diff options
author | Glenn Elliott <gelliott@cs.unc.edu> | 2013-03-06 14:20:55 -0500 |
---|---|---|
committer | Glenn Elliott <gelliott@cs.unc.edu> | 2013-03-06 14:20:55 -0500 |
commit | 22da1b2b4f02413e58bf01caa5b14e42e7913598 (patch) | |
tree | 6e4022a5140e682d287c4206550848300bb7986b | |
parent | da954aa12e99b502356ca62bff822cb6a95cba7a (diff) | |
parent | c7cd5432b98df518b05bc8978d34382797fd9a05 (diff) |
Merge remote-tracking branch 'github/master' into wip-mmap-uncache
43 files changed, 4072 insertions, 427 deletions
diff --git a/arch/x86/include/asm/feather_trace_32.h b/arch/x86/include/asm/feather_trace_32.h index 70202f90f169..75e81a9f9382 100644 --- a/arch/x86/include/asm/feather_trace_32.h +++ b/arch/x86/include/asm/feather_trace_32.h | |||
@@ -1,12 +1,45 @@ | |||
1 | /* Copyright (c) 2007-2012 Björn Brandenburg, <bbb@mpi-sws.org> | ||
2 | * | ||
3 | * Permission is hereby granted, free of charge, to any person obtaining | ||
4 | * a copy of this software and associated documentation files (the | ||
5 | * "Software"), to deal in the Software without restriction, including | ||
6 | * without limitation the rights to use, copy, modify, merge, publish, | ||
7 | * distribute, sublicense, and/or sell copies of the Software, and to | ||
8 | * permit persons to whom the Software is furnished to do so, subject to | ||
9 | * the following conditions: | ||
10 | * | ||
11 | * The above copyright notice and this permission notice shall be | ||
12 | * included in all copies or substantial portions of the Software. | ||
13 | * | ||
14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
15 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
16 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
17 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
18 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
19 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
20 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
21 | * SOFTWARE. | ||
22 | */ | ||
23 | |||
1 | /* Do not directly include this file. Include feather_trace.h instead */ | 24 | /* Do not directly include this file. Include feather_trace.h instead */ |
2 | 25 | ||
3 | #define feather_callback __attribute__((regparm(0))) | 26 | #define feather_callback __attribute__((regparm(3))) __attribute__((used)) |
4 | 27 | ||
5 | /* | 28 | /* |
6 | * make the compiler reload any register that is not saved in | 29 | * Make the compiler reload any register that is not saved in a cdecl function |
7 | * a cdecl function call | 30 | * call (minus the registers that we explicitly clobber as output registers). |
8 | */ | 31 | */ |
9 | #define CLOBBER_LIST "memory", "cc", "eax", "ecx", "edx" | 32 | #define __FT_CLOBBER_LIST0 "memory", "cc", "eax", "edx", "ecx" |
33 | #define __FT_CLOBBER_LIST1 "memory", "cc", "eax", "ecx" | ||
34 | #define __FT_CLOBBER_LIST2 "memory", "cc", "eax" | ||
35 | #define __FT_CLOBBER_LIST3 "memory", "cc", "eax" | ||
36 | |||
37 | #define __FT_TMP1(x) "=d" (x) | ||
38 | #define __FT_ARG1(x) "0" ((long) (x)) | ||
39 | #define __FT_TMP2(x) "=c" (x) | ||
40 | #define __FT_ARG2(x) "1" ((long) (x)) | ||
41 | |||
42 | #define __FT_ARG3(x) "r" ((long) (x)) | ||
10 | 43 | ||
11 | #define ft_event(id, callback) \ | 44 | #define ft_event(id, callback) \ |
12 | __asm__ __volatile__( \ | 45 | __asm__ __volatile__( \ |
@@ -16,64 +49,67 @@ | |||
16 | ".long " #id ", 0, 1b, 2f \n\t" \ | 49 | ".long " #id ", 0, 1b, 2f \n\t" \ |
17 | ".previous \n\t" \ | 50 | ".previous \n\t" \ |
18 | "2: \n\t" \ | 51 | "2: \n\t" \ |
19 | : : : CLOBBER_LIST) | 52 | : : : __FT_CLOBBER_LIST0) |
20 | 53 | ||
21 | #define ft_event0(id, callback) \ | 54 | #define ft_event0(id, callback) \ |
22 | __asm__ __volatile__( \ | 55 | __asm__ __volatile__( \ |
23 | "1: jmp 2f \n\t" \ | 56 | "1: jmp 2f \n\t" \ |
24 | " subl $4, %%esp \n\t" \ | 57 | " movl $" #id ", %%eax \n\t" \ |
25 | " movl $" #id ", (%%esp) \n\t" \ | ||
26 | " call " #callback " \n\t" \ | 58 | " call " #callback " \n\t" \ |
27 | " addl $4, %%esp \n\t" \ | ||
28 | ".section __event_table, \"aw\" \n\t" \ | 59 | ".section __event_table, \"aw\" \n\t" \ |
29 | ".long " #id ", 0, 1b, 2f \n\t" \ | 60 | ".long " #id ", 0, 1b, 2f \n\t" \ |
30 | ".previous \n\t" \ | 61 | ".previous \n\t" \ |
31 | "2: \n\t" \ | 62 | "2: \n\t" \ |
32 | : : : CLOBBER_LIST) | 63 | : : : __FT_CLOBBER_LIST0) |
33 | 64 | ||
34 | #define ft_event1(id, callback, param) \ | 65 | #define ft_event1(id, callback, param) \ |
66 | do { \ | ||
67 | long __ft_tmp1; \ | ||
35 | __asm__ __volatile__( \ | 68 | __asm__ __volatile__( \ |
36 | "1: jmp 2f \n\t" \ | 69 | "1: jmp 2f \n\t" \ |
37 | " subl $8, %%esp \n\t" \ | 70 | " movl $" #id ", %%eax \n\t" \ |
38 | " movl %0, 4(%%esp) \n\t" \ | ||
39 | " movl $" #id ", (%%esp) \n\t" \ | ||
40 | " call " #callback " \n\t" \ | 71 | " call " #callback " \n\t" \ |
41 | " addl $8, %%esp \n\t" \ | ||
42 | ".section __event_table, \"aw\" \n\t" \ | 72 | ".section __event_table, \"aw\" \n\t" \ |
43 | ".long " #id ", 0, 1b, 2f \n\t" \ | 73 | ".long " #id ", 0, 1b, 2f \n\t" \ |
44 | ".previous \n\t" \ | 74 | ".previous \n\t" \ |
45 | "2: \n\t" \ | 75 | "2: \n\t" \ |
46 | : : "r" (param) : CLOBBER_LIST) | 76 | : __FT_TMP1(__ft_tmp1) \ |
77 | : __FT_ARG1(param) \ | ||
78 | : __FT_CLOBBER_LIST1); \ | ||
79 | } while (0); | ||
47 | 80 | ||
48 | #define ft_event2(id, callback, param, param2) \ | 81 | #define ft_event2(id, callback, param, param2) \ |
82 | do { \ | ||
83 | long __ft_tmp1, __ft_tmp2; \ | ||
49 | __asm__ __volatile__( \ | 84 | __asm__ __volatile__( \ |
50 | "1: jmp 2f \n\t" \ | 85 | "1: jmp 2f \n\t" \ |
51 | " subl $12, %%esp \n\t" \ | 86 | " movl $" #id ", %%eax \n\t" \ |
52 | " movl %1, 8(%%esp) \n\t" \ | ||
53 | " movl %0, 4(%%esp) \n\t" \ | ||
54 | " movl $" #id ", (%%esp) \n\t" \ | ||
55 | " call " #callback " \n\t" \ | 87 | " call " #callback " \n\t" \ |
56 | " addl $12, %%esp \n\t" \ | ||
57 | ".section __event_table, \"aw\" \n\t" \ | 88 | ".section __event_table, \"aw\" \n\t" \ |
58 | ".long " #id ", 0, 1b, 2f \n\t" \ | 89 | ".long " #id ", 0, 1b, 2f \n\t" \ |
59 | ".previous \n\t" \ | 90 | ".previous \n\t" \ |
60 | "2: \n\t" \ | 91 | "2: \n\t" \ |
61 | : : "r" (param), "r" (param2) : CLOBBER_LIST) | 92 | : __FT_TMP1(__ft_tmp1), __FT_TMP2(__ft_tmp2) \ |
93 | : __FT_ARG1(param), __FT_ARG2(param2) \ | ||
94 | : __FT_CLOBBER_LIST2); \ | ||
95 | } while (0); | ||
62 | 96 | ||
63 | 97 | ||
64 | #define ft_event3(id, callback, p, p2, p3) \ | 98 | #define ft_event3(id, callback, param, param2, param3) \ |
99 | do { \ | ||
100 | long __ft_tmp1, __ft_tmp2; \ | ||
65 | __asm__ __volatile__( \ | 101 | __asm__ __volatile__( \ |
66 | "1: jmp 2f \n\t" \ | 102 | "1: jmp 2f \n\t" \ |
67 | " subl $16, %%esp \n\t" \ | 103 | " subl $4, %%esp \n\t" \ |
68 | " movl %2, 12(%%esp) \n\t" \ | 104 | " movl $" #id ", %%eax \n\t" \ |
69 | " movl %1, 8(%%esp) \n\t" \ | 105 | " movl %2, (%%esp) \n\t" \ |
70 | " movl %0, 4(%%esp) \n\t" \ | ||
71 | " movl $" #id ", (%%esp) \n\t" \ | ||
72 | " call " #callback " \n\t" \ | 106 | " call " #callback " \n\t" \ |
73 | " addl $16, %%esp \n\t" \ | 107 | " addl $4, %%esp \n\t" \ |
74 | ".section __event_table, \"aw\" \n\t" \ | 108 | ".section __event_table, \"aw\" \n\t" \ |
75 | ".long " #id ", 0, 1b, 2f \n\t" \ | 109 | ".long " #id ", 0, 1b, 2f \n\t" \ |
76 | ".previous \n\t" \ | 110 | ".previous \n\t" \ |
77 | "2: \n\t" \ | 111 | "2: \n\t" \ |
78 | : : "r" (p), "r" (p2), "r" (p3) : CLOBBER_LIST) | 112 | : __FT_TMP1(__ft_tmp1), __FT_TMP2(__ft_tmp2) \ |
79 | 113 | : __FT_ARG1(param), __FT_ARG2(param2), __FT_ARG3(param3) \ | |
114 | : __FT_CLOBBER_LIST3); \ | ||
115 | } while (0); | ||
diff --git a/arch/x86/include/asm/feather_trace_64.h b/arch/x86/include/asm/feather_trace_64.h index 54ac2aeb3a28..5ce49e2eebba 100644 --- a/arch/x86/include/asm/feather_trace_64.h +++ b/arch/x86/include/asm/feather_trace_64.h | |||
@@ -1,67 +1,124 @@ | |||
1 | /* Copyright (c) 2010 Andrea Bastoni, <bastoni@cs.unc.edu> | ||
2 | * Copyright (c) 2012 Björn Brandenburg, <bbb@mpi-sws.org> | ||
3 | * | ||
4 | * Permission is hereby granted, free of charge, to any person obtaining | ||
5 | * a copy of this software and associated documentation files (the | ||
6 | * "Software"), to deal in the Software without restriction, including | ||
7 | * without limitation the rights to use, copy, modify, merge, publish, | ||
8 | * distribute, sublicense, and/or sell copies of the Software, and to | ||
9 | * permit persons to whom the Software is furnished to do so, subject to | ||
10 | * the following conditions: | ||
11 | * | ||
12 | * The above copyright notice and this permission notice shall be | ||
13 | * included in all copies or substantial portions of the Software. | ||
14 | * | ||
15 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
16 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
17 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
18 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
19 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
20 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
21 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
22 | * SOFTWARE. | ||
23 | */ | ||
24 | |||
1 | /* Do not directly include this file. Include feather_trace.h instead */ | 25 | /* Do not directly include this file. Include feather_trace.h instead */ |
2 | 26 | ||
3 | /* regparm is the default on x86_64 */ | 27 | /* regparm is the default on x86_64 */ |
4 | #define feather_callback | 28 | #define feather_callback __attribute__((used)) |
5 | 29 | ||
6 | # define _EVENT_TABLE(id,from,to) \ | 30 | #define __FT_EVENT_TABLE(id,from,to) \ |
7 | ".section __event_table, \"aw\"\n\t" \ | 31 | ".section __event_table, \"aw\"\n\t" \ |
8 | ".balign 8\n\t" \ | 32 | ".balign 8\n\t" \ |
9 | ".quad " #id ", 0, " #from ", " #to " \n\t" \ | 33 | ".quad " #id ", 0, " #from ", " #to " \n\t" \ |
10 | ".previous \n\t" | 34 | ".previous \n\t" |
11 | 35 | ||
12 | /* | 36 | /* |
13 | * x86_64 callee only owns rbp, rbx, r12 -> r15 | 37 | * x86_64 caller only owns rbp, rbx, r12-r15; |
14 | * the called can freely modify the others | 38 | * the callee can freely modify the others. |
15 | */ | 39 | */ |
16 | #define CLOBBER_LIST "memory", "cc", "rdi", "rsi", "rdx", "rcx", \ | 40 | #define __FT_CLOBBER_LIST0 "memory", "cc", "rdi", "rsi", "rdx", "rcx", \ |
41 | "r8", "r9", "r10", "r11", "rax" | ||
42 | |||
43 | #define __FT_CLOBBER_LIST1 "memory", "cc", "rdi", "rdx", "rcx", \ | ||
44 | "r8", "r9", "r10", "r11", "rax" | ||
45 | |||
46 | #define __FT_CLOBBER_LIST2 "memory", "cc", "rdi", "rcx", \ | ||
17 | "r8", "r9", "r10", "r11", "rax" | 47 | "r8", "r9", "r10", "r11", "rax" |
18 | 48 | ||
49 | #define __FT_CLOBBER_LIST3 "memory", "cc", "rdi", \ | ||
50 | "r8", "r9", "r10", "r11", "rax" | ||
51 | |||
52 | /* The registers RDI, RSI, RDX, RCX, R8 and R9 are used for integer and pointer | ||
53 | * arguments. */ | ||
54 | |||
55 | /* RSI */ | ||
56 | #define __FT_TMP1(x) "=S" (x) | ||
57 | #define __FT_ARG1(x) "0" ((long) (x)) | ||
58 | |||
59 | /* RDX */ | ||
60 | #define __FT_TMP2(x) "=d" (x) | ||
61 | #define __FT_ARG2(x) "1" ((long) (x)) | ||
62 | |||
63 | /* RCX */ | ||
64 | #define __FT_TMP3(x) "=c" (x) | ||
65 | #define __FT_ARG3(x) "2" ((long) (x)) | ||
66 | |||
19 | #define ft_event(id, callback) \ | 67 | #define ft_event(id, callback) \ |
20 | __asm__ __volatile__( \ | 68 | __asm__ __volatile__( \ |
21 | "1: jmp 2f \n\t" \ | 69 | "1: jmp 2f \n\t" \ |
22 | " call " #callback " \n\t" \ | 70 | " call " #callback " \n\t" \ |
23 | _EVENT_TABLE(id,1b,2f) \ | 71 | __FT_EVENT_TABLE(id,1b,2f) \ |
24 | "2: \n\t" \ | 72 | "2: \n\t" \ |
25 | : : : CLOBBER_LIST) | 73 | : : : __FT_CLOBBER_LIST0) |
26 | 74 | ||
27 | #define ft_event0(id, callback) \ | 75 | #define ft_event0(id, callback) \ |
28 | __asm__ __volatile__( \ | 76 | __asm__ __volatile__( \ |
29 | "1: jmp 2f \n\t" \ | 77 | "1: jmp 2f \n\t" \ |
30 | " movq $" #id ", %%rdi \n\t" \ | 78 | " movq $" #id ", %%rdi \n\t" \ |
31 | " call " #callback " \n\t" \ | 79 | " call " #callback " \n\t" \ |
32 | _EVENT_TABLE(id,1b,2f) \ | 80 | __FT_EVENT_TABLE(id,1b,2f) \ |
33 | "2: \n\t" \ | 81 | "2: \n\t" \ |
34 | : : : CLOBBER_LIST) | 82 | : : : __FT_CLOBBER_LIST0) |
35 | 83 | ||
36 | #define ft_event1(id, callback, param) \ | 84 | #define ft_event1(id, callback, param) \ |
85 | do { \ | ||
86 | long __ft_tmp1; \ | ||
37 | __asm__ __volatile__( \ | 87 | __asm__ __volatile__( \ |
38 | "1: jmp 2f \n\t" \ | 88 | "1: jmp 2f \n\t" \ |
39 | " movq %0, %%rsi \n\t" \ | ||
40 | " movq $" #id ", %%rdi \n\t" \ | 89 | " movq $" #id ", %%rdi \n\t" \ |
41 | " call " #callback " \n\t" \ | 90 | " call " #callback " \n\t" \ |
42 | _EVENT_TABLE(id,1b,2f) \ | 91 | __FT_EVENT_TABLE(id,1b,2f) \ |
43 | "2: \n\t" \ | 92 | "2: \n\t" \ |
44 | : : "r" (param) : CLOBBER_LIST) | 93 | : __FT_TMP1(__ft_tmp1) \ |
94 | : __FT_ARG1(param) \ | ||
95 | : __FT_CLOBBER_LIST1); \ | ||
96 | } while (0); | ||
45 | 97 | ||
46 | #define ft_event2(id, callback, param, param2) \ | 98 | #define ft_event2(id, callback, param, param2) \ |
99 | do { \ | ||
100 | long __ft_tmp1, __ft_tmp2; \ | ||
47 | __asm__ __volatile__( \ | 101 | __asm__ __volatile__( \ |
48 | "1: jmp 2f \n\t" \ | 102 | "1: jmp 2f \n\t" \ |
49 | " movq %1, %%rdx \n\t" \ | ||
50 | " movq %0, %%rsi \n\t" \ | ||
51 | " movq $" #id ", %%rdi \n\t" \ | 103 | " movq $" #id ", %%rdi \n\t" \ |
52 | " call " #callback " \n\t" \ | 104 | " call " #callback " \n\t" \ |
53 | _EVENT_TABLE(id,1b,2f) \ | 105 | __FT_EVENT_TABLE(id,1b,2f) \ |
54 | "2: \n\t" \ | 106 | "2: \n\t" \ |
55 | : : "r" (param), "r" (param2) : CLOBBER_LIST) | 107 | : __FT_TMP1(__ft_tmp1), __FT_TMP2(__ft_tmp2) \ |
108 | : __FT_ARG1(param), __FT_ARG2(param2) \ | ||
109 | : __FT_CLOBBER_LIST2); \ | ||
110 | } while (0); | ||
56 | 111 | ||
57 | #define ft_event3(id, callback, p, p2, p3) \ | 112 | #define ft_event3(id, callback, param, param2, param3) \ |
113 | do { \ | ||
114 | long __ft_tmp1, __ft_tmp2, __ft_tmp3; \ | ||
58 | __asm__ __volatile__( \ | 115 | __asm__ __volatile__( \ |
59 | "1: jmp 2f \n\t" \ | 116 | "1: jmp 2f \n\t" \ |
60 | " movq %2, %%rcx \n\t" \ | ||
61 | " movq %1, %%rdx \n\t" \ | ||
62 | " movq %0, %%rsi \n\t" \ | ||
63 | " movq $" #id ", %%rdi \n\t" \ | 117 | " movq $" #id ", %%rdi \n\t" \ |
64 | " call " #callback " \n\t" \ | 118 | " call " #callback " \n\t" \ |
65 | _EVENT_TABLE(id,1b,2f) \ | 119 | __FT_EVENT_TABLE(id,1b,2f) \ |
66 | "2: \n\t" \ | 120 | "2: \n\t" \ |
67 | : : "r" (p), "r" (p2), "r" (p3) : CLOBBER_LIST) | 121 | : __FT_TMP1(__ft_tmp1), __FT_TMP2(__ft_tmp2), __FT_TMP3(__ft_tmp3) \ |
122 | : __FT_ARG1(param), __FT_ARG2(param2), __FT_ARG3(param3) \ | ||
123 | : __FT_CLOBBER_LIST3); \ | ||
124 | } while (0); | ||
diff --git a/arch/x86/kernel/smp.c b/arch/x86/kernel/smp.c index ed4c4f54e2ae..7539d84628f7 100644 --- a/arch/x86/kernel/smp.c +++ b/arch/x86/kernel/smp.c | |||
@@ -25,7 +25,6 @@ | |||
25 | 25 | ||
26 | #include <litmus/preempt.h> | 26 | #include <litmus/preempt.h> |
27 | #include <litmus/debug_trace.h> | 27 | #include <litmus/debug_trace.h> |
28 | #include <litmus/trace.h> | ||
29 | 28 | ||
30 | #include <asm/mtrr.h> | 29 | #include <asm/mtrr.h> |
31 | #include <asm/tlbflush.h> | 30 | #include <asm/tlbflush.h> |
@@ -122,7 +121,6 @@ static void native_smp_send_reschedule(int cpu) | |||
122 | WARN_ON(1); | 121 | WARN_ON(1); |
123 | return; | 122 | return; |
124 | } | 123 | } |
125 | TS_SEND_RESCHED_START(cpu); | ||
126 | apic->send_IPI_mask(cpumask_of(cpu), RESCHEDULE_VECTOR); | 124 | apic->send_IPI_mask(cpumask_of(cpu), RESCHEDULE_VECTOR); |
127 | } | 125 | } |
128 | 126 | ||
@@ -214,18 +212,16 @@ static void native_stop_other_cpus(int wait) | |||
214 | void smp_reschedule_interrupt(struct pt_regs *regs) | 212 | void smp_reschedule_interrupt(struct pt_regs *regs) |
215 | { | 213 | { |
216 | ack_APIC_irq(); | 214 | ack_APIC_irq(); |
217 | /* LITMUS^RT: this IPI might need to trigger the sched state machine. */ | ||
218 | sched_state_ipi(); | ||
219 | inc_irq_stat(irq_resched_count); | 215 | inc_irq_stat(irq_resched_count); |
220 | /* | ||
221 | * LITMUS^RT: starting from 3.0 schedule_ipi() actually does something. | ||
222 | * This may increase IPI latencies compared with previous versions. | ||
223 | */ | ||
224 | scheduler_ipi(); | 216 | scheduler_ipi(); |
225 | TS_SEND_RESCHED_END; | ||
226 | /* | 217 | /* |
227 | * KVM uses this interrupt to force a cpu out of guest mode | 218 | * KVM uses this interrupt to force a cpu out of guest mode |
228 | */ | 219 | */ |
220 | |||
221 | /* LITMUS^RT: this IPI might need to trigger the sched state machine. | ||
222 | * Starting from 3.0 schedule_ipi() actually does something. This may | ||
223 | * increase IPI latencies compared with previous versions. */ | ||
224 | sched_state_ipi(); | ||
229 | } | 225 | } |
230 | 226 | ||
231 | void smp_call_function_interrupt(struct pt_regs *regs) | 227 | void smp_call_function_interrupt(struct pt_regs *regs) |
@@ -251,8 +247,10 @@ extern void hrtimer_pull(void); | |||
251 | void smp_pull_timers_interrupt(struct pt_regs *regs) | 247 | void smp_pull_timers_interrupt(struct pt_regs *regs) |
252 | { | 248 | { |
253 | ack_APIC_irq(); | 249 | ack_APIC_irq(); |
250 | irq_enter(); | ||
254 | TRACE("pull timer interrupt\n"); | 251 | TRACE("pull timer interrupt\n"); |
255 | hrtimer_pull(); | 252 | hrtimer_pull(); |
253 | irq_exit(); | ||
256 | } | 254 | } |
257 | 255 | ||
258 | struct smp_ops smp_ops = { | 256 | struct smp_ops smp_ops = { |
diff --git a/include/linux/completion.h b/include/linux/completion.h index 9d727271c9fe..51494e6b5548 100644 --- a/include/linux/completion.h +++ b/include/linux/completion.h | |||
@@ -90,7 +90,6 @@ extern bool completion_done(struct completion *x); | |||
90 | 90 | ||
91 | extern void complete(struct completion *); | 91 | extern void complete(struct completion *); |
92 | extern void complete_all(struct completion *); | 92 | extern void complete_all(struct completion *); |
93 | extern void complete_n(struct completion *, int n); | ||
94 | 93 | ||
95 | /** | 94 | /** |
96 | * INIT_COMPLETION - reinitialize a completion structure | 95 | * INIT_COMPLETION - reinitialize a completion structure |
diff --git a/include/litmus/binheap.h b/include/litmus/binheap.h new file mode 100644 index 000000000000..901a30a3e296 --- /dev/null +++ b/include/litmus/binheap.h | |||
@@ -0,0 +1,206 @@ | |||
1 | #ifndef LITMUS_BINARY_HEAP_H | ||
2 | #define LITMUS_BINARY_HEAP_H | ||
3 | |||
4 | #include <linux/kernel.h> | ||
5 | |||
6 | /** | ||
7 | * Simple binary heap with add, arbitrary delete, delete_root, and top | ||
8 | * operations. | ||
9 | * | ||
10 | * Style meant to conform with list.h. | ||
11 | * | ||
12 | * Motivation: Linux's prio_heap.h is of fixed size. Litmus's binomial | ||
13 | * heap may be overkill (and perhaps not general enough) for some applications. | ||
14 | * | ||
15 | * Note: In order to make node swaps fast, a node inserted with a data pointer | ||
16 | * may not always hold said data pointer. This is similar to the binomial heap | ||
17 | * implementation. This does make node deletion tricky since we have to | ||
18 | * (1) locate the node that holds the data pointer to delete, and (2) the | ||
19 | * node that was originally inserted with said data pointer. These have to be | ||
20 | * coalesced into a single node before removal (see usage of | ||
21 | * __binheap_safe_swap()). We have to track node references to accomplish this. | ||
22 | */ | ||
23 | |||
24 | struct binheap_node { | ||
25 | void *data; | ||
26 | struct binheap_node *parent; | ||
27 | struct binheap_node *left; | ||
28 | struct binheap_node *right; | ||
29 | |||
30 | /* pointer to binheap_node that holds *data for which this binheap_node | ||
31 | * was originally inserted. (*data "owns" this node) | ||
32 | */ | ||
33 | struct binheap_node *ref; | ||
34 | struct binheap_node **ref_ptr; | ||
35 | }; | ||
36 | |||
37 | /** | ||
38 | * Signature of compator function. Assumed 'less-than' (min-heap). | ||
39 | * Pass in 'greater-than' for max-heap. | ||
40 | * | ||
41 | * TODO: Consider macro-based implementation that allows comparator to be | ||
42 | * inlined (similar to Linux red/black tree) for greater efficiency. | ||
43 | */ | ||
44 | typedef int (*binheap_order_t)(struct binheap_node *a, | ||
45 | struct binheap_node *b); | ||
46 | |||
47 | |||
48 | struct binheap { | ||
49 | struct binheap_node *root; | ||
50 | |||
51 | /* pointer to node to take next inserted child */ | ||
52 | struct binheap_node *next; | ||
53 | |||
54 | /* pointer to last node in complete binary tree */ | ||
55 | struct binheap_node *last; | ||
56 | |||
57 | /* comparator function pointer */ | ||
58 | binheap_order_t compare; | ||
59 | }; | ||
60 | |||
61 | |||
62 | /* Initialized heap nodes not in a heap have parent | ||
63 | * set to BINHEAP_POISON. | ||
64 | */ | ||
65 | #define BINHEAP_POISON ((void*)(0xdeadbeef)) | ||
66 | |||
67 | |||
68 | /** | ||
69 | * binheap_entry - get the struct for this heap node. | ||
70 | * Only valid when called upon heap nodes other than the root handle. | ||
71 | * @ptr: the heap node. | ||
72 | * @type: the type of struct pointed to by binheap_node::data. | ||
73 | * @member: unused. | ||
74 | */ | ||
75 | #define binheap_entry(ptr, type, member) \ | ||
76 | ((type *)((ptr)->data)) | ||
77 | |||
78 | /** | ||
79 | * binheap_node_container - get the struct that contains this node. | ||
80 | * Only valid when called upon heap nodes other than the root handle. | ||
81 | * @ptr: the heap node. | ||
82 | * @type: the type of struct the node is embedded in. | ||
83 | * @member: the name of the binheap_struct within the (type) struct. | ||
84 | */ | ||
85 | #define binheap_node_container(ptr, type, member) \ | ||
86 | container_of((ptr), type, member) | ||
87 | |||
88 | /** | ||
89 | * binheap_top_entry - get the struct for the node at the top of the heap. | ||
90 | * Only valid when called upon the heap handle node. | ||
91 | * @ptr: the special heap-handle node. | ||
92 | * @type: the type of the struct the head is embedded in. | ||
93 | * @member: the name of the binheap_struct within the (type) struct. | ||
94 | */ | ||
95 | #define binheap_top_entry(ptr, type, member) \ | ||
96 | binheap_entry((ptr)->root, type, member) | ||
97 | |||
98 | /** | ||
99 | * binheap_delete_root - remove the root element from the heap. | ||
100 | * @handle: handle to the heap. | ||
101 | * @type: the type of the struct the head is embedded in. | ||
102 | * @member: the name of the binheap_struct within the (type) struct. | ||
103 | */ | ||
104 | #define binheap_delete_root(handle, type, member) \ | ||
105 | __binheap_delete_root((handle), &((type *)((handle)->root->data))->member) | ||
106 | |||
107 | /** | ||
108 | * binheap_delete - remove an arbitrary element from the heap. | ||
109 | * @to_delete: pointer to node to be removed. | ||
110 | * @handle: handle to the heap. | ||
111 | */ | ||
112 | #define binheap_delete(to_delete, handle) \ | ||
113 | __binheap_delete((to_delete), (handle)) | ||
114 | |||
115 | /** | ||
116 | * binheap_add - insert an element to the heap | ||
117 | * new_node: node to add. | ||
118 | * @handle: handle to the heap. | ||
119 | * @type: the type of the struct the head is embedded in. | ||
120 | * @member: the name of the binheap_struct within the (type) struct. | ||
121 | */ | ||
122 | #define binheap_add(new_node, handle, type, member) \ | ||
123 | __binheap_add((new_node), (handle), container_of((new_node), type, member)) | ||
124 | |||
125 | /** | ||
126 | * binheap_decrease - re-eval the position of a node (based upon its | ||
127 | * original data pointer). | ||
128 | * @handle: handle to the heap. | ||
129 | * @orig_node: node that was associated with the data pointer | ||
130 | * (whose value has changed) when said pointer was | ||
131 | * added to the heap. | ||
132 | */ | ||
133 | #define binheap_decrease(orig_node, handle) \ | ||
134 | __binheap_decrease((orig_node), (handle)) | ||
135 | |||
136 | #define BINHEAP_NODE_INIT() { NULL, BINHEAP_POISON, NULL, NULL , NULL, NULL} | ||
137 | |||
138 | #define BINHEAP_NODE(name) \ | ||
139 | struct binheap_node name = BINHEAP_NODE_INIT() | ||
140 | |||
141 | |||
142 | static inline void INIT_BINHEAP_NODE(struct binheap_node *n) | ||
143 | { | ||
144 | n->data = NULL; | ||
145 | n->parent = BINHEAP_POISON; | ||
146 | n->left = NULL; | ||
147 | n->right = NULL; | ||
148 | n->ref = NULL; | ||
149 | n->ref_ptr = NULL; | ||
150 | } | ||
151 | |||
152 | static inline void INIT_BINHEAP_HANDLE(struct binheap *handle, | ||
153 | binheap_order_t compare) | ||
154 | { | ||
155 | handle->root = NULL; | ||
156 | handle->next = NULL; | ||
157 | handle->last = NULL; | ||
158 | handle->compare = compare; | ||
159 | } | ||
160 | |||
161 | /* Returns true if binheap is empty. */ | ||
162 | static inline int binheap_empty(struct binheap *handle) | ||
163 | { | ||
164 | return(handle->root == NULL); | ||
165 | } | ||
166 | |||
167 | /* Returns true if binheap node is in a heap. */ | ||
168 | static inline int binheap_is_in_heap(struct binheap_node *node) | ||
169 | { | ||
170 | return (node->parent != BINHEAP_POISON); | ||
171 | } | ||
172 | |||
173 | /* Returns true if binheap node is in given heap. */ | ||
174 | int binheap_is_in_this_heap(struct binheap_node *node, struct binheap* heap); | ||
175 | |||
176 | /* Add a node to a heap */ | ||
177 | void __binheap_add(struct binheap_node *new_node, | ||
178 | struct binheap *handle, | ||
179 | void *data); | ||
180 | |||
181 | /** | ||
182 | * Removes the root node from the heap. The node is removed after coalescing | ||
183 | * the binheap_node with its original data pointer at the root of the tree. | ||
184 | * | ||
185 | * The 'last' node in the tree is then swapped up to the root and bubbled | ||
186 | * down. | ||
187 | */ | ||
188 | void __binheap_delete_root(struct binheap *handle, | ||
189 | struct binheap_node *container); | ||
190 | |||
191 | /** | ||
192 | * Delete an arbitrary node. Bubble node to delete up to the root, | ||
193 | * and then delete to root. | ||
194 | */ | ||
195 | void __binheap_delete(struct binheap_node *node_to_delete, | ||
196 | struct binheap *handle); | ||
197 | |||
198 | /** | ||
199 | * Bubble up a node whose pointer has decreased in value. | ||
200 | */ | ||
201 | void __binheap_decrease(struct binheap_node *orig_node, | ||
202 | struct binheap *handle); | ||
203 | |||
204 | |||
205 | #endif | ||
206 | |||
diff --git a/include/litmus/budget.h b/include/litmus/budget.h index 732530e63491..33344ee8d5f9 100644 --- a/include/litmus/budget.h +++ b/include/litmus/budget.h | |||
@@ -5,4 +5,31 @@ | |||
5 | * the next task. */ | 5 | * the next task. */ |
6 | void update_enforcement_timer(struct task_struct* t); | 6 | void update_enforcement_timer(struct task_struct* t); |
7 | 7 | ||
8 | inline static int budget_exhausted(struct task_struct* t) | ||
9 | { | ||
10 | return get_exec_time(t) >= get_exec_cost(t); | ||
11 | } | ||
12 | |||
13 | inline static lt_t budget_remaining(struct task_struct* t) | ||
14 | { | ||
15 | if (!budget_exhausted(t)) | ||
16 | return get_exec_cost(t) - get_exec_time(t); | ||
17 | else | ||
18 | /* avoid overflow */ | ||
19 | return 0; | ||
20 | } | ||
21 | |||
22 | #define budget_enforced(t) (tsk_rt(t)->task_params.budget_policy != NO_ENFORCEMENT) | ||
23 | |||
24 | #define budget_precisely_enforced(t) (tsk_rt(t)->task_params.budget_policy \ | ||
25 | == PRECISE_ENFORCEMENT) | ||
26 | |||
27 | static inline int requeue_preempted_job(struct task_struct* t) | ||
28 | { | ||
29 | /* Add task to ready queue only if not subject to budget enforcement or | ||
30 | * if the job has budget remaining. t may be NULL. | ||
31 | */ | ||
32 | return t && (!budget_exhausted(t) || !budget_enforced(t)); | ||
33 | } | ||
34 | |||
8 | #endif | 35 | #endif |
diff --git a/include/litmus/debug_trace.h b/include/litmus/debug_trace.h index 48d086d5a44c..1266ac6a760c 100644 --- a/include/litmus/debug_trace.h +++ b/include/litmus/debug_trace.h | |||
@@ -28,8 +28,11 @@ extern atomic_t __log_seq_no; | |||
28 | TRACE_ARGS, ## args) | 28 | TRACE_ARGS, ## args) |
29 | 29 | ||
30 | #define TRACE_TASK(t, fmt, args...) \ | 30 | #define TRACE_TASK(t, fmt, args...) \ |
31 | TRACE("(%s/%d:%d) " fmt, (t)->comm, (t)->pid, \ | 31 | TRACE("(%s/%d:%d) " fmt, \ |
32 | (t)->rt_param.job_params.job_no, ##args) | 32 | t ? (t)->comm : "null", \ |
33 | t ? (t)->pid : 0, \ | ||
34 | t ? (t)->rt_param.job_params.job_no : 0, \ | ||
35 | ##args) | ||
33 | 36 | ||
