcfg = (u32) value; | ||
120 | |||
121 | return count; | ||
122 | } | ||
123 | return ret; | ||
124 | } | ||
125 | |||
126 | /* various show routines for the controls of a MCI */ | ||
127 | static ssize_t amd64_nbcfg_show(struct mem_ctl_info *mci, char *data) | ||
128 | { | ||
129 | struct amd64_pvt *pvt = mci->pvt_info; | ||
130 | |||
131 | return sprintf(data, "%x\n", pvt->ctl_error_info.nbcfg); | ||
132 | } | ||
133 | |||
134 | |||
135 | static ssize_t amd64_dhar_show(struct mem_ctl_info *mci, char *data) | ||
136 | { | ||
137 | struct amd64_pvt *pvt = mci->pvt_info; | ||
138 | |||
139 | return sprintf(data, "%x\n", pvt->dhar); | ||
140 | } | ||
141 | |||
142 | |||
143 | static ssize_t amd64_dbam_show(struct mem_ctl_info *mci, char *data) | ||
144 | { | ||
145 | struct amd64_pvt *pvt = mci->pvt_info; | ||
146 | |||
147 | return sprintf(data, "%x\n", pvt->dbam0); | ||
148 | } | ||
149 | |||
150 | |||
151 | static ssize_t amd64_topmem_show(struct mem_ctl_info *mci, char *data) | ||
152 | { | ||
153 | struct amd64_pvt *pvt = mci->pvt_info; | ||
154 | |||
155 | return sprintf(data, "%llx\n", pvt->top_mem); | ||
156 | } | ||
157 | |||
158 | |||
159 | static ssize_t amd64_topmem2_show(struct mem_ctl_info *mci, char *data) | ||
160 | { | ||
161 | struct amd64_pvt *pvt = mci->pvt_info; | ||
162 | |||
163 | return sprintf(data, "%llx\n", pvt->top_mem2); | ||
164 | } | ||
165 | |||
166 | static ssize_t amd64_hole_show(struct mem_ctl_info *mci, char *data) | ||
167 | { | ||
168 | u64 hole_base = 0; | ||
169 | u64 hole_offset = 0; | ||
170 | u64 hole_size = 0; | ||
171 | |||
172 | amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size); | ||
173 | |||
174 | return sprintf(data, "%llx %llx %llx\n", hole_base, hole_offset, | ||
175 | hole_size); | ||
176 | } | ||
177 | |||
178 | /* | ||
179 | * update NUM_DBG_ATTRS in case you add new members | ||
180 | */ | ||
181 | struct mcidev_sysfs_attribute amd64_dbg_attrs[] = { | ||
182 | |||
183 | { | ||
184 | .attr = { | ||
185 | .name = "nbea_ctl", | ||
186 | .mode = (S_IRUGO | S_IWUSR) | ||
187 | }, | ||
188 | .show = amd64_nbea_show, | ||
189 | .store = amd64_nbea_store, | ||
190 | }, | ||
191 | { | ||
192 | .attr = { | ||
193 | .name = "nbsl_ctl", | ||
194 | .mode = (S_IRUGO | S_IWUSR) | ||
195 | }, | ||
196 | .show = amd64_nbsl_show, | ||
197 | .store = amd64_nbsl_store, | ||
198 | }, | ||
199 | { | ||
200 | .attr = { | ||
201 | .name = "nbsh_ctl", | ||
202 | .mode = (S_IRUGO | S_IWUSR) | ||
203 | }, | ||
204 | .show = amd64_nbsh_show, | ||
205 | .store = amd64_nbsh_store, | ||
206 | }, | ||
207 | { | ||
208 | .attr = { | ||
209 | .name = "nbcfg_ctl", | ||
210 | .mode = (S_IRUGO | S_IWUSR) | ||
211 | }, | ||
212 | .show = amd64_nbcfg_show, | ||
213 | .store = amd64_nbcfg_store, | ||
214 | }, | ||
215 | { | ||
216 | .attr = { | ||
217 | .name = "dhar", | ||
218 | .mode = (S_IRUGO) | ||
219 | }, | ||
220 | .show = amd64_dhar_show, | ||
221 | .store = NULL, | ||
222 | }, | ||
223 | { | ||
224 | .attr = { | ||
225 | .name = "dbam", | ||
226 | .mode = (S_IRUGO) | ||
227 | }, | ||
228 | .show = amd64_dbam_show, | ||
229 | .store = NULL, | ||
230 | }, | ||
231 | { | ||
232 | .attr = { | ||
233 | .name = "topmem", | ||
