aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorLinus Walleij <linus.walleij@linaro.org>2011-06-30 10:10:21 -0400
committerRussell King <rmk+kernel@arm.linux.org.uk>2011-07-06 15:46:04 -0400
commit757df746fc5db0020ddab45914617a19d149c252 (patch)
treed6c4d703c89b774c653d4327ed53d4620fbd7d96
parent2eb5af44b1d22d7f7b715e0b9a4e516eb4451bf9 (diff)
ARM: 6980/1: mmci: use StartBitErr to detect bad connections
Stresstesting insert/remove of SD-cards can trigger a StartBitErr. This made the driver to hang in forever waiting for a non ocurring data timeout. This bit and interrupt is documented in the original PL180 TRM, just never implemented until now. Signed-off-by: Ulf Hansson <ulf.hansson@stericsson.com> Reviewed-by: Linus Walleij <linus.walleij@stericsson.com> Reviewed-by: Jonas Aberg <jonas.aberg@stericsson.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
-rw-r--r--drivers/mmc/host/mmci.c2
-rw-r--r--drivers/mmc/host/mmci.h5
2 files changed, 6 insertions, 1 deletions
diff --git a/drivers/mmc/host/mmci.c b/drivers/mmc/host/mmci.c
index 7721de942c69..fe140724a02e 100644
--- a/drivers/mmc/host/mmci.c
+++ b/drivers/mmc/host/mmci.c
@@ -582,6 +582,8 @@ mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
582 data->error = -EILSEQ; 582 data->error = -EILSEQ;
583 } else if (status & MCI_DATATIMEOUT) { 583 } else if (status & MCI_DATATIMEOUT) {
584 data->error = -ETIMEDOUT; 584 data->error = -ETIMEDOUT;
585 } else if (status & MCI_STARTBITERR) {
586 data->error = -ECOMM;
585 } else if (status & MCI_TXUNDERRUN) { 587 } else if (status & MCI_TXUNDERRUN) {
586 data->error = -EIO; 588 data->error = -EIO;
587 } else if (status & MCI_RXOVERRUN) { 589 } else if (status & MCI_RXOVERRUN) {
diff --git a/drivers/mmc/host/mmci.h b/drivers/mmc/host/mmci.h
index bb32e21c09db..2164e8c6476c 100644
--- a/drivers/mmc/host/mmci.h
+++ b/drivers/mmc/host/mmci.h
@@ -86,6 +86,7 @@
86#define MCI_CMDRESPEND (1 << 6) 86#define MCI_CMDRESPEND (1 << 6)
87#define MCI_CMDSENT (1 << 7) 87#define MCI_CMDSENT (1 << 7)
88#define MCI_DATAEND (1 << 8) 88#define MCI_DATAEND (1 << 8)
89#define MCI_STARTBITERR (1 << 9)
89#define MCI_DATABLOCKEND (1 << 10) 90#define MCI_DATABLOCKEND (1 << 10)
90#define MCI_CMDACTIVE (1 << 11) 91#define MCI_CMDACTIVE (1 << 11)
91#define MCI_TXACTIVE (1 << 12) 92#define MCI_TXACTIVE (1 << 12)
@@ -112,6 +113,7 @@
112#define MCI_CMDRESPENDCLR (1 << 6) 113#define MCI_CMDRESPENDCLR (1 << 6)
113#define MCI_CMDSENTCLR (1 << 7) 114#define MCI_CMDSENTCLR (1 << 7)
114#define MCI_DATAENDCLR (1 << 8) 115#define MCI_DATAENDCLR (1 << 8)
116#define MCI_STARTBITERRCLR (1 << 9)
115#define MCI_DATABLOCKENDCLR (1 << 10) 117#define MCI_DATABLOCKENDCLR (1 << 10)
116/* Extended status bits for the ST Micro variants */ 118/* Extended status bits for the ST Micro variants */
117#define MCI_ST_SDIOITC (1 << 22) 119#define MCI_ST_SDIOITC (1 << 22)
@@ -127,6 +129,7 @@
127#define MCI_CMDRESPENDMASK (1 << 6) 129#define MCI_CMDRESPENDMASK (1 << 6)
128#define MCI_CMDSENTMASK (1 << 7) 130#define MCI_CMDSENTMASK (1 << 7)
129#define MCI_DATAENDMASK (1 << 8) 131#define MCI_DATAENDMASK (1 << 8)
132#define MCI_STARTBITERRMASK (1 << 9)
130#define MCI_DATABLOCKENDMASK (1 << 10) 133#define MCI_DATABLOCKENDMASK (1 << 10)
131#define MCI_CMDACTIVEMASK (1 << 11) 134#define MCI_CMDACTIVEMASK (1 << 11)
132#define MCI_TXACTIVEMASK (1 << 12) 135#define MCI_TXACTIVEMASK (1 << 12)
@@ -150,7 +153,7 @@
150#define MCI_IRQENABLE \ 153#define MCI_IRQENABLE \
151 (MCI_CMDCRCFAILMASK|MCI_DATACRCFAILMASK|MCI_CMDTIMEOUTMASK| \ 154 (MCI_CMDCRCFAILMASK|MCI_DATACRCFAILMASK|MCI_CMDTIMEOUTMASK| \
152 MCI_DATATIMEOUTMASK|MCI_TXUNDERRUNMASK|MCI_RXOVERRUNMASK| \ 155 MCI_DATATIMEOUTMASK|MCI_TXUNDERRUNMASK|MCI_RXOVERRUNMASK| \
153 MCI_CMDRESPENDMASK|MCI_CMDSENTMASK) 156 MCI_CMDRESPENDMASK|MCI_CMDSENTMASK|MCI_STARTBITERRMASK)
154 157
155/* These interrupts are directed to IRQ1 when two IRQ lines are available */ 158/* These interrupts are directed to IRQ1 when two IRQ lines are available */
156#define MCI_IRQ1MASK \ 159#define MCI_IRQ1MASK \