34 | #define TRACE_CUR(fmt, args...) \ | 37 | #define TRACE_CUR(fmt, args...) \ |
35 | TRACE_TASK(current, fmt, ## args) | 38 | TRACE_TASK(current, fmt, ## args) |
diff --git a/include/litmus/fdso.h b/include/litmus/fdso.h index caf2a1e6918c..f2115b83f1e4 100644 --- a/include/litmus/fdso.h +++ b/include/litmus/fdso.h | |||
@@ -12,7 +12,7 @@ | |||
12 | #include <linux/fs.h> | 12 | #include <linux/fs.h> |
13 | #include <linux/slab.h> | 13 | #include <linux/slab.h> |
14 | 14 | ||
15 | #define MAX_OBJECT_DESCRIPTORS 32 | 15 | #define MAX_OBJECT_DESCRIPTORS 85 |
16 | 16 | ||
17 | typedef enum { | 17 | typedef enum { |
18 | MIN_OBJ_TYPE = 0, | 18 | MIN_OBJ_TYPE = 0, |
@@ -20,7 +20,13 @@ typedef enum { | |||
20 | FMLP_SEM = 0, | 20 | FMLP_SEM = 0, |
21 | SRP_SEM = 1, | 21 | SRP_SEM = 1, |
22 | 22 | ||
23 | MAX_OBJ_TYPE = 1 | 23 | MPCP_SEM = 2, |
24 | MPCP_VS_SEM = 3, | ||
25 | DPCP_SEM = 4, | ||
26 | |||
27 | PCP_SEM = 5, | ||
28 | |||
29 | MAX_OBJ_TYPE = 5 | ||
24 | } obj_type_t; | 30 | } obj_type_t; |
25 | 31 | ||
26 | struct inode_obj_id { | 32 | struct inode_obj_id { |
diff --git a/include/litmus/fp_common.h b/include/litmus/fp_common.h new file mode 100644 index 000000000000..19356c0fa6c1 --- /dev/null +++ b/include/litmus/fp_common.h | |||
@@ -0,0 +1,105 @@ | |||
1 | /* Fixed-priority scheduler support. | ||
2 | */ | ||
3 | |||
4 | #ifndef __FP_COMMON_H__ | ||
5 | #define __FP_COMMON_H__ | ||
6 | |||
7 | #include <litmus/rt_domain.h> | ||
8 | |||
9 | #include <asm/bitops.h> | ||
10 | |||
11 | |||
12 | void fp_domain_init(rt_domain_t* rt, check_resched_needed_t resched, | ||
13 | release_jobs_t release); | ||
14 | |||
15 | int fp_higher_prio(struct task_struct* first, | ||
16 | struct task_struct* second); | ||
17 | |||
18 | int fp_ready_order(struct bheap_node* a, struct bheap_node* b); | ||
19 | |||
20 | #define FP_PRIO_BIT_WORDS (LITMUS_MAX_PRIORITY / BITS_PER_LONG) | ||
21 | |||
22 | #if (LITMUS_MAX_PRIORITY % BITS_PER_LONG) | ||
23 | #error LITMUS_MAX_PRIORITY must be a multiple of BITS_PER_LONG | ||
24 | #endif | ||
25 | |||
26 | /* bitmask-inexed priority queue */ | ||
27 | struct fp_prio_queue { | ||
28 | unsigned long bitmask[FP_PRIO_BIT_WORDS]; | ||
29 | struct bheap queue[LITMUS_MAX_PRIORITY]; | ||
30 | }; | ||
31 | |||
32 | void fp_prio_queue_init(struct fp_prio_queue* q); | ||
33 | |||
34 | static inline void fpq_set(struct fp_prio_queue* q, unsigned int index) | ||
35 | { | ||
36 | unsigned long *word = q->bitmask + (index / BITS_PER_LONG); | ||
37 | __set_bit(index % BITS_PER_LONG, word); | ||
38 | } | ||
39 | |||
40 | static inline void fpq_clear(struct fp_prio_queue* q, unsigned int index) | ||
41 | { | ||
42 | unsigned long *word = q->bitmask + (index / BITS_PER_LONG); | ||
43 | __clear_bit(index % BITS_PER_LONG, word); | ||
44 | } | ||
45 | |||
46 | static inline unsigned int fpq_find(struct fp_prio_queue* q) | ||
47 | { | ||
48 | int i; | ||
49 | |||
50 | /* loop optimizer should unroll this */ | ||
51 | for (i = 0; i < FP_PRIO_BIT_WORDS; i++) | ||
52 | if (q->bitmask[i]) | ||
53 | return __ffs(q->bitmask[i]) + i * BITS_PER_LONG; | ||
54 | |||
55 | return LITMUS_MAX_PRIORITY; /* nothing found */ | ||
56 | } | ||
57 | |||
58 | static inline void fp_prio_add(struct fp_prio_queue* q, struct task_struct* t, unsigned int index) | ||
59 | { | ||
60 | BUG_ON(index >= LITMUS_MAX_PRIORITY); | ||
61 | BUG_ON(bheap_node_in_heap(tsk_rt(t)->heap_node)); | ||
62 | |||
63 | fpq_set(q, index); | ||
64 | bheap_insert(fp_ready_order, &q->queue[index], tsk_rt(t)->heap_node); | ||
65 | } | ||
66 | |||
67 | static inline void fp_prio_remove(struct fp_prio_queue* q, struct task_struct* t, unsigned int index) | ||
68 | { | ||
69 | BUG_ON(!is_queued(t)); | ||
70 | |||
71 | bheap_delete(fp_ready_order, &q->queue[index], tsk_rt(t)->heap_node); | ||
72 | if (likely(bheap_empty(&q->queue[index]))) | ||
73 | fpq_clear(q, index); | ||
74 | } | ||
75 | |||
76 | static inline struct task_struct* fp_prio_peek(struct fp_prio_queue* q) | ||
77 | { | ||
78 | unsigned int idx = fpq_find(q); | ||
79 | struct bheap_node* hn; | ||
80 | |||
81 | if (idx < LITMUS_MAX_PRIORITY) { | ||
82 | hn = bheap_peek(fp_ready_order, &q->queue[idx]); | ||
83 | return bheap2task(hn); | ||
84 | } else | ||
85 | return NULL; | ||
86 | } | ||
87 | |||
88 | static inline struct task_struct* fp_prio_take(struct fp_prio_queue* q) | ||
89 | { | ||
90 | unsigned int idx = fpq_find(q); | ||
91 | struct bheap_node* hn; | ||
92 | |||
93 | if (idx < LITMUS_MAX_PRIORITY) { | ||
94 | hn = bheap_take(fp_ready_order, &q->queue[idx]); | ||
95 | if (likely(bheap_empty(&q->queue[idx]))) | ||
96 | fpq_clear(q, idx); | ||
97 | return bheap2task(hn); | ||
98 | } else | ||
99 | return NULL; | ||
100 | } | ||
101 | |||
102 | int fp_preemption_needed(struct fp_prio_queue* q, struct task_struct *t); | ||
103 | |||
104 | |||
105 | #endif | ||
diff --git a/include/litmus/fpmath.h b/include/litmus/fpmath.h new file mode 100644 index 000000000000..642de98542c8 --- /dev/null +++ b/include/litmus/fpmath.h | |||
@@ -0,0 +1,147 @@ | |||
1 | #ifndef __FP_MATH_H__ | ||
2 | #define __FP_MATH_H__ | ||
3 | |||
4 | #include <linux/math64.h> | ||
5 | |||
6 | #ifndef __KERNEL__ | ||
7 | #include <stdint.h> | ||
8 | #define abs(x) (((x) < 0) ? -(x) : x) | ||
9 | #endif | ||
10 | |||
11 | // Use 64-bit because we want to track things at the nanosecond scale. | ||
12 | // This can lead to very large numbers. | ||
13 | typedef int64_t fpbuf_t; | ||
14 | typedef struct | ||
15 | { | ||
16 | fpbuf_t val; | ||
17 | } fp_t; | ||
18 | |||
19 | #define FP_SHIFT 10 | ||
20 | #define ROUND_BIT (FP_SHIFT - 1) | ||
21 | |||
22 | #define _fp(x) ((fp_t) {x}) | ||
23 | |||
24 | #ifdef __KERNEL__ | ||
25 | static const fp_t LITMUS_FP_ZERO = {.val = 0}; | ||
26 | static const fp_t LITMUS_FP_ONE = {.val = (1 << FP_SHIFT)}; | ||
27 | #endif | ||
28 | |||
29 | static inline fp_t FP(fpbuf_t x) | ||
30 | { | ||
31 | return _fp(((fpbuf_t) x) << FP_SHIFT); | ||
32 | } | ||
33 | |||
34 | /* divide two integers to obtain a fixed point value */ | ||
35 | static inline fp_t _frac(fpbuf_t a, fpbuf_t b) | ||
36 | { | ||
37 | return _fp(div64_s64(FP(a).val, (b))); | ||
38 | } | ||
39 | |||
40 | static inline fpbuf_t _point(fp_t x) | ||
41 | { | ||
42 | return (x.val % (1 << FP_SHIFT)); | ||
43 | |||
44 | } | ||
45 | |||
46 | #define fp2str(x) x.val | ||
47 | /*(x.val >> FP_SHIFT), (x.val % (1 << FP_SHIFT)) */ | ||
48 | #define _FP_ "%ld/1024" | ||
49 | |||
50 | static inline fpbuf_t _floor(fp_t x) | ||
51 | { | ||
52 | return x.val >> FP_SHIFT; | ||
53 | } | ||
54 | |||
55 | /* FIXME: negative rounding */ | ||
56 | static inline fpbuf_t _round(fp_t x) | ||
57 | { | ||
58 | return _floor(x) + ((x.val >> ROUND_BIT) & 1); | ||
59 | } | ||
60 | |||
61 | /* multiply two fixed point values */ | ||
62 | static inline fp_t _mul(fp_t a, fp_t b) | ||
63 | { | ||
64 | return _fp((a.val * b.val) >> FP_SHIFT); | ||
65 | } | ||
66 | |||
67 | static inline fp_t _div(fp_t a, fp_t b) | ||
68 | { | ||
69 | #if !defined(__KERNEL__) && !defined(unlikely) | ||
70 | #define unlikely(x) (x) | ||
71 | #define DO_UNDEF_UNLIKELY | ||
72 | #endif | ||
73 | /* try not to overflow */ | ||
74 | if (unlikely( a.val > (2l << ((sizeof(fpbuf_t)*8) - FP_SHIFT)) )) | ||
75 | return _fp((a.val / b.val) << FP_SHIFT); | ||
76 | else | ||
77 | return _fp((a.val << FP_SHIFT) / b.val); | ||
78 | #ifdef DO_UNDEF_UNLIKELY | ||
79 | #undef unlikely | ||
80 | #undef DO_UNDEF_UNLIKELY | ||
81 | #endif | ||
82 | } | ||
83 | |||
84 | static inline fp_t _add(fp_t a, fp_t b) | ||
85 | { | ||
86 | return _fp(a.val + b.val); | ||
87 | } | ||
88 | |||
89 | static inline fp_t _sub(fp_t a, fp_t b) | ||
90 | { | ||
91 | return _fp(a.val - b.val); | ||
92 | } | ||
93 | |||
94 | static inline fp_t _neg(fp_t x) | ||
95 | { | ||
96 | return _fp(-x.val); | ||
97 | } | ||
98 | |||
99 | static inline fp_t _abs(fp_t x) | ||
100 | { | ||
101 | return _fp(abs(x.val)); | ||
102 | } | ||
103 | |||
104 | /* works the same as casting float/double to integer */ | ||
105 | static inline fpbuf_t _fp_to_integer(fp_t x) | ||
106 | { | ||
107 | return _floor(_abs(x)) * ((x.val > 0) ? 1 : -1); | ||
108 | } | ||
109 | |||
110 | static inline fp_t _integer_to_fp(fpbuf_t x) | ||
111 | { | ||
112 | return _frac(x,1); | ||
113 | } | ||
114 | |||
115 | static inline int _leq(fp_t a, fp_t b) | ||
116 | { | ||
117 | return a.val <= b.val; | ||
118 | } | ||
119 | |||
120 | static inline int _geq(fp_t a, fp_t b) | ||
121 | { | ||
122 | return a.val >= b.val; | ||
123 | } | ||
124 | |||
125 | static inline int _lt(fp_t a, fp_t b) | ||
126 | { | ||
127 | return a.val < b.val; | ||
128 | } | ||
129 | |||
130 | static inline int _gt(fp_t a, fp_t b) | ||
131 | { | ||
132 | return a.val > b.val; | ||
133 | } | ||
134 | |||
135 | static inline int _eq(fp_t a, fp_t b) | ||
136 | { | ||
137 | return a.val == b.val; | ||
138 | } | ||
139 | |||
140 | static inline fp_t _max(fp_t a, fp_t b) | ||
141 | { | ||
142 | if (a.val < b.val) | ||
143 | return b; | ||
144 | else | ||
145 | return a; | ||
146 | } | ||
147 | #endif | ||
diff --git a/include/litmus/litmus.h b/include/litmus/litmus.h index 0b071fd359f9..875783e6a67b 100644 --- a/include/litmus/litmus.h +++ b/include/litmus/litmus.h | |||
@@ -45,38 +45,23 @@ void litmus_exit_task(struct task_struct *tsk); | |||
45 | #define tsk_rt(t) (&(t)->rt_param) | 45 | #define tsk_rt(t) (&(t)->rt_param) |
46 | 46 | ||
47 | /* Realtime utility macros */ | 47 | /* Realtime utility macros */ |
48 | #define get_rt_flags(t) (tsk_rt(t)->flags) | 48 | #define is_priority_boosted(t) (tsk_rt(t)->priority_boosted) |
49 | #define set_rt_flags(t,f) (tsk_rt(t)->flags=(f)) | 49 | #define get_boost_start(t) (tsk_rt(t)->boost_start_time) |
50 | |||
51 | /* task_params macros */ | ||
50 | #define get_exec_cost(t) (tsk_rt(t)->task_params.exec_cost) | 52 | #define get_exec_cost(t) (tsk_rt(t)->task_params.exec_cost) |
51 | #define get_exec_time(t) (tsk_rt(t)->job_params.exec_time) | ||
52 | #define get_rt_period(t) (tsk_rt(t)->task_params.period) | 53 | #define get_rt_period(t) (tsk_rt(t)->task_params.period) |
54 | #define get_rt_relative_deadline(t) (tsk_rt(t)->task_params.relative_deadline) | ||
53 | #define get_rt_phase(t) (tsk_rt(t)->task_params.phase) | 55 | #define get_rt_phase(t) (tsk_rt(t)->task_params.phase) |
54 | #define get_partition(t) (tsk_rt(t)->task_params.cpu) | 56 | #define get_partition(t) (tsk_rt(t)->task_params.cpu) |
57 | #define get_priority(t) (tsk_rt(t)->task_params.priority) | ||
58 | #define get_class(t) (tsk_rt(t)->task_params.cls) | ||
59 | |||
60 | /* job_param macros */ | ||
61 | #define get_exec_time(t) (tsk_rt(t)->job_params.exec_time) | ||
55 | #define get_deadline(t) (tsk_rt(t)->job_params.deadline) | 62 | #define get_deadline(t) (tsk_rt(t)->job_params.deadline) |
56 | #define get_release(t) (tsk_rt(t)->job_params.release) | 63 | #define get_release(t) (tsk_rt(t)->job_params.release) |
57 | #define get_class(t) (tsk_rt(t)->task_params.cls) | 64 | #define get_lateness(t) (tsk_rt(t)->job_params.lateness) |
58 | |||
59 | #define is_priority_boosted(t) (tsk_rt(t)->priority_boosted) | ||
60 | #define get_boost_start(t) (tsk_rt(t)->boost_start_time) | ||
61 | |||
62 | inline static int budget_exhausted(struct task_struct* t) | ||
63 | { | ||
64 | return get_exec_time(t) >= get_exec_cost(t); | ||
65 | } | ||
66 | |||
67 | inline static lt_t budget_remaining(struct task_struct* t) | ||
68 | { | ||
69 | if (!budget_exhausted(t)) | ||
70 | return get_exec_cost(t) - get_exec_time(t); | ||
71 | else | ||
72 | /* avoid overflow */ | ||
73 | return 0; | ||
74 | } | ||
75 | |||
76 | #define budget_enforced(t) (tsk_rt(t)->task_params.budget_policy != NO_ENFORCEMENT) | ||
77 | |||
78 | #define budget_precisely_enforced(t) (tsk_rt(t)->task_params.budget_policy \ | ||
79 | == PRECISE_ENFORCEMENT) | ||
80 | 65 | ||
81 | #define is_hrt(t) \ | 66 | #define is_hrt(t) \ |
82 | (tsk_rt(t)->task_params.cls == RT_CLASS_HARD) | 67 | (tsk_rt(t)->task_params.cls == RT_CLASS_HARD) |
@@ -245,6 +230,11 @@ static inline int is_present(struct task_struct* t) | |||
245 | return t && tsk_rt(t)->present; | 230 | return t && tsk_rt(t)->present; |
246 | } | 231 | } |
247 | 232 | ||
233 | static inline int is_completed(struct task_struct* t) | ||
234 | { | ||
235 | return t && tsk_rt(t)->completed; | ||
236 | } | ||
237 | |||
248 | 238 | ||
249 | /* make the unit explicit */ | 239 | /* make the unit explicit */ |
250 | typedef unsigned long quanta_t; | 240 | typedef unsigned long quanta_t; |
@@ -272,4 +262,39 @@ static inline quanta_t time2quanta(lt_t time, enum round round) | |||
272 | /* By how much is cpu staggered behind CPU 0? */ | 262 | /* By how much is cpu staggered behind CPU 0? */ |
273 | u64 cpu_stagger_offset(int cpu); | 263 | u64 cpu_stagger_offset(int cpu); |
274 | 264 | ||
265 | static inline struct control_page* get_control_page(struct task_struct *t) | ||
266 | { | ||
267 | return tsk_rt(t)->ctrl_page; | ||
268 | } | ||
269 | |||
270 | static inline int has_control_page(struct task_struct* t) | ||
271 | { | ||
272 | return tsk_rt(t)->ctrl_page != NULL; | ||
273 | } | ||
274 | |||
275 | |||
276 | #ifdef CONFIG_SCHED_OVERHEAD_TRACE | ||
277 | |||
278 | #define TS_SYSCALL_IN_START \ | ||
279 | if (has_control_page(current)) { \ | ||
280 | __TS_SYSCALL_IN_START(&get_control_page(current)->ts_syscall_start); \ | ||
281 | } | ||
282 | |||
283 | #define TS_SYSCALL_IN_END \ | ||
284 | if (has_control_page(current)) { \ | ||
285 | uint64_t irqs; \ | ||
286 | local_irq_disable(); \ | ||
287 | irqs = get_control_page(current)->irq_count - \ | ||
288 | get_control_page(current)->irq_syscall_start; \ | ||
289 | __TS_SYSCALL_IN_END(&irqs); \ | ||
290 | local_irq_enable(); \ | ||
291 | } | ||
292 | |||
293 | #else | ||
294 | |||
295 | #define TS_SYSCALL_IN_START | ||
296 | #define TS_SYSCALL_IN_END | ||
297 | |||
298 | #endif | ||
299 | |||
275 | #endif | 300 | #endif |
diff --git a/include/litmus/rt_param.h b/include/litmus/rt_param.h index d6d799174160..4cd06dd32906 100644 --- a/include/litmus/rt_param.h +++ b/include/litmus/rt_param.h | |||
@@ -33,22 +33,44 @@ typedef enum { | |||
33 | PRECISE_ENFORCEMENT /* budgets are enforced with hrtimers */ | 33 | PRECISE_ENFORCEMENT /* budgets are enforced with hrtimers */ |
34 | } budget_policy_t; | 34 | } budget_policy_t; |
35 | 35 | ||
36 | /* We use the common priority interpretation "lower index == higher priority", | ||
37 | * which is commonly used in fixed-priority schedulability analysis papers. | ||
38 | * So, a numerically lower priority value implies higher scheduling priority, | ||
39 | * with priority 1 being the highest priority. Priority 0 is reserved for | ||
40 | * priority boosting. LITMUS_MAX_PRIORITY denotes the maximum priority value | ||
41 | * range. | ||
42 | */ | ||
43 | |||
44 | #define LITMUS_MAX_PRIORITY 512 | ||
45 | #define LITMUS_HIGHEST_PRIORITY 1 | ||
46 | #define LITMUS_LOWEST_PRIORITY (LITMUS_MAX_PRIORITY - 1) | ||
47 | |||
48 | /* Provide generic comparison macros for userspace, | ||
49 | * in case that we change this later. */ | ||
50 | #define litmus_higher_fixed_prio(a, b) (a < b) | ||
51 | #define litmus_lower_fixed_prio(a, b) (a > b) | ||
52 | #define litmus_is_valid_fixed_prio(p) \ | ||
53 | ((p) >= LITMUS_HIGHEST_PRIORITY && \ | ||
54 | (p) <= LITMUS_LOWEST_PRIORITY) | ||
55 | |||
36 | struct rt_task { | 56 | struct rt_task { |
37 | lt_t exec_cost; | 57 | lt_t exec_cost; |
38 | lt_t period; | 58 | lt_t period; |
59 | lt_t relative_deadline; | ||
39 | lt_t phase; | 60 | lt_t phase; |
40 | unsigned int cpu; | 61 | unsigned int cpu; |
62 | unsigned int priority; | ||
41 | task_class_t cls; | 63 | task_class_t cls; |
42 | budget_policy_t budget_policy; /* ignored by pfair */ | 64 | budget_policy_t budget_policy; /* ignored by pfair */ |
43 | }; | 65 | }; |
44 | 66 | ||
45 | union np_flag { | 67 | union np_flag { |
46 | uint32_t raw; | 68 | uint64_t raw; |
47 | struct { | 69 | struct { |
48 | /* Is the task currently in a non-preemptive section? */ | 70 | /* Is the task currently in a non-preemptive section? */ |
49 | uint32_t flag:31; | 71 | uint64_t flag:31; |
50 | /* Should the task call into the scheduler? */ | 72 | /* Should the task call into the scheduler? */ |
51 | uint32_t preempt:1; | 73 | uint64_t preempt:1; |
52 | } np; | 74 | } np; |
53 | }; | 75 | }; |
54 | 76 | ||
@@ -67,11 +89,29 @@ union np_flag { | |||
67 | * determining preemption/migration overheads). | 89 | * determining preemption/migration overheads). |
68 | */ | 90 | */ |
69 | struct control_page { | 91 | struct control_page { |
92 | /* This flag is used by userspace to communicate non-preempive | ||
93 | * sections. */ | ||
70 | volatile union np_flag sched; | 94 | volatile union np_flag sched; |
71 | 95 | ||
96 | volatile uint64_t irq_count; /* Incremented by the kernel each time an IRQ is | ||
97 | * handled. */ | ||
98 | |||
99 | /* Locking overhead tracing: userspace records here the time stamp | ||
100 | * and IRQ counter prior to starting the system call. */ | ||
101 | uint64_t ts_syscall_start; /* Feather-Trace cycles */ | ||
102 | uint64_t irq_syscall_start; /* Snapshot of irq_count when the syscall | ||
103 | * started. */ | ||
104 | |||
72 | /* to be extended */ | 105 | /* to be extended */ |
73 | }; | 106 | }; |
74 | 107 | ||
108 | /* Expected offsets within the control page. */ | ||
109 | |||
110 | #define LITMUS_CP_OFFSET_SCHED 0 | ||
111 | #define LITMUS_CP_OFFSET_IRQ_COUNT 8 | ||
112 | #define LITMUS_CP_OFFSET_TS_SC_START 16 | ||
113 | #define LITMUS_CP_OFFSET_IRQ_SC_START 24 | ||
114 | |||
75 | /* don't export internal data structures to user space (liblitmus) */ | 115 | /* don't export internal data structures to user space (liblitmus) */ |
76 | #ifdef __KERNEL__ | 116 | #ifdef __KERNEL__ |
77 | 117 | ||
@@ -88,6 +128,12 @@ struct rt_job { | |||
88 | /* How much service has this job received so far? */ | 128 | /* How much service has this job received so far? */ |
89 | lt_t exec_time; | 129 | lt_t exec_time; |
90 | 130 | ||
131 | /* By how much did the prior job miss its deadline by? | ||
132 | * Value differs from tardiness in that lateness may | ||
133 | * be negative (when job finishes before its deadline). | ||
134 | */ | ||
135 | long long lateness; | ||
136 | |||
91 | /* Which job is this. This is used to let user space | 137 | /* Which job is this. This is used to let user space |
92 | * specify which job to wait for, which is important if jobs | 138 | * specify which job to wait for, which is important if jobs |
93 | * overrun. If we just call sys_sleep_next_period() then we | 139 | * overrun. If we just call sys_sleep_next_period() then we |
@@ -114,6 +160,9 @@ struct rt_param { | |||
114 | /* is the task present? (true if it can be scheduled) */ | 160 | /* is the task present? (true if it can be scheduled) */ |
115 | unsigned int present:1; | 161 | unsigned int present:1; |
116 | 162 | ||
163 | /* has the task completed? */ | ||
164 | unsigned int completed:1; | ||
165 | |||
117 | #ifdef CONFIG_LITMUS_LOCKING | 166 | #ifdef CONFIG_LITMUS_LOCKING |
118 | /* Is the task being priority-boosted by a locking protocol? */ | 167 | /* Is the task being priority-boosted by a locking protocol? */ |
119 | unsigned int priority_boosted:1; | 168 | unsigned int priority_boosted:1; |
@@ -199,11 +248,6 @@ struct rt_param { | |||
199 | struct control_page * ctrl_page; | 248 | struct control_page * ctrl_page; |
200 | }; | 249 | }; |
201 | 250 | ||
202 | /* Possible RT flags */ | ||
203 | #define RT_F_RUNNING 0x00000000 | ||
204 | #define RT_F_SLEEP 0x00000001 | ||
205 | #define RT_F_EXIT_SEM 0x00000008 | ||
206 | |||
207 | #endif | 251 | #endif |
208 | 252 | ||
209 | #endif | 253 | #endif |
diff --git a/include/litmus/sched_plugin.h b/include/litmus/sched_plugin.h index 6e7cabdddae8..1546ab7f1d66 100644 --- a/include/litmus/sched_plugin.h +++ b/include/litmus/sched_plugin.h | |||
@@ -53,10 +53,12 @@ typedef void (*task_block_t) (struct task_struct *task); | |||
53 | */ | 53 | */ |
54 | typedef void (*task_exit_t) (struct task_struct *); | 54 | typedef void (*task_exit_t) (struct task_struct *); |
55 | 55 | ||
56 | #ifdef CONFIG_LITMUS_LOCKING | ||
56 | /* Called when the current task attempts to create a new lock of a given | 57 | /* Called when the current task attempts to create a new lock of a given |
57 | * protocol type. */ | 58 | * protocol type. */ |
58 | typedef long (*allocate_lock_t) (struct litmus_lock **lock, int type, | 59 | typedef long (*allocate_lock_t) (struct litmus_lock **lock, int type, |
59 | void* __user config); | 60 | void* __user config); |
61 | #endif | ||
60 | 62 | ||
61 | 63 | ||
62 | /********************* sys call backends ********************/ | 64 | /********************* sys call backends ********************/ |
diff --git a/include/litmus/sched_trace.h b/include/litmus/sched_trace.h index 7ca34cb13881..82bde8241298 100644 --- a/include/litmus/sched_trace.h +++ b/include/litmus/sched_trace.h | |||
@@ -164,34 +164,93 @@ feather_callback void do_sched_trace_sys_release(unsigned long id, | |||
164 | 164 | ||
165 | #endif | 165 | #endif |
166 | 166 | ||
167 | #ifdef CONFIG_SCHED_LITMUS_TRACEPOINT | ||
168 | |||
169 | #include <trace/events/litmus.h> | ||
170 | |||
171 | #else | ||
172 | |||
173 | /* Override trace macros to actually do nothing */ | ||
174 | #define trace_litmus_task_param(t) | ||
175 | #define trace_litmus_task_release(t) | ||
176 | #define trace_litmus_switch_to(t) | ||
177 | #define trace_litmus_switch_away(prev) | ||
178 | #define trace_litmus_task_completion(t, forced) | ||
179 | #define trace_litmus_task_block(t) | ||
180 | #define trace_litmus_task_resume(t) | ||
181 | #define trace_litmus_sys_release(start) | ||
182 | |||
183 | #endif | ||
184 | |||
167 | 185 | ||
168 | #define SCHED_TRACE_BASE_ID 500 | 186 | #define SCHED_TRACE_BASE_ID 500 |
169 | 187 | ||
170 | 188 | ||
171 | #define sched_trace_task_name(t) \ | 189 | #define sched_trace_task_name(t) \ |
172 | SCHED_TRACE(SCHED_TRACE_BASE_ID + 1, do_sched_trace_task_name, t) | 190 | SCHED_TRACE(SCHED_TRACE_BASE_ID + 1, \ |
173 | #define sched_trace_task_param(t) \ | 191 | do_sched_trace_task_name, t) |
174 | SCHED_TRACE(SCHED_TRACE_BASE_ID + 2, do_sched_trace_task_param, t) | 192 | |
175 | #define sched_trace_task_release(t) \ | 193 | #define sched_trace_task_param(t) \ |
176 | SCHED_TRACE(SCHED_TRACE_BASE_ID + 3, do_sched_trace_task_release, t) | 194 | do { \ |
177 | #define sched_trace_task_switch_to(t) \ | 195 | SCHED_TRACE(SCHED_TRACE_BASE_ID + 2, \ |
178 | SCHED_TRACE(SCHED_TRACE_BASE_ID + 4, do_sched_trace_task_switch_to, t) | 196 | do_sched_trace_task_param, t); \ |
179 | #define sched_trace_task_switch_away(t) \ | 197 | trace_litmus_task_param(t); \ |
180 | SCHED_TRACE(SCHED_TRACE_BASE_ID + 5, do_sched_trace_task_switch_away, t) | 198 | } while (0) |
181 | #define sched_trace_task_completion(t, forced) \ | 199 | |
182 | SCHED_TRACE2(SCHED_TRACE_BASE_ID + 6, do_sched_trace_task_completion, t, \ | 200 | #define sched_trace_task_release(t) \ |
183 | (unsigned long) forced) | 201 | do { \ |
184 | #define sched_trace_task_block(t) \ | 202 | SCHED_TRACE(SCHED_TRACE_BASE_ID + 3, \ |
185 | SCHED_TRACE(SCHED_TRACE_BASE_ID + 7, do_sched_trace_task_block, t) | 203 | do_sched_trace_task_release, t); \ |
186 | #define sched_trace_task_resume(t) \ | 204 | trace_litmus_task_release(t); \ |
187 | SCHED_TRACE(SCHED_TRACE_BASE_ID + 8, do_sched_trace_task_resume, t) | 205 | } while (0) |
188 | #define sched_trace_action(t, action) \ | 206 | |
189 | SCHED_TRACE2(SCHED_TRACE_BASE_ID + 9, do_sched_trace_action, t, \ | 207 | #define sched_trace_task_switch_to(t) \ |
190 | (unsigned long) action); | 208 | do { \ |
191 | /* when is a pointer, it does not need an explicit cast to unsigned long */ | 209 | SCHED_TRACE(SCHED_TRACE_BASE_ID + 4, \ |
192 | #define sched_trace_sys_release(when) \ | 210 | do_sched_trace_task_switch_to, t); \ |
193 | SCHED_TRACE(SCHED_TRACE_BASE_ID + 10, do_sched_trace_sys_release, when) | 211 | trace_litmus_switch_to(t); \ |
212 | } while (0) | ||
213 | |||
214 | #define sched_trace_task_switch_away(t) \ | ||
215 | do { \ | ||
216 | SCHED_TRACE(SCHED_TRACE_BASE_ID + 5, \ | ||
217 | do_sched_trace_task_switch_away, t); \ | ||
218 | trace_litmus_switch_away(t); \ | ||
219 | } while (0) | ||
220 | |||
221 | #define sched_trace_task_completion(t, forced) \ | ||
222 | do { \ | ||
223 | SCHED_TRACE2(SCHED_TRACE_BASE_ID + 6, \ | ||
224 | do_sched_trace_task_completion, t, \ | ||
225 | (unsigned long) forced); \ | ||
226 | trace_litmus_task_completion(t, forced); \ | ||
227 | } while (0) | ||
228 | |||
229 | #define sched_trace_task_block(t) \ | ||
230 | do { \ | ||
231 | SCHED_TRACE(SCHED_TRACE_BASE_ID + 7, \ | ||
232 | do_sched_trace_task_block, t); \ | ||
233 | trace_litmus_task_block(t); \ | ||
234 | } while (0) | ||
235 | |||
236 | #define sched_trace_task_resume(t) \ | ||
237 | do { \ | ||
238 | SCHED_TRACE(SCHED_TRACE_BASE_ID + 8, \ | ||
239 | do_sched_trace_task_resume, t); \ | ||
240 | trace_litmus_task_resume(t); \ | ||
241 | } while (0) | ||
242 | |||
243 | #define sched_trace_action(t, action) \ | ||
244 | SCHED_TRACE2(SCHED_TRACE_BASE_ID + 9, \ | ||
245 | do_sched_trace_action, t, (unsigned long) action); | ||
194 | 246 | ||
247 | /* when is a pointer, it does not need an explicit cast to unsigned long */ | ||
248 | #define sched_trace_sys_release(when) \ | ||
249 | do { \ | ||
250 | SCHED_TRACE(SCHED_TRACE_BASE_ID + 10, \ | ||
251 | do_sched_trace_sys_release, when); \ | ||
252 | trace_litmus_sys_release(when); \ | ||
253 | } while (0) | ||
195 | 254 | ||
196 | #define sched_trace_quantum_boundary() /* NOT IMPLEMENTED */ | 255 | #define sched_trace_quantum_boundary() /* NOT IMPLEMENTED */ |
197 | 256 | ||
diff --git a/include/litmus/trace.h b/include/litmus/trace.h index e809376d6487..8ad4966c602e 100644 --- a/include/litmus/trace.h +++ b/include/litmus/trace.h | |||
@@ -3,6 +3,7 @@ | |||
3 | 3 | ||
4 | #ifdef CONFIG_SCHED_OVERHEAD_TRACE | 4 | #ifdef CONFIG_SCHED_OVERHEAD_TRACE |
5 | 5 | ||
6 | |||
6 | #include <litmus/feather_trace.h> | 7 | #include <litmus/feather_trace.h> |
7 | #include <litmus/feather_buffer.h> | 8 | #include <litmus/feather_buffer.h> |
8 | 9 | ||
@@ -16,7 +17,8 @@ enum task_type_marker { | |||
16 | }; | 17 | }; |
17 | 18 | ||
18 | struct timestamp { | 19 | struct timestamp { |
19 | uint64_t timestamp; | 20 | uint64_t timestamp:48; |
21 | uint64_t pid:16; | ||
20 | uint32_t seq_no; | 22 | uint32_t seq_no; |
21 | uint8_t cpu; | 23 | uint8_t cpu; |
22 | uint8_t event; | 24 | uint8_t event; |
@@ -31,11 +33,16 @@ feather_callback void save_timestamp_def(unsigned long event, unsigned long type | |||
31 | feather_callback void save_timestamp_task(unsigned long event, unsigned long t_ptr); | 33 | feather_callback void save_timestamp_task(unsigned long event, unsigned long t_ptr); |
32 | feather_callback void save_timestamp_cpu(unsigned long event, unsigned long cpu); | 34 | feather_callback void save_timestamp_cpu(unsigned long event, unsigned long cpu); |
33 | feather_callback void save_task_latency(unsigned long event, unsigned long when_ptr); | 35 | feather_callback void save_task_latency(unsigned long event, unsigned long when_ptr); |
36 | feather_callback void save_timestamp_time(unsigned long event, unsigned long time_ptr); | ||
37 | feather_callback void save_timestamp_irq(unsigned long event, unsigned long irq_count_ptr); | ||
38 | feather_callback void save_timestamp_hide_irq(unsigned long event); | ||
34 | 39 | ||
35 | #define TIMESTAMP(id) ft_event0(id, save_timestamp) | 40 | #define TIMESTAMP(id) ft_event0(id, save_timestamp) |
36 | 41 | ||
37 | #define DTIMESTAMP(id, def) ft_event1(id, save_timestamp_def, (unsigned long) def) | 42 | #define DTIMESTAMP(id, def) ft_event1(id, save_timestamp_def, (unsigned long) def) |
38 | 43 | ||
44 | #define TIMESTAMP_CUR(id) DTIMESTAMP(id, is_realtime(current) ? TSK_RT : TSK_BE) | ||
45 | |||
39 | #define TTIMESTAMP(id, task) \ | 46 | #define TTIMESTAMP(id, task) \ |
40 | ft_event1(id, save_timestamp_task, (unsigned long) task) | 47 | ft_event1(id, save_timestamp_task, (unsigned long) task) |
41 | 48 | ||
@@ -45,18 +52,35 @@ feather_callback void save_task_latency(unsigned long event, unsigned long when_ | |||
45 | #define LTIMESTAMP(id, task) \ | 52 | #define LTIMESTAMP(id, task) \ |
46 | ft_event1(id, save_task_latency, (unsigned long) task) | 53 | ft_event1(id, save_task_latency, (unsigned long) task) |