234 | .mode = (S_IRUGO) | ||
235 | }, | ||
236 | .show = amd64_topmem_show, | ||
237 | .store = NULL, | ||
238 | }, | ||
239 | { | ||
240 | .attr = { | ||
241 | .name = "topmem2", | ||
242 | .mode = (S_IRUGO) | ||
243 | }, | ||
244 | .show = amd64_topmem2_show, | ||
245 | .store = NULL, | ||
246 | }, | ||
247 | { | ||
248 | .attr = { | ||
249 | .name = "dram_hole", | ||
250 | .mode = (S_IRUGO) | ||
251 | }, | ||
252 | .show = amd64_hole_show, | ||
253 | .store = NULL, | ||
254 | }, | ||
255 | }; | ||
diff --git a/drivers/edac/amd64_edac_err_types.c b/drivers/edac/amd64_edac_err_types.c new file mode 100644 index 000000000000..f212ff12a9d8 --- /dev/null +++ b/drivers/edac/amd64_edac_err_types.c | |||
@@ -0,0 +1,161 @@ | |||
1 | #include "amd64_edac.h" | ||
2 | |||
3 | /* | ||
4 | * See F2x80 for K8 and F2x[1,0]80 for Fam10 and later. The table below is only | ||
5 | * for DDR2 DRAM mapping. | ||
6 | */ | ||
7 | u32 revf_quad_ddr2_shift[] = { | ||
8 | 0, /* 0000b NULL DIMM (128mb) */ | ||
9 | 28, /* 0001b 256mb */ | ||
10 | 29, /* 0010b 512mb */ | ||
11 | 29, /* 0011b 512mb */ | ||
12 | 29, /* 0100b 512mb */ | ||
13 | 30, /* 0101b 1gb */ | ||
14 | 30, /* 0110b 1gb */ | ||
15 | 31, /* 0111b 2gb */ | ||
16 | 31, /* 1000b 2gb */ | ||
17 | 32, /* 1001b 4gb */ | ||
18 | 32, /* 1010b 4gb */ | ||
19 | 33, /* 1011b 8gb */ | ||
20 | 0, /* 1100b future */ | ||
21 | 0, /* 1101b future */ | ||
22 | 0, /* 1110b future */ | ||
23 | 0 /* 1111b future */ | ||
24 | }; | ||
25 | |||
26 | /* | ||
27 | * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing | ||
28 | * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- | ||
29 | * or higher value'. | ||
30 | * | ||
31 | *FIXME: Produce a better mapping/linearisation. | ||
32 | */ | ||
33 | |||
34 | struct scrubrate scrubrates[] = { | ||
35 | { 0x01, 1600000000UL}, | ||
36 | { 0x02, 800000000UL}, | ||
37 | { 0x03, 400000000UL}, | ||
38 | { 0x04, 200000000UL}, | ||
39 | { 0x05, 100000000UL}, | ||
40 | { 0x06, 50000000UL}, | ||
41 | { 0x07, 25000000UL}, | ||
42 | { 0x08, 12284069UL}, | ||
43 | { 0x09, 6274509UL}, | ||
44 | { 0x0A, 3121951UL}, | ||
45 | { 0x0B, 1560975UL}, | ||
46 | { 0x0C, 781440UL}, | ||
47 | { 0x0D, 390720UL}, | ||
48 | { 0x0E, 195300UL}, | ||
49 | { 0x0F, 97650UL}, | ||
50 | { 0x10, 48854UL}, | ||
51 | { 0x11, 24427UL}, | ||
52 | { 0x12, 12213UL}, | ||
53 | { 0x13, 6101UL}, | ||
54 | { 0x14, 3051UL}, | ||
55 | { 0x15, 1523UL}, | ||
56 | { 0x16, 761UL}, | ||
57 | { 0x00, 0UL}, /* scrubbing off */ | ||
58 | }; | ||
59 | |||
60 | /* | ||
61 | * string representation for the different MCA reported error types, see F3x48 | ||
62 | * or MSR0000_0411. | ||
63 | */ | ||
64 | const char *tt_msgs[] = { /* transaction type */ | ||
65 | "instruction", | ||
66 | "data", | ||
67 | "generic", | ||
68 | "reserved" | ||
69 | }; | ||
70 | |||
71 | const char *ll_msgs[] = { /* cache level */ | ||
72 | "L0", | ||
73 | "L1", | ||
74 | "L2", | ||
75 | "L3/generic" | ||
76 | }; | ||
77 | |||
78 | const char *rrrr_msgs[] = { | ||
79 | "generic", | ||
80 | "generic read", | ||
81 | "generic write", | ||
82 | "data read", | ||
83 | "data write", | ||
84 | "inst fetch", | ||
85 | "prefetch", | ||
86 | "evict", | ||
87 | "snoop", | ||