nous write operation. Since a synchronous write operation is going to force a commit and then a wait for the I/O complete, it doesn't cost much, and can be a huge throughput win, we wait for a small amount of time to see if any other transactions can piggyback on the synchronous write. The algorithm used is designed to automatically tune for the speed of the disk, by measuring the amount of time (on average) that it takes to finish committing a transaction. Call this time the "commit time". If the time that the transaction has been running is less than the commit time, ext4 will try sleeping for the commit time to see if other operations will join the transaction. The commit time is capped by the max_batch_time, which defaults to 15000us (15ms). This optimization can be turned off entirely by setting max_batch_time to 0. min_batch_time=usec This parameter sets the commit time (as described above) to be at least min_batch_time. It defaults to zero microseconds. Increasing this parameter may improve the throughput of multi-threaded, synchronous workloads on very fast disks, at the cost of increasing latency. journal_ioprio=prio The I/O priority (from 0 to 7, where 0 is the highest priorty) which should be used for I/O operations submitted by kjournald2 during a commit operation. This defaults to 3, which is a slightly higher priority than the default I/O priority. auto_da_alloc(*) Many broken applications don't use fsync() when noauto_da_alloc replacing existing files via patterns such as fd = open("foo.new")/write(fd,..)/close(fd)/ rename("foo.new", "foo"), or worse yet, fd = open("foo", O_TRUNC)/write(fd,..)/close(fd). If auto_da_alloc is enabled, ext4 will detect the replace-via-rename and replace-via-truncate patterns and force that any delayed allocation blocks are allocated such that at the next journal commit, in the default data=ordered mode, the data blocks of the new file are forced to disk before the rename() operation is committed. This provides roughly the same level of guarantees as ext3, and avoids the "zero-length" problem that can happen when a system crashes before the delayed allocation blocks are forced to disk. discard Controls whether ext4 should issue discard/TRIM nodiscard(*) commands to the underlying block device when blocks are freed. This is useful for SSD devices and sparse/thinly-provisioned LUNs, but it is off by default until sufficient testing has been done. Data Mode ========= There are 3 different data modes: * writeback mode In data=writeback mode, ext4 does not journal data at all. This mode provides a similar level of journaling as that of XFS, JFS, and ReiserFS in its default mode - metadata journaling. A crash+recovery can cause incorrect data to appear in files which were written shortly before the crash. This mode will typically provide the best ext4 performance. * ordered mode In data=ordered mode, ext4 only officially journals metadata, but it logically groups metadata information related to data changes with the data blocks into a single unit called a transaction. When it's time to write the new metadata out to disk, the associated data blocks are written first. In general, this mode performs slightly slower than writeback but significantly faster than journal mode. * journal mode data=journal mode provides full data and metadata journaling. All new data is written to the journal first, and then to its final location. In the event of a crash, the journal can be replayed, bringing both data and metadata into a consistent state. This mode is the slowest except when data needs to be read from and written to disk at the same time where it outperforms all others modes. Currently ext4 does not have delayed allocation support if this data journalling mode is selected. References ========== kernel source: <file:fs/ext4/> <file:fs/jbd2/> programs: http://e2fsprogs.sourceforge.net/ useful links: http://fedoraproject.org/wiki/ext3-devel http://www.bullopensource.org/ext4/ http://ext4.wiki.kernel.org/index.php/Main_Page http://fedoraproject.org/wiki/Features/Ext4