47 | 54 | ||
55 | #define TIMESTAMP_TIME(id, time_ptr) \ | ||
56 | ft_event1(id, save_timestamp_time, (unsigned long) time_ptr) | ||
57 | |||
58 | #define TIMESTAMP_IRQ(id, irq_count_ptr) \ | ||
59 | ft_event1(id, save_timestamp_irq, (unsigned long) irq_count_ptr) | ||
60 | |||
61 | #define TIMESTAMP_IN_IRQ(id) \ | ||
62 | ft_event0(id, save_timestamp_hide_irq) | ||
63 | |||
48 | #else /* !CONFIG_SCHED_OVERHEAD_TRACE */ | 64 | #else /* !CONFIG_SCHED_OVERHEAD_TRACE */ |
49 | 65 | ||
50 | #define TIMESTAMP(id) /* no tracing */ | 66 | #define TIMESTAMP(id) /* no tracing */ |
51 | 67 | ||
52 | #define DTIMESTAMP(id, def) /* no tracing */ | 68 | #define DTIMESTAMP(id, def) /* no tracing */ |
53 | 69 | ||
70 | #define TIMESTAMP_CUR(id) /* no tracing */ | ||
71 | |||
54 | #define TTIMESTAMP(id, task) /* no tracing */ | 72 | #define TTIMESTAMP(id, task) /* no tracing */ |
55 | 73 | ||
56 | #define CTIMESTAMP(id, cpu) /* no tracing */ | 74 | #define CTIMESTAMP(id, cpu) /* no tracing */ |
57 | 75 | ||
58 | #define LTIMESTAMP(id, when_ptr) /* no tracing */ | 76 | #define LTIMESTAMP(id, when_ptr) /* no tracing */ |
59 | 77 | ||
78 | #define TIMESTAMP_TIME(id, time_ptr) /* no tracing */ | ||
79 | |||
80 | #define TIMESTAMP_IRQ(id, irq_count_ptr) /* no tracing */ | ||
81 | |||
82 | #define TIMESTAMP_IN_IRQ(id) /* no tracing */ | ||
83 | |||
60 | #endif | 84 | #endif |
61 | 85 | ||
62 | 86 | ||
@@ -68,7 +92,20 @@ feather_callback void save_task_latency(unsigned long event, unsigned long when_ | |||
68 | * always the next number after the start time event id. | 92 | * always the next number after the start time event id. |
69 | */ | 93 | */ |
70 | 94 | ||
95 | #define __TS_SYSCALL_IN_START(p) TIMESTAMP_TIME(10, p) | ||
96 | #define __TS_SYSCALL_IN_END(p) TIMESTAMP_IRQ(11, p) | ||
97 | |||
98 | #define TS_SYSCALL_OUT_START TIMESTAMP_CUR(20) | ||
99 | #define TS_SYSCALL_OUT_END TIMESTAMP_CUR(21) | ||
100 | |||
101 | #define TS_LOCK_START TIMESTAMP_CUR(30) | ||
102 | #define TS_LOCK_END TIMESTAMP_CUR(31) | ||
71 | 103 | ||
104 | #define TS_LOCK_SUSPEND TIMESTAMP_CUR(38) | ||
105 | #define TS_LOCK_RESUME TIMESTAMP_CUR(39) | ||
106 | |||
107 | #define TS_UNLOCK_START TIMESTAMP_CUR(40) | ||
108 | #define TS_UNLOCK_END TIMESTAMP_CUR(41) | ||
72 | 109 | ||
73 | #define TS_SCHED_START DTIMESTAMP(100, TSK_UNKNOWN) /* we only | 110 | #define TS_SCHED_START DTIMESTAMP(100, TSK_UNKNOWN) /* we only |
74 | * care | 111 | * care |
@@ -100,16 +137,8 @@ feather_callback void save_task_latency(unsigned long event, unsigned long when_ | |||
100 | #define TS_EXIT_NP_START TIMESTAMP(150) | 137 | #define TS_EXIT_NP_START TIMESTAMP(150) |
101 | #define TS_EXIT_NP_END TIMESTAMP(151) | 138 | #define TS_EXIT_NP_END TIMESTAMP(151) |
102 | 139 | ||
103 | #define TS_LOCK_START TIMESTAMP(170) | ||
104 | #define TS_LOCK_SUSPEND TIMESTAMP(171) | ||
105 | #define TS_LOCK_RESUME TIMESTAMP(172) | ||
106 | #define TS_LOCK_END TIMESTAMP(173) | ||
107 | |||
108 | #define TS_UNLOCK_START TIMESTAMP(180) | ||
109 | #define TS_UNLOCK_END TIMESTAMP(181) | ||
110 | |||
111 | #define TS_SEND_RESCHED_START(c) CTIMESTAMP(190, c) | 140 | #define TS_SEND_RESCHED_START(c) CTIMESTAMP(190, c) |
112 | #define TS_SEND_RESCHED_END DTIMESTAMP(191, TSK_UNKNOWN) | 141 | #define TS_SEND_RESCHED_END TIMESTAMP_IN_IRQ(191) |
113 | 142 | ||
114 | #define TS_RELEASE_LATENCY(when) LTIMESTAMP(208, &(when)) | 143 | #define TS_RELEASE_LATENCY(when) LTIMESTAMP(208, &(when)) |
115 | 144 | ||
diff --git a/include/litmus/trace_irq.h b/include/litmus/trace_irq.h index f18b127a089d..0d0c042ba9c3 100644 --- a/include/litmus/trace_irq.h +++ b/include/litmus/trace_irq.h | |||
@@ -3,14 +3,7 @@ | |||
3 | 3 | ||
4 | #ifdef CONFIG_SCHED_OVERHEAD_TRACE | 4 | #ifdef CONFIG_SCHED_OVERHEAD_TRACE |
5 | 5 | ||
6 | extern DEFINE_PER_CPU(atomic_t, irq_fired_count); | 6 | void ft_irq_fired(void); |
7 | |||
8 | static inline void ft_irq_fired(void) | ||
9 | { | ||
10 | /* Only called with preemptions disabled. */ | ||
11 | atomic_inc(&__get_cpu_var(irq_fired_count)); | ||
12 | } | ||
13 | |||
14 | 7 | ||
15 | #else | 8 | #else |
16 | 9 | ||
diff --git a/include/litmus/wait.h b/include/litmus/wait.h new file mode 100644 index 000000000000..ce1347c355f8 --- /dev/null +++ b/include/litmus/wait.h | |||
@@ -0,0 +1,57 @@ | |||
1 | #ifndef _LITMUS_WAIT_H_ | ||
2 | #define _LITMUS_WAIT_H_ | ||
3 | |||
4 | struct task_struct* __waitqueue_remove_first(wait_queue_head_t *wq); | ||
5 | |||
6 | /* wrap regular wait_queue_t head */ | ||
7 | struct __prio_wait_queue { | ||
8 | wait_queue_t wq; | ||
9 | |||
10 | /* some priority point */ | ||
11 | lt_t priority; | ||
12 | /* break ties in priority by lower tie_breaker */ | ||
13 | unsigned int tie_breaker; | ||
14 | }; | ||
15 | |||
16 | typedef struct __prio_wait_queue prio_wait_queue_t; | ||
17 | |||
18 | static inline void init_prio_waitqueue_entry(prio_wait_queue_t *pwq, | ||
19 | struct task_struct* t, | ||
20 | lt_t priority) | ||
21 | { | ||
22 | init_waitqueue_entry(&pwq->wq, t); | ||
23 | pwq->priority = priority; | ||
24 | pwq->tie_breaker = 0; | ||
25 | } | ||
26 | |||
27 | static inline void init_prio_waitqueue_entry_tie(prio_wait_queue_t *pwq, | ||
28 | struct task_struct* t, | ||
29 | lt_t priority, | ||
30 | unsigned int tie_breaker) | ||
31 | { | ||
32 | init_waitqueue_entry(&pwq->wq, t); | ||
33 | pwq->priority = priority; | ||
34 | pwq->tie_breaker = tie_breaker; | ||
35 | } | ||
36 | |||
37 | unsigned int __add_wait_queue_prio_exclusive( | ||
38 | wait_queue_head_t* head, | ||
39 | prio_wait_queue_t *new); | ||
40 | |||
41 | static inline unsigned int add_wait_queue_prio_exclusive( | ||
42 | wait_queue_head_t* head, | ||
43 | prio_wait_queue_t *new) | ||
44 | { | ||
45 | unsigned long flags; | ||
46 | unsigned int passed; | ||
47 | |||
48 | spin_lock_irqsave(&head->lock, flags); | ||
49 | passed = __add_wait_queue_prio_exclusive(head, new); | ||
50 | |||
51 | spin_unlock_irqrestore(&head->lock, flags); | ||
52 | |||
53 | return passed; | ||
54 | } | ||
55 | |||
56 | |||
57 | #endif | ||
diff --git a/include/trace/events/litmus.h b/include/trace/events/litmus.h new file mode 100644 index 000000000000..0fffcee02be0 --- /dev/null +++ b/include/trace/events/litmus.h | |||
@@ -0,0 +1,231 @@ | |||
1 | /* | ||
2 | * LITMUS^RT kernel style scheduling tracepoints | ||
3 | */ | ||
4 | #undef TRACE_SYSTEM | ||
5 | #define TRACE_SYSTEM litmus | ||
6 | |||
7 | #if !defined(_SCHED_TASK_TRACEPOINT_H) || defined(TRACE_HEADER_MULTI_READ) | ||
8 | #define _SCHED_TASK_TRACEPOINT_H | ||
9 | |||
10 | #include <linux/tracepoint.h> | ||
11 | |||
12 | #include <litmus/litmus.h> | ||
13 | #include <litmus/rt_param.h> | ||
14 | |||
15 | /* | ||
16 | * Tracing task admission | ||
17 | */ | ||
18 | TRACE_EVENT(litmus_task_param, | ||
19 | |||
20 | TP_PROTO(struct task_struct *t), | ||
21 | |||
22 | TP_ARGS(t), | ||
23 | |||
24 | TP_STRUCT__entry( | ||
25 | __field( pid_t, pid ) | ||
26 | __field( unsigned int, job ) | ||
27 | __field( lt_t, wcet ) | ||
28 | __field( lt_t, period ) | ||
29 | __field( lt_t, phase ) | ||
30 | __field( int, partition ) | ||
31 | ), | ||
32 | |||
33 | TP_fast_assign( | ||
34 | __entry->pid = t ? t->pid : 0; | ||
35 | __entry->job = t ? t->rt_param.job_params.job_no : 0; | ||
36 | __entry->wcet = get_exec_cost(t); | ||
37 | __entry->period = get_rt_period(t); | ||
38 | __entry->phase = get_rt_phase(t); | ||
39 | __entry->partition = get_partition(t); | ||
40 | ), | ||
41 | |||
42 | TP_printk("period(%d, %Lu).\nwcet(%d, %Lu).\n", | ||
43 | __entry->pid, __entry->period, | ||
44 | __entry->pid, __entry->wcet) | ||
45 | ); | ||
46 | |||
47 | /* | ||
48 | * Tracing jobs release | ||
49 | */ | ||
50 | TRACE_EVENT(litmus_task_release, | ||
51 | |||
52 | TP_PROTO(struct task_struct *t), | ||
53 | |||
54 | TP_ARGS(t), | ||
55 | |||
56 | TP_STRUCT__entry( | ||
57 | __field( pid_t, pid ) | ||
58 | __field( unsigned int, job ) | ||
59 | __field( lt_t, release ) | ||
60 | __field( lt_t, deadline ) | ||
61 | ), | ||
62 | |||
63 | TP_fast_assign( | ||
64 | __entry->pid = t ? t->pid : 0; | ||
65 | __entry->job = t ? t->rt_param.job_params.job_no : 0; | ||
66 | __entry->release = get_release(t); | ||
67 | __entry->deadline = get_deadline(t); | ||
68 | ), | ||
69 | |||
70 | TP_printk("release(job(%u, %u)): %Lu\ndeadline(job(%u, %u)): %Lu\n", | ||
71 | __entry->pid, __entry->job, __entry->release, | ||
72 | __entry->pid, __entry->job, __entry->deadline) | ||
73 | ); | ||
74 | |||
75 | /* | ||
76 | * Tracepoint for switching to new task | ||
77 | */ | ||
78 | TRACE_EVENT(litmus_switch_to, | ||
79 | |||
80 | TP_PROTO(struct task_struct *t), | ||
81 | |||
82 | TP_ARGS(t), | ||
83 | |||
84 | TP_STRUCT__entry( | ||
85 | __field( pid_t, pid ) | ||
86 | __field( unsigned int, job ) | ||
87 | __field( lt_t, when ) | ||
88 | __field( lt_t, exec_time ) | ||
89 | ), | ||
90 | |||
91 | TP_fast_assign( | ||
92 | __entry->pid = is_realtime(t) ? t->pid : 0; | ||
93 | __entry->job = is_realtime(t) ? t->rt_param.job_params.job_no : 0; | ||
94 | __entry->when = litmus_clock(); | ||
95 | __entry->exec_time = get_exec_time(t); | ||
96 | ), | ||
97 | |||
98 | TP_printk("switch_to(job(%u, %u)): %Lu (exec: %Lu)\n", | ||
99 | __entry->pid, __entry->job, | ||
100 | __entry->when, __entry->exec_time) | ||
101 | ); | ||
102 | |||
103 | /* | ||
104 | * Tracepoint for switching away previous task | ||
105 | */ | ||
106 | TRACE_EVENT(litmus_switch_away, | ||
107 | |||
108 | TP_PROTO(struct task_struct *t), | ||
109 | |||
110 | TP_ARGS(t), | ||
111 | |||
112 | TP_STRUCT__entry( | ||
113 | __field( pid_t, pid ) | ||
114 | __field( unsigned int, job ) | ||
115 | __field( lt_t, when ) | ||
116 | __field( lt_t, exec_time ) | ||
117 | ), | ||
118 | |||
119 | TP_fast_assign( | ||
120 | __entry->pid = is_realtime(t) ? t->pid : 0; | ||
121 | __entry->job = is_realtime(t) ? t->rt_param.job_params.job_no : 0; | ||
122 | __entry->when = litmus_clock(); | ||
123 | __entry->exec_time = get_exec_time(t); | ||
124 | ), | ||
125 | |||
126 | TP_printk("switch_away(job(%u, %u)): %Lu (exec: %Lu)\n", | ||
127 | __entry->pid, __entry->job, | ||
128 | __entry->when, __entry->exec_time) | ||
129 | ); | ||
130 | |||
131 | /* | ||
132 | * Tracing jobs completion | ||
133 | */ | ||
134 | TRACE_EVENT(litmus_task_completion, | ||
135 | |||
136 | TP_PROTO(struct task_struct *t, unsigned long forced), | ||
137 | |||
138 | TP_ARGS(t, forced), | ||
139 | |||
140 | TP_STRUCT__entry( | ||
141 | __field( pid_t, pid ) | ||
142 | __field( unsigned int, job ) | ||
143 | __field( lt_t, when ) | ||
144 | __field( unsigned long, forced ) | ||
145 | ), | ||
146 | |||
147 | TP_fast_assign( | ||
148 | __entry->pid = t ? t->pid : 0; | ||
149 | __entry->job = t ? t->rt_param.job_params.job_no : 0; | ||
150 | __entry->when = litmus_clock(); | ||
151 | __entry->forced = forced; | ||
152 | ), | ||
153 | |||
154 | TP_printk("completed(job(%u, %u)): %Lu (forced: %lu)\n", | ||
155 | __entry->pid, __entry->job, | ||
156 | __entry->when, __entry->forced) | ||
157 | ); | ||
158 | |||
159 | /* | ||
160 | * Trace blocking tasks. | ||
161 | */ | ||
162 | TRACE_EVENT(litmus_task_block, | ||
163 | |||
164 | TP_PROTO(struct task_struct *t), | ||
165 | |||
166 | TP_ARGS(t), | ||
167 | |||
168 | TP_STRUCT__entry( | ||
169 | __field( pid_t, pid ) | ||
170 | __field( lt_t, when ) | ||
171 | ), | ||
172 | |||
173 | TP_fast_assign( | ||
174 | __entry->pid = t ? t->pid : 0; | ||
175 | __entry->when = litmus_clock(); | ||
176 | ), | ||
177 | |||
178 | TP_printk("(%u) blocks: %Lu\n", __entry->pid, __entry->when) | ||
179 | ); | ||
180 | |||
181 | /* | ||
182 | * Tracing jobs resume | ||
183 | */ | ||
184 | TRACE_EVENT(litmus_task_resume, | ||
185 | |||
186 | TP_PROTO(struct task_struct *t), | ||
187 | |||
188 | TP_ARGS(t), | ||
189 | |||
190 | TP_STRUCT__entry( | ||
191 | __field( pid_t, pid ) | ||
192 | __field( unsigned int, job ) | ||
193 | __field( lt_t, when ) | ||
194 | ), | ||
195 | |||
196 | TP_fast_assign( | ||
197 | __entry->pid = t ? t->pid : 0; | ||
198 | __entry->job = t ? t->rt_param.job_params.job_no : 0; | ||
199 | __entry->when = litmus_clock(); | ||
200 | ), | ||
201 | |||
202 | TP_printk("resume(job(%u, %u)): %Lu\n", | ||
203 | __entry->pid, __entry->job, __entry->when) | ||
204 | ); | ||
205 | |||
206 | /* | ||
207 | * Trace synchronous release | ||
208 | */ | ||
209 | TRACE_EVENT(litmus_sys_release, | ||
210 | |||
211 | TP_PROTO(lt_t *start), | ||
212 | |||
213 | TP_ARGS(start), | ||
214 | |||
215 | TP_STRUCT__entry( | ||
216 | __field( lt_t, rel ) | ||
217 | __field( lt_t, when ) | ||
218 | ), | ||
219 | |||
220 | TP_fast_assign( | ||
221 | __entry->rel = *start; | ||
222 | __entry->when = litmus_clock(); | ||
223 | ), | ||
224 | |||
225 | TP_printk("SynRelease(%Lu) at %Lu\n", __entry->rel, __entry->when) | ||
226 | ); | ||
227 | |||
228 | #endif /* _SCHED_TASK_TRACEPOINT_H */ | ||
229 | |||
230 | /* Must stay outside the protection */ | ||
231 | #include <trace/define_trace.h> | ||
diff --git a/kernel/sched.c b/kernel/sched.c index baaca61bc3a3..c4b6bd5151ff 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -80,14 +80,14 @@ | |||
80 | #include "workqueue_sched.h" | 80 | #include "workqueue_sched.h" |
81 | #include "sched_autogroup.h" | 81 | #include "sched_autogroup.h" |
82 | 82 | ||
83 | #define CREATE_TRACE_POINTS | ||
84 | #include <trace/events/sched.h> | ||
85 | |||
83 | #include <litmus/sched_trace.h> | 86 | #include <litmus/sched_trace.h> |
84 | #include <litmus/trace.h> | 87 | #include <litmus/trace.h> |
85 | 88 | ||
86 | static void litmus_tick(struct rq*, struct task_struct*); | 89 | static void litmus_tick(struct rq*, struct task_struct*); |
87 | 90 | ||
88 | #define CREATE_TRACE_POINTS | ||
89 | #include <trace/events/sched.h> | ||
90 | |||
91 | /* | 91 | /* |
92 | * Convert user-nice values [ -20 ... 0 ... 19 ] | 92 | * Convert user-nice values [ -20 ... 0 ... 19 ] |
93 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | 93 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], |
@@ -2597,8 +2597,12 @@ void scheduler_ipi(void) | |||
2597 | struct rq *rq = this_rq(); | 2597 | struct rq *rq = this_rq(); |
2598 | struct task_struct *list = xchg(&rq->wake_list, NULL); | 2598 | struct task_struct *list = xchg(&rq->wake_list, NULL); |
2599 | 2599 | ||
2600 | if (!list) | 2600 | if (!list) { |
2601 | /* If we don't call irq_enter(), we need to trigger the IRQ | ||
2602 | * tracing manually. */ | ||
2603 | ft_irq_fired(); | ||
2601 | return; | 2604 | return; |
2605 | } | ||
2602 | 2606 | ||
2603 | /* | 2607 | /* |
2604 | * Not all reschedule IPI handlers call irq_enter/irq_exit, since | 2608 | * Not all reschedule IPI handlers call irq_enter/irq_exit, since |
@@ -3163,16 +3167,26 @@ static inline void post_schedule(struct rq *rq) | |||
3163 | asmlinkage void schedule_tail(struct task_struct *prev) | 3167 | asmlinkage void schedule_tail(struct task_struct *prev) |
3164 | __releases(rq->lock) | 3168 | __releases(rq->lock) |
3165 | { | 3169 | { |
3166 | struct rq *rq = this_rq(); | 3170 | struct rq *rq; |
3167 | 3171 | ||
3172 | preempt_disable(); | ||
3173 | |||
3174 | rq = this_rq(); | ||
3168 | finish_task_switch(rq, prev); | 3175 | finish_task_switch(rq, prev); |
3169 | 3176 | ||
3177 | sched_trace_task_switch_to(current); | ||
3178 | |||
3170 | /* | 3179 | /* |
3171 | * FIXME: do we need to worry about rq being invalidated by the | 3180 | * FIXME: do we need to worry about rq being invalidated by the |
3172 | * task_switch? | 3181 | * task_switch? |
3173 | */ | 3182 | */ |
3174 | post_schedule(rq); | 3183 | post_schedule(rq); |
3175 | 3184 | ||
3185 | if (sched_state_validate_switch()) | ||
3186 | litmus_reschedule_local(); | ||
3187 | |||
3188 | preempt_enable(); | ||
3189 | |||
3176 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW | 3190 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW |
3177 | /* In this case, finish_task_switch does not reenable preemption */ | 3191 | /* In this case, finish_task_switch does not reenable preemption */ |
3178 | preempt_enable(); | 3192 | preempt_enable(); |
@@ -4403,14 +4417,20 @@ litmus_need_resched_nonpreemptible: | |||
4403 | raw_spin_unlock_irq(&rq->lock); | 4417 | raw_spin_unlock_irq(&rq->lock); |
4404 | } | 4418 | } |
4405 | 4419 | ||
4420 | TS_SCHED2_START(prev); | ||
4406 | sched_trace_task_switch_to(current); | 4421 | sched_trace_task_switch_to(current); |
4407 | 4422 | ||
4408 | post_schedule(rq); | 4423 | post_schedule(rq); |
4409 | 4424 | ||
4410 | if (sched_state_validate_switch()) | 4425 | if (sched_state_validate_switch()) { |
4426 | TS_SCHED2_END(prev); | ||
4411 | goto litmus_need_resched_nonpreemptible; | 4427 | goto litmus_need_resched_nonpreemptible; |
4428 | } | ||
4412 | 4429 | ||
4413 | preempt_enable_no_resched(); | 4430 | preempt_enable_no_resched(); |
4431 | |||
4432 | TS_SCHED2_END(prev); | ||
4433 | |||
4414 | if (need_resched()) | 4434 | if (need_resched()) |
4415 | goto need_resched; | 4435 | goto need_resched; |
4416 | 4436 | ||
@@ -4684,17 +4704,6 @@ void complete_all(struct completion *x) | |||
4684 | } | 4704 | } |
4685 | EXPORT_SYMBOL(complete_all); | 4705 | EXPORT_SYMBOL(complete_all); |
4686 | 4706 | ||
4687 | void complete_n(struct completion *x, int n) | ||
4688 | { | ||
4689 | unsigned long flags; | ||
4690 | |||
4691 | spin_lock_irqsave(&x->wait.lock, flags); | ||
4692 | x->done += n; | ||
4693 | __wake_up_common(&x->wait, TASK_NORMAL, n, 0, NULL); | ||
4694 | spin_unlock_irqrestore(&x->wait.lock, flags); | ||
4695 | } | ||
4696 | EXPORT_SYMBOL(complete_n); | ||
4697 | |||
4698 | static inline long __sched | 4707 | static inline long __sched |
4699 | do_wait_for_common(struct completion *x, long timeout, int state) | 4708 | do_wait_for_common(struct completion *x, long timeout, int state) |
4700 | { | 4709 | { |
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index 58cf5d18dfdc..db04161fe37c 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c | |||
@@ -3,6 +3,8 @@ | |||
3 | * policies) | 3 | * policies) |
4 | */ | 4 | */ |
5 | 5 | ||
6 | #include <litmus/litmus.h> | ||
7 | |||
6 | #ifdef CONFIG_RT_GROUP_SCHED | 8 | #ifdef CONFIG_RT_GROUP_SCHED |
7 | 9 | ||
8 | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) | 10 | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) |
@@ -228,8 +230,11 @@ static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | |||
228 | if (rt_rq->rt_nr_running) { | 230 | if (rt_rq->rt_nr_running) { |
229 | if (rt_se && !on_rt_rq(rt_se)) | 231 | if (rt_se && !on_rt_rq(rt_se)) |
230 | enqueue_rt_entity(rt_se, false); | 232 | enqueue_rt_entity(rt_se, false); |
231 | if (rt_rq->highest_prio.curr < curr->prio) | 233 | if (rt_rq->highest_prio.curr < curr->prio && |
234 | /* Don't subject LITMUS tasks to remote reschedules */ | ||
235 | !is_realtime(curr)) { | ||
232 | resched_task(curr); | 236 | resched_task(curr); |
237 | } | ||
233 | } | 238 | } |
234 | } | 239 | } |
235 | 240 | ||
@@ -322,8 +327,10 @@ static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | |||
322 | 327 | ||
323 | static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | 328 | static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) |
324 | { | 329 | { |
325 | if (rt_rq->rt_nr_running) | 330 | struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; |
326 | resched_task(rq_of_rt_rq(rt_rq)->curr); | 331 | |
332 | if (rt_rq->rt_nr_running && !is_realtime(curr)) | ||
333 | resched_task(curr); | ||
327 | } | 334 | } |
328 | 335 | ||
329 | static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) | 336 | static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) |
diff --git a/kernel/softirq.c b/kernel/softirq.c index fca82c32042b..2f2df08df395 100644 --- a/kernel/softirq.c +++ b/kernel/softirq.c | |||
@@ -211,6 +211,9 @@ asmlinkage void __do_softirq(void) | |||
211 | int max_restart = MAX_SOFTIRQ_RESTART; | 211 | int max_restart = MAX_SOFTIRQ_RESTART; |
212 | int cpu; | 212 | int cpu; |
213 | 213 | ||
214 | /* Mark Feather-Trace samples as "disturbed". */ | ||
215 | ft_irq_fired(); | ||
216 | |||
214 | pending = local_softirq_pending(); | 217 | pending = local_softirq_pending(); |
215 | account_system_vtime(current); | 218 | account_system_vtime(current); |
216 | 219 | ||
diff --git a/litmus/Kconfig b/litmus/Kconfig index 94b48e199577..bd6635c8de08 100644 --- a/litmus/Kconfig +++ b/litmus/Kconfig | |||
@@ -79,6 +79,52 @@ config SCHED_CPU_AFFINITY | |||
79 | 79 | ||
80 | Say Yes if unsure. | 80 | Say Yes if unsure. |
81 | 81 | ||
82 | choice | ||
83 | prompt "EDF Tie-Break Behavior" | ||
84 | default EDF_TIE_BREAK_LATENESS_NORM | ||
85 | help | ||
86 | Allows the configuration of tie-breaking behavior when the deadlines | ||
87 | of two EDF-scheduled tasks are equal. | ||
88 | |||
89 | config EDF_TIE_BREAK_LATENESS | ||
90 | bool "Lateness-based Tie Break" | ||
91 | help | ||
92 | Break ties between two jobs, A and B, based upon the lateness of their | ||
93 | prior jobs. The job with the greatest lateness has priority. Note that | ||
94 | lateness has a negative value if the prior job finished before its | ||
95 | deadline. | ||
96 | |||
97 | config EDF_TIE_BREAK_LATENESS_NORM | ||
98 | bool "Normalized Lateness-based Tie Break" | ||
99 | help | ||
100 | Break ties between two jobs, A and B, based upon the lateness, normalized | ||
101 | by relative deadline, of their prior jobs. The job with the greatest | ||
102 | normalized lateness has priority. Note that lateness has a negative value | ||
103 | if the prior job finished before its deadline. | ||
104 | |||
105 | Normalized lateness tie-breaks are likely desireable over non-normalized | ||
106 | tie-breaks if the execution times and/or relative deadlines of tasks in a | ||
107 | task set vary greatly. | ||
108 | |||
109 | config EDF_TIE_BREAK_HASH | ||
110 | bool "Hash-based Tie Breaks" | ||
111 | help | ||
112 | Break ties between two jobs, A and B, with equal deadlines by using a | ||
113 | uniform hash; i.e.: hash(A.pid, A.job_num) < hash(B.pid, B.job_num). Job | ||
114 | A has ~50% of winning a given tie-break. | ||
115 | |||
116 | config EDF_PID_TIE_BREAK | ||
117 | bool "PID-based Tie Breaks" | ||
118 | help | ||
119 | Break ties based upon OS-assigned thread IDs. Use this option if | ||
120 | required by algorithm's real-time analysis or per-task response-time | ||
121 | jitter must be minimized. | ||
122 | |||
123 | NOTES: | ||
124 | * This tie-breaking method was default in Litmus 2012.2 and before. | ||
125 | |||
126 | endchoice | ||
127 | |||
82 | endmenu | 128 | endmenu |
83 | 129 | ||
84 | menu "Tracing" | 130 | menu "Tracing" |
@@ -138,6 +184,24 @@ config SCHED_TASK_TRACE_SHIFT | |||
138 | 10 => 1k events | 184 | 10 => 1k events |
139 | 8 => 512 events | 185 | 8 => 512 events |
140 | 186 | ||
187 | config SCHED_LITMUS_TRACEPOINT | ||
188 | bool "Enable Event/Tracepoint Tracing for real-time task tracing" | ||
189 | depends on TRACEPOINTS | ||
190 | default n | ||
191 | help | ||
192 | Enable kernel-style events (tracepoint) for Litmus. Litmus events | ||
193 | trace the same functions as the above sched_trace_XXX(), but can | ||
194 | be enabled independently. | ||
195 | Litmus tracepoints can be recorded and analyzed together (single | ||
196 | time reference) with all other kernel tracing events (e.g., | ||
197 | sched:sched_switch, etc.). | ||
198 | |||
199 | This also enables a quick way to visualize schedule traces using | ||
200 | trace-cmd utility and kernelshark visualizer. | ||
201 | |||
202 | Say Yes for debugging and visualization purposes. | ||
203 | Say No for overhead tracing. | ||
204 | |||
141 | config SCHED_OVERHEAD_TRACE | 205 | config SCHED_OVERHEAD_TRACE |
142 | bool "Record timestamps for overhead measurements" | 206 | bool "Record timestamps for overhead measurements" |
143 | depends on FEATHER_TRACE | 207 | depends on FEATHER_TRACE |
@@ -201,7 +265,7 @@ config SCHED_DEBUG_TRACE_CALLER | |||
201 | 265 | ||
202 | config PREEMPT_STATE_TRACE | 266 | config PREEMPT_STATE_TRACE |
203 | bool "Trace preemption state machine transitions" | 267 | bool "Trace preemption state machine transitions" |
204 | depends on SCHED_DEBUG_TRACE | 268 | depends on SCHED_DEBUG_TRACE && DEBUG_KERNEL |
205 | default n | 269 | default n |
206 | help | 270 | help |
207 | With this option enabled, each CPU will log when it transitions | 271 | With this option enabled, each CPU will log when it transitions |
diff --git a/litmus/Makefile b/litmus/Makefile index 7338180f196f..d26ca7076b62 100644 --- a/litmus/Makefile +++ b/litmus/Makefile | |||
@@ -11,13 +11,16 @@ obj-y = sched_plugin.o litmus.o \ | |||
11 | sync.o \ | 11 | sync.o \ |
12 | rt_domain.o \ | 12 | rt_domain.o \ |
13 | edf_common.o \ | 13 | edf_common.o \ |
14 | fp_common.o \ | ||
14 | fdso.o \ | 15 | fdso.o \ |
15 | locking.o \ | 16 | locking.o \ |
16 | srp.o \ | 17 | srp.o \ |
17 | bheap.o \ | 18 | bheap.o \ |
19 | binheap.o \ | ||
18 | ctrldev.o \ | 20 | ctrldev.o \ |
19 | sched_gsn_edf.o \ | 21 | sched_gsn_edf.o \ |
20 | sched_psn_edf.o | 22 | sched_psn_edf.o \ |
23 | sched_pfp.o | ||
21 | 24 | ||
22 | obj-$(CONFIG_PLUGIN_CEDF) += sched_cedf.o | 25 | obj-$(CONFIG_PLUGIN_CEDF) += sched_cedf.o |
23 | obj-$(CONFIG_PLUGIN_PFAIR) += sched_pfair.o | 26 | obj-$(CONFIG_PLUGIN_PFAIR) += sched_pfair.o |
diff --git a/litmus/binheap.c b/litmus/binheap.c new file mode 100644 index 000000000000..40a913f4b5a7 --- /dev/null +++ b/litmus/binheap.c | |||
@@ -0,0 +1,388 @@ | |||
1 | #include <litmus/binheap.h> | ||
2 | |||
3 | /* Returns true of the root ancestor of node is the root of the given heap. */ | ||
4 | int binheap_is_in_this_heap(struct binheap_node *node, | ||
5 | struct binheap* heap) | ||
6 | { | ||
7 | if(!binheap_is_in_heap(node)) { | ||
8 | return 0; | ||
9 | } | ||
10 | |||
11 | while(node->parent != NULL) { | ||
12 | node = node->parent; | ||
13 | } | ||
14 | |||
15 | return (node == heap->root); | ||
16 | } | ||
17 | |||
18 | |||
19 | /* Update the node reference pointers. Same logic as Litmus binomial heap. */ | ||
20 | static void __update_ref(struct binheap_node *parent, | ||
21 | struct binheap_node *child) | ||
22 | { | ||
23 | *(parent->ref_ptr) = child; | ||
24 | *(child->ref_ptr) = parent; | ||
25 | |||
26 | swap(parent->ref_ptr, child->ref_ptr); | ||
27 | } | ||
28 | |||
29 | |||
30 | /* Swaps data between two nodes. */ | ||
31 | static void __binheap_swap(struct binheap_node *parent, | ||
32 | struct binheap_node *child) | ||
33 | { | ||
34 | swap(parent->data, child->data); | ||
35 | __update_ref(parent, child); | ||
36 | } | ||
37 | |||
38 | |||
39 | /* Swaps memory and data between two nodes. Actual nodes swap instead of | ||
40 | * just data. Needed when we delete nodes from the heap. | ||
41 | */ | ||
42 | static void __binheap_swap_safe(struct binheap *handle, | ||
43 | struct binheap_node *a, | ||
44 | struct binheap_node *b) | ||
45 | { | ||
46 | swap(a->data, b->data); | ||
47 | __update_ref(a, b); | ||
48 | |||
49 | if((a->parent != NULL) && (a->parent == b->parent)) { | ||
50 | /* special case: shared parent */ | ||
51 | swap(a->parent->left, a->parent->right); | ||
52 | } | ||
53 | else { | ||
54 | /* Update pointers to swap parents. */ | ||
55 | |||
56 | if(a->parent) { | ||
57 | if(a == a->parent->left) { | ||
58 | a->parent->left = b; | ||
59 | } | ||
60 | else { | ||
61 | a->parent->right = b; | ||
62 | } | ||
63 | } | ||
64 | |||
65 | if(b->parent) { | ||
66 | if(b == b->parent->left) { | ||
67 | b->parent->left = a; | ||
68 | } | ||
69 | else { | ||
70 | b->parent->right = a; | ||
71 | } | ||
72 | } | ||
73 | |||
74 | swap(a->parent, b->parent); | ||
75 | } | ||
76 | |||
77 | /* swap children */ | ||
78 | |||
79 | if(a->left) { | ||
80 | a->left->parent = b; | ||
81 | |||
82 | if(a->right) { | ||
83 | a->right->parent = b; | ||
84 | } | ||
85 | } | ||
86 | |||
87 | if(b->left) { | ||
88 | b->left->parent = a; | ||
89 | |||
90 | if(b->right) { | ||
91 | b->right->parent = a; | ||
92 | } | ||
93 | } | ||
94 | |||
95 | swap(a->left, b->left); | ||
96 | swap(a->right, b->right); | ||
97 | |||
98 | |||
99 | /* update next/last/root pointers */ | ||
100 | |||
101 | if(a == handle->next) { | ||
102 | handle->next = b; | ||
103 | } | ||
104 | else if(b == handle->next) { | ||
105 | handle->next = a; | ||
106 | } | ||
107 | |||
108 | if(a == handle->last) { | ||
109 | handle->last = b; | ||
110 | } | ||
111 | else if(b == handle->last) { | ||
112 | handle->last = a; | ||
113 | } | ||
114 | |||
115 | if(a == handle->root) { | ||
116 | handle->root = b; | ||