88 | "reserved RRRR= 9", | ||
89 | "reserved RRRR= 10", | ||
90 | "reserved RRRR= 11", | ||
91 | "reserved RRRR= 12", | ||
92 | "reserved RRRR= 13", | ||
93 | "reserved RRRR= 14", | ||
94 | "reserved RRRR= 15" | ||
95 | }; | ||
96 | |||
97 | const char *pp_msgs[] = { /* participating processor */ | ||
98 | "local node originated (SRC)", | ||
99 | "local node responded to request (RES)", | ||
100 | "local node observed as 3rd party (OBS)", | ||
101 | "generic" | ||
102 | }; | ||
103 | |||
104 | const char *to_msgs[] = { | ||
105 | "no timeout", | ||
106 | "timed out" | ||
107 | }; | ||
108 | |||
109 | const char *ii_msgs[] = { /* memory or i/o */ | ||
110 | "mem access", | ||
111 | "reserved", | ||
112 | "i/o access", | ||
113 | "generic" | ||
114 | }; | ||
115 | |||
116 | /* Map the 5 bits of Extended Error code to the string table. */ | ||
117 | const char *ext_msgs[] = { /* extended error */ | ||
118 | "K8 ECC error/F10 reserved", /* 0_0000b */ | ||
119 | "CRC error", /* 0_0001b */ | ||
120 | "sync error", /* 0_0010b */ | ||
121 | "mst abort", /* 0_0011b */ | ||
122 | "tgt abort", /* 0_0100b */ | ||
123 | "GART error", /* 0_0101b */ | ||
124 | "RMW error", /* 0_0110b */ | ||
125 | "Wdog timer error", /* 0_0111b */ | ||
126 | "F10-ECC/K8-Chipkill error", /* 0_1000b */ | ||
127 | "DEV Error", /* 0_1001b */ | ||
128 | "Link Data error", /* 0_1010b */ | ||
129 | "Link or L3 Protocol error", /* 0_1011b */ | ||
130 | "NB Array error", /* 0_1100b */ | ||
131 | "DRAM Parity error", /* 0_1101b */ | ||
132 | "Link Retry/GART Table Walk/DEV Table Walk error", /* 0_1110b */ | ||
133 | "Res 0x0ff error", /* 0_1111b */ | ||
134 | "Res 0x100 error", /* 1_0000b */ | ||
135 | "Res 0x101 error", /* 1_0001b */ | ||
136 | "Res 0x102 error", /* 1_0010b */ | ||
137 | "Res 0x103 error", /* 1_0011b */ | ||
138 | "Res 0x104 error", /* 1_0100b */ | ||
139 | "Res 0x105 error", /* 1_0101b */ | ||
140 | "Res 0x106 error", /* 1_0110b */ | ||
141 | "Res 0x107 error", /* 1_0111b */ | ||
142 | "Res 0x108 error", /* 1_1000b */ | ||
143 | "Res 0x109 error", /* 1_1001b */ | ||
144 | "Res 0x10A error", /* 1_1010b */ | ||
145 | "Res 0x10B error", /* 1_1011b */ | ||
146 | "L3 Cache Data error", /* 1_1100b */ | ||
147 | "L3 CacheTag error", /* 1_1101b */ | ||
148 | "L3 Cache LRU error", /* 1_1110b */ | ||
149 | "Res 0x1FF error" /* 1_1111b */ | ||
150 | }; | ||
151 | |||
152 | const char *htlink_msgs[] = { | ||
153 | "none", | ||
154 | "1", | ||
155 | "2", | ||
156 | "1 2", | ||
157 | "3", | ||
158 | "1 3", | ||
159 | "2 3", | ||
160 | "1 2 3" | ||
161 | }; | ||
diff --git a/drivers/edac/amd64_edac_inj.c b/drivers/edac/amd64_edac_inj.c new file mode 100644 index 000000000000..d3675b76b3a7 --- /dev/null +++ b/drivers/edac/amd64_edac_inj.c | |||
@@ -0,0 +1,185 @@ | |||
1 | #include "amd64_edac.h" | ||
2 | |||
3 | /* | ||
4 | * store error injection section value which refers to one of 4 16-byte sections | ||
5 | * within a 64-byte cacheline | ||
6 | * | ||
7 | * range: 0..3 | ||
8 | */ | ||
9 | static ssize_t amd64_inject_section_store(struct mem_ctl_info *mci, | ||
10 | const char *data, size_t count) | ||
11 | { | ||
12 | struct amd64_pvt *pvt = mci->pvt_info; | ||
13 | unsigned long value; | ||
14 | int ret = 0; | ||