117 | } | ||
118 | else if(b == handle->root) { | ||
119 | handle->root = a; | ||
120 | } | ||
121 | } | ||
122 | |||
123 | |||
124 | /** | ||
125 | * Update the pointer to the last node in the complete binary tree. | ||
126 | * Called internally after the root node has been deleted. | ||
127 | */ | ||
128 | static void __binheap_update_last(struct binheap *handle) | ||
129 | { | ||
130 | struct binheap_node *temp = handle->last; | ||
131 | |||
132 | /* find a "bend" in the tree. */ | ||
133 | while(temp->parent && (temp == temp->parent->left)) { | ||
134 | temp = temp->parent; | ||
135 | } | ||
136 | |||
137 | /* step over to sibling if we're not at root */ | ||
138 | if(temp->parent != NULL) { | ||
139 | temp = temp->parent->left; | ||
140 | } | ||
141 | |||
142 | /* now travel right as far as possible. */ | ||
143 | while(temp->right != NULL) { | ||
144 | temp = temp->right; | ||
145 | } | ||
146 | |||
147 | /* take one step to the left if we're not at the bottom-most level. */ | ||
148 | if(temp->left != NULL) { | ||
149 | temp = temp->left; | ||
150 | } | ||
151 | |||
152 | handle->last = temp; | ||
153 | } | ||
154 | |||
155 | |||
156 | /** | ||
157 | * Update the pointer to the node that will take the next inserted node. | ||
158 | * Called internally after a node has been inserted. | ||
159 | */ | ||
160 | static void __binheap_update_next(struct binheap *handle) | ||
161 | { | ||
162 | struct binheap_node *temp = handle->next; | ||
163 | |||
164 | /* find a "bend" in the tree. */ | ||
165 | while(temp->parent && (temp == temp->parent->right)) { | ||
166 | temp = temp->parent; | ||
167 | } | ||
168 | |||
169 | /* step over to sibling if we're not at root */ | ||
170 | if(temp->parent != NULL) { | ||
171 | temp = temp->parent->right; | ||
172 | } | ||
173 | |||
174 | /* now travel left as far as possible. */ | ||
175 | while(temp->left != NULL) { | ||
176 | temp = temp->left; | ||
177 | } | ||
178 | |||
179 | handle->next = temp; | ||
180 | } | ||
181 | |||
182 | |||
183 | |||
184 | /* bubble node up towards root */ | ||
185 | static void __binheap_bubble_up(struct binheap *handle, | ||
186 | struct binheap_node *node) | ||
187 | { | ||
188 | /* let BINHEAP_POISON data bubble to the top */ | ||
189 | |||
190 | while((node->parent != NULL) && | ||
191 | ((node->data == BINHEAP_POISON) || | ||
192 | handle->compare(node, node->parent))) { | ||
193 | __binheap_swap(node->parent, node); | ||
194 | node = node->parent; | ||
195 | } | ||
196 | } | ||
197 | |||
198 | |||
199 | /* bubble node down, swapping with min-child */ | ||
200 | static void __binheap_bubble_down(struct binheap *handle) | ||
201 | { | ||
202 | struct binheap_node *node = handle->root; | ||
203 | |||
204 | while(node->left != NULL) { | ||
205 | if(node->right && handle->compare(node->right, node->left)) { | ||
206 | if(handle->compare(node->right, node)) { | ||
207 | __binheap_swap(node, node->right); | ||
208 | node = node->right; | ||
209 | } | ||
210 | else { | ||
211 | break; | ||
212 | } | ||
213 | } | ||
214 | else { | ||
215 | if(handle->compare(node->left, node)) { | ||
216 | __binheap_swap(node, node->left); | ||
217 | node = node->left; | ||
218 | } | ||
219 | else { | ||
220 | break; | ||
221 | } | ||
222 | } | ||
223 | } | ||
224 | } | ||
225 | |||
226 | |||
227 | void __binheap_add(struct binheap_node *new_node, | ||
228 | struct binheap *handle, | ||
229 | void *data) | ||
230 | { | ||
231 | new_node->data = data; | ||
232 | new_node->ref = new_node; | ||
233 | new_node->ref_ptr = &(new_node->ref); | ||
234 | |||
235 | if(!binheap_empty(handle)) { | ||
236 | /* insert left side first */ | ||
237 | if(handle->next->left == NULL) { | ||
238 | handle->next->left = new_node; | ||
239 | new_node->parent = handle->next; | ||
240 | new_node->left = NULL; | ||
241 | new_node->right = NULL; | ||
242 | |||
243 | handle->last = new_node; | ||
244 | |||
245 | __binheap_bubble_up(handle, new_node); | ||
246 | } | ||
247 | else { | ||
248 | /* left occupied. insert right. */ | ||
249 | handle->next->right = new_node; | ||
250 | new_node->parent = handle->next; | ||
251 | new_node->left = NULL; | ||
252 | new_node->right = NULL; | ||
253 | |||
254 | handle->last = new_node; | ||
255 | |||
256 | __binheap_update_next(handle); | ||
257 | __binheap_bubble_up(handle, new_node); | ||
258 | } | ||
259 | } | ||
260 | else { | ||
261 | /* first node in heap */ | ||
262 | |||
263 | new_node->parent = NULL; | ||
264 | new_node->left = NULL; | ||
265 | new_node->right = NULL; | ||
266 | |||
267 | handle->root = new_node; | ||
268 | handle->next = new_node; | ||
269 | handle->last = new_node; | ||
270 | } | ||
271 | } | ||
272 | |||
273 | |||
274 | /** | ||
275 | * Removes the root node from the heap. The node is removed after coalescing | ||
276 | * the binheap_node with its original data pointer at the root of the tree. | ||
277 | * | ||
278 | * The 'last' node in the tree is then swapped up to the root and bubbled | ||
279 | * down. | ||
280 | */ | ||
281 | void __binheap_delete_root(struct binheap *handle, | ||
282 | struct binheap_node *container) | ||
283 | { | ||
284 | struct binheap_node *root = handle->root; | ||
285 | |||
286 | if(root != container) { | ||
287 | /* coalesce */ | ||
288 | __binheap_swap_safe(handle, root, container); | ||
289 | root = container; | ||
290 | } | ||
291 | |||
292 | if(handle->last != root) { | ||
293 | /* swap 'last' node up to root and bubble it down. */ | ||
294 | |||
295 | struct binheap_node *to_move = handle->last; | ||
296 | |||
297 | if(to_move->parent != root) { | ||
298 | handle->next = to_move->parent; | ||
299 | |||
300 | if(handle->next->right == to_move) { | ||
301 | /* disconnect from parent */ | ||
302 | to_move->parent->right = NULL; | ||
303 | handle->last = handle->next->left; | ||
304 | } | ||
305 | else { | ||
306 | /* find new 'last' before we disconnect */ | ||
307 | __binheap_update_last(handle); | ||
308 | |||
309 | /* disconnect from parent */ | ||
310 | to_move->parent->left = NULL; | ||
311 | } | ||
312 | } | ||
313 | else { | ||
314 | /* 'last' is direct child of root */ | ||
315 | |||
316 | handle->next = to_move; | ||
317 | |||
318 | if(to_move == to_move->parent->right) { | ||
319 | to_move->parent->right = NULL; | ||
320 | handle->last = to_move->parent->left; | ||
321 | } | ||
322 | else { | ||
323 | to_move->parent->left = NULL; | ||
324 | handle->last = to_move; | ||
325 | } | ||
326 | } | ||
327 | to_move->parent = NULL; | ||
328 | |||
329 | /* reconnect as root. We can't just swap data ptrs since root node | ||
330 | * may be freed after this function returns. | ||
331 | */ | ||
332 | to_move->left = root->left; | ||
333 | to_move->right = root->right; | ||
334 | if(to_move->left != NULL) { | ||
335 | to_move->left->parent = to_move; | ||
336 | } | ||
337 | if(to_move->right != NULL) { | ||
338 | to_move->right->parent = to_move; | ||
339 | } | ||
340 | |||
341 | handle->root = to_move; | ||
342 | |||
343 | /* bubble down */ | ||
344 | __binheap_bubble_down(handle); | ||
345 | } | ||
346 | else { | ||
347 | /* removing last node in tree */ | ||
348 | handle->root = NULL; | ||
349 | handle->next = NULL; | ||
350 | handle->last = NULL; | ||
351 | } | ||
352 | |||
353 | /* mark as removed */ | ||
354 | container->parent = BINHEAP_POISON; | ||
355 | } | ||
356 | |||
357 | |||
358 | /** | ||
359 | * Delete an arbitrary node. Bubble node to delete up to the root, | ||
360 | * and then delete to root. | ||
361 | */ | ||
362 | void __binheap_delete(struct binheap_node *node_to_delete, | ||
363 | struct binheap *handle) | ||
364 | { | ||
365 | struct binheap_node *target = node_to_delete->ref; | ||
366 | void *temp_data = target->data; | ||
367 | |||
368 | /* temporarily set data to null to allow node to bubble up to the top. */ | ||
369 | target->data = BINHEAP_POISON; | ||
370 | |||
371 | __binheap_bubble_up(handle, target); | ||
372 | __binheap_delete_root(handle, node_to_delete); | ||
373 | |||
374 | node_to_delete->data = temp_data; /* restore node data pointer */ | ||
375 | } | ||
376 | |||
377 | |||
378 | /** | ||
379 | * Bubble up a node whose pointer has decreased in value. | ||
380 | */ | ||
381 | void __binheap_decrease(struct binheap_node *orig_node, | ||
382 | struct binheap *handle) | ||
383 | { | ||
384 | struct binheap_node *target = orig_node->ref; | ||
385 | |||
386 | __binheap_bubble_up(handle, target); | ||
387 | } | ||
388 | |||
diff --git a/litmus/budget.c b/litmus/budget.c index 310e9a3d4172..f7712be29adb 100644 --- a/litmus/budget.c +++ b/litmus/budget.c | |||
@@ -5,6 +5,8 @@ | |||
5 | #include <litmus/litmus.h> | 5 | #include <litmus/litmus.h> |
6 | #include <litmus/preempt.h> | 6 | #include <litmus/preempt.h> |
7 | 7 | ||
8 | #include <litmus/budget.h> | ||
9 | |||
8 | struct enforcement_timer { | 10 | struct enforcement_timer { |
9 | /* The enforcement timer is used to accurately police | 11 | /* The enforcement timer is used to accurately police |
10 | * slice budgets. */ | 12 | * slice budgets. */ |
diff --git a/litmus/ctrldev.c b/litmus/ctrldev.c index 6677a67cc945..41919b2714cb 100644 --- a/litmus/ctrldev.c +++ b/litmus/ctrldev.c | |||
@@ -30,27 +30,19 @@ static int alloc_ctrl_page(struct task_struct *t) | |||
30 | static int map_ctrl_page(struct task_struct *t, struct vm_area_struct* vma) | 30 | static int map_ctrl_page(struct task_struct *t, struct vm_area_struct* vma) |
31 | { | 31 | { |
32 | int err; | 32 | int err; |
33 | unsigned long pfn; | ||
34 | 33 | ||
35 | struct page* ctrl = virt_to_page(tsk_rt(t)->ctrl_page); | 34 | struct page* ctrl = virt_to_page(tsk_rt(t)->ctrl_page); |
36 | 35 | ||
37 | /* Increase ref count. Is decreased when vma is destroyed. */ | ||
38 | get_page(ctrl); | ||
39 | |||
40 | /* compute page frame number */ | ||
41 | pfn = page_to_pfn(ctrl); | ||
42 | |||
43 | TRACE_CUR(CTRL_NAME | 36 | TRACE_CUR(CTRL_NAME |
44 | ": mapping %p (pfn:%lx, %lx) to 0x%lx (prot:%lx)\n", | 37 | ": mapping %p (pfn:%lx) to 0x%lx (prot:%lx)\n", |
45 | tsk_rt(t)->ctrl_page, pfn, page_to_pfn(ctrl), vma->vm_start, | 38 | tsk_rt(t)->ctrl_page,page_to_pfn(ctrl), vma->vm_start, |
46 | vma->vm_page_prot); | 39 | vma->vm_page_prot); |
47 | 40 | ||
48 | /* Map it into the vma. Make sure to use PAGE_SHARED, otherwise | 41 | /* Map it into the vma. */ |
49 | * userspace actually gets a copy-on-write page. */ | 42 | err = vm_insert_page(vma, vma->vm_start, ctrl); |
50 | err = remap_pfn_range(vma, vma->vm_start, pfn, PAGE_SIZE, PAGE_SHARED); | ||
51 | 43 | ||
52 | if (err) | 44 | if (err) |
53 | TRACE_CUR(CTRL_NAME ": remap_pfn_range() failed (%d)\n", err); | 45 | TRACE_CUR(CTRL_NAME ": vm_insert_page() failed (%d)\n", err); |
54 | 46 | ||
55 | return err; | 47 | return err; |
56 | } | 48 | } |
@@ -63,19 +55,19 @@ static void litmus_ctrl_vm_close(struct vm_area_struct* vma) | |||
63 | TRACE_CUR(CTRL_NAME | 55 | TRACE_CUR(CTRL_NAME |
64 | ": %p:%p vma:%p vma->vm_private_data:%p closed.\n", | 56 | ": %p:%p vma:%p vma->vm_private_data:%p closed.\n", |
65 | (void*) vma->vm_start, (void*) vma->vm_end, vma, | 57 | (void*) vma->vm_start, (void*) vma->vm_end, vma, |
66 | vma->vm_private_data, current->comm, | 58 | vma->vm_private_data); |
67 | current->pid); | ||
68 | } | 59 | } |
69 | 60 | ||
70 | static int litmus_ctrl_vm_fault(struct vm_area_struct* vma, | 61 | static int litmus_ctrl_vm_fault(struct vm_area_struct* vma, |
71 | struct vm_fault* vmf) | 62 | struct vm_fault* vmf) |
72 | { | 63 | { |
73 | /* This function should never be called, since | 64 | TRACE_CUR("%s flags=0x%x (off:%ld)\n", __FUNCTION__, |
74 | * all pages should have been mapped by mmap() | 65 | vma->vm_flags, vmf->pgoff); |
75 | * already. */ | 66 | |
76 | TRACE_CUR("%s flags=0x%x\n", __FUNCTION__, vma->vm_flags); | 67 | /* This function should never be called, since all pages should have |
68 | * been mapped by mmap() already. */ | ||
69 | WARN_ONCE(1, "Page faults should be impossible in the control page\n"); | ||
77 | 70 | ||
78 | /* nope, you only get one page */ | ||
79 | return VM_FAULT_SIGBUS; | 71 | return VM_FAULT_SIGBUS; |
80 | } | 72 | } |
81 | 73 | ||
@@ -103,9 +95,16 @@ static int litmus_ctrl_mmap(struct file* filp, struct vm_area_struct* vma) | |||
103 | return -EINVAL; | 95 | return -EINVAL; |
104 | 96 | ||
105 | vma->vm_ops = &litmus_ctrl_vm_ops; | 97 | vma->vm_ops = &litmus_ctrl_vm_ops; |
106 | /* this mapping should not be kept across forks, | 98 | /* This mapping should not be kept across forks, |
107 | * and cannot be expanded */ | 99 | * cannot be expanded, and is not a "normal" page. */ |
108 | vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; | 100 | vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_IO; |
101 | |||
102 | /* We don't want the first write access to trigger a "minor" page fault | ||
103 | * to mark the page as dirty. This is transient, private memory, we | ||
104 | * don't care if it was touched or not. __S011 means RW access, but not | ||
105 | * execute, and avoids copy-on-write behavior. | ||
106 | * See protection_map in mmap.c. */ | ||
107 | vma->vm_page_prot = __S011; | ||
109 | 108 | ||
110 | err = alloc_ctrl_page(current); | 109 | err = alloc_ctrl_page(current); |
111 | if (!err) | 110 | if (!err) |
@@ -134,6 +133,17 @@ static int __init init_litmus_ctrl_dev(void) | |||
134 | 133 | ||
135 | BUILD_BUG_ON(sizeof(struct control_page) > PAGE_SIZE); | 134 | BUILD_BUG_ON(sizeof(struct control_page) > PAGE_SIZE); |
136 | 135 | ||
136 | BUILD_BUG_ON(sizeof(union np_flag) != sizeof(uint64_t)); | ||
137 | |||
138 | BUILD_BUG_ON(offsetof(struct control_page, sched.raw) | ||
139 | != LITMUS_CP_OFFSET_SCHED); | ||
140 | BUILD_BUG_ON(offsetof(struct control_page, irq_count) | ||
141 | != LITMUS_CP_OFFSET_IRQ_COUNT); | ||
142 | BUILD_BUG_ON(offsetof(struct control_page, ts_syscall_start) | ||
143 | != LITMUS_CP_OFFSET_TS_SC_START); | ||
144 | BUILD_BUG_ON(offsetof(struct control_page, irq_syscall_start) | ||
145 | != LITMUS_CP_OFFSET_IRQ_SC_START); | ||
146 | |||
137 | printk("Initializing LITMUS^RT control device.\n"); | 147 | printk("Initializing LITMUS^RT control device.\n"); |
138 | err = misc_register(&litmus_ctrl_dev); | 148 | err = misc_register(&litmus_ctrl_dev); |
139 | if (err) | 149 | if (err) |
diff --git a/litmus/edf_common.c b/litmus/edf_common.c index 9b44dc2d8d1e..5aca2934a7b5 100644 --- a/litmus/edf_common.c +++ b/litmus/edf_common.c | |||
@@ -14,6 +14,32 @@ | |||
14 | 14 | ||
15 | #include <litmus/edf_common.h> | 15 | #include <litmus/edf_common.h> |
16 | 16 | ||
17 | #ifdef CONFIG_EDF_TIE_BREAK_LATENESS_NORM | ||
18 | #include <litmus/fpmath.h> | ||
19 | #endif | ||
20 | |||
21 | #ifdef CONFIG_EDF_TIE_BREAK_HASH | ||
22 | #include <linux/hash.h> | ||
23 | static inline long edf_hash(struct task_struct *t) | ||
24 | { | ||
25 | /* pid is 32 bits, so normally we would shove that into the | ||
26 | * upper 32-bits and and put the job number in the bottom | ||
27 | * and hash the 64-bit number with hash_64(). Sadly, | ||
28 | * in testing, hash_64() doesn't distribute keys were the | ||
29 | * upper bits are close together (as would be the case with | ||
30 | * pids) and job numbers are equal (as would be the case with | ||
31 | * synchronous task sets with all relative deadlines equal). | ||
32 | * | ||
33 | * A 2006 Linux patch proposed the following solution | ||
34 | * (but for some reason it wasn't accepted...). | ||
35 | * | ||
36 | * At least this workaround works for 32-bit systems as well. | ||
37 | */ | ||
38 | return hash_32(hash_32((u32)tsk_rt(t)->job_params.job_no, 32) ^ t->pid, 32); | ||
39 | } | ||
40 | #endif | ||
41 | |||
42 | |||
17 | /* edf_higher_prio - returns true if first has a higher EDF priority | 43 | /* edf_higher_prio - returns true if first has a higher EDF priority |
18 | * than second. Deadline ties are broken by PID. | 44 | * than second. Deadline ties are broken by PID. |
19 | * | 45 | * |
@@ -63,25 +89,81 @@ int edf_higher_prio(struct task_struct* first, | |||
63 | 89 | ||
64 | #endif | 90 | #endif |
65 | 91 | ||
92 | if (earlier_deadline(first_task, second_task)) { | ||
93 | return 1; | ||
94 | } | ||
95 | else if (get_deadline(first_task) == get_deadline(second_task)) { | ||
96 | /* Need to tie break. All methods must set pid_break to 0/1 if | ||
97 | * first_task does not have priority over second_task. | ||
98 | */ | ||
99 | int pid_break; | ||
66 | 100 | ||
67 | return !is_realtime(second_task) || | ||
68 | 101 | ||
69 | /* is the deadline of the first task earlier? | 102 | #if defined(CONFIG_EDF_TIE_BREAK_LATENESS) |
70 | * Then it has higher priority. | 103 | /* Tie break by lateness. Jobs with greater lateness get |
104 | * priority. This should spread tardiness across all tasks, | ||
105 | * especially in task sets where all tasks have the same | ||
106 | * period and relative deadlines. | ||
71 | */ | 107 | */ |
72 | earlier_deadline(first_task, second_task) || | 108 | if (get_lateness(first_task) > get_lateness(second_task)) { |
73 | 109 | return 1; | |
74 | /* Do we have a deadline tie? | 110 | } |
75 | * Then break by PID. | 111 | pid_break = (get_lateness(first_task) == get_lateness(second_task)); |
112 | |||
113 | |||
114 | #elif defined(CONFIG_EDF_TIE_BREAK_LATENESS_NORM) | ||
115 | /* Tie break by lateness, normalized by relative deadline. Jobs with | ||
116 | * greater normalized lateness get priority. | ||
117 | * | ||
118 | * Note: Considered using the algebraically equivalent | ||
119 | * lateness(first)*relative_deadline(second) > | ||
120 | lateness(second)*relative_deadline(first) | ||
121 | * to avoid fixed-point math, but values are prone to overflow if inputs | ||
122 | * are on the order of several seconds, even in 64-bit. | ||
76 | */ | 123 | */ |
77 | (get_deadline(first_task) == get_deadline(second_task) && | 124 | fp_t fnorm = _frac(get_lateness(first_task), |
78 | (first_task->pid < second_task->pid || | 125 | get_rt_relative_deadline(first_task)); |
126 | fp_t snorm = _frac(get_lateness(second_task), | ||
127 | get_rt_relative_deadline(second_task)); | ||
128 | if (_gt(fnorm, snorm)) { | ||
129 | return 1; | ||
130 | } | ||
131 | pid_break = _eq(fnorm, snorm); | ||
79 | 132 | ||
80 | /* If the PIDs are the same then the task with the inherited | 133 | |
81 | * priority wins. | 134 | #elif defined(CONFIG_EDF_TIE_BREAK_HASH) |
135 | /* Tie break by comparing hashs of (pid, job#) tuple. There should be | ||
136 | * a 50% chance that first_task has a higher priority than second_task. | ||
82 | */ | 137 | */ |
83 | (first_task->pid == second_task->pid && | 138 | long fhash = edf_hash(first_task); |
84 | !second->rt_param.inh_task))); | 139 | long shash = edf_hash(second_task); |
140 | if (fhash < shash) { | ||
141 | return 1; | ||
142 | } | ||
143 | pid_break = (fhash == shash); | ||
144 | #else | ||
145 | |||
146 | |||
147 | /* CONFIG_EDF_PID_TIE_BREAK */ | ||
148 | pid_break = 1; // fall through to tie-break by pid; | ||
149 | #endif | ||
150 | |||
151 | /* Tie break by pid */ | ||
152 | if(pid_break) { | ||
153 | if (first_task->pid < second_task->pid) { | ||
154 | return 1; | ||
155 | } | ||
156 | else if (first_task->pid == second_task->pid) { | ||
157 | /* If the PIDs are the same then the task with the | ||
158 | * inherited priority wins. | ||
159 | */ | ||
160 | if (!second->rt_param.inh_task) { | ||
161 | return 1; | ||
162 | } | ||
163 | } | ||
164 | } | ||
165 | } | ||
166 | return 0; /* fall-through. prio(second_task) > prio(first_task) */ | ||
85 | } | 167 | } |
86 | 168 | ||
87 | int edf_ready_order(struct bheap_node* a, struct bheap_node* b) | 169 | int edf_ready_order(struct bheap_node* a, struct bheap_node* b) |
diff --git a/litmus/fdso.c b/litmus/fdso.c index aa7b384264e3..c4b450be4509 100644 --- a/litmus/fdso.c +++ b/litmus/fdso.c | |||
@@ -23,10 +23,16 @@ extern struct fdso_ops generic_lock_ops; | |||
23 | static const struct fdso_ops* fdso_ops[] = { | 23 | static const struct fdso_ops* fdso_ops[] = { |
24 | &generic_lock_ops, /* FMLP_SEM */ | 24 | &generic_lock_ops, /* FMLP_SEM */ |
25 | &generic_lock_ops, /* SRP_SEM */ | 25 | &generic_lock_ops, /* SRP_SEM */ |
26 | &generic_lock_ops, /* MPCP_SEM */ | ||
27 | &generic_lock_ops, /* MPCP_VS_SEM */ | ||
28 | &generic_lock_ops, /* DPCP_SEM */ | ||
29 | &generic_lock_ops, /* PCP_SEM */ | ||
26 | }; | 30 | }; |
27 | 31 | ||
28 | static int fdso_create(void** obj_ref, obj_type_t type, void* __user config) | 32 | static int fdso_create(void** obj_ref, obj_type_t type, void* __user config) |
29 | { | 33 | { |
34 | BUILD_BUG_ON(ARRAY_SIZE(fdso_ops) != MAX_OBJ_TYPE + 1); | ||
35 | |||
30 | if (fdso_ops[type]->create) | 36 | if (fdso_ops[type]->create) |
31 | return fdso_ops[type]->create(obj_ref, type, config); | 37 | return fdso_ops[type]->create(obj_ref, type, config); |
32 | else | 38 | else |
@@ -162,6 +168,18 @@ static int put_od_entry(struct od_table_entry* od) | |||
162 | return 0; | 168 | return 0; |
163 | } | 169 | } |
164 | 170 | ||
171 | static long close_od_entry(struct od_table_entry *od) | ||
172 | { | ||
173 | long ret; | ||
174 | |||
175 | /* Give the class a chance to reject the close. */ | ||
176 | ret = fdso_close(od); | ||
177 | if (ret == 0) | ||
178 | ret = put_od_entry(od); | ||
179 | |||
180 | return ret; | ||
181 | } | ||
182 | |||
165 | void exit_od_table(struct task_struct* t) | 183 | void exit_od_table(struct task_struct* t) |
166 | { | 184 | { |
167 | int i; | 185 | int i; |
@@ -169,7 +187,7 @@ void exit_od_table(struct task_struct* t) | |||
169 | if (t->od_table) { | 187 | if (t->od_table) { |
170 | for (i = 0; i < MAX_OBJECT_DESCRIPTORS; i++) | 188 | for (i = 0; i < MAX_OBJECT_DESCRIPTORS; i++) |
171 | if (t->od_table[i].used) | 189 | if (t->od_table[i].used) |
172 | put_od_entry(t->od_table + i); | 190 | close_od_entry(t->od_table + i); |
173 | kfree(t->od_table); | 191 | kfree(t->od_table); |
174 | t->od_table = NULL; | 192 | t->od_table = NULL; |
175 | } | 193 | } |
@@ -283,11 +301,7 @@ asmlinkage long sys_od_close(int od) | |||
283 | return ret; | 301 | return ret; |
284 | 302 | ||
285 | 303 | ||
286 | /* give the class a chance to reject the close | 304 | ret = close_od_entry(t->od_table + od); |
287 | */ | ||
288 | ret = fdso_close(t->od_table + od); | ||
289 | if (ret == 0) | ||
290 | ret = put_od_entry(t->od_table + od); | ||
291 | 305 | ||
292 | return ret; | 306 | return ret; |
293 | } | 307 | } |
diff --git a/litmus/fp_common.c b/litmus/fp_common.c new file mode 100644 index 000000000000..964a4729deff --- /dev/null +++ b/litmus/fp_common.c | |||
@@ -0,0 +1,119 @@ | |||
1 | /* | ||
2 | * litmus/fp_common.c | ||
3 | * | ||
4 | * Common functions for fixed-priority scheduler. | ||
5 | */ | ||
6 | |||
7 | #include <linux/percpu.h> | ||
8 | #include <linux/sched.h> | ||
9 | #include <linux/list.h> | ||
10 | |||
11 | #include <litmus/litmus.h> | ||
12 | #include <litmus/sched_plugin.h> | ||
13 | #include <litmus/sched_trace.h> | ||
14 | |||
15 | #include <litmus/fp_common.h> | ||
16 | |||
17 | /* fp_higher_prio - returns true if first has a higher static priority | ||
18 | * than second. Ties are broken by PID. | ||
19 | * | ||
20 | * both first and second may be NULL | ||
21 | */ | ||
22 | int fp_higher_prio(struct task_struct* first, | ||
23 | struct task_struct* second) | ||
24 | { | ||
25 | struct task_struct *first_task = first; | ||
26 | struct task_struct *second_task = second; | ||
27 | |||
28 | /* There is no point in comparing a task to itself. */ | ||
29 | if (unlikely(first && first == second)) { | ||
30 | TRACE_TASK(first, | ||
31 | "WARNING: pointless FP priority comparison.\n"); | ||
32 | return 0; | ||
33 | } | ||
34 | |||
35 | |||
36 | /* check for NULL tasks */ | ||
37 | if (!first || !second) | ||
38 | return first && !second; | ||
39 | |||
40 | if (!is_realtime(second_task)) | ||
41 | return 1; | ||
42 | |||
43 | #ifdef CONFIG_LITMUS_LOCKING | ||
44 | |||
45 | /* Check for inherited priorities. Change task | ||
46 | * used for comparison in such a case. | ||
47 | */ | ||
48 | if (unlikely(first->rt_param.inh_task)) | ||
49 | first_task = first->rt_param.inh_task; | ||
50 | if (unlikely(second->rt_param.inh_task)) | ||
51 | second_task = second->rt_param.inh_task; | ||
52 | |||
53 | /* Check for priority boosting. Tie-break by start of boosting. | ||
54 | */ | ||
55 | if (unlikely(is_priority_boosted(first_task))) { | ||
56 | /* first_task is boosted, how about second_task? */ | ||
57 | if (is_priority_boosted(second_task)) | ||
58 | /* break by priority point */ | ||
59 | return lt_before(get_boost_start(first_task), | ||
60 | get_boost_start(second_task)); | ||
61 | else | ||
62 | /* priority boosting wins. */ | ||
63 | return 1; | ||
64 | } else if (unlikely(is_priority_boosted(second_task))) | ||
65 | /* second_task is boosted, first is not*/ | ||
66 | return 0; | ||
67 | |||
68 | #endif | ||
69 | |||
70 | /* Comparisons to itself are not expected; priority inheritance | ||
71 | * should also not cause this to happen. */ | ||
72 | BUG_ON(first_task == second_task); | ||
73 | |||
74 | if (get_priority(first_task) < get_priority(second_task)) | ||
75 | return 1; | ||
76 | else if (get_priority(first_task) == get_priority(second_task)) | ||
77 | /* Break by PID. */ | ||
78 | return first_task->pid < second_task->pid; | ||
79 | else | ||
80 | return 0; | ||
81 | } | ||
82 | |||
83 | int fp_ready_order(struct bheap_node* a, struct bheap_node* b) | ||
84 | { | ||
85 | return fp_higher_prio(bheap2task(a), bheap2task(b)); | ||
86 | } | ||
87 | |||
88 | void fp_domain_init(rt_domain_t* rt, check_resched_needed_t resched, | ||
89 | release_jobs_t release) | ||
90 | { | ||
91 | rt_domain_init(rt, fp_ready_order, resched, release); | ||
92 | } | ||
93 | |||
94 | /* need_to_preempt - check whether the task t needs to be preempted | ||
95 | */ | ||
96 | int fp_preemption_needed(struct fp_prio_queue *q, struct task_struct *t) | ||
97 | { | ||
98 | struct task_struct *pending; | ||
99 | |||
100 | pending = fp_prio_peek(q); | ||
101 | |||
102 | if (!pending) | ||
103 | return 0; | ||
104 | if (!t) | ||
105 | return 1; | ||
106 | |||
107 | /* make sure to get non-rt stuff out of the way */ | ||
108 | return !is_realtime(t) || fp_higher_prio(pending, t); | ||
109 | } | ||
110 | |||
111 | void fp_prio_queue_init(struct fp_prio_queue* q) | ||
112 | { | ||
113 | int i; | ||
114 | |||
115 | for (i = 0; i < FP_PRIO_BIT_WORDS; i++) | ||
116 | q->bitmask[i] = 0; | ||
117 | for (i = 0; i < LITMUS_MAX_PRIORITY; i++) | ||
118 | bheap_init(&q->queue[i]); | ||
119 | } | ||
diff --git a/litmus/ftdev.c b/litmus/ftdev.c index 06fcf4cf77dc..99bc39ffbcef 100644 --- a/litmus/ftdev.c +++ b/litmus/ftdev.c | |||
@@ -230,13 +230,20 @@ static ssize_t ftdev_read(struct file *filp, | |||
230 | * here with copied data because that data would get | 230 | * here with copied data because that data would get |
231 | * lost if the task is interrupted (e.g., killed). | 231 | * lost if the task is interrupted (e.g., killed). |
232 | */ | 232 | */ |
233 | mutex_unlock(&ftdm->lock); | ||
233 | set_current_state(TASK_INTERRUPTIBLE); | 234 | set_current_state(TASK_INTERRUPTIBLE); |
235 | |||
234 | schedule_timeout(50); | 236 | schedule_timeout(50); |
237 | |||
235 | if (signal_pending(current)) { | 238 | if (signal_pending(current)) { |
236 | if (err == 0) | 239 | if (err == 0) |
237 | /* nothing read yet, signal problem */ | 240 | /* nothing read yet, signal problem */ |
238 | err = -ERESTARTSYS; | 241 | err = -ERESTARTSYS; |
239 | break; | 242 | goto out; |
243 | } | ||
244 | if (mutex_lock_interruptible(&ftdm->lock)) { | ||
245 | err = -ERESTARTSYS; | ||
246 | goto out; | ||
240 | } | 247 | } |
241 | } else if (copied < 0) { | 248 | } else if (copied < 0) { |
242 | /* page fault */ | 249 | /* page fault */ |
diff --git a/litmus/jobs.c b/litmus/jobs.c index 36e314625d86..13a4ed4c9e93 100644 --- a/litmus/jobs.c +++ b/litmus/jobs.c | |||
@@ -6,13 +6,13 @@ | |||
6 | #include <litmus/litmus.h> | 6 | #include <litmus/litmus.h> |
7 | #include <litmus/jobs.h> | 7 | #include <litmus/jobs.h> |
8 | 8 | ||
9 | void prepare_for_next_period(struct task_struct *t) | 9 | static inline void setup_release(struct task_struct *t, lt_t release) |
10 | { | 10 | { |
11 | BUG_ON(!t); | ||
12 | /* prepare next release */ | 11 | /* prepare next release */ |
13 | t->rt_param.job_params.release = t->rt_param.job_params.deadline; | 12 | t->rt_param.job_params.release = release; |
14 | t->rt_param.job_params.deadline += get_rt_period(t); | 13 | t->rt_param.job_params.deadline = release + get_rt_relative_deadline(t); |
15 | t->rt_param.job_params.exec_time = 0; | 14 | t->rt_param.job_params.exec_time = 0; |
15 | |||
16 | /* update job sequence number */ | 16 | /* update job sequence number */ |
17 | t->rt_param.job_params.job_no++; | 17 | t->rt_param.job_params.job_no++; |
18 | 18 | ||
@@ -20,11 +20,25 @@ void prepare_for_next_period(struct task_struct *t) | |||
20 | t->rt.time_slice = 1; | 20 | t->rt.time_slice = 1; |
21 | } | 21 | } |
22 | 22 | ||
23 | void prepare_for_next_period(struct task_struct *t) | ||
24 | { | ||
25 | BUG_ON(!t); | ||
26 | |||
27 | /* Record lateness before we set up the next job's | ||
28 | * release and deadline. Lateness may be negative. | ||
29 | */ | ||
30 | t->rt_param.job_params.lateness = | ||
31 | (long long)litmus_clock() - | ||
32 | (long long)t->rt_param.job_params.deadline; | ||
33 | |||
34 | setup_release(t, get_release(t) + get_rt_period(t)); | ||
35 | } | ||
36 | |||
23 | void release_at(struct task_struct *t, lt_t start) | 37 | void release_at(struct task_struct *t, lt_t start) |
24 | { | 38 | { |
25 | t->rt_param.job_params.deadline = start; | 39 | BUG_ON(!t); |
26 | prepare_for_next_period(t); | 40 | setup_release(t, start); |
27 | set_rt_flags(t, RT_F_RUNNING); | 41 | tsk_rt(t)->completed = 0; |
28 | } | 42 | } |
29 | 43 | ||
30 | 44 | ||
@@ -34,7 +48,7 @@ void release_at(struct task_struct *t, lt_t start) | |||
34 | long complete_job(void) | 48 | long complete_job(void) |
35 | { | 49 | { |
36 | /* Mark that we do not excute anymore */ | 50 | /* Mark that we do not excute anymore */ |
37 | set_rt_flags(current, RT_F_SLEEP); | 51 | tsk_rt(current)->completed = 1; |
38 | /* call schedule, this will return when a new job arrives | 52 | /* call schedule, this will return when a new job arrives |
39 | * it also takes care of preparing for the next release | 53 | * it also takes care of preparing for the next release |
40 | */ | 54 | */ |
diff --git a/litmus/litmus.c b/litmus/litmus.c index 301390148d02..dc94be71bfb6 100644 --- a/litmus/litmus.c +++ b/litmus/litmus.c | |||
@@ -9,6 +9,8 @@ | |||
9 | #include <linux/sched.h> | 9 | #include <linux/sched.h> |
10 | #include <linux/module.h> | 10 | #include <linux/module.h> |
11 | #include <linux/slab.h> | 11 | #include <linux/slab.h> |
12 | #include <linux/reboot.h> | ||
13 | #include <linux/stop_machine.h> | ||
12 | 14 | ||
13 | #include <litmus/litmus.h> | 15 | #include <litmus/litmus.h> |
14 | #include <litmus/bheap.h> | 16 | #include <litmus/bheap.h> |
@@ -23,9 +25,6 @@ | |||
23 | 25 | ||
24 | /* Number of RT tasks that exist in the system */ | 26 | /* Number of RT tasks that exist in the system */ |
25 | atomic_t rt_task_count = ATOMIC_INIT(0); | 27 | atomic_t rt_task_count = ATOMIC_INIT(0); |
26 | static DEFINE_RAW_SPINLOCK(task_transition_lock); | ||
27 | /* synchronize plugin switching */ | ||
28 | atomic_t cannot_use_plugin = ATOMIC_INIT(0); | ||
29 | 28 | ||
30 | /* Give log messages sequential IDs. */ | 29 | /* Give log messages sequential IDs. */ |
31 | atomic_t __log_seq_no = ATOMIC_INIT(0); | 30 | atomic_t __log_seq_no = ATOMIC_INIT(0); |
@@ -102,21 +101,25 @@ asmlinkage long sys_set_rt_task_param(pid_t pid, struct rt_task __user * param) | |||
102 | goto out_unlock; | 101 | goto out_unlock; |
103 | } | 102 | } |
104 | 103 | ||
104 | /* set relative deadline to be implicit if left unspecified */ | ||
105 | if (tp.relative_deadline == 0) | ||
106 | tp.relative_deadline = tp.period; | ||
107 | |||
105 | if (tp.exec_cost <= 0) | 108 | if (tp.exec_cost <= 0) |
106 | goto out_unlock; | 109 | goto out_unlock; |
107 | if (tp.period <= 0) | 110 | if (tp.period <= 0) |
108 | goto out_unlock; | 111 | goto out_unlock; |
109 | if (!cpu_online(tp.cpu)) | 112 | if (!cpu_online(tp.cpu)) |
110 | goto out_unlock; | 113 | goto out_unlock; |
111 | if (tp.period < tp.exec_cost) | 114 | if (min(tp.relative_deadline, tp.period) < tp.exec_cost) /*density check*/ |
112 | { | 115 | { |
113 | printk(KERN_INFO "litmus: real-time task %d rejected " | 116 | printk(KERN_INFO "litmus: real-time task %d rejected " |
114 | "because wcet > period\n", pid); | 117 | "because task density > 1.0\n", pid); |
115 | goto out_unlock; | 118 | goto out_unlock; |
116 | } | 119 | } |
117 | if ( tp.cls != RT_CLASS_HARD && | 120 | if (tp.cls != RT_CLASS_HARD && |
118 | tp.cls != RT_CLASS_SOFT && | 121 | tp.cls != RT_CLASS_SOFT && |
119 | tp.cls != RT_CLASS_BEST_EFFORT) | 122 | tp.cls != RT_CLASS_BEST_EFFORT) |
120 | { | 123 | { |
121 | printk(KERN_INFO "litmus: real-time task %d rejected " | 124 | printk(KERN_INFO "litmus: real-time task %d rejected " |
122 | "because its class is invalid\n", pid); | 125 | "because its class is invalid\n", pid); |
@@ -317,15 +320,20 @@ static void reinit_litmus_state(struct task_struct* p, int restore) | |||
317 | long litmus_admit_task(struct task_struct* tsk) | 320 | long litmus_admit_task(struct task_struct* tsk) |
318 | { | 321 | { |
319 | long retval = 0; | 322 | long retval = 0; |
320 | unsigned long flags; | ||
321 | 323 | ||
322 | BUG_ON(is_realtime(tsk)); | 324 | BUG_ON(is_realtime(tsk)); |
323 | 325 | ||
324 | if (get_rt_period(tsk) == 0 || | 326 | tsk_rt(tsk)->heap_node = NULL; |
325 | get_exec_cost(tsk) > get_rt_period(tsk)) { | 327 | tsk_rt(tsk)->rel_heap = NULL; |
326 | TRACE_TASK(tsk, "litmus admit: invalid task parameters " | 328 | |
327 | "(%lu, %lu)\n", | 329 | if (get_rt_relative_deadline(tsk) == 0 || |
328 | get_exec_cost(tsk), get_rt_period(tsk)); | 330 | get_exec_cost(tsk) > |
331 | min(get_rt_relative_deadline(tsk), get_rt_period(tsk)) ) { | ||
332 | TRACE_TASK(tsk, | ||
333 | "litmus admit: invalid task parameters " | ||
334 | "(e = %lu, p = %lu, d = %lu)\n", | ||
335 | get_exec_cost(tsk), get_rt_period(tsk), | ||
336 | get_rt_relative_deadline(tsk)); | ||
329 | retval = -EINVAL; | 337 | retval = -EINVAL; |
330 | goto out; | 338 | goto out; |
331 | } | 339 | } |
@@ -339,9 +347,6 @@ long litmus_admit_task(struct task_struct* tsk) | |||
339 | 347 | ||
340 | INIT_LIST_HEAD(&tsk_rt(tsk)->list); | 348 | INIT_LIST_HEAD(&tsk_rt(tsk)->list); |
341 | 349 | ||
342 | /* avoid scheduler plugin changing underneath us */ | ||
343 | raw_spin_lock_irqsave(&task_transition_lock, flags); | ||
344 | |||
345 | /* allocate heap node for this task */ | 350 | /* allocate heap node for this task */ |
346 | tsk_rt(tsk)->heap_node = bheap_node_alloc(GFP_ATOMIC); | 351 | tsk_rt(tsk)->heap_node = bheap_node_alloc(GFP_ATOMIC); |
347 | tsk_rt(tsk)->rel_heap = release_heap_alloc(GFP_ATOMIC); | 352 | tsk_rt(tsk)->rel_heap = release_heap_alloc(GFP_ATOMIC); |
@@ -349,15 +354,14 @@ long litmus_admit_task(struct task_struct* tsk) | |||
349 | if (!tsk_rt(tsk)->heap_node || !tsk_rt(tsk)->rel_heap) { | 354 | if (!tsk_rt(tsk)->heap_node || !tsk_rt(tsk)->rel_heap) { |
350 | printk(KERN_WARNING "litmus: no more heap node memory!?\n"); | 355 | printk(KERN_WARNING "litmus: no more heap node memory!?\n"); |
351 | 356 | ||
352 | bheap_node_free(tsk_rt(tsk)->heap_node); | ||
353 | release_heap_free(tsk_rt(tsk)->rel_heap); | ||
354 | |||
355 | retval = -ENOMEM; | 357 | retval = -ENOMEM; |
356 | goto out_unlock; | 358 | goto out; |
357 | } else { | 359 | } else { |
358 | bheap_node_init(&tsk_rt(tsk)->heap_node, tsk); | 360 | bheap_node_init(&tsk_rt(tsk)->heap_node, tsk); |
359 | } | 361 | } |
360 | 362 | ||
363 | preempt_disable(); | ||
364 | |||
361 | retval = litmus->admit_task(tsk); | 365 | retval = litmus->admit_task(tsk); |
362 | 366 | ||
363 | if (!retval) { | 367 | if (!retval) { |
@@ -366,9 +370,13 @@ long litmus_admit_task(struct task_struct* tsk) | |||
366 | atomic_inc(&rt_task_count); | 370 | atomic_inc(&rt_task_count); |
367 | } | 371 | } |
368 | 372 | ||
369 | out_unlock: | 373 | preempt_enable(); |
370 | raw_spin_unlock_irqrestore(&task_transition_lock, flags); | 374 | |
371 | out: | 375 | out: |
376 | if (retval) { | ||
377 | bheap_node_free(tsk_rt(tsk)->heap_node); | ||
378 | release_heap_free(tsk_rt(tsk)->rel_heap); | ||
379 | } | ||
372 | return retval; | 380 | return retval; |
373 | } | 381 | } |
374 | 382 | ||
@@ -388,37 +396,10 @@ void litmus_exit_task(struct task_struct* tsk) | |||
388 | } | 396 | } |
389 | } | 397 | } |
390 | 398 | ||
391 | /* IPI callback to synchronize plugin switching */ | 399 | static int do_plugin_switch(void *_plugin) |
392 | static void synch_on_plugin_switch(void* info) | ||
393 | { | 400 | { |
394 | atomic_inc(&cannot_use_plugin); | 401 | int ret; |
395 | while (atomic_read(&cannot_use_plugin) > 0) | 402 | struct sched_plugin* plugin = _plugin; |
396 | cpu_relax(); | ||
397 | } | ||
398 | |||
399 | /* Switching a plugin in use is tricky. | ||
400 | * We must watch out that no real-time tasks exists | ||
401 | * (and that none is created in parallel) and that the plugin is not | ||
402 | * currently in use on any processor (in theory). | ||
403 | */ | ||
404 | int switch_sched_plugin(struct sched_plugin* plugin) | ||
405 | { | ||
406 | unsigned long flags; | ||
407 | int ret = 0; | ||
408 | |||
409 | BUG_ON(!plugin); | ||
410 | |||
411 | /* forbid other cpus to use the plugin */ | ||
412 | atomic_set(&cannot_use_plugin, 1); | ||
413 | /* send IPI to force other CPUs to synch with us */ | ||
414 | smp_call_function(synch_on_plugin_switch, NULL, 0); | ||
415 | |||
416 | /* wait until all other CPUs have started synch */ | ||
417 | while (atomic_read(&cannot_use_plugin) < num_online_cpus()) | ||
418 | cpu_relax(); | ||
419 | |||
420 | /* stop task transitions */ | ||
421 | raw_spin_lock_irqsave(&task_transition_lock, flags); | ||
422 | 403 | ||
423 | /* don't switch if there are active real-time tasks */ | 404 | /* don't switch if there are active real-time tasks */ |
424 | if (atomic_read(&rt_task_count) == 0) { | 405 | if (atomic_read(&rt_task_count) == 0) { |
@@ -436,11 +417,24 @@ int switch_sched_plugin(struct sched_plugin* plugin) | |||
436 | } else | 417 | } else |
437 | ret = -EBUSY; | 418 | ret = -EBUSY; |
438 | out: | 419 | out: |
439 | raw_spin_unlock_irqrestore(&task_transition_lock, flags); | ||
440 | atomic_set(&cannot_use_plugin, 0); | ||
441 | return ret; | 420 | return ret; |
442 | } | 421 | } |
443 | 422 | ||
423 | /* Switching a plugin in use is tricky. | ||
424 | * We must watch out that no real-time tasks exists | ||
425 | * (and that none is created in parallel) and that the plugin is not | ||
426 | * currently in use on any processor (in theory). | ||
427 | */ | ||
428 | int switch_sched_plugin(struct sched_plugin* plugin) | ||
429 | { | ||
430 | BUG_ON(!plugin); | ||
431 | |||
432 | if (atomic_read(&rt_task_count) == 0) | ||
433 | return stop_machine(do_plugin_switch, plugin, NULL); | ||
434 | else | ||
435 | return -EBUSY; | ||
436 | } | ||
437 | |||
444 | /* Called upon fork. | 438 | /* Called upon fork. |
445 | * p is the newly forked task. | 439 | * p is the newly forked task. |
446 | */ | 440 | */ |
@@ -521,6 +515,25 @@ static struct sysrq_key_op sysrq_kill_rt_tasks_op = { | |||
521 | 515 | ||
522 | extern struct sched_plugin linux_sched_plugin; | 516 | extern struct sched_plugin linux_sched_plugin; |
523 | 517 | ||
518 | static int litmus_shutdown_nb(struct notifier_block *unused1, | ||
519 | unsigned long unused2, void *unused3) | ||
520 | { | ||
521 | /* Attempt to switch back to regular Linux scheduling. | ||
522 | * Forces the active plugin to clean up. | ||
523 | */ | ||
524 | if (litmus != &linux_sched_plugin) { | ||
525 | int ret = switch_sched_plugin(&linux_sched_plugin); | ||
526 | if (ret) { | ||
527 | printk("Auto-shutdown of active Litmus plugin failed.\n"); | ||
528 | } | ||
529 | } | ||
530 | return NOTIFY_DONE; | ||
531 | } | ||
532 | |||
533 | static struct notifier_block shutdown_notifier = { | ||
534 | .notifier_call = litmus_shutdown_nb, | ||
535 | }; | ||
536 | |||
524 | static int __init _init_litmus(void) | 537 | static int __init _init_litmus(void) |
525 | { | 538 | { |
526 | /* Common initializers, | 539 | /* Common initializers, |
@@ -529,8 +542,6 @@ static int __init _init_litmus(void) | |||
529 | */ | 542 | */ |
530 | printk("Starting LITMUS^RT kernel\n"); | 543 | printk("Starting LITMUS^RT kernel\n"); |
531 | 544 | ||
532 | BUILD_BUG_ON(sizeof(union np_flag) != sizeof(uint32_t)); | ||
533 | |||
534 | register_sched_plugin(&linux_sched_plugin); | 545 | register_sched_plugin(&linux_sched_plugin); |
535 | 546 | ||
536 | bheap_node_cache = KMEM_CACHE(bheap_node, SLAB_PANIC); | 547 | bheap_node_cache = KMEM_CACHE(bheap_node, SLAB_PANIC); |
@@ -550,11 +561,15 @@ static int __init _init_litmus(void) | |||
550 | init_topology(); | 561 | init_topology(); |
551 | #endif | 562 | #endif |
552 | 563 | ||
564 | register_reboot_notifier(&shutdown_notifier); | ||
565 | |||
553 | return 0; | 566 | return 0; |
554 | } | 567 | } |
555 | 568 | ||
556 | static void _exit_litmus(void) | 569 | static void _exit_litmus(void) |
557 | { | 570 | { |
571 | unregister_reboot_notifier(&shutdown_notifier); | ||
572 | |||
558 | exit_litmus_proc(); | 573 | exit_litmus_proc(); |
559 | kmem_cache_destroy(bheap_node_cache); | 574 | kmem_cache_destroy(bheap_node_cache); |
560 | kmem_cache_destroy(release_heap_cache); | 575 | kmem_cache_destroy(release_heap_cache); |
diff --git a/litmus/locking.c b/litmus/locking.c index 0c1aa6aa40b7..43d9aece2e74 100644 --- a/litmus/locking.c +++ b/litmus/locking.c | |||
@@ -1,9 +1,14 @@ | |||
1 | #include <linux/sched.h> | ||
2 | #include <litmus/litmus.h> | ||
1 | #include <litmus/fdso.h> | 3 | #include <litmus/fdso.h> |
2 | 4 | ||
3 | #ifdef CONFIG_LITMUS_LOCKING | 5 | #ifdef CONFIG_LITMUS_LOCKING |
4 | 6 | ||
7 | #include <linux/sched.h> | ||
8 | #include <litmus/litmus.h> | ||
5 | #include <litmus/sched_plugin.h> | 9 | #include <litmus/sched_plugin.h> |
6 | #include <litmus/trace.h> | 10 | #include <litmus/trace.h> |
11 | #include <litmus/wait.h> | ||
7 | 12 | ||
8 | static int create_generic_lock(void** obj_ref, obj_type_t type, void* __user arg); | 13 | static int create_generic_lock(void** obj_ref, obj_type_t type, void* __user arg); |
9 | static int open_generic_lock(struct od_table_entry* entry, void* __user arg); | 14 | static int open_generic_lock(struct od_table_entry* entry, void* __user arg); |
@@ -69,6 +74,10 @@ asmlinkage long sys_litmus_lock(int lock_od) | |||
69 | struct od_table_entry* entry; | 74 | struct od_table_entry* entry; |
70 | struct litmus_lock* l; | 75 | struct litmus_lock* l; |
71 | 76 | ||
77 | TS_SYSCALL_IN_START; | ||
78 | |||
79 | TS_SYSCALL_IN_END; | ||
80 | |||
72 | TS_LOCK_START; | 81 | TS_LOCK_START; |
73 | 82 | ||
74 | entry = get_entry_for_od(lock_od); | 83 | entry = get_entry_for_od(lock_od); |
@@ -82,6 +91,8 @@ asmlinkage long sys_litmus_lock(int lock_od) | |||
82 | * this into account when computing overheads. */ | 91 | * this into account when computing overheads. */ |
83 | TS_LOCK_END; | 92 | TS_LOCK_END; |
84 | 93 | ||
94 | TS_SYSCALL_OUT_START; | ||
95 | |||
85 | return err; | 96 | return err; |
86 | } | 97 | } |
87 | 98 | ||
@@ -91,6 +102,10 @@ asmlinkage long sys_litmus_unlock(int lock_od) | |||
91 | struct od_table_entry* entry; | 102 | struct od_table_entry* entry; |
92 | struct litmus_lock* l; | 103 | struct litmus_lock* l; |
93 | 104 | ||
105 | TS_SYSCALL_IN_START; | ||
106 | |||
107 | TS_SYSCALL_IN_END; | ||
108 | |||
94 | TS_UNLOCK_START; | 109 | TS_UNLOCK_START; |
95 | 110 | ||
96 | entry = get_entry_for_od(lock_od); | 111 | entry = get_entry_for_od(lock_od); |
@@ -104,6 +119,8 @@ asmlinkage long sys_litmus_unlock(int lock_od) | |||
104 | * account when computing overheads. */ | 119 | * account when computing overheads. */ |
105 | TS_UNLOCK_END; | 120 | TS_UNLOCK_END; |
106 | 121 | ||
122 | TS_SYSCALL_OUT_START; | ||
123 | |||
107 | return err; | 124 | return err; |
108 | } | 125 | } |
109 | 126 | ||
@@ -121,6 +138,38 @@ struct task_struct* __waitqueue_remove_first(wait_queue_head_t *wq) | |||
121 | return(t); | 138 | return(t); |
122 | } | 139 | } |
123 | 140 | ||
141 | unsigned int __add_wait_queue_prio_exclusive( | ||
142 | wait_queue_head_t* head, | ||
143 | prio_wait_queue_t *new) | ||
144 | { | ||
145 | struct list_head *pos; | ||
146 | unsigned int passed = 0; | ||
147 | |||
148 | new->wq.flags |= WQ_FLAG_EXCLUSIVE; | ||
149 | |||
150 | /* find a spot where the new entry is less than the next */ | ||
151 | list_for_each(pos, &head->task_list) { | ||
152 | prio_wait_queue_t* queued = list_entry(pos, prio_wait_queue_t, | ||
153 | wq.task_list); | ||
154 | |||
155 | if (unlikely(lt_before(new->priority, queued->priority) || | ||
156 | (new->priority == queued->priority && | ||
157 | new->tie_breaker < queued->tie_breaker))) { | ||
158 | /* pos is not less than new, thus insert here */ | ||
159 | __list_add(&new->wq.task_list, pos->prev, pos); | ||
160 | goto out; | ||
161 | } | ||
162 | passed++; | ||
163 | } | ||
164 | |||
165 | /* if we get to this point either the list is empty or every entry | ||
166 | * queued element is less than new. | ||
167 | * Let's add new to the end. */ | ||
168 | list_add_tail(&new->wq.task_list, &head->task_list); | ||
169 | out: | ||
170 | return passed; | ||
171 | } | ||
172 | |||
124 | 173 | ||
125 | #else | 174 | #else |
126 | 175 | ||
diff --git a/litmus/preempt.c b/litmus/preempt.c index 5704d0bf4c0b..6be2f26728b8 100644 --- a/litmus/preempt.c +++ b/litmus/preempt.c | |||
@@ -2,6 +2,7 @@ | |||
2 | 2 | ||
3 | #include <litmus/litmus.h> | 3 | #include <litmus/litmus.h> |
4 | #include <litmus/preempt.h> | 4 | #include <litmus/preempt.h> |
5 | #include <litmus/trace.h> | ||
5 | 6 | ||
6 | /* The rescheduling state of each processor. | 7 | /* The rescheduling state of each processor. |
7 | */ | 8 | */ |
@@ -47,6 +48,7 @@ void sched_state_ipi(void) | |||
47 | set_tsk_need_resched(current); | 48 | set_tsk_need_resched(current); |
48 | TRACE_STATE("IPI -> set_tsk_need_resched(%s/%d)\n", | 49 | TRACE_STATE("IPI -> set_tsk_need_resched(%s/%d)\n", |
49 | current->comm, current->pid); | 50 | current->comm, current->pid); |
51 | TS_SEND_RESCHED_END; | ||
50 | } else { | 52 | } else { |
51 | /* ignore */ | 53 | /* ignore */ |
52 | TRACE_STATE("ignoring IPI in state %x (%s)\n", | 54 | TRACE_STATE("ignoring IPI in state %x (%s)\n", |
@@ -85,8 +87,10 @@ void litmus_reschedule(int cpu) | |||
85 | if (scheduled_transition_ok) { | 87 | if (scheduled_transition_ok) { |
86 | if (smp_processor_id() == cpu) | 88 | if (smp_processor_id() == cpu) |
87 | set_tsk_need_resched(current); | 89 | set_tsk_need_resched(current); |
88 | else | 90 | else { |
91 | TS_SEND_RESCHED_START(cpu); | ||
89 | smp_send_reschedule(cpu); | 92 | smp_send_reschedule(cpu); |
93 | } | ||
90 | } | 94 | } |
91 | 95 | ||
92 | TRACE_STATE("%s picked-ok:%d sched-ok:%d\n", | 96 | TRACE_STATE("%s picked-ok:%d sched-ok:%d\n", |
diff --git a/litmus/rt_domain.c b/litmus/rt_domain.c index d405854cd39c..1683d3847560 100644 --- a/litmus/rt_domain.c +++ b/litmus/rt_domain.c | |||
@@ -300,9 +300,11 @@ void rt_domain_init(rt_domain_t *rt, | |||
300 | */ | 300 | */ |
301 | void __add_ready(rt_domain_t* rt, struct task_struct *new) | 301 | void __add_ready(rt_domain_t* rt, struct task_struct *new) |
302 | { | 302 | { |
303 | TRACE("rt: adding %s/%d (%llu, %llu) rel=%llu to ready queue at %llu\n", | 303 | TRACE("rt: adding %s/%d (%llu, %llu, %llu) rel=%llu " |
304 | new->comm, new->pid, get_exec_cost(new), get_rt_period(new), | 304 | "to ready queue at %llu\n", |
305 | get_release(new), litmus_clock()); | 305 | new->comm, new->pid, |
306 | get_exec_cost(new), get_rt_period(new), get_rt_relative_deadline(new), | ||
307 | get_release(new), litmus_clock()); | ||
306 | 308 | ||
307 | BUG_ON(bheap_node_in_heap(tsk_rt(new)->heap_node)); | 309 | BUG_ON(bheap_node_in_heap(tsk_rt(new)->heap_node)); |
308 | 310 | ||
@@ -329,12 +331,7 @@ void __add_release_on(rt_domain_t* rt, struct task_struct *task, | |||
329 | list_add(&tsk_rt(task)->list, &rt->tobe_released); | 331 | list_add(&tsk_rt(task)->list, &rt->tobe_released); |
330 | task->rt_param.domain = rt; | 332 | task->rt_param.domain = rt; |
331 | 333 | ||
332 | /* start release timer */ | ||
333 | TS_SCHED2_START(task); | ||
334 | |||
335 | arm_release_timer_on(rt, target_cpu); | 334 | arm_release_timer_on(rt, target_cpu); |
336 | |||
337 | TS_SCHED2_END(task); | ||
338 | } | 335 | } |
339 | #endif | 336 | #endif |
340 | 337 | ||
@@ -347,11 +344,6 @@ void __add_release(rt_domain_t* rt, struct task_struct *task) | |||
347 | list_add(&tsk_rt(task)->list, &rt->tobe_released); | 344 | list_add(&tsk_rt(task)->list, &rt->tobe_released); |
348 | task->rt_param.domain = rt; | 345 | task->rt_param.domain = rt; |
349 | 346 | ||
350 | /* start release timer */ | ||
351 | TS_SCHED2_START(task); | ||
352 | |||
353 | arm_release_timer(rt); | 347 | arm_release_timer(rt); |
354 | |||
355 | TS_SCHED2_END(task); | ||
356 | } | 348 | } |
357 | 349 | ||
diff --git a/litmus/sched_cedf.c b/litmus/sched_cedf.c index 480c62bc895b..b45b46fc4fca 100644 --- a/litmus/sched_cedf.c +++ b/litmus/sched_cedf.c | |||
@@ -35,6 +35,7 @@ | |||
35 | #include <litmus/litmus.h> | 35 | #include <litmus/litmus.h> |
36 | #include <litmus/jobs.h> | 36 | #include <litmus/jobs.h> |
37 | #include <litmus/preempt.h> | 37 | #include <litmus/preempt.h> |
38 | #include <litmus/budget.h> | ||
38 | #include <litmus/sched_plugin.h> | 39 | #include <litmus/sched_plugin.h> |
39 | #include <litmus/edf_common.h> | 40 | #include <litmus/edf_common.h> |
40 | #include <litmus/sched_trace.h> | 41 | #include <litmus/sched_trace.h> |
@@ -170,7 +171,7 @@ static noinline void link_task_to_cpu(struct task_struct* linked, | |||
170 | 171 | ||
171 | /* Link new task to CPU. */ | 172 | /* Link new task to CPU. */ |
172 | if (linked) { | 173 | if (linked) { |
173 | set_rt_flags(linked, RT_F_RUNNING); | 174 | tsk_rt(linked)->completed = 0; |
174 | /* handle task is already scheduled somewhere! */ | 175 | /* handle task is already scheduled somewhere! */ |
175 | on_cpu = linked->rt_param.scheduled_on; | 176 | on_cpu = linked->rt_param.scheduled_on; |
176 | if (on_cpu != NO_CPU) { | 177 | if (on_cpu != NO_CPU) { |
@@ -304,11 +305,11 @@ static void check_for_preemptions(cedf_domain_t *cluster) | |||
304 | &per_cpu(cedf_cpu_entries, task_cpu(task))); | 305 | &per_cpu(cedf_cpu_entries, task_cpu(task))); |
305 | if(affinity) | 306 | if(affinity) |
306 | last = affinity; | 307 | last = affinity; |
307 | else if(last->linked) | 308 | else if(requeue_preempted_job(last->linked)) |
308 | requeue(last->linked); | 309 | requeue(last->linked); |
309 | } | 310 | } |
310 | #else | 311 | #else |
311 | if (last->linked) | 312 | if (requeue_preempted_job(last->linked)) |
312 | requeue(last->linked); | 313 | requeue(last->linked); |
313 | #endif | 314 | #endif |
314 | link_task_to_cpu(task, last); | 315 | link_task_to_cpu(task, last); |
@@ -349,7 +350,7 @@ static noinline void job_completion(struct task_struct *t, int forced) | |||
349 | TRACE_TASK(t, "job_completion().\n"); | 350 | TRACE_TASK(t, "job_completion().\n"); |
350 | 351 | ||
351 | /* set flags */ | 352 | /* set flags */ |
352 | set_rt_flags(t, RT_F_SLEEP); | 353 | tsk_rt(t)->completed = 1; |
353 | /* prepare for next period */ | 354 | /* prepare for next period */ |
354 | prepare_for_next_period(t); | 355 | prepare_for_next_period(t); |
355 | if (is_released(t, litmus_clock())) | 356 | if (is_released(t, litmus_clock())) |
@@ -403,7 +404,7 @@ static void cedf_tick(struct task_struct* t) | |||
403 | * | 404 | * |
404 | * - !is_running(scheduled) // the job blocks | 405 | * - !is_running(scheduled) // the job blocks |
405 | * - scheduled->timeslice == 0 // the job completed (forcefully) | 406 | * - scheduled->timeslice == 0 // the job completed (forcefully) |
406 | * - get_rt_flag() == RT_F_SLEEP // the job completed (by syscall) | 407 | * - is_completed() // the job completed (by syscall) |
407 | * - linked != scheduled // we need to reschedule (for any reason) | 408 | * - linked != scheduled // we need to reschedule (for any reason) |
408 | * - is_np(scheduled) // rescheduling must be delayed, | 409 | * - is_np(scheduled) // rescheduling must be delayed, |
409 | * sys_exit_np must be requested | 410 | * sys_exit_np must be requested |
@@ -442,7 +443,7 @@ static struct task_struct* cedf_schedule(struct task_struct * prev) | |||
442 | budget_enforced(entry->scheduled) && | 443 | budget_enforced(entry->scheduled) && |
443 | budget_exhausted(entry->scheduled); | 444 | budget_exhausted(entry->scheduled); |
444 | np = exists && is_np(entry->scheduled); | 445 | np = exists && is_np(entry->scheduled); |
445 | sleep = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP; | 446 | sleep = exists && is_completed(entry->scheduled); |
446 | preempt = entry->scheduled != entry->linked; | 447 | preempt = entry->scheduled != entry->linked; |
447 | 448 | ||
448 | #ifdef WANT_ALL_SCHED_EVENTS | 449 | #ifdef WANT_ALL_SCHED_EVENTS |
@@ -478,9 +479,9 @@ static struct task_struct* cedf_schedule(struct task_struct * prev) | |||
478 | /* Any task that is preemptable and either exhausts its execution | 479 | /* Any task that is preemptable and either exhausts its execution |
479 | * budget or wants to sleep completes. We may have to reschedule after | 480 | * budget or wants to sleep completes. We may have to reschedule after |
480 | * this. Don't do a job completion if we block (can't have timers running | 481 | * this. Don't do a job completion if we block (can't have timers running |
481 | * for blocked jobs). Preemption go first for the same reason. | 482 | * for blocked jobs). |
482 | */ | 483 | */ |
483 | if (!np && (out_of_time || sleep) && !blocks && !preempt) | 484 | if (!np && (out_of_time || sleep) && !blocks) |
484 | job_completion(entry->scheduled, !sleep); | 485 | job_completion(entry->scheduled, !sleep); |
485 | 486 | ||
486 | /* Link pending task if we became unlinked. | 487 | /* Link pending task if we became unlinked. |
@@ -594,25 +595,17 @@ static void cedf_task_wake_up(struct task_struct *task) | |||
594 | cluster = task_cpu_cluster(task); | 595 | cluster = task_cpu_cluster(task); |
595 | 596 | ||
596 | raw_spin_lock_irqsave(&cluster->cluster_lock, flags); | 597 | raw_spin_lock_irqsave(&cluster->cluster_lock, flags); |
597 | /* We need to take suspensions because of semaphores into | 598 | now = litmus_clock(); |
598 | * account! If a job resumes after being suspended due to acquiring | 599 | if (is_tardy(task, now)) { |
599 | * a semaphore, it should never be treated as a new job release. | 600 | /* new sporadic release */ |
600 | */ | 601 | release_at(task, now); |
601 | if (get_rt_flags(task) == RT_F_EXIT_SEM) { | 602 | sched_trace_task_release(task); |
602 | set_rt_flags(task, RT_F_RUNNING); | 603 | } |
603 | } else { | 604 | else { |
604 | now = litmus_clock(); | 605 | if (task->rt.time_slice) { |
605 | if (is_tardy(task, now)) { | 606 | /* came back in time before deadline |
606 | /* new sporadic release */ | 607 | */ |
607 | release_at(task, now); | 608 | tsk_rt(task)->completed = 0; |
608 | sched_trace_task_release(task); | ||
609 | } | ||
610 | else { | ||
611 | if (task->rt.time_slice) { | ||
612 | /* came back in time before deadline | ||
613 | */ | ||
614 | set_rt_flags(task, RT_F_RUNNING); | ||
615 | } | ||
616 | } | 609 | } |
617 | } | 610 | } |
618 | cedf_job_arrival(task); | 611 | cedf_job_arrival(task); |
diff --git a/litmus/sched_gsn_edf.c b/litmus/sched_gsn_edf.c index 6ed504f4750e..b8548b885b35 100644 --- a/litmus/sched_gsn_edf.c +++ b/litmus/sched_gsn_edf.c | |||
@@ -21,6 +21,7 @@ | |||
21 | #include <litmus/trace.h> | 21 | #include <litmus/trace.h> |
22 | 22 | ||
23 | #include <litmus/preempt.h> | 23 | #include <litmus/preempt.h> |
24 | #include <litmus/budget.h> | ||
24 | 25 | ||
25 | #include <litmus/bheap.h> | 26 | #include <litmus/bheap.h> |
26 | 27 | ||
@@ -43,7 +44,7 @@ | |||
43 | * (thereby removing its association with this | 44 | * (thereby removing its association with this |
44 | * CPU). However, it will not requeue the | 45 | * CPU). However, it will not requeue the |
45 | * previously linked task (if any). It will set | 46 | * previously linked task (if any). It will set |
46 | * T's state to RT_F_RUNNING and check whether | 47 | * T's state to not completed and check whether |
47 | * it is already running somewhere else. If T | 48 | * it is already running somewhere else. If T |
48 | * is scheduled somewhere else it will link | 49 | * is scheduled somewhere else it will link |
49 | * it to that CPU instead (and pull the linked | 50 | * it to that CPU instead (and pull the linked |