15 | |||
16 | ret = strict_strtoul(data, 10, &value); | ||
17 | if (ret != -EINVAL) { | ||
18 | pvt->injection.section = (u32) value; | ||
19 | return count; | ||
20 | } | ||
21 | return ret; | ||
22 | } | ||
23 | |||
24 | /* | ||
25 | * store error injection word value which refers to one of 9 16-bit word of the | ||
26 | * 16-byte (128-bit + ECC bits) section | ||
27 | * | ||
28 | * range: 0..8 | ||
29 | */ | ||
30 | static ssize_t amd64_inject_word_store(struct mem_ctl_info *mci, | ||
31 | const char *data, size_t count) | ||
32 | { | ||
33 | struct amd64_pvt *pvt = mci->pvt_info; | ||
34 | unsigned long value; | ||
35 | int ret = 0; | ||
36 | |||
37 | ret = strict_strtoul(data, 10, &value); | ||
38 | if (ret != -EINVAL) { | ||
39 | |||
40 | value = (value <= 8) ? value : 0; | ||
41 | pvt->injection.word = (u32) value; | ||
42 | |||
43 | return count; | ||
44 | } | ||
45 | return ret; | ||
46 | } | ||
47 | |||
48 | /* | ||
49 | * store 16 bit error injection vector which enables injecting errors to the | ||
50 | * corresponding bit within the error injection word above. When used during a | ||
51 | * DRAM ECC read, it holds the contents of the of the DRAM ECC bits. | ||
52 | */ | ||
53 | static ssize_t amd64_inject_ecc_vector_store(struct mem_ctl_info *mci, | ||
54 | const char *data, size_t count) | ||
55 | { | ||
56 | struct amd64_pvt *pvt = mci->pvt_info; | ||
57 | unsigned long value; | ||
58 | int ret = 0; | ||
59 | |||
60 | ret = strict_strtoul(data, 16, &value); | ||
61 | if (ret != -EINVAL) { | ||
62 | |||
63 | pvt->injection.bit_map = (u32) value & 0xFFFF; | ||
64 | |||
65 | return count; | ||
66 | } | ||
67 | return ret; | ||
68 | } | ||
69 | |||
70 | /* | ||
71 | * Do a DRAM ECC read. Assemble staged values in the pvt area, format into | ||
72 | * fields needed by the injection registers and read the NB Array Data Port. | ||
73 | */ | ||
74 | static ssize_t amd64_inject_read_store(struct mem_ctl_info *mci, | ||
75 | const char *data, size_t count) | ||
76 | { | ||
77 | struct amd64_pvt *pvt = mci->pvt_info; | ||
78 | unsigned long value; | ||
79 | u32 section, word_bits; | ||
80 | int ret = 0; | ||
81 | |||
82 | ret = strict_strtoul(data, 10, &value); | ||
83 | if (ret != -EINVAL) { | ||
84 | |||
85 | /* Form value to choose 16-byte section of cacheline */ | ||
86 | section = F10_NB_ARRAY_DRAM_ECC | | ||
87 | SET_NB_ARRAY_ADDRESS(pvt->injection.section); | ||
88 | pci_write_config_dword(pvt->misc_f3_ctl, | ||
89 | F10_NB_ARRAY_ADDR, section); | ||
90 | |||
91 | word_bits = SET_NB_DRAM_INJECTION_READ(pvt->injection.word, | ||
92 | pvt->injection.bit_map); | ||
93 | |||
94 | /* Issue 'word' and 'bit' along with the READ request */ | ||
95 | pci_write_config_dword(pvt->misc_f3_ctl, | ||
96 | F10_NB_ARRAY_DATA, word_bits); | ||
97 | |||
98 | debugf0("section=0x%x word_bits=0x%x\n", section, word_bits); | ||
99 | |||
100 | return count; | ||
101 | } | ||
102 | return ret; | ||
103 | } | ||
104 | |||
105 | /* | ||
106 | * Do a DRAM ECC write. Assemble staged values in the pvt area and format into | ||
107 | * fields needed by the injection registers. | ||
108 | */ | ||
109 | static ssize_t amd64_inject_write_store(struct mem_ctl_info *mci, | ||