@@ -172,7 +173,7 @@ static noinline void link_task_to_cpu(struct task_struct* linked, | |||
172 | 173 | ||
173 | /* Link new task to CPU. */ | 174 | /* Link new task to CPU. */ |
174 | if (linked) { | 175 | if (linked) { |
175 | set_rt_flags(linked, RT_F_RUNNING); | 176 | tsk_rt(linked)->completed = 0; |
176 | /* handle task is already scheduled somewhere! */ | 177 | /* handle task is already scheduled somewhere! */ |
177 | on_cpu = linked->rt_param.scheduled_on; | 178 | on_cpu = linked->rt_param.scheduled_on; |
178 | if (on_cpu != NO_CPU) { | 179 | if (on_cpu != NO_CPU) { |
@@ -296,11 +297,11 @@ static void check_for_preemptions(void) | |||
296 | &per_cpu(gsnedf_cpu_entries, task_cpu(task))); | 297 | &per_cpu(gsnedf_cpu_entries, task_cpu(task))); |
297 | if (affinity) | 298 | if (affinity) |
298 | last = affinity; | 299 | last = affinity; |
299 | else if (last->linked) | 300 | else if (requeue_preempted_job(last->linked)) |
300 | requeue(last->linked); | 301 | requeue(last->linked); |
301 | } | 302 | } |
302 | #else | 303 | #else |
303 | if (last->linked) | 304 | if (requeue_preempted_job(last->linked)) |
304 | requeue(last->linked); | 305 | requeue(last->linked); |
305 | #endif | 306 | #endif |
306 | 307 | ||
@@ -340,7 +341,7 @@ static noinline void job_completion(struct task_struct *t, int forced) | |||
340 | TRACE_TASK(t, "job_completion().\n"); | 341 | TRACE_TASK(t, "job_completion().\n"); |
341 | 342 | ||
342 | /* set flags */ | 343 | /* set flags */ |
343 | set_rt_flags(t, RT_F_SLEEP); | 344 | tsk_rt(t)->completed = 1; |
344 | /* prepare for next period */ | 345 | /* prepare for next period */ |
345 | prepare_for_next_period(t); | 346 | prepare_for_next_period(t); |
346 | if (is_released(t, litmus_clock())) | 347 | if (is_released(t, litmus_clock())) |
@@ -393,7 +394,7 @@ static void gsnedf_tick(struct task_struct* t) | |||
393 | * | 394 | * |
394 | * - !is_running(scheduled) // the job blocks | 395 | * - !is_running(scheduled) // the job blocks |
395 | * - scheduled->timeslice == 0 // the job completed (forcefully) | 396 | * - scheduled->timeslice == 0 // the job completed (forcefully) |
396 | * - get_rt_flag() == RT_F_SLEEP // the job completed (by syscall) | 397 | * - is_completed() // the job completed (by syscall) |
397 | * - linked != scheduled // we need to reschedule (for any reason) | 398 | * - linked != scheduled // we need to reschedule (for any reason) |
398 | * - is_np(scheduled) // rescheduling must be delayed, | 399 | * - is_np(scheduled) // rescheduling must be delayed, |
399 | * sys_exit_np must be requested | 400 | * sys_exit_np must be requested |
@@ -426,11 +427,10 @@ static struct task_struct* gsnedf_schedule(struct task_struct * prev) | |||
426 | /* (0) Determine state */ | 427 | /* (0) Determine state */ |
427 | exists = entry->scheduled != NULL; | 428 | exists = entry->scheduled != NULL; |
428 | blocks = exists && !is_running(entry->scheduled); | 429 | blocks = exists && !is_running(entry->scheduled); |
429 | out_of_time = exists && | 430 | out_of_time = exists && budget_enforced(entry->scheduled) |
430 | budget_enforced(entry->scheduled) && | 431 | && budget_exhausted(entry->scheduled); |
431 | budget_exhausted(entry->scheduled); | ||
432 | np = exists && is_np(entry->scheduled); | 432 | np = exists && is_np(entry->scheduled); |
433 | sleep = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP; | 433 | sleep = exists && is_completed(entry->scheduled); |
434 | preempt = entry->scheduled != entry->linked; | 434 | preempt = entry->scheduled != entry->linked; |
435 | 435 | ||
436 | #ifdef WANT_ALL_SCHED_EVENTS | 436 | #ifdef WANT_ALL_SCHED_EVENTS |
@@ -466,9 +466,9 @@ static struct task_struct* gsnedf_schedule(struct task_struct * prev) | |||
466 | /* Any task that is preemptable and either exhausts its execution | 466 | /* Any task that is preemptable and either exhausts its execution |
467 | * budget or wants to sleep completes. We may have to reschedule after | 467 | * budget or wants to sleep completes. We may have to reschedule after |
468 | * this. Don't do a job completion if we block (can't have timers running | 468 | * this. Don't do a job completion if we block (can't have timers running |
469 | * for blocked jobs). Preemption go first for the same reason. | 469 | * for blocked jobs). |
470 | */ | 470 | */ |
471 | if (!np && (out_of_time || sleep) && !blocks && !preempt) | 471 | if (!np && (out_of_time || sleep) && !blocks) |
472 | job_completion(entry->scheduled, !sleep); | 472 | job_completion(entry->scheduled, !sleep); |
473 | 473 | ||
474 | /* Link pending task if we became unlinked. | 474 | /* Link pending task if we became unlinked. |
@@ -577,25 +577,17 @@ static void gsnedf_task_wake_up(struct task_struct *task) | |||
577 | TRACE_TASK(task, "wake_up at %llu\n", litmus_clock()); | 577 | TRACE_TASK(task, "wake_up at %llu\n", litmus_clock()); |
578 | 578 | ||
579 | raw_spin_lock_irqsave(&gsnedf_lock, flags); | 579 | raw_spin_lock_irqsave(&gsnedf_lock, flags); |
580 | /* We need to take suspensions because of semaphores into | 580 | now = litmus_clock(); |
581 | * account! If a job resumes after being suspended due to acquiring | 581 | if (is_tardy(task, now)) { |
582 | * a semaphore, it should never be treated as a new job release. | 582 | /* new sporadic release */ |
583 | */ | 583 | release_at(task, now); |
584 | if (get_rt_flags(task) == RT_F_EXIT_SEM) { | 584 | sched_trace_task_release(task); |
585 | set_rt_flags(task, RT_F_RUNNING); | 585 | } |
586 | } else { | 586 | else { |
587 | now = litmus_clock(); | 587 | if (task->rt.time_slice) { |
588 | if (is_tardy(task, now)) { | 588 | /* came back in time before deadline |
589 | /* new sporadic release */ | 589 | */ |
590 | release_at(task, now); | 590 | tsk_rt(task)->completed = 0; |
591 | sched_trace_task_release(task); | ||
592 | } | ||
593 | else { | ||
594 | if (task->rt.time_slice) { | ||
595 | /* came back in time before deadline | ||
596 | */ | ||
597 | set_rt_flags(task, RT_F_RUNNING); | ||
598 | } | ||
599 | } | 591 | } |
600 | } | 592 | } |
601 | gsnedf_job_arrival(task); | 593 | gsnedf_job_arrival(task); |
diff --git a/litmus/sched_litmus.c b/litmus/sched_litmus.c index 5a15ce938984..6b32cf09abbd 100644 --- a/litmus/sched_litmus.c +++ b/litmus/sched_litmus.c | |||
@@ -102,9 +102,9 @@ litmus_schedule(struct rq *rq, struct task_struct *prev) | |||
102 | } | 102 | } |
103 | } | 103 | } |
104 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW | 104 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW |
105 | if (next->oncpu) | 105 | if (next->on_cpu) |
106 | TRACE_TASK(next, "waiting for !oncpu"); | 106 | TRACE_TASK(next, "waiting for !oncpu"); |
107 | while (next->oncpu) { | 107 | while (next->on_cpu) { |
108 | cpu_relax(); | 108 | cpu_relax(); |
109 | mb(); | 109 | mb(); |
110 | } | 110 | } |
@@ -194,6 +194,9 @@ static void dequeue_task_litmus(struct rq *rq, struct task_struct *p, | |||
194 | 194 | ||
195 | static void yield_task_litmus(struct rq *rq) | 195 | static void yield_task_litmus(struct rq *rq) |
196 | { | 196 | { |
197 | TS_SYSCALL_IN_START; | ||
198 | TS_SYSCALL_IN_END; | ||
199 | |||
197 | BUG_ON(rq->curr != current); | 200 | BUG_ON(rq->curr != current); |
198 | /* sched_yield() is called to trigger delayed preemptions. | 201 | /* sched_yield() is called to trigger delayed preemptions. |
199 | * Thus, mark the current task as needing to be rescheduled. | 202 | * Thus, mark the current task as needing to be rescheduled. |
@@ -202,6 +205,8 @@ static void yield_task_litmus(struct rq *rq) | |||
202 | */ | 205 | */ |
203 | clear_exit_np(current); | 206 | clear_exit_np(current); |
204 | litmus_reschedule_local(); | 207 | litmus_reschedule_local(); |
208 | |||
209 | TS_SYSCALL_OUT_START; | ||
205 | } | 210 | } |
206 | 211 | ||
207 | /* Plugins are responsible for this. | 212 | /* Plugins are responsible for this. |
diff --git a/litmus/sched_pfair.c b/litmus/sched_pfair.c index 16f1065bbdca..6a89b003306c 100644 --- a/litmus/sched_pfair.c +++ b/litmus/sched_pfair.c | |||
@@ -254,7 +254,7 @@ static void check_preempt(struct task_struct* t) | |||
254 | { | 254 | { |
255 | int cpu = NO_CPU; | 255 | int cpu = NO_CPU; |
256 | if (tsk_rt(t)->linked_on != tsk_rt(t)->scheduled_on && | 256 | if (tsk_rt(t)->linked_on != tsk_rt(t)->scheduled_on && |
257 | tsk_rt(t)->present) { | 257 | is_present(t)) { |
258 | /* the task can be scheduled and | 258 | /* the task can be scheduled and |
259 | * is not scheduled where it ought to be scheduled | 259 | * is not scheduled where it ought to be scheduled |
260 | */ | 260 | */ |
@@ -299,7 +299,7 @@ static void pfair_prepare_next_period(struct task_struct* t) | |||
299 | struct pfair_param* p = tsk_pfair(t); | 299 | struct pfair_param* p = tsk_pfair(t); |
300 | 300 | ||
301 | prepare_for_next_period(t); | 301 | prepare_for_next_period(t); |
302 | get_rt_flags(t) = RT_F_RUNNING; | 302 | tsk_rt(t)->completed = 0; |
303 | p->release += p->period; | 303 | p->release += p->period; |
304 | } | 304 | } |
305 | 305 | ||
@@ -310,7 +310,7 @@ static int advance_subtask(quanta_t time, struct task_struct* t, int cpu) | |||
310 | int to_relq; | 310 | int to_relq; |
311 | p->cur = (p->cur + 1) % p->quanta; | 311 | p->cur = (p->cur + 1) % p->quanta; |
312 | if (!p->cur) { | 312 | if (!p->cur) { |
313 | if (tsk_rt(t)->present) { | 313 | if (is_present(t)) { |
314 | /* The job overran; we start a new budget allocation. */ | 314 | /* The job overran; we start a new budget allocation. */ |
315 | pfair_prepare_next_period(t); | 315 | pfair_prepare_next_period(t); |
316 | } else { | 316 | } else { |
@@ -598,7 +598,7 @@ static int safe_to_schedule(struct task_struct* t, int cpu) | |||
598 | "scheduled already on %d.\n", cpu, where); | 598 | "scheduled already on %d.\n", cpu, where); |
599 | return 0; | 599 | return 0; |
600 | } else | 600 | } else |
601 | return tsk_rt(t)->present && get_rt_flags(t) == RT_F_RUNNING; | 601 | return is_present(t) && !is_completed(t); |
602 | } | 602 | } |
603 | 603 | ||
604 | static struct task_struct* pfair_schedule(struct task_struct * prev) | 604 | static struct task_struct* pfair_schedule(struct task_struct * prev) |
@@ -621,7 +621,7 @@ static struct task_struct* pfair_schedule(struct task_struct * prev) | |||
621 | raw_spin_lock(cpu_lock(state)); | 621 | raw_spin_lock(cpu_lock(state)); |
622 | 622 | ||
623 | blocks = is_realtime(prev) && !is_running(prev); | 623 | blocks = is_realtime(prev) && !is_running(prev); |
624 | completion = is_realtime(prev) && get_rt_flags(prev) == RT_F_SLEEP; | 624 | completion = is_realtime(prev) && is_completed(prev); |
625 | out_of_time = is_realtime(prev) && time_after(cur_release(prev), | 625 | out_of_time = is_realtime(prev) && time_after(cur_release(prev), |
626 | state->local_tick); | 626 | state->local_tick); |
627 | 627 | ||
@@ -720,7 +720,7 @@ static void pfair_task_wake_up(struct task_struct *t) | |||
720 | /* only add to ready queue if the task isn't still linked somewhere */ | 720 | /* only add to ready queue if the task isn't still linked somewhere */ |
721 | if (requeue) { | 721 | if (requeue) { |
722 | TRACE_TASK(t, "requeueing required\n"); | 722 | TRACE_TASK(t, "requeueing required\n"); |
723 | tsk_rt(t)->flags = RT_F_RUNNING; | 723 | tsk_rt(t)->completed = 0; |
724 | __add_ready(&cluster->pfair, t); | 724 | __add_ready(&cluster->pfair, t); |
725 | } | 725 | } |
726 | 726 | ||
@@ -850,6 +850,13 @@ static long pfair_admit_task(struct task_struct* t) | |||
850 | cpu_cluster(pstate[task_cpu(t)])) | 850 | cpu_cluster(pstate[task_cpu(t)])) |
851 | return -EINVAL; | 851 | return -EINVAL; |
852 | 852 | ||
853 | if (get_rt_period(t) != get_rt_relative_deadline(t)) { | ||
854 | printk(KERN_INFO "%s: Admission rejected. " | ||
855 | "Only implicit deadlines are currently supported.\n", | ||
856 | litmus->plugin_name); | ||
857 | return -EINVAL; | ||
858 | } | ||
859 | |||
853 | /* Pfair is a tick-based method, so the time | 860 | /* Pfair is a tick-based method, so the time |
854 | * of interest is jiffies. Calculate tick-based | 861 | * of interest is jiffies. Calculate tick-based |
855 | * times for everything. | 862 | * times for everything. |
diff --git a/litmus/sched_pfp.c b/litmus/sched_pfp.c new file mode 100644 index 000000000000..0e875a3b5cba --- /dev/null +++ b/litmus/sched_pfp.c | |||
@@ -0,0 +1,1711 @@ | |||
1 | /* | ||
2 | * litmus/sched_pfp.c | ||
3 | * | ||
4 | * Implementation of partitioned fixed-priority scheduling. | ||
5 | * Based on PSN-EDF. | ||
6 | */ | ||
7 | |||
8 | #include <linux/percpu.h> | ||
9 | #include <linux/sched.h> | ||
10 | #include <linux/list.h> | ||
11 | #include <linux/spinlock.h> | ||
12 | #include <linux/module.h> | ||
13 | |||
14 | #include <litmus/litmus.h> | ||
15 | #include <litmus/wait.h> | ||
16 | #include <litmus/jobs.h> | ||
17 | #include <litmus/preempt.h> | ||
18 | #include <litmus/fp_common.h> | ||
19 | #include <litmus/sched_plugin.h> | ||
20 | #include <litmus/sched_trace.h> | ||
21 | #include <litmus/trace.h> | ||
22 | #include <litmus/budget.h> | ||
23 | |||
24 | #include <linux/uaccess.h> | ||
25 | |||
26 | |||
27 | typedef struct { | ||
28 | rt_domain_t domain; | ||
29 | struct fp_prio_queue ready_queue; | ||
30 | int cpu; | ||
31 | struct task_struct* scheduled; /* only RT tasks */ | ||
32 | /* | ||
33 | * scheduling lock slock | ||
34 | * protects the domain and serializes scheduling decisions | ||
35 | */ | ||
36 | #define slock domain.ready_lock | ||
37 | |||
38 | } pfp_domain_t; | ||
39 | |||
40 | DEFINE_PER_CPU(pfp_domain_t, pfp_domains); | ||
41 | |||
42 | pfp_domain_t* pfp_doms[NR_CPUS]; | ||
43 | |||
44 | #define local_pfp (&__get_cpu_var(pfp_domains)) | ||
45 | #define remote_dom(cpu) (&per_cpu(pfp_domains, cpu).domain) | ||
46 | #define remote_pfp(cpu) (&per_cpu(pfp_domains, cpu)) | ||
47 | #define task_dom(task) remote_dom(get_partition(task)) | ||
48 | #define task_pfp(task) remote_pfp(get_partition(task)) | ||
49 | |||
50 | /* we assume the lock is being held */ | ||
51 | static void preempt(pfp_domain_t *pfp) | ||
52 | { | ||
53 | preempt_if_preemptable(pfp->scheduled, pfp->cpu); | ||
54 | } | ||
55 | |||
56 | static unsigned int priority_index(struct task_struct* t) | ||
57 | { | ||
58 | #ifdef CONFIG_LITMUS_LOCKING | ||
59 | if (unlikely(t->rt_param.inh_task)) | ||
60 | /* use effective priority */ | ||
61 | t = t->rt_param.inh_task; | ||
62 | |||
63 | if (is_priority_boosted(t)) { | ||
64 | /* zero is reserved for priority-boosted tasks */ | ||
65 | return 0; | ||
66 | } else | ||
67 | #endif | ||
68 | return get_priority(t); | ||
69 | } | ||
70 | |||
71 | |||
72 | static void pfp_release_jobs(rt_domain_t* rt, struct bheap* tasks) | ||
73 | { | ||
74 | pfp_domain_t *pfp = container_of(rt, pfp_domain_t, domain); | ||
75 | unsigned long flags; | ||
76 | struct task_struct* t; | ||
77 | struct bheap_node* hn; | ||
78 | |||
79 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
80 | |||
81 | while (!bheap_empty(tasks)) { | ||
82 | hn = bheap_take(fp_ready_order, tasks); | ||
83 | t = bheap2task(hn); | ||
84 | TRACE_TASK(t, "released (part:%d prio:%d)\n", | ||
85 | get_partition(t), get_priority(t)); | ||
86 | fp_prio_add(&pfp->ready_queue, t, priority_index(t)); | ||
87 | } | ||
88 | |||
89 | /* do we need to preempt? */ | ||
90 | if (fp_higher_prio(fp_prio_peek(&pfp->ready_queue), pfp->scheduled)) { | ||
91 | TRACE_CUR("preempted by new release\n"); | ||
92 | preempt(pfp); | ||
93 | } | ||
94 | |||
95 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
96 | } | ||
97 | |||
98 | static void pfp_preempt_check(pfp_domain_t *pfp) | ||
99 | { | ||
100 | if (fp_higher_prio(fp_prio_peek(&pfp->ready_queue), pfp->scheduled)) | ||
101 | preempt(pfp); | ||
102 | } | ||
103 | |||
104 | static void pfp_domain_init(pfp_domain_t* pfp, | ||
105 | int cpu) | ||
106 | { | ||
107 | fp_domain_init(&pfp->domain, NULL, pfp_release_jobs); | ||
108 | pfp->cpu = cpu; | ||
109 | pfp->scheduled = NULL; | ||
110 | fp_prio_queue_init(&pfp->ready_queue); | ||
111 | } | ||
112 | |||
113 | static void requeue(struct task_struct* t, pfp_domain_t *pfp) | ||
114 | { | ||
115 | BUG_ON(!is_running(t)); | ||
116 | |||
117 | tsk_rt(t)->completed = 0; | ||
118 | if (is_released(t, litmus_clock())) | ||
119 | fp_prio_add(&pfp->ready_queue, t, priority_index(t)); | ||
120 | else | ||
121 | add_release(&pfp->domain, t); /* it has got to wait */ | ||
122 | } | ||
123 | |||
124 | static void job_completion(struct task_struct* t, int forced) | ||
125 | { | ||
126 | sched_trace_task_completion(t,forced); | ||
127 | TRACE_TASK(t, "job_completion().\n"); | ||
128 | |||
129 | tsk_rt(t)->completed = 1; | ||
130 | prepare_for_next_period(t); | ||
131 | if (is_released(t, litmus_clock())) | ||
132 | sched_trace_task_release(t); | ||
133 | } | ||
134 | |||
135 | static void pfp_tick(struct task_struct *t) | ||
136 | { | ||
137 | pfp_domain_t *pfp = local_pfp; | ||
138 | |||
139 | /* Check for inconsistency. We don't need the lock for this since | ||
140 | * ->scheduled is only changed in schedule, which obviously is not | ||
141 | * executing in parallel on this CPU | ||
142 | */ | ||
143 | BUG_ON(is_realtime(t) && t != pfp->scheduled); | ||
144 | |||
145 | if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) { | ||
146 | if (!is_np(t)) { | ||
147 | litmus_reschedule_local(); | ||
148 | TRACE("pfp_scheduler_tick: " | ||
149 | "%d is preemptable " | ||
150 | " => FORCE_RESCHED\n", t->pid); | ||
151 | } else if (is_user_np(t)) { | ||
152 | TRACE("pfp_scheduler_tick: " | ||
153 | "%d is non-preemptable, " | ||
154 | "preemption delayed.\n", t->pid); | ||
155 | request_exit_np(t); | ||
156 | } | ||
157 | } | ||
158 | } | ||
159 | |||
160 | static struct task_struct* pfp_schedule(struct task_struct * prev) | ||
161 | { | ||
162 | pfp_domain_t* pfp = local_pfp; | ||
163 | struct task_struct* next; | ||
164 | |||
165 | int out_of_time, sleep, preempt, np, exists, blocks, resched, migrate; | ||
166 | |||
167 | raw_spin_lock(&pfp->slock); | ||
168 | |||
169 | /* sanity checking | ||
170 | * differently from gedf, when a task exits (dead) | ||
171 | * pfp->schedule may be null and prev _is_ realtime | ||
172 | */ | ||
173 | BUG_ON(pfp->scheduled && pfp->scheduled != prev); | ||
174 | BUG_ON(pfp->scheduled && !is_realtime(prev)); | ||
175 | |||
176 | /* (0) Determine state */ | ||
177 | exists = pfp->scheduled != NULL; | ||
178 | blocks = exists && !is_running(pfp->scheduled); | ||
179 | out_of_time = exists && | ||
180 | budget_enforced(pfp->scheduled) && | ||
181 | budget_exhausted(pfp->scheduled); | ||
182 | np = exists && is_np(pfp->scheduled); | ||
183 | sleep = exists && is_completed(pfp->scheduled); | ||
184 | migrate = exists && get_partition(pfp->scheduled) != pfp->cpu; | ||
185 | preempt = !blocks && (migrate || fp_preemption_needed(&pfp->ready_queue, prev)); | ||
186 | |||
187 | /* If we need to preempt do so. | ||
188 | * The following checks set resched to 1 in case of special | ||
189 | * circumstances. | ||
190 | */ | ||
191 | resched = preempt; | ||
192 | |||
193 | /* If a task blocks we have no choice but to reschedule. | ||
194 | */ | ||
195 | if (blocks) | ||
196 | resched = 1; | ||
197 | |||
198 | /* Request a sys_exit_np() call if we would like to preempt but cannot. | ||
199 | * Multiple calls to request_exit_np() don't hurt. | ||
200 | */ | ||
201 | if (np && (out_of_time || preempt || sleep)) | ||
202 | request_exit_np(pfp->scheduled); | ||
203 | |||
204 | /* Any task that is preemptable and either exhausts its execution | ||
205 | * budget or wants to sleep completes. We may have to reschedule after | ||
206 | * this. | ||
207 | */ | ||
208 | if (!np && (out_of_time || sleep) && !blocks && !migrate) { | ||
209 | job_completion(pfp->scheduled, !sleep); | ||
210 | resched = 1; | ||
211 | } | ||
212 | |||
213 | /* The final scheduling decision. Do we need to switch for some reason? | ||
214 | * Switch if we are in RT mode and have no task or if we need to | ||
215 | * resched. | ||
216 | */ | ||
217 | next = NULL; | ||
218 | if ((!np || blocks) && (resched || !exists)) { | ||
219 | /* When preempting a task that does not block, then | ||
220 | * re-insert it into either the ready queue or the | ||
221 | * release queue (if it completed). requeue() picks | ||
222 | * the appropriate queue. | ||
223 | */ | ||
224 | if (pfp->scheduled && !blocks && !migrate) | ||
225 | requeue(pfp->scheduled, pfp); | ||
226 | next = fp_prio_take(&pfp->ready_queue); | ||
227 | if (next == prev) { | ||
228 | struct task_struct *t = fp_prio_peek(&pfp->ready_queue); | ||
229 | TRACE_TASK(next, "next==prev sleep=%d oot=%d np=%d preempt=%d migrate=%d " | ||
230 | "boost=%d empty=%d prio-idx=%u prio=%u\n", | ||
231 | sleep, out_of_time, np, preempt, migrate, | ||
232 | is_priority_boosted(next), | ||
233 | t == NULL, | ||
234 | priority_index(next), | ||
235 | get_priority(next)); | ||
236 | if (t) | ||
237 | TRACE_TASK(t, "waiter boost=%d prio-idx=%u prio=%u\n", | ||
238 | is_priority_boosted(t), | ||
239 | priority_index(t), | ||
240 | get_priority(t)); | ||
241 | } | ||
242 | /* If preempt is set, we should not see the same task again. */ | ||
243 | BUG_ON(preempt && next == prev); | ||
244 | /* Similarly, if preempt is set, then next may not be NULL, | ||
245 | * unless it's a migration. */ | ||
246 | BUG_ON(preempt && !migrate && next == NULL); | ||
247 | } else | ||
248 | /* Only override Linux scheduler if we have a real-time task | ||
249 | * scheduled that needs to continue. | ||
250 | */ | ||
251 | if (exists) | ||
252 | next = prev; | ||
253 | |||
254 | if (next) { | ||
255 | TRACE_TASK(next, "scheduled at %llu\n", litmus_clock()); | ||
256 | tsk_rt(next)->completed = 0; | ||
257 | } else { | ||
258 | TRACE("becoming idle at %llu\n", litmus_clock()); | ||
259 | } | ||
260 | |||
261 | pfp->scheduled = next; | ||
262 | sched_state_task_picked(); | ||
263 | raw_spin_unlock(&pfp->slock); | ||
264 | |||
265 | return next; | ||
266 | } | ||
267 | |||
268 | #ifdef CONFIG_LITMUS_LOCKING | ||
269 | |||
270 | /* prev is no longer scheduled --- see if it needs to migrate */ | ||
271 | static void pfp_finish_switch(struct task_struct *prev) | ||
272 | { | ||
273 | pfp_domain_t *to; | ||
274 | |||
275 | if (is_realtime(prev) && | ||
276 | is_running(prev) && | ||
277 | get_partition(prev) != smp_processor_id()) { | ||
278 | TRACE_TASK(prev, "needs to migrate from P%d to P%d\n", | ||
279 | smp_processor_id(), get_partition(prev)); | ||
280 | |||
281 | to = task_pfp(prev); | ||
282 | |||
283 | raw_spin_lock(&to->slock); | ||
284 | |||
285 | TRACE_TASK(prev, "adding to queue on P%d\n", to->cpu); | ||
286 | requeue(prev, to); | ||
287 | if (fp_preemption_needed(&to->ready_queue, to->scheduled)) | ||
288 | preempt(to); | ||
289 | |||
290 | raw_spin_unlock(&to->slock); | ||
291 | |||
292 | } | ||
293 | } | ||
294 | |||
295 | #endif | ||
296 | |||
297 | /* Prepare a task for running in RT mode | ||
298 | */ | ||
299 | static void pfp_task_new(struct task_struct * t, int on_rq, int running) | ||
300 | { | ||
301 | pfp_domain_t* pfp = task_pfp(t); | ||
302 | unsigned long flags; | ||
303 | |||
304 | TRACE_TASK(t, "P-FP: task new, cpu = %d\n", | ||
305 | t->rt_param.task_params.cpu); | ||
306 | |||
307 | /* setup job parameters */ | ||
308 | release_at(t, litmus_clock()); | ||
309 | |||
310 | /* The task should be running in the queue, otherwise signal | ||
311 | * code will try to wake it up with fatal consequences. | ||
312 | */ | ||
313 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
314 | if (running) { | ||
315 | /* there shouldn't be anything else running at the time */ | ||
316 | BUG_ON(pfp->scheduled); | ||
317 | pfp->scheduled = t; | ||
318 | } else { | ||
319 | requeue(t, pfp); | ||
320 | /* maybe we have to reschedule */ | ||
321 | pfp_preempt_check(pfp); | ||
322 | } | ||
323 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
324 | } | ||
325 | |||
326 | static void pfp_task_wake_up(struct task_struct *task) | ||
327 | { | ||
328 | unsigned long flags; | ||
329 | pfp_domain_t* pfp = task_pfp(task); | ||
330 | lt_t now; | ||
331 | |||
332 | TRACE_TASK(task, "wake_up at %llu\n", litmus_clock()); | ||
333 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
334 | |||
335 | #ifdef CONFIG_LITMUS_LOCKING | ||
336 | /* Should only be queued when processing a fake-wake up due to a | ||
337 | * migration-related state change. */ | ||
338 | if (unlikely(is_queued(task))) { | ||
339 | TRACE_TASK(task, "WARNING: waking task still queued. Is this right?\n"); | ||
340 | goto out_unlock; | ||
341 | } | ||
342 | #else | ||
343 | BUG_ON(is_queued(task)); | ||
344 | #endif | ||
345 | now = litmus_clock(); | ||
346 | if (is_tardy(task, now) | ||
347 | #ifdef CONFIG_LITMUS_LOCKING | ||
348 | /* We need to take suspensions because of semaphores into | ||
349 | * account! If a job resumes after being suspended due to acquiring | ||
350 | * a semaphore, it should never be treated as a new job release. | ||
351 | */ | ||
352 | && !is_priority_boosted(task) | ||
353 | #endif | ||
354 | ) { | ||
355 | /* new sporadic release */ | ||
356 | release_at(task, now); | ||
357 | sched_trace_task_release(task); | ||
358 | } | ||
359 | |||
360 | /* Only add to ready queue if it is not the currently-scheduled | ||
361 | * task. This could be the case if a task was woken up concurrently | ||
362 | * on a remote CPU before the executing CPU got around to actually | ||
363 | * de-scheduling the task, i.e., wake_up() raced with schedule() | ||
364 | * and won. Also, don't requeue if it is still queued, which can | ||
365 | * happen under the DPCP due wake-ups racing with migrations. | ||
366 | */ | ||
367 | if (pfp->scheduled != task) { | ||
368 | requeue(task, pfp); | ||
369 | pfp_preempt_check(pfp); | ||
370 | } | ||
371 | |||
372 | #ifdef CONFIG_LITMUS_LOCKING | ||
373 | out_unlock: | ||
374 | #endif | ||
375 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
376 | TRACE_TASK(task, "wake up done\n"); | ||
377 | } | ||
378 | |||
379 | static void pfp_task_block(struct task_struct *t) | ||
380 | { | ||
381 | /* only running tasks can block, thus t is in no queue */ | ||
382 | TRACE_TASK(t, "block at %llu, state=%d\n", litmus_clock(), t->state); | ||
383 | |||
384 | BUG_ON(!is_realtime(t)); | ||
385 | |||
386 | /* If this task blocked normally, it shouldn't be queued. The exception is | ||
387 | * if this is a simulated block()/wakeup() pair from the pull-migration code path. | ||
388 | * This should only happen if the DPCP is being used. | ||
389 | */ | ||
390 | #ifdef CONFIG_LITMUS_LOCKING | ||
391 | if (unlikely(is_queued(t))) | ||
392 | TRACE_TASK(t, "WARNING: blocking task still queued. Is this right?\n"); | ||
393 | #else | ||
394 | BUG_ON(is_queued(t)); | ||
395 | #endif | ||
396 | } | ||
397 | |||
398 | static void pfp_task_exit(struct task_struct * t) | ||
399 | { | ||
400 | unsigned long flags; | ||
401 | pfp_domain_t* pfp = task_pfp(t); | ||
402 | rt_domain_t* dom; | ||
403 | |||
404 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
405 | if (is_queued(t)) { | ||
406 | BUG(); /* This currently doesn't work. */ | ||
407 | /* dequeue */ | ||
408 | dom = task_dom(t); | ||
409 | remove(dom, t); | ||
410 | } | ||
411 | if (pfp->scheduled == t) { | ||
412 | pfp->scheduled = NULL; | ||
413 | preempt(pfp); | ||
414 | } | ||
415 | TRACE_TASK(t, "RIP, now reschedule\n"); | ||
416 | |||
417 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
418 | } | ||
419 | |||
420 | #ifdef CONFIG_LITMUS_LOCKING | ||
421 | |||
422 | #include <litmus/fdso.h> | ||
423 | #include <litmus/srp.h> | ||
424 | |||
425 | static void fp_dequeue(pfp_domain_t* pfp, struct task_struct* t) | ||
426 | { | ||
427 | BUG_ON(pfp->scheduled == t && is_queued(t)); | ||
428 | if (is_queued(t)) | ||
429 | fp_prio_remove(&pfp->ready_queue, t, priority_index(t)); | ||
430 | } | ||
431 | |||
432 | static void fp_set_prio_inh(pfp_domain_t* pfp, struct task_struct* t, | ||
433 | struct task_struct* prio_inh) | ||
434 | { | ||
435 | int requeue; | ||
436 | |||
437 | if (!t || t->rt_param.inh_task == prio_inh) { | ||
438 | /* no update required */ | ||
439 | if (t) | ||
440 | TRACE_TASK(t, "no prio-inh update required\n"); | ||
441 | return; | ||
442 | } | ||
443 | |||
444 | requeue = is_queued(t); | ||
445 | TRACE_TASK(t, "prio-inh: is_queued:%d\n", requeue); | ||
446 | |||
447 | if (requeue) | ||
448 | /* first remove */ | ||
449 | fp_dequeue(pfp, t); | ||
450 | |||
451 | t->rt_param.inh_task = prio_inh; | ||
452 | |||
453 | if (requeue) | ||
454 | /* add again to the right queue */ | ||
455 | fp_prio_add(&pfp->ready_queue, t, priority_index(t)); | ||
456 | } | ||
457 | |||
458 | static int effective_agent_priority(int prio) | ||
459 | { | ||
460 | /* make sure agents have higher priority */ | ||
461 | return prio - LITMUS_MAX_PRIORITY; | ||
462 | } | ||
463 | |||
464 | static lt_t prio_point(int eprio) | ||
465 | { | ||
466 | /* make sure we have non-negative prio points */ | ||
467 | return eprio + LITMUS_MAX_PRIORITY; | ||
468 | } | ||
469 | |||
470 | static int prio_from_point(lt_t prio_point) | ||
471 | { | ||
472 | return ((int) prio_point) - LITMUS_MAX_PRIORITY; | ||
473 | } | ||
474 | |||
475 | static void boost_priority(struct task_struct* t, lt_t priority_point) | ||
476 | { | ||
477 | unsigned long flags; | ||
478 | pfp_domain_t* pfp = task_pfp(t); | ||
479 | |||
480 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
481 | |||
482 | |||
483 | TRACE_TASK(t, "priority boosted at %llu\n", litmus_clock()); | ||
484 | |||
485 | tsk_rt(t)->priority_boosted = 1; | ||
486 | /* tie-break by protocol-specific priority point */ | ||
487 | tsk_rt(t)->boost_start_time = priority_point; | ||
488 | |||
489 | /* Priority boosting currently only takes effect for already-scheduled | ||
490 | * tasks. This is sufficient since priority boosting only kicks in as | ||
491 | * part of lock acquisitions. */ | ||
492 | BUG_ON(pfp->scheduled != t); | ||
493 | |||
494 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
495 | } | ||
496 | |||
497 | static void unboost_priority(struct task_struct* t) | ||
498 | { | ||
499 | unsigned long flags; | ||
500 | pfp_domain_t* pfp = task_pfp(t); | ||
501 | lt_t now; | ||
502 | |||
503 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
504 | now = litmus_clock(); | ||
505 | |||
506 | /* assumption: this only happens when the job is scheduled */ | ||
507 | BUG_ON(pfp->scheduled != t); | ||
508 | |||
509 | TRACE_TASK(t, "priority restored at %llu\n", now); | ||
510 | |||
511 | /* priority boosted jobs must be scheduled */ | ||
512 | BUG_ON(pfp->scheduled != t); | ||
513 | |||
514 | tsk_rt(t)->priority_boosted = 0; | ||
515 | tsk_rt(t)->boost_start_time = 0; | ||
516 | |||
517 | /* check if this changes anything */ | ||
518 | if (fp_preemption_needed(&pfp->ready_queue, pfp->scheduled)) | ||
519 | preempt(pfp); | ||
520 | |||
521 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
522 | } | ||
523 | |||
524 | /* ******************** SRP support ************************ */ | ||
525 | |||
526 | static unsigned int pfp_get_srp_prio(struct task_struct* t) | ||
527 | { | ||
528 | return get_priority(t); | ||
529 | } | ||
530 | |||
531 | /* ******************** FMLP support ********************** */ | ||
532 | |||
533 | struct fmlp_semaphore { | ||
534 | struct litmus_lock litmus_lock; | ||
535 | |||
536 | /* current resource holder */ | ||
537 | struct task_struct *owner; | ||
538 | |||
539 | /* FIFO queue of waiting tasks */ | ||
540 | wait_queue_head_t wait; | ||
541 | }; | ||
542 | |||
543 | static inline struct fmlp_semaphore* fmlp_from_lock(struct litmus_lock* lock) | ||
544 | { | ||
545 | return container_of(lock, struct fmlp_semaphore, litmus_lock); | ||
546 | } | ||
547 | int pfp_fmlp_lock(struct litmus_lock* l) | ||
548 | { | ||
549 | struct task_struct* t = current; | ||
550 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
551 | wait_queue_t wait; | ||
552 | unsigned long flags; | ||
553 | lt_t time_of_request; | ||
554 | |||
555 | if (!is_realtime(t)) | ||
556 | return -EPERM; | ||
557 | |||
558 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
559 | |||
560 | /* tie-break by this point in time */ | ||
561 | time_of_request = litmus_clock(); | ||
562 | |||
563 | /* Priority-boost ourself *before* we suspend so that | ||
564 | * our priority is boosted when we resume. */ | ||
565 | boost_priority(t, time_of_request); | ||
566 | |||
567 | if (sem->owner) { | ||
568 | /* resource is not free => must suspend and wait */ | ||
569 | |||
570 | init_waitqueue_entry(&wait, t); | ||
571 | |||
572 | /* FIXME: interruptible would be nice some day */ | ||
573 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
574 | |||
575 | __add_wait_queue_tail_exclusive(&sem->wait, &wait); | ||
576 | |||
577 | TS_LOCK_SUSPEND; | ||
578 | |||
579 | /* release lock before sleeping */ | ||
580 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
581 | |||
582 | /* We depend on the FIFO order. Thus, we don't need to recheck | ||
583 | * when we wake up; we are guaranteed to have the lock since | ||
584 | * there is only one wake up per release. | ||
585 | */ | ||
586 | |||
587 | schedule(); | ||
588 | |||
589 | TS_LOCK_RESUME; | ||
590 | |||
591 | /* Since we hold the lock, no other task will change | ||
592 | * ->owner. We can thus check it without acquiring the spin | ||
593 | * lock. */ | ||
594 | BUG_ON(sem->owner != t); | ||
595 | } else { | ||
596 | /* it's ours now */ | ||
597 | sem->owner = t; | ||
598 | |||
599 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
600 | } | ||
601 | |||
602 | return 0; | ||
603 | } | ||
604 | |||
605 | int pfp_fmlp_unlock(struct litmus_lock* l) | ||
606 | { | ||
607 | struct task_struct *t = current, *next; | ||
608 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
609 | unsigned long flags; | ||
610 | int err = 0; | ||
611 | |||
612 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
613 | |||
614 | if (sem->owner != t) { | ||
615 | err = -EINVAL; | ||
616 | goto out; | ||
617 | } | ||
618 | |||
619 | /* we lose the benefit of priority boosting */ | ||
620 | |||
621 | unboost_priority(t); | ||
622 | |||
623 | /* check if there are jobs waiting for this resource */ | ||
624 | next = __waitqueue_remove_first(&sem->wait); | ||
625 | if (next) { | ||
626 | /* next becomes the resouce holder */ | ||
627 | sem->owner = next; | ||
628 | |||
629 | /* Wake up next. The waiting job is already priority-boosted. */ | ||
630 | wake_up_process(next); | ||
631 | } else | ||
632 | /* resource becomes available */ | ||
633 | sem->owner = NULL; | ||
634 | |||
635 | out: | ||
636 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
637 | return err; | ||
638 | } | ||
639 | |||
640 | int pfp_fmlp_close(struct litmus_lock* l) | ||
641 | { | ||
642 | struct task_struct *t = current; | ||
643 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
644 | unsigned long flags; | ||
645 | |||
646 | int owner; | ||
647 | |||
648 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
649 | |||
650 | owner = sem->owner == t; | ||
651 | |||
652 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
653 | |||
654 | if (owner) | ||
655 | pfp_fmlp_unlock(l); | ||
656 | |||
657 | return 0; | ||
658 | } | ||
659 | |||
660 | void pfp_fmlp_free(struct litmus_lock* lock) | ||
661 | { | ||
662 | kfree(fmlp_from_lock(lock)); | ||
663 | } | ||
664 | |||
665 | static struct litmus_lock_ops pfp_fmlp_lock_ops = { | ||
666 | .close = pfp_fmlp_close, | ||
667 | .lock = pfp_fmlp_lock, | ||
668 | .unlock = pfp_fmlp_unlock, | ||
669 | .deallocate = pfp_fmlp_free, | ||
670 | }; | ||
671 | |||
672 | static struct litmus_lock* pfp_new_fmlp(void) | ||
673 | { | ||
674 | struct fmlp_semaphore* sem; | ||
675 | |||
676 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
677 | if (!sem) | ||
678 | return NULL; | ||
679 | |||
680 | sem->owner = NULL; | ||
681 | init_waitqueue_head(&sem->wait); | ||
682 | sem->litmus_lock.ops = &pfp_fmlp_lock_ops; | ||
683 | |||
684 | return &sem->litmus_lock; | ||
685 | } | ||
686 | |||
687 | /* ******************** MPCP support ********************** */ | ||
688 | |||
689 | struct mpcp_semaphore { | ||
690 | struct litmus_lock litmus_lock; | ||
691 | |||
692 | /* current resource holder */ | ||
693 | struct task_struct *owner; | ||
694 | |||
695 | /* priority queue of waiting tasks */ | ||
696 | wait_queue_head_t wait; | ||
697 | |||
698 | /* priority ceiling per cpu */ | ||
699 | unsigned int prio_ceiling[NR_CPUS]; | ||
700 | |||
701 | /* should jobs spin "virtually" for this resource? */ | ||
702 | int vspin; | ||
703 | }; | ||
704 | |||
705 | #define OMEGA_CEILING UINT_MAX | ||
706 | |||
707 | /* Since jobs spin "virtually" while waiting to acquire a lock, | ||
708 | * they first must aquire a local per-cpu resource. | ||
709 | */ | ||
710 | static DEFINE_PER_CPU(wait_queue_head_t, mpcpvs_vspin_wait); | ||
711 | static DEFINE_PER_CPU(struct task_struct*, mpcpvs_vspin); | ||
712 | |||
713 | /* called with preemptions off <=> no local modifications */ | ||
714 | static void mpcp_vspin_enter(void) | ||
715 | { | ||
716 | struct task_struct* t = current; | ||
717 | |||
718 | while (1) { | ||
719 | if (__get_cpu_var(mpcpvs_vspin) == NULL) { | ||
720 | /* good, we get to issue our request */ | ||
721 | __get_cpu_var(mpcpvs_vspin) = t; | ||
722 | break; | ||
723 | } else { | ||
724 | /* some job is spinning => enqueue in request queue */ | ||
725 | prio_wait_queue_t wait; | ||
726 | wait_queue_head_t* vspin = &__get_cpu_var(mpcpvs_vspin_wait); | ||
727 | unsigned long flags; | ||
728 | |||
729 | /* ordered by regular priority */ | ||
730 | init_prio_waitqueue_entry(&wait, t, prio_point(get_priority(t))); | ||
731 | |||
732 | spin_lock_irqsave(&vspin->lock, flags); | ||
733 | |||
734 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
735 | |||
736 | __add_wait_queue_prio_exclusive(vspin, &wait); | ||
737 | |||
738 | spin_unlock_irqrestore(&vspin->lock, flags); | ||
739 | |||
740 | TS_LOCK_SUSPEND; | ||
741 | |||
742 | preempt_enable_no_resched(); | ||
743 | |||
744 | schedule(); | ||
745 | |||
746 | preempt_disable(); | ||
747 | |||
748 | TS_LOCK_RESUME; | ||
749 | /* Recheck if we got it --- some higher-priority process might | ||
750 | * have swooped in. */ | ||
751 | } | ||
752 | } | ||
753 | /* ok, now it is ours */ | ||
754 | } | ||
755 | |||
756 | /* called with preemptions off */ | ||
757 | static void mpcp_vspin_exit(void) | ||
758 | { | ||
759 | struct task_struct* t = current, *next; | ||
760 | unsigned long flags; | ||
761 | wait_queue_head_t* vspin = &__get_cpu_var(mpcpvs_vspin_wait); | ||
762 | |||
763 | BUG_ON(__get_cpu_var(mpcpvs_vspin) != t); | ||
764 | |||
765 | /* no spinning job */ | ||
766 | __get_cpu_var(mpcpvs_vspin) = NULL; | ||
767 | |||
768 | /* see if anyone is waiting for us to stop "spinning" */ | ||
769 | spin_lock_irqsave(&vspin->lock, flags); | ||
770 | next = __waitqueue_remove_first(vspin); | ||
771 | |||
772 | if (next) | ||
773 | wake_up_process(next); | ||
774 | |||
775 | spin_unlock_irqrestore(&vspin->lock, flags); | ||
776 | } | ||
777 | |||
778 | static inline struct mpcp_semaphore* mpcp_from_lock(struct litmus_lock* lock) | ||
779 | { | ||
780 | return container_of(lock, struct mpcp_semaphore, litmus_lock); | ||
781 | } | ||
782 | |||
783 | int pfp_mpcp_lock(struct litmus_lock* l) | ||
784 | { | ||
785 | struct task_struct* t = current; | ||
786 | struct mpcp_semaphore *sem = mpcp_from_lock(l); | ||
787 | prio_wait_queue_t wait; | ||
788 | unsigned long flags; | ||
789 | |||
790 | if (!is_realtime(t)) | ||
791 | return -EPERM; | ||
792 | |||
793 | preempt_disable(); | ||
794 | |||
795 | if (sem->vspin) | ||
796 | mpcp_vspin_enter(); | ||
797 | |||
798 | /* Priority-boost ourself *before* we suspend so that | ||
799 | * our priority is boosted when we resume. Use the priority | ||
800 | * ceiling for the local partition. */ | ||
801 | boost_priority(t, sem->prio_ceiling[get_partition(t)]); | ||
802 | |||
803 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
804 | |||
805 | preempt_enable_no_resched(); | ||
806 | |||
807 | if (sem->owner) { | ||
808 | /* resource is not free => must suspend and wait */ | ||
809 | |||
810 | /* ordered by regular priority */ | ||
811 | init_prio_waitqueue_entry(&wait, t, prio_point(get_priority(t))); | ||
812 | |||
813 | /* FIXME: interruptible would be nice some day */ | ||
814 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
815 | |||
816 | __add_wait_queue_prio_exclusive(&sem->wait, &wait); | ||
817 | |||
818 | TS_LOCK_SUSPEND; | ||
819 | |||
820 | /* release lock before sleeping */ | ||
821 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
822 | |||
823 | /* We depend on the FIFO order. Thus, we don't need to recheck | ||
824 | * when we wake up; we are guaranteed to have the lock since | ||
825 | * there is only one wake up per release. | ||
826 | */ | ||
827 | |||
828 | schedule(); | ||
829 | |||
830 | TS_LOCK_RESUME; | ||
831 | |||
832 | /* Since we hold the lock, no other task will change | ||
833 | * ->owner. We can thus check it without acquiring the spin | ||
834 | * lock. */ | ||
835 | BUG_ON(sem->owner != t); | ||
836 | } else { | ||
837 | /* it's ours now */ | ||
838 | sem->owner = t; | ||
839 | |||
840 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
841 | } | ||
842 | |||
843 | return 0; | ||
844 | } | ||
845 | |||
846 | int pfp_mpcp_unlock(struct litmus_lock* l) | ||
847 | { | ||
848 | struct task_struct *t = current, *next; | ||
849 | struct mpcp_semaphore *sem = mpcp_from_lock(l); | ||
850 | unsigned long flags; | ||
851 | int err = 0; | ||
852 | |||
853 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
854 | |||
855 | if (sem->owner != t) { | ||
856 | err = -EINVAL; | ||
857 | goto out; | ||
858 | } | ||
859 | |||
860 | /* we lose the benefit of priority boosting */ | ||
861 | |||
862 | unboost_priority(t); | ||
863 | |||
864 | /* check if there are jobs waiting for this resource */ | ||
865 | next = __waitqueue_remove_first(&sem->wait); | ||
866 | if (next) { | ||
867 | /* next becomes the resouce holder */ | ||
868 | sem->owner = next; | ||
869 | |||
870 | /* Wake up next. The waiting job is already priority-boosted. */ | ||
871 | wake_up_process(next); | ||
872 | } else | ||
873 | /* resource becomes available */ | ||
874 | sem->owner = NULL; | ||
875 | |||
876 | out: | ||
877 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
878 | |||
879 | if (sem->vspin && err == 0) { | ||
880 | preempt_disable(); | ||
881 | mpcp_vspin_exit(); | ||
882 | preempt_enable(); | ||
883 | } | ||
884 | |||
885 | return err; | ||
886 | } | ||
887 | |||
888 | int pfp_mpcp_open(struct litmus_lock* l, void* config) | ||
889 | { | ||
890 | struct task_struct *t = current; | ||
891 | struct mpcp_semaphore *sem = mpcp_from_lock(l); | ||
892 | int cpu, local_cpu; | ||
893 | unsigned long flags; | ||
894 | |||
895 | if (!is_realtime(t)) | ||
896 | /* we need to know the real-time priority */ | ||
897 | return -EPERM; | ||
898 | |||
899 | local_cpu = get_partition(t); | ||
900 | |||
901 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
902 | |||
903 | for (cpu = 0; cpu < NR_CPUS; cpu++) | ||
904 | if (cpu != local_cpu) | ||
905 | { | ||
906 | sem->prio_ceiling[cpu] = min(sem->prio_ceiling[cpu], | ||
907 | get_priority(t)); | ||
908 | TRACE_CUR("priority ceiling for sem %p is now %d on cpu %d\n", | ||
909 | sem, sem->prio_ceiling[cpu], cpu); | ||
910 | } | ||
911 | |||
912 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
913 | |||
914 | return 0; | ||
915 | } | ||
916 | |||
917 | int pfp_mpcp_close(struct litmus_lock* l) | ||
918 | { | ||
919 | struct task_struct *t = current; | ||
920 | struct mpcp_semaphore *sem = mpcp_from_lock(l); | ||
921 | unsigned long flags; | ||
922 | |||
923 | int owner; | ||
924 | |||
925 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
926 | |||
927 | owner = sem->owner == t; | ||
928 | |||
929 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
930 | |||
931 | if (owner) | ||
932 | pfp_mpcp_unlock(l); | ||
933 | |||
934 | return 0; | ||
935 | } | ||
936 | |||
937 | void pfp_mpcp_free(struct litmus_lock* lock) | ||
938 | { | ||
939 | kfree(mpcp_from_lock(lock)); | ||
940 | } | ||
941 | |||
942 | static struct litmus_lock_ops pfp_mpcp_lock_ops = { | ||
943 | .close = pfp_mpcp_close, | ||
944 | .lock = pfp_mpcp_lock, | ||
945 | .open = pfp_mpcp_open, | ||
946 | .unlock = pfp_mpcp_unlock, | ||
947 | .deallocate = pfp_mpcp_free, | ||
948 | }; | ||
949 | |||
950 | static struct litmus_lock* pfp_new_mpcp(int vspin) | ||
951 | { | ||
952 | struct mpcp_semaphore* sem; | ||
953 | int cpu; | ||
954 | |||
955 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
956 | if (!sem) | ||
957 | return NULL; | ||
958 | |||
959 | sem->owner = NULL; | ||
960 | init_waitqueue_head(&sem->wait); | ||
961 | sem->litmus_lock.ops = &pfp_mpcp_lock_ops; | ||
962 | |||
963 | for (cpu = 0; cpu < NR_CPUS; cpu++) | ||
964 | sem->prio_ceiling[cpu] = OMEGA_CEILING; | ||
965 | |||
966 | /* mark as virtual spinning */ | ||
967 | sem->vspin = vspin; | ||
968 | |||
969 | return &sem->litmus_lock; | ||
970 | } | ||
971 | |||
972 | |||
973 | /* ******************** PCP support ********************** */ | ||
974 | |||
975 | |||
976 | struct pcp_semaphore { | ||
977 | struct litmus_lock litmus_lock; | ||
978 | |||
979 | struct list_head ceiling; | ||
980 | |||
981 | /* current resource holder */ | ||
982 | struct task_struct *owner; | ||
983 | |||
984 | /* priority ceiling --- can be negative due to DPCP support */ | ||
985 | int prio_ceiling; | ||
986 | |||
987 | /* on which processor is this PCP semaphore allocated? */ | ||
988 | int on_cpu; | ||
989 | }; | ||
990 | |||
991 | static inline struct pcp_semaphore* pcp_from_lock(struct litmus_lock* lock) | ||
992 | { | ||
993 | return container_of(lock, struct pcp_semaphore, litmus_lock); | ||
994 | } | ||
995 | |||
996 | |||
997 | struct pcp_state { | ||
998 | struct list_head system_ceiling; | ||
999 | |||
1000 | /* highest-priority waiting task */ | ||
1001 | struct task_struct* hp_waiter; | ||
1002 | |||
1003 | /* list of jobs waiting to get past the system ceiling */ | ||
1004 | wait_queue_head_t ceiling_blocked; | ||
1005 | }; | ||
1006 | |||
1007 | static void pcp_init_state(struct pcp_state* s) | ||
1008 | { | ||
1009 | INIT_LIST_HEAD(&s->system_ceiling); | ||
1010 | s->hp_waiter = NULL; | ||
1011 | init_waitqueue_head(&s->ceiling_blocked); | ||
1012 | } | ||
1013 | |||
1014 | static DEFINE_PER_CPU(struct pcp_state, pcp_state); | ||
1015 | |||
1016 | /* assumes preemptions are off */ | ||
1017 | static struct pcp_semaphore* pcp_get_ceiling(void) | ||
1018 | { | ||
1019 | struct list_head* top = __get_cpu_var(pcp_state).system_ceiling.next; | ||
1020 | |||
1021 | if (top) | ||
1022 | return list_entry(top, struct pcp_semaphore, ceiling); | ||
1023 | else | ||
1024 | return NULL; | ||
1025 | } | ||
1026 | |||
1027 | /* assumes preempt off */ | ||
1028 | static void pcp_add_ceiling(struct pcp_semaphore* sem) | ||
1029 | { | ||
1030 | struct list_head *pos; | ||
1031 | struct list_head *in_use = &__get_cpu_var(pcp_state).system_ceiling; | ||
1032 | struct pcp_semaphore* held; | ||
1033 | |||
1034 | BUG_ON(sem->on_cpu != smp_processor_id()); | ||
1035 | BUG_ON(in_list(&sem->ceiling)); | ||
1036 | |||
1037 | list_for_each(pos, in_use) { | ||
1038 | held = list_entry(pos, struct pcp_semaphore, ceiling); | ||
1039 | if (held->prio_ceiling >= sem->prio_ceiling) { | ||
1040 | __list_add(&sem->ceiling, pos->prev, pos); | ||
1041 | return; | ||
1042 | } | ||
1043 | } | ||
1044 | |||
1045 | /* we hit the end of the list */ | ||
1046 | |||
1047 | list_add_tail(&sem->ceiling, in_use); | ||
1048 | } | ||
1049 | |||
1050 | /* assumes preempt off */ | ||
1051 | static int pcp_exceeds_ceiling(struct pcp_semaphore* ceiling, | ||
1052 | struct task_struct* task, | ||
1053 | int effective_prio) | ||
1054 | { | ||
1055 | return ceiling == NULL || | ||
1056 | ceiling->prio_ceiling > effective_prio || | ||
1057 | ceiling->owner == task; | ||
1058 | } | ||
1059 | |||
1060 | /* assumes preempt off */ | ||
1061 | static void pcp_priority_inheritance(void) | ||
1062 | { | ||
1063 | unsigned long flags; | ||
1064 | pfp_domain_t* pfp = local_pfp; | ||
1065 | |||
1066 | struct pcp_semaphore* ceiling = pcp_get_ceiling(); | ||
1067 | struct task_struct *blocker, *blocked; | ||
1068 | |||
1069 | blocker = ceiling ? ceiling->owner : NULL; | ||
1070 | blocked = __get_cpu_var(pcp_state).hp_waiter; | ||
1071 | |||
1072 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
1073 | |||
1074 | /* Current is no longer inheriting anything by default. This should be | ||
1075 | * the currently scheduled job, and hence not currently queued. */ | ||
1076 | BUG_ON(current != pfp->scheduled); | ||
1077 | |||
1078 | fp_set_prio_inh(pfp, current, NULL); | ||
1079 | fp_set_prio_inh(pfp, blocked, NULL); | ||
1080 | fp_set_prio_inh(pfp, blocker, NULL); | ||
1081 | |||
1082 | |||
1083 | /* Let blocking job inherit priority of blocked job, if required. */ | ||
1084 | if (blocker && blocked && | ||
1085 | fp_higher_prio(blocked, blocker)) { | ||
1086 | TRACE_TASK(blocker, "PCP inherits from %s/%d (prio %u -> %u) \n", | ||
1087 | blocked->comm, blocked->pid, | ||
1088 | get_priority(blocker), get_priority(blocked)); | ||
1089 | fp_set_prio_inh(pfp, blocker, blocked); | ||
1090 | } | ||
1091 | |||
1092 | /* Check if anything changed. If the blocked job is current, then it is | ||
1093 | * just blocking and hence is going to call the scheduler anyway. */ | ||
1094 | if (blocked != current && | ||
1095 | fp_higher_prio(fp_prio_peek(&pfp->ready_queue), pfp->scheduled)) | ||
1096 | preempt(pfp); | ||
1097 | |||
1098 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
1099 | } | ||
1100 | |||
1101 | /* called with preemptions off */ | ||
1102 | static void pcp_raise_ceiling(struct pcp_semaphore* sem, | ||
1103 | int effective_prio) | ||
1104 | { | ||
1105 | struct task_struct* t = current; | ||
1106 | struct pcp_semaphore* ceiling; | ||
1107 | prio_wait_queue_t wait; | ||
1108 | unsigned int waiting_higher_prio; | ||
1109 | |||
1110 | do { | ||
1111 | ceiling = pcp_get_ceiling(); | ||
1112 | if (pcp_exceeds_ceiling(ceiling, t, effective_prio)) | ||
1113 | break; | ||
1114 | |||
1115 | TRACE_CUR("PCP ceiling-blocked, wanted sem %p, but %s/%d has the ceiling \n", | ||
1116 | sem, ceiling->owner->comm, ceiling->owner->pid); | ||
1117 | |||
1118 | /* we need to wait until the ceiling is lowered */ | ||
1119 | |||
1120 | /* enqueue in priority order */ | ||
1121 | init_prio_waitqueue_entry(&wait, t, prio_point(effective_prio)); | ||
1122 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
1123 | waiting_higher_prio = add_wait_queue_prio_exclusive( | ||
1124 | &__get_cpu_var(pcp_state).ceiling_blocked, &wait); | ||
1125 | |||
1126 | if (waiting_higher_prio == 0) { | ||
1127 | TRACE_CUR("PCP new highest-prio waiter => prio inheritance\n"); | ||
1128 | |||
1129 | /* we are the new highest-priority waiting job | ||
1130 | * => update inheritance */ | ||
1131 | __get_cpu_var(pcp_state).hp_waiter = t; | ||
1132 | pcp_priority_inheritance(); | ||
1133 | } | ||
1134 | |||
1135 | TS_LOCK_SUSPEND; | ||
1136 | |||
1137 | preempt_enable_no_resched(); | ||
1138 | schedule(); | ||
1139 | preempt_disable(); | ||
1140 | |||
1141 | /* pcp_resume_unblocked() removed us from wait queue */ | ||
1142 | |||
1143 | TS_LOCK_RESUME; | ||
1144 | } while(1); | ||
1145 | |||
1146 | TRACE_CUR("PCP got the ceiling and sem %p\n", sem); | ||
1147 | |||
1148 | /* We are good to go. The semaphore should be available. */ | ||
1149 | BUG_ON(sem->owner != NULL); | ||
1150 | |||
1151 | sem->owner = t; | ||
1152 | |||
1153 | pcp_add_ceiling(sem); | ||
1154 | } | ||
1155 | |||
1156 | static void pcp_resume_unblocked(void) | ||
1157 | { | ||
1158 | wait_queue_head_t *blocked = &__get_cpu_var(pcp_state).ceiling_blocked; | ||
1159 | unsigned long flags; | ||
1160 | prio_wait_queue_t* q; | ||
1161 | struct task_struct* t = NULL; | ||
1162 | |||
1163 | struct pcp_semaphore* ceiling = pcp_get_ceiling(); | ||
1164 | |||
1165 | spin_lock_irqsave(&blocked->lock, flags); | ||
1166 | |||
1167 | while (waitqueue_active(blocked)) { | ||
1168 | /* check first == highest-priority waiting job */ | ||
1169 | q = list_entry(blocked->task_list.next, | ||
1170 | prio_wait_queue_t, wq.task_list); | ||
1171 | t = (struct task_struct*) q->wq.private; | ||
1172 | |||
1173 | /* can it proceed now? => let it go */ | ||
1174 | if (pcp_exceeds_ceiling(ceiling, t, | ||
1175 | prio_from_point(q->priority))) { | ||
1176 | __remove_wait_queue(blocked, &q->wq); | ||
1177 | wake_up_process(t); | ||
1178 | } else { | ||
1179 | /* We are done. Update highest-priority waiter. */ | ||
1180 | __get_cpu_var(pcp_state).hp_waiter = t; | ||
1181 | goto out; | ||
1182 | } | ||
1183 | } | ||
1184 | /* If we get here, then there are no more waiting | ||
1185 | * jobs. */ | ||
1186 | __get_cpu_var(pcp_state).hp_waiter = NULL; | ||
1187 | out: | ||
1188 | spin_unlock_irqrestore(&blocked->lock, flags); | ||
1189 | } | ||
1190 | |||
1191 | /* assumes preempt off */ | ||
1192 | static void pcp_lower_ceiling(struct pcp_semaphore* sem) | ||
1193 | { | ||
1194 | BUG_ON(!in_list(&sem->ceiling)); | ||
1195 | BUG_ON(sem->owner != current); | ||
1196 | BUG_ON(sem->on_cpu != smp_processor_id()); | ||
1197 | |||
1198 | /* remove from ceiling list */ | ||
1199 | list_del(&sem->ceiling); | ||
1200 | |||
1201 | /* release */ | ||
1202 | sem->owner = NULL; | ||
1203 | |||
1204 | TRACE_CUR("PCP released sem %p\n", sem); | ||
1205 | |||
1206 | pcp_priority_inheritance(); | ||
1207 | |||
1208 | /* Wake up all ceiling-blocked jobs that now pass the ceiling. */ | ||
1209 | pcp_resume_unblocked(); | ||
1210 | } | ||
1211 | |||
1212 | static void pcp_update_prio_ceiling(struct pcp_semaphore* sem, | ||
1213 | int effective_prio) | ||
1214 | { | ||
1215 | /* This needs to be synchronized on something. | ||
1216 | * Might as well use waitqueue lock for the processor. | ||
1217 | * We assume this happens only before the task set starts execution, | ||
1218 | * (i.e., during initialization), but it may happen on multiple processors | ||
1219 | * at the same time. | ||
1220 | */ | ||
1221 | unsigned long flags; | ||
1222 | |||
1223 | struct pcp_state* s = &per_cpu(pcp_state, sem->on_cpu); | ||
1224 | |||
1225 | spin_lock_irqsave(&s->ceiling_blocked.lock, flags); | ||
1226 | |||
1227 | sem->prio_ceiling = min(sem->prio_ceiling, effective_prio); | ||
1228 | |||
1229 | spin_unlock_irqrestore(&s->ceiling_blocked.lock, flags); | ||
1230 | } | ||
1231 | |||
1232 | static void pcp_init_semaphore(struct pcp_semaphore* sem, int cpu) | ||
1233 | { | ||
1234 | sem->owner = NULL; | ||
1235 | INIT_LIST_HEAD(&sem->ceiling); | ||
1236 | sem->prio_ceiling = INT_MAX; | ||
1237 | sem->on_cpu = cpu; | ||
1238 | } | ||
1239 | |||
1240 | int pfp_pcp_lock(struct litmus_lock* l) | ||
1241 | { | ||
1242 | struct task_struct* t = current; | ||
1243 | struct pcp_semaphore *sem = pcp_from_lock(l); | ||
1244 | |||
1245 | int eprio = effective_agent_priority(get_priority(t)); | ||
1246 | int from = get_partition(t); | ||
1247 | int to = sem->on_cpu; | ||
1248 | |||
1249 | if (!is_realtime(t) || from != to) | ||
1250 | return -EPERM; | ||
1251 | |||
1252 | preempt_disable(); | ||
1253 | |||
1254 | pcp_raise_ceiling(sem, eprio); | ||
1255 | |||
1256 | preempt_enable(); | ||
1257 | |||
1258 | return 0; | ||
1259 | } | ||
1260 | |||
1261 | int pfp_pcp_unlock(struct litmus_lock* l) | ||
1262 | { | ||
1263 | struct task_struct *t = current; | ||
1264 | struct pcp_semaphore *sem = pcp_from_lock(l); | ||
1265 | |||
1266 | int err = 0; | ||
1267 | |||
1268 | preempt_disable(); | ||
1269 | |||
1270 | if (sem->on_cpu != smp_processor_id() || sem->owner != t) { | ||
1271 | err = -EINVAL; | ||
1272 | goto out; | ||
1273 | } | ||
1274 | |||
1275 | /* give it back */ | ||
1276 | pcp_lower_ceiling(sem); | ||
1277 | |||
1278 | out: | ||
1279 | preempt_enable(); | ||
1280 | |||
1281 | return err; | ||
1282 | } | ||
1283 | |||
1284 | int pfp_pcp_open(struct litmus_lock* l, void* __user config) | ||
1285 | { | ||
1286 | struct task_struct *t = current; | ||
1287 | struct pcp_semaphore *sem = pcp_from_lock(l); | ||
1288 | |||
1289 | int cpu, eprio; | ||
1290 | |||
1291 | if (!is_realtime(t)) | ||
1292 | /* we need to know the real-time priority */ | ||
1293 | return -EPERM; | ||
1294 | |||
1295 | if (get_user(cpu, (int*) config)) | ||
1296 | return -EFAULT; | ||
1297 | |||
1298 | /* make sure the resource location matches */ | ||
1299 | if (cpu != sem->on_cpu) | ||
1300 | return -EINVAL; | ||
1301 | |||
1302 | eprio = effective_agent_priority(get_priority(t)); | ||
1303 | |||
1304 | pcp_update_prio_ceiling(sem, eprio); | ||
1305 | |||
1306 | return 0; | ||
1307 | } | ||
1308 | |||
1309 | int pfp_pcp_close(struct litmus_lock* l) | ||
1310 | { | ||
1311 | struct task_struct *t = current; | ||
1312 | struct pcp_semaphore *sem = pcp_from_lock(l); | ||
1313 | |||
1314 | int owner = 0; | ||
1315 | |||
1316 | preempt_disable(); | ||
1317 | |||
1318 | if (sem->on_cpu == smp_processor_id()) | ||
1319 | owner = sem->owner == t; | ||
1320 | |||
1321 | preempt_enable(); | ||
1322 | |||
1323 | if (owner) | ||
1324 | pfp_pcp_unlock(l); | ||
1325 | |||
1326 | return 0; | ||
1327 | } | ||
1328 | |||
1329 | void pfp_pcp_free(struct litmus_lock* lock) | ||
1330 | { | ||
1331 | kfree(pcp_from_lock(lock)); | ||
1332 | } | ||
1333 | |||
1334 | |||
1335 | static struct litmus_lock_ops pfp_pcp_lock_ops = { | ||
1336 | .close = pfp_pcp_close, | ||
1337 | .lock = pfp_pcp_lock, | ||
1338 | .open = pfp_pcp_open, | ||
1339 | .unlock = pfp_pcp_unlock, | ||
1340 | .deallocate = pfp_pcp_free, | ||
1341 | }; | ||
1342 | |||
1343 | |||
1344 | static struct litmus_lock* pfp_new_pcp(int on_cpu) | ||
1345 | { | ||
1346 | struct pcp_semaphore* sem; | ||
1347 | |||
1348 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
1349 | if (!sem) | ||
1350 | return NULL; | ||
1351 | |||
1352 | sem->litmus_lock.ops = &pfp_pcp_lock_ops; | ||
1353 | pcp_init_semaphore(sem, on_cpu); | ||
1354 | |||
1355 | return &sem->litmus_lock; | ||
1356 | } | ||
1357 | |||
1358 | /* ******************** DPCP support ********************** */ | ||
1359 | |||
1360 | struct dpcp_semaphore { | ||
1361 | struct litmus_lock litmus_lock; | ||
1362 | struct pcp_semaphore pcp; | ||
1363 | int owner_cpu; | ||
1364 | }; | ||
1365 | |||
1366 | static inline struct dpcp_semaphore* dpcp_from_lock(struct litmus_lock* lock) | ||
1367 | { | ||
1368 | return container_of(lock, struct dpcp_semaphore, litmus_lock); | ||
1369 | } | ||
1370 | |||
1371 | /* called with preemptions disabled */ | ||
1372 | static void pfp_migrate_to(int target_cpu) | ||
1373 | { | ||
1374 | struct task_struct* t = current; | ||
1375 | pfp_domain_t *from; | ||
1376 | |||
1377 | if (get_partition(t) == target_cpu) | ||
1378 | return; | ||
1379 | |||
1380 | /* make sure target_cpu makes sense */ | ||
1381 | BUG_ON(!cpu_online(target_cpu)); | ||
1382 | |||
1383 | local_irq_disable(); | ||
1384 | |||
1385 | /* scheduled task should not be in any ready or release queue */ | ||
1386 | BUG_ON(is_queued(t)); | ||
1387 | |||
1388 | /* lock both pfp domains in order of address */ | ||
1389 | from = task_pfp(t); | ||
1390 | |||
1391 | raw_spin_lock(&from->slock); | ||
1392 | |||
1393 | /* switch partitions */ | ||
1394 | tsk_rt(t)->task_params.cpu = target_cpu; | ||
1395 | |||
1396 | raw_spin_unlock(&from->slock); | ||
1397 | |||
1398 | /* Don't trace scheduler costs as part of | ||
1399 | * locking overhead. Scheduling costs are accounted for | ||
1400 | * explicitly. */ | ||
1401 | TS_LOCK_SUSPEND; | ||
1402 | |||
1403 | local_irq_enable(); | ||
1404 | preempt_enable_no_resched(); | ||
1405 | |||
1406 | /* deschedule to be migrated */ | ||
1407 | schedule(); | ||
1408 | |||
1409 | /* we are now on the target processor */ | ||
1410 | preempt_disable(); | ||
1411 | |||
1412 | /* start recording costs again */ | ||
1413 | TS_LOCK_RESUME; | ||
1414 | |||
1415 | BUG_ON(smp_processor_id() != target_cpu); | ||
1416 | } | ||
1417 | |||
1418 | int pfp_dpcp_lock(struct litmus_lock* l) | ||
1419 | { | ||
1420 | struct task_struct* t = current; | ||
1421 | struct dpcp_semaphore *sem = dpcp_from_lock(l); | ||
1422 | int eprio = effective_agent_priority(get_priority(t)); | ||
1423 | int from = get_partition(t); | ||
1424 | int to = sem->pcp.on_cpu; | ||
1425 | |||
1426 | if (!is_realtime(t)) | ||
1427 | return -EPERM; | ||
1428 | |||
1429 | preempt_disable(); | ||
1430 | |||
1431 | /* Priority-boost ourself *before* we suspend so that | ||
1432 | * our priority is boosted when we resume. */ | ||
1433 | |||
1434 | boost_priority(t, get_priority(t)); | ||
1435 | |||
1436 | pfp_migrate_to(to); | ||
1437 | |||
1438 | pcp_raise_ceiling(&sem->pcp, eprio); | ||
1439 | |||
1440 | /* yep, we got it => execute request */ | ||
1441 | sem->owner_cpu = from; | ||
1442 | |||
1443 | preempt_enable(); | ||
1444 | |||
1445 | return 0; | ||
1446 | } | ||
1447 | |||
1448 | int pfp_dpcp_unlock(struct litmus_lock* l) | ||
1449 | { | ||
1450 | struct task_struct *t = current; | ||
1451 | struct dpcp_semaphore *sem = dpcp_from_lock(l); | ||
1452 | int err = 0; | ||
1453 | int home; | ||
1454 | |||
1455 | preempt_disable(); | ||
1456 | |||
1457 | if (sem->pcp.on_cpu != smp_processor_id() || sem->pcp.owner != t) { | ||
1458 | err = -EINVAL; | ||
1459 | goto out; | ||
1460 | } | ||
1461 | |||
1462 | home = sem->owner_cpu; | ||
1463 | |||
1464 | /* give it back */ | ||
1465 | pcp_lower_ceiling(&sem->pcp); | ||
1466 | |||
1467 | /* we lose the benefit of priority boosting */ | ||
1468 | unboost_priority(t); | ||
1469 | |||
1470 | pfp_migrate_to(home); | ||
1471 | |||
1472 | out: | ||
1473 | preempt_enable(); | ||
1474 | |||
1475 | return err; | ||
1476 | } | ||
1477 | |||
1478 | int pfp_dpcp_open(struct litmus_lock* l, void* __user config) | ||
1479 | { | ||
1480 | struct task_struct *t = current; | ||
1481 | struct dpcp_semaphore *sem = dpcp_from_lock(l); | ||
1482 | int cpu, eprio; | ||
1483 | |||
1484 | if (!is_realtime(t)) | ||
1485 | /* we need to know the real-time priority */ | ||
1486 | return -EPERM; | ||
1487 | |||
1488 | if (get_user(cpu, (int*) config)) | ||
1489 | return -EFAULT; | ||
1490 | |||
1491 | /* make sure the resource location matches */ | ||
1492 | if (cpu != sem->pcp.on_cpu) | ||
1493 | return -EINVAL; | ||
1494 | |||
1495 | eprio = effective_agent_priority(get_priority(t)); | ||
1496 | |||
1497 | pcp_update_prio_ceiling(&sem->pcp, eprio); | ||
1498 | |||
1499 | return 0; | ||
1500 | } | ||
1501 | |||
1502 | int pfp_dpcp_close(struct litmus_lock* l) | ||
1503 | { | ||
1504 | struct task_struct *t = current; | ||
1505 | struct dpcp_semaphore *sem = dpcp_from_lock(l); | ||
1506 | int owner = 0; | ||
1507 | |||
1508 | preempt_disable(); | ||
1509 | |||
1510 | if (sem->pcp.on_cpu == smp_processor_id()) | ||
1511 | owner = sem->pcp.owner == t; | ||
1512 | |||
1513 | preempt_enable(); | ||
1514 | |||
1515 | if (owner) | ||
1516 | pfp_dpcp_unlock(l); | ||
1517 | |||
1518 | return 0; | ||
1519 | } | ||
1520 | |||
1521 | void pfp_dpcp_free(struct litmus_lock* lock) | ||
1522 | { | ||
1523 | kfree(dpcp_from_lock(lock)); | ||
1524 | } | ||
1525 | |||
1526 | static struct litmus_lock_ops pfp_dpcp_lock_ops = { | ||
1527 | .close = pfp_dpcp_close, | ||
1528 | .lock = pfp_dpcp_lock, | ||
1529 | .open = pfp_dpcp_open, | ||
1530 | .unlock = pfp_dpcp_unlock, | ||
1531 | .deallocate = pfp_dpcp_free, | ||
1532 | }; | ||
1533 | |||
1534 | static struct litmus_lock* pfp_new_dpcp(int on_cpu) | ||
1535 | { | ||
1536 | struct dpcp_semaphore* sem; | ||
1537 | |||
1538 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
1539 | if (!sem) | ||
1540 | return NULL; | ||
1541 | |||
1542 | sem->litmus_lock.ops = &pfp_dpcp_lock_ops; | ||
1543 | sem->owner_cpu = NO_CPU; | ||
1544 | pcp_init_semaphore(&sem->pcp, on_cpu); | ||
1545 | |||
1546 | return &sem->litmus_lock; | ||
1547 | } | ||
1548 | |||
1549 | |||
1550 | /* **** lock constructor **** */ | ||
1551 | |||
1552 | |||
1553 | static long pfp_allocate_lock(struct litmus_lock **lock, int type, | ||
1554 | void* __user config) | ||
1555 | { | ||
1556 | int err = -ENXIO, cpu; | ||
1557 | struct srp_semaphore* srp; | ||
1558 | |||
1559 | /* P-FP currently supports the SRP for local resources and the FMLP | ||
1560 | * for global resources. */ | ||
1561 | switch (type) { | ||
1562 | case FMLP_SEM: | ||
1563 | /* FIFO Mutex Locking Protocol */ | ||
1564 | *lock = pfp_new_fmlp(); | ||
1565 | if (*lock) | ||
1566 | err = 0; | ||
1567 | else | ||
1568 | err = -ENOMEM; | ||
1569 | break; | ||
1570 | |||
1571 | case MPCP_SEM: | ||
1572 | /* Multiprocesor Priority Ceiling Protocol */ | ||
1573 | *lock = pfp_new_mpcp(0); | ||
1574 | if (*lock) | ||
1575 | err = 0; | ||
1576 | else | ||
1577 | err = -ENOMEM; | ||
1578 | break; | ||
1579 | |||
1580 | case MPCP_VS_SEM: | ||
1581 | /* Multiprocesor Priority Ceiling Protocol with virtual spinning */ | ||
1582 | *lock = pfp_new_mpcp(1); | ||
1583 | if (*lock) | ||
1584 | err = 0; | ||
1585 | else | ||
1586 | err = -ENOMEM; | ||
1587 | break; | ||
1588 | |||
1589 | case DPCP_SEM: | ||
1590 | /* Distributed Priority Ceiling Protocol */ | ||
1591 | if (get_user(cpu, (int*) config)) | ||
1592 | return -EFAULT; | ||
1593 | |||
1594 | if (!cpu_online(cpu)) | ||
1595 | return -EINVAL; | ||
1596 | |||
1597 | *lock = pfp_new_dpcp(cpu); | ||
1598 | if (*lock) | ||
1599 | err = 0; | ||
1600 | else | ||
1601 | err = -ENOMEM; | ||
1602 | break; | ||
1603 | |||
1604 | case SRP_SEM: | ||
1605 | /* Baker's Stack Resource Policy */ | ||
1606 | srp = allocate_srp_semaphore(); | ||
1607 | if (srp) { | ||
1608 | *lock = &srp->litmus_lock; | ||
1609 | err = 0; | ||
1610 | } else | ||
1611 | err = -ENOMEM; | ||
1612 | break; | ||
1613 | |||
1614 | case PCP_SEM: | ||
1615 | /* Priority Ceiling Protocol */ | ||
1616 | if (get_user(cpu, (int*) config)) | ||
1617 | return -EFAULT; | ||
1618 | |||
1619 | if (!cpu_online(cpu)) | ||
1620 | return -EINVAL; | ||
1621 | |||
1622 | *lock = pfp_new_pcp(cpu); | ||
1623 | if (*lock) | ||
1624 | err = 0; | ||
1625 | else | ||
1626 | err = -ENOMEM; | ||
1627 | break; | ||
1628 | }; | ||
1629 | |||
1630 | return err; | ||
1631 | } | ||
1632 | |||
1633 | #endif | ||
1634 | |||
1635 | static long pfp_admit_task(struct task_struct* tsk) | ||
1636 | { | ||
1637 | if (task_cpu(tsk) == tsk->rt_param.task_params.cpu && | ||
1638 | #ifdef CONFIG_RELEASE_MASTER | ||
1639 | /* don't allow tasks on release master CPU */ | ||
1640 | task_cpu(tsk) != remote_dom(task_cpu(tsk))->release_master && | ||
1641 | #endif | ||
1642 | litmus_is_valid_fixed_prio(get_priority(tsk))) | ||
1643 | return 0; | ||
1644 | else | ||
1645 | return -EINVAL; | ||
1646 | } | ||
1647 | |||
1648 | static long pfp_activate_plugin(void) | ||
1649 | { | ||
1650 | #if defined(CONFIG_RELEASE_MASTER) || defined(CONFIG_LITMUS_LOCKING) | ||
1651 | int cpu; | ||
1652 | #endif | ||
1653 | |||
1654 | #ifdef CONFIG_RELEASE_MASTER | ||
1655 | for_each_online_cpu(cpu) { | ||
1656 | remote_dom(cpu)->release_master = atomic_read(&release_master_cpu); | ||
1657 | } | ||
1658 | #endif | ||
1659 | |||
1660 | #ifdef CONFIG_LITMUS_LOCKING | ||
1661 | get_srp_prio = pfp_get_srp_prio; | ||
1662 | |||
1663 | for_each_online_cpu(cpu) { | ||
1664 | init_waitqueue_head(&per_cpu(mpcpvs_vspin_wait, cpu)); | ||
1665 | per_cpu(mpcpvs_vspin, cpu) = NULL; | ||
1666 | |||
1667 | pcp_init_state(&per_cpu(pcp_state, cpu)); | ||
1668 | pfp_doms[cpu] = remote_pfp(cpu); | ||
1669 | } | ||
1670 | |||
1671 | #endif | ||
1672 | |||
1673 | return 0; | ||
1674 | } | ||
1675 | |||
1676 | |||
1677 | /* Plugin object */ | ||
1678 | static struct sched_plugin pfp_plugin __cacheline_aligned_in_smp = { | ||
1679 | .plugin_name = "P-FP", | ||
1680 | .tick = pfp_tick, | ||
1681 | .task_new = pfp_task_new, | ||
1682 | .complete_job = complete_job, | ||
1683 | .task_exit = pfp_task_exit, | ||
1684 | .schedule = pfp_schedule, | ||
1685 | .task_wake_up = pfp_task_wake_up, | ||
1686 | .task_block = pfp_task_block, | ||
1687 | .admit_task = pfp_admit_task, | ||
1688 | .activate_plugin = pfp_activate_plugin, | ||
1689 | #ifdef CONFIG_LITMUS_LOCKING | ||
1690 | .allocate_lock = pfp_allocate_lock, | ||
1691 | .finish_switch = pfp_finish_switch, | ||
1692 | #endif | ||
1693 | }; | ||
1694 | |||
1695 | |||
1696 | static int __init init_pfp(void) | ||
1697 | { | ||
1698 | int i; | ||
1699 | |||
1700 | /* We do not really want to support cpu hotplug, do we? ;) | ||
1701 | * However, if we are so crazy to do so, | ||
1702 | * we cannot use num_online_cpu() | ||
1703 | */ | ||
1704 | for (i = 0; i < num_online_cpus(); i++) { | ||
1705 | pfp_domain_init(remote_pfp(i), i); | ||
1706 | } | ||
1707 | return register_sched_plugin(&pfp_plugin); | ||
1708 | } | ||
1709 | |||
1710 | module_init(init_pfp); | ||
1711 | |||
diff --git a/litmus/sched_psn_edf.c b/litmus/sched_psn_edf.c index 8e4a22dd8d6a..0e1675d2e572 100644 --- a/litmus/sched_psn_edf.c +++ b/litmus/sched_psn_edf.c | |||
@@ -17,6 +17,7 @@ | |||
17 | #include <litmus/litmus.h> | 17 | #include <litmus/litmus.h> |
18 | #include <litmus/jobs.h> | 18 | #include <litmus/jobs.h> |
19 | #include <litmus/preempt.h> | 19 | #include <litmus/preempt.h> |
20 | #include <litmus/budget.h> | ||
20 | #include <litmus/sched_plugin.h> | 21 | #include <litmus/sched_plugin.h> |
21 | #include <litmus/edf_common.h> | 22 | #include <litmus/edf_common.h> |
22 | #include <litmus/sched_trace.h> | 23 | #include <litmus/sched_trace.h> |
@@ -59,7 +60,7 @@ static void requeue(struct task_struct* t, rt_domain_t *edf) | |||
59 | if (t->state != TASK_RUNNING) | 60 | if (t->state != TASK_RUNNING) |
60 | TRACE_TASK(t, "requeue: !TASK_RUNNING\n"); | 61 | TRACE_TASK(t, "requeue: !TASK_RUNNING\n"); |
61 | 62 | ||
62 | set_rt_flags(t, RT_F_RUNNING); | 63 | tsk_rt(t)->completed = 0; |
63 | if (is_released(t, litmus_clock())) | 64 | if (is_released(t, litmus_clock())) |
64 | __add_ready(edf, t); | 65 | __add_ready(edf, t); |
65 | else | 66 | else |
@@ -132,6 +133,15 @@ static void unboost_priority(struct task_struct* t) | |||
132 | 133 | ||
133 | #endif | 134 | #endif |
134 | 135 | ||
136 | static int psnedf_preempt_check(psnedf_domain_t *pedf) | ||
137 | { | ||
138 | if (edf_preemption_needed(&pedf->domain, pedf->scheduled)) { | ||
139 | preempt(pedf); | ||
140 | return 1; | ||
141 | } else | ||
142 | return 0; | ||
143 | } | ||
144 | |||
135 | /* This check is trivial in partioned systems as we only have to consider | 145 | /* This check is trivial in partioned systems as we only have to consider |
136 | * the CPU of the partition. | 146 | * the CPU of the partition. |
137 | */ | 147 | */ |
@@ -142,11 +152,7 @@ static int psnedf_check_resched(rt_domain_t *edf) | |||
142 | /* because this is a callback from rt_domain_t we already hold | 152 | /* because this is a callback from rt_domain_t we already hold |
143 | * the necessary lock for the ready queue | 153 | * the necessary lock for the ready queue |
144 | */ | 154 | */ |
145 | if (edf_preemption_needed(edf, pedf->scheduled)) { | 155 | return psnedf_preempt_check(pedf); |
146 | preempt(pedf); | ||
147 | return 1; | ||
148 | } else | ||
149 | return 0; | ||
150 | } | 156 | } |
151 | 157 | ||
152 | static void job_completion(struct task_struct* t, int forced) | 158 | static void job_completion(struct task_struct* t, int forced) |
@@ -154,7 +160,7 @@ static void job_completion(struct task_struct* t, int forced) | |||
154 | sched_trace_task_completion(t,forced); | 160 | sched_trace_task_completion(t,forced); |
155 | TRACE_TASK(t, "job_completion().\n"); | 161 | TRACE_TASK(t, "job_completion().\n"); |
156 | 162 | ||
157 | set_rt_flags(t, RT_F_SLEEP); | 163 | tsk_rt(t)->completed = 1; |
158 | prepare_for_next_period(t); | 164 | prepare_for_next_period(t); |
159 | } | 165 | } |
160 | 166 | ||
@@ -208,7 +214,7 @@ static struct task_struct* psnedf_schedule(struct task_struct * prev) | |||
208 | budget_enforced(pedf->scheduled) && | 214 | budget_enforced(pedf->scheduled) && |
209 | budget_exhausted(pedf->scheduled); | 215 | budget_exhausted(pedf->scheduled); |
210 | np = exists && is_np(pedf->scheduled); | 216 | np = exists && is_np(pedf->scheduled); |
211 | sleep = exists && get_rt_flags(pedf->scheduled) == RT_F_SLEEP; | 217 | sleep = exists && is_completed(pedf->scheduled); |
212 | preempt = edf_preemption_needed(edf, prev); | 218 | preempt = edf_preemption_needed(edf, prev); |
213 | 219 | ||
214 | /* If we need to preempt do so. | 220 | /* If we need to preempt do so. |
@@ -260,7 +266,7 @@ static struct task_struct* psnedf_schedule(struct task_struct * prev) | |||
260 | 266 | ||
261 | if (next) { | 267 | if (next) { |
262 | TRACE_TASK(next, "scheduled at %llu\n", litmus_clock()); | 268 | TRACE_TASK(next, "scheduled at %llu\n", litmus_clock()); |
263 | set_rt_flags(next, RT_F_RUNNING); | 269 | tsk_rt(next)->completed = 0; |
264 | } else { | 270 | } else { |
265 | TRACE("becoming idle at %llu\n", litmus_clock()); | 271 | TRACE("becoming idle at %llu\n", litmus_clock()); |
266 | } | 272 | } |
@@ -298,7 +304,7 @@ static void psnedf_task_new(struct task_struct * t, int on_rq, int running) | |||
298 | } else { | 304 | } else { |
299 | requeue(t, edf); | 305 | requeue(t, edf); |
300 | /* maybe we have to reschedule */ | 306 | /* maybe we have to reschedule */ |
301 | preempt(pedf); | 307 | psnedf_preempt_check(pedf); |
302 | } | 308 | } |
303 | raw_spin_unlock_irqrestore(&pedf->slock, flags); | 309 | raw_spin_unlock_irqrestore(&pedf->slock, flags); |
304 | } | 310 | } |
@@ -334,8 +340,10 @@ static void psnedf_task_wake_up(struct task_struct *task) | |||
334 | * de-scheduling the task, i.e., wake_up() raced with schedule() | 340 | * de-scheduling the task, i.e., wake_up() raced with schedule() |
335 | * and won. | 341 | * and won. |
336 | */ | 342 | */ |
337 | if (pedf->scheduled != task) | 343 | if (pedf->scheduled != task) { |
338 | requeue(task, edf); | 344 | requeue(task, edf); |
345 | psnedf_preempt_check(pedf); | ||
346 | } | ||
339 | 347 | ||
340 | raw_spin_unlock_irqrestore(&pedf->slock, flags); | 348 | raw_spin_unlock_irqrestore(&pedf->slock, flags); |
341 | TRACE_TASK(task, "wake up done\n"); | 349 | TRACE_TASK(task, "wake up done\n"); |
diff --git a/litmus/sync.c b/litmus/sync.c index bf75fde5450b..3e79e0a12a5a 100644 --- a/litmus/sync.c +++ b/litmus/sync.c | |||
@@ -16,63 +16,106 @@ | |||
16 | 16 | ||
17 | #include <litmus/sched_trace.h> | 17 | #include <litmus/sched_trace.h> |
18 | 18 | ||
19 | static DECLARE_COMPLETION(ts_release); | 19 | struct ts_release_wait { |
20 | struct list_head list; | ||
21 | struct completion completion; | ||
22 | lt_t ts_release_time; | ||
23 | }; | ||
24 | |||
25 | #define DECLARE_TS_RELEASE_WAIT(symb) \ | ||
26 | struct ts_release_wait symb = \ | ||
27 | { \ | ||
28 | LIST_HEAD_INIT(symb.list), \ | ||
29 | COMPLETION_INITIALIZER_ONSTACK(symb.completion), \ | ||
30 | 0 \ | ||
31 | } | ||
32 | |||
33 | static LIST_HEAD(task_release_list); | ||
34 | static DEFINE_MUTEX(task_release_lock); | ||
20 | 35 | ||
21 | static long do_wait_for_ts_release(void) | 36 | static long do_wait_for_ts_release(void) |
22 | { | 37 | { |
23 | long ret = 0; | 38 | DECLARE_TS_RELEASE_WAIT(wait); |
39 | |||
40 | long ret = -ERESTARTSYS; | ||
41 | |||
42 | if (mutex_lock_interruptible(&task_release_lock)) | ||
43 | goto out; | ||
44 | |||
45 | list_add(&wait.list, &task_release_list); | ||
24 | 46 | ||
25 | /* If the interruption races with a release, the completion object | 47 | mutex_unlock(&task_release_lock); |
26 | * may have a non-zero counter. To avoid this problem, this should | ||
27 | * be replaced by wait_for_completion(). | ||
28 | * | ||
29 | * For debugging purposes, this is interruptible for now. | ||
30 | */ | ||
31 | ret = wait_for_completion_interruptible(&ts_release); | ||
32 | 48 | ||
49 | /* We are enqueued, now we wait for someone to wake us up. */ | ||
50 | ret = wait_for_completion_interruptible(&wait.completion); | ||
51 | |||
52 | if (!ret) { | ||
53 | /* Completion succeeded, setup release. */ | ||
54 | litmus->release_at(current, wait.ts_release_time | ||
55 | + current->rt_param.task_params.phase | ||
56 | - current->rt_param.task_params.period); | ||
57 | /* trigger advance to next job release at the programmed time */ | ||
58 | ret = complete_job(); | ||
59 | } else { | ||
60 | /* We were interrupted, must cleanup list. */ | ||
61 | mutex_lock(&task_release_lock); | ||
62 | if (!wait.completion.done) | ||
63 | list_del(&wait.list); | ||
64 | mutex_unlock(&task_release_lock); | ||
65 | } | ||
66 | |||
67 | out: | ||
33 | return ret; | 68 | return ret; |
34 | } | 69 | } |
35 | 70 | ||
36 | int count_tasks_waiting_for_release(void) | 71 | int count_tasks_waiting_for_release(void) |
37 | { | 72 | { |
38 | unsigned long flags; | ||
39 | int task_count = 0; | 73 | int task_count = 0; |
40 | struct list_head *pos; | 74 | struct list_head *pos; |
41 | 75 | ||
42 | spin_lock_irqsave(&ts_release.wait.lock, flags); | 76 | mutex_lock(&task_release_lock); |
43 | list_for_each(pos, &ts_release.wait.task_list) { | 77 | |
78 | list_for_each(pos, &task_release_list) { | ||
44 | task_count++; | 79 | task_count++; |
45 | } | 80 | } |
46 | spin_unlock_irqrestore(&ts_release.wait.lock, flags); | 81 | |
82 | mutex_unlock(&task_release_lock); | ||
83 | |||
47 | 84 | ||
48 | return task_count; | 85 | return task_count; |
49 | } | 86 | } |
50 | 87 | ||
51 | static long do_release_ts(lt_t start) | 88 | static long do_release_ts(lt_t start) |
52 | { | 89 | { |
53 | int task_count = 0; | 90 | long task_count = 0; |
54 | unsigned long flags; | ||
55 | struct list_head *pos; | ||
56 | struct task_struct *t; | ||
57 | 91 | ||
92 | struct list_head *pos, *safe; | ||
93 | struct ts_release_wait *wait; | ||
58 | 94 | ||
59 | spin_lock_irqsave(&ts_release.wait.lock, flags); | 95 | if (mutex_lock_interruptible(&task_release_lock)) { |
60 | TRACE("<<<<<< synchronous task system release >>>>>>\n"); | 96 | task_count = -ERESTARTSYS; |
97 | goto out; | ||
98 | } | ||
61 | 99 | ||
100 | TRACE("<<<<<< synchronous task system release >>>>>>\n"); | ||
62 | sched_trace_sys_release(&start); | 101 | sched_trace_sys_release(&start); |
63 | list_for_each(pos, &ts_release.wait.task_list) { | 102 | |
64 | t = (struct task_struct*) list_entry(pos, | 103 | task_count = 0; |
65 | struct __wait_queue, | 104 | list_for_each_safe(pos, safe, &task_release_list) { |
66 | task_list)->private; | 105 | wait = (struct ts_release_wait*) |
106 | list_entry(pos, struct ts_release_wait, list); | ||
107 | |||
67 | task_count++; | 108 | task_count++; |
68 | litmus->release_at(t, start + t->rt_param.task_params.phase); | 109 | wait->ts_release_time = start; |
69 | sched_trace_task_release(t); | 110 | complete(&wait->completion); |
70 | } | 111 | } |
71 | 112 | ||
72 | spin_unlock_irqrestore(&ts_release.wait.lock, flags); | 113 | /* clear stale list */ |
114 | INIT_LIST_HEAD(&task_release_list); | ||
73 | 115 | ||
74 | complete_n(&ts_release, task_count); | 116 | mutex_unlock(&task_release_lock); |
75 | 117 | ||
118 | out: | ||
76 | return task_count; | 119 | return task_count; |
77 | } | 120 | } |
78 | 121 | ||
@@ -88,17 +131,22 @@ asmlinkage long sys_wait_for_ts_release(void) | |||
88 | return ret; | 131 | return ret; |
89 | } | 132 | } |
90 | 133 | ||
134 | #define ONE_MS 1000000 | ||
91 | 135 | ||
92 | asmlinkage long sys_release_ts(lt_t __user *__delay) | 136 | asmlinkage long sys_release_ts(lt_t __user *__delay) |
93 | { | 137 | { |
94 | long ret; | 138 | long ret; |
95 | lt_t delay; | 139 | lt_t delay; |
140 | lt_t start_time; | ||
96 | 141 | ||
97 | /* FIXME: check capabilities... */ | 142 | /* FIXME: check capabilities... */ |
98 | 143 | ||
99 | ret = copy_from_user(&delay, __delay, sizeof(delay)); | 144 | ret = copy_from_user(&delay, __delay, sizeof(delay)); |
100 | if (ret == 0) | 145 | if (ret == 0) { |
101 | ret = do_release_ts(litmus_clock() + delay); | 146 | /* round up to next larger integral millisecond */ |
147 | start_time = ((litmus_clock() / ONE_MS) + 1) * ONE_MS; | ||
148 | ret = do_release_ts(start_time + delay); | ||
149 | } | ||
102 | 150 | ||
103 | return ret; | 151 | return ret; |
104 | } | 152 | } |
diff --git a/litmus/trace.c b/litmus/trace.c index 3c35c527e805..7dbb98e4a3cd 100644 --- a/litmus/trace.c +++ b/litmus/trace.c | |||
@@ -18,6 +18,15 @@ static unsigned int ts_seq_no = 0; | |||
18 | 18 | ||
19 | DEFINE_PER_CPU(atomic_t, irq_fired_count); | 19 | DEFINE_PER_CPU(atomic_t, irq_fired_count); |
20 | 20 | ||
21 | void ft_irq_fired(void) | ||
22 | { | ||
23 | /* Only called with preemptions disabled. */ | ||
24 | atomic_inc(&__get_cpu_var(irq_fired_count)); | ||
25 | |||
26 | if (has_control_page(current)) | ||
27 | get_control_page(current)->irq_count++; | ||
28 | } | ||
29 | |||
21 | static inline void clear_irq_fired(void) | 30 | static inline void clear_irq_fired(void) |
22 | { | 31 | { |
23 | atomic_set(&__raw_get_cpu_var(irq_fired_count), 0); | 32 | atomic_set(&__raw_get_cpu_var(irq_fired_count), 0); |
@@ -34,77 +43,119 @@ static inline unsigned int get_and_clear_irq_fired(void) | |||
34 | return atomic_xchg(&__raw_get_cpu_var(irq_fired_count), 0); | 43 | return atomic_xchg(&__raw_get_cpu_var(irq_fired_count), 0); |
35 | } | 44 | } |
36 | 45 | ||
37 | static inline void __save_irq_flags(struct timestamp *ts) | 46 | static inline void save_irq_flags(struct timestamp *ts, unsigned int irq_count) |
38 | { | 47 | { |
39 | unsigned int irq_count; | ||
40 | |||
41 | irq_count = get_and_clear_irq_fired(); | ||
42 | /* Store how many interrupts occurred. */ | 48 | /* Store how many interrupts occurred. */ |
43 | ts->irq_count = irq_count; | 49 | ts->irq_count = irq_count; |
44 | /* Extra flag because ts->irq_count overflows quickly. */ | 50 | /* Extra flag because ts->irq_count overflows quickly. */ |
45 | ts->irq_flag = irq_count > 0; | 51 | ts->irq_flag = irq_count > 0; |
52 | |||
46 | } | 53 | } |
47 | 54 | ||
48 | static inline void __save_timestamp_cpu(unsigned long event, | 55 | static inline void write_timestamp(uint8_t event, |
49 | uint8_t type, uint8_t cpu) | 56 | uint8_t type, |
57 | uint8_t cpu, | ||
58 | uint16_t pid_fragment, | ||
59 | unsigned int irq_count, | ||
60 | int record_irq, | ||
61 | int hide_irq, | ||
62 | uint64_t timestamp, | ||
63 | int record_timestamp) | ||
50 | { | 64 | { |
65 | unsigned long flags; | ||
51 | unsigned int seq_no; | 66 | unsigned int seq_no; |
52 | struct timestamp *ts; | 67 | struct timestamp *ts; |
68 | |||
69 | /* Avoid preemptions while recording the timestamp. This reduces the | ||
70 | * number of "out of order" timestamps in the stream and makes | ||
71 | * post-processing easier. */ | ||
72 | |||
73 | local_irq_save(flags); | ||
74 | |||
53 | seq_no = fetch_and_inc((int *) &ts_seq_no); | 75 | seq_no = fetch_and_inc((int *) &ts_seq_no); |
54 | if (ft_buffer_start_write(trace_ts_buf, (void**) &ts)) { | 76 | if (ft_buffer_start_write(trace_ts_buf, (void**) &ts)) { |
55 | ts->event = event; | 77 | ts->event = event; |
56 | ts->seq_no = seq_no; | 78 | ts->seq_no = seq_no; |
57 | ts->cpu = cpu; | 79 | |
58 | ts->task_type = type; | 80 | ts->task_type = type; |
59 | __save_irq_flags(ts); | 81 | ts->pid = pid_fragment; |
60 | barrier(); | 82 | |
61 | /* prevent re-ordering of ft_timestamp() */ | 83 | ts->cpu = cpu; |
62 | ts->timestamp = ft_timestamp(); | 84 | |
85 | if (record_irq) | ||
86 | irq_count = get_and_clear_irq_fired(); | ||
87 | |||
88 | save_irq_flags(ts, irq_count - hide_irq); | ||
89 | |||
90 | if (record_timestamp) | ||
91 | timestamp = ft_timestamp(); | ||
92 | |||
93 | ts->timestamp = timestamp; | ||
63 | ft_buffer_finish_write(trace_ts_buf, ts); | 94 | ft_buffer_finish_write(trace_ts_buf, ts); |
64 | } | 95 | } |
96 | |||
97 | local_irq_restore(flags); | ||
65 | } | 98 | } |
66 | 99 | ||
67 | static void __add_timestamp_user(struct timestamp *pre_recorded) | 100 | static void __add_timestamp_user(struct timestamp *pre_recorded) |
68 | { | 101 | { |
102 | unsigned long flags; | ||
69 | unsigned int seq_no; | 103 | unsigned int seq_no; |
70 | struct timestamp *ts; | 104 | struct timestamp *ts; |
105 | |||
106 | |||
107 | local_irq_save(flags); | ||
108 | |||
71 | seq_no = fetch_and_inc((int *) &ts_seq_no); | 109 | seq_no = fetch_and_inc((int *) &ts_seq_no); |
72 | if (ft_buffer_start_write(trace_ts_buf, (void**) &ts)) { | 110 | if (ft_buffer_start_write(trace_ts_buf, (void**) &ts)) { |
73 | *ts = *pre_recorded; | 111 | *ts = *pre_recorded; |
74 | ts->seq_no = seq_no; | 112 | ts->seq_no = seq_no; |
75 | __save_irq_flags(ts); | 113 | ts->cpu = raw_smp_processor_id(); |
114 | save_irq_flags(ts, get_and_clear_irq_fired()); | ||
76 | ft_buffer_finish_write(trace_ts_buf, ts); | 115 | ft_buffer_finish_write(trace_ts_buf, ts); |
77 | } | 116 | } |
78 | } | ||
79 | 117 | ||
80 | static inline void __save_timestamp(unsigned long event, | 118 | local_irq_restore(flags); |
81 | uint8_t type) | ||
82 | { | ||
83 | __save_timestamp_cpu(event, type, raw_smp_processor_id()); | ||
84 | } | 119 | } |
85 | 120 | ||
86 | feather_callback void save_timestamp(unsigned long event) | 121 | feather_callback void save_timestamp(unsigned long event) |
87 | { | 122 | { |
88 | __save_timestamp(event, TSK_UNKNOWN); | 123 | write_timestamp(event, TSK_UNKNOWN, |
124 | raw_smp_processor_id(), | ||
125 | current->pid, | ||
126 | 0, 1, 0, | ||
127 | 0, 1); | ||
89 | } | 128 | } |