110 | const char *data, size_t count) | ||
111 | { | ||
112 | struct amd64_pvt *pvt = mci->pvt_info; | ||
113 | unsigned long value; | ||
114 | u32 section, word_bits; | ||
115 | int ret = 0; | ||
116 | |||
117 | ret = strict_strtoul(data, 10, &value); | ||
118 | if (ret != -EINVAL) { | ||
119 | |||
120 | /* Form value to choose 16-byte section of cacheline */ | ||
121 | section = F10_NB_ARRAY_DRAM_ECC | | ||
122 | SET_NB_ARRAY_ADDRESS(pvt->injection.section); | ||
123 | pci_write_config_dword(pvt->misc_f3_ctl, | ||
124 | F10_NB_ARRAY_ADDR, section); | ||
125 | |||
126 | word_bits = SET_NB_DRAM_INJECTION_WRITE(pvt->injection.word, | ||
127 | pvt->injection.bit_map); | ||
128 | |||
129 | /* Issue 'word' and 'bit' along with the READ request */ | ||
130 | pci_write_config_dword(pvt->misc_f3_ctl, | ||
131 | F10_NB_ARRAY_DATA, word_bits); | ||
132 | |||
133 | debugf0("section=0x%x word_bits=0x%x\n", section, word_bits); | ||
134 | |||
135 | return count; | ||
136 | } | ||
137 | return ret; | ||
138 | } | ||
139 | |||
140 | /* | ||
141 | * update NUM_INJ_ATTRS in case you add new members | ||
142 | */ | ||
143 | struct mcidev_sysfs_attribute amd64_inj_attrs[] = { | ||
144 | |||
145 | { | ||
146 | .attr = { | ||
147 | .name = "inject_section", | ||
148 | .mode = (S_IRUGO | S_IWUSR) | ||
149 | }, | ||
150 | .show = NULL, | ||
151 | .store = amd64_inject_section_store, | ||
152 | }, | ||
153 | { | ||
154 | .attr = { | ||
155 | .name = "inject_word", | ||
156 | .mode = (S_IRUGO | S_IWUSR) | ||
157 | }, | ||
158 | .show = NULL, | ||
159 | .store = amd64_inject_word_store, | ||
160 | }, | ||
161 | { | ||
162 | .attr = { | ||
163 | .name = "inject_ecc_vector", | ||
164 | .mode = (S_IRUGO | S_IWUSR) | ||
165 | }, | ||
166 | .show = NULL, | ||
167 | .store = amd64_inject_ecc_vector_store, | ||
168 | }, | ||
169 | { | ||
170 | .attr = { | ||
171 | .name = "inject_write", | ||
172 | .mode = (S_IRUGO | S_IWUSR) | ||
173 | }, | ||
174 | .show = NULL, | ||
175 | .store = amd64_inject_write_store, | ||
176 | }, | ||
177 | { | ||
178 | .attr = { | ||
179 | .name = "inject_read", | ||
180 | .mode = (S_IRUGO | S_IWUSR) | ||
181 | }, | ||
182 | .show = NULL, | ||
183 | .store = amd64_inject_read_store, | ||
184 | }, | ||
185 | }; | ||
diff --git a/drivers/edac/edac_core.h b/drivers/edac/edac_core.h index 6ad95c8d6363..48d3b1409834 100644 --- a/drivers/edac/edac_core.h +++ b/drivers/edac/edac_core.h | |||
@@ -76,10 +76,11 @@ | |||
76 | extern int edac_debug_level; | 76 | extern int edac_debug_level; |
77 | 77 | ||
78 | #ifndef CONFIG_EDAC_DEBUG_VERBOSE | 78 | #ifndef CONFIG_EDAC_DEBUG_VERBOSE |
79 | #define edac_debug_printk(level, fmt, arg...) \ | 79 | #define edac_debug_printk(level, fmt, arg...) \ |
80 | do { \ | 80 | do { \ |
81 | if (level <= edac_debug_level) \ | 81 | if (level <= edac_debug_level) \ |
82 | edac_printk(KERN_DEBUG, EDAC_DEBUG, fmt, ##arg); \ | 82 | edac_printk(KERN_DEBUG, EDAC_DEBUG, \ |
83 | "%s: " fmt, __func__, ##arg); \ | ||
83 | } while (0) | 84 | } while (0) |
84 | #else /* CONFIG_EDAC_DEBUG_VERBOSE */ | 85 | #else /* CONFIG_EDAC_DEBUG_VERBOSE */ |
85 | #define edac_debug_printk(level, fmt, arg...) \ | 86 | #define edac_debug_printk(level, fmt, arg...) \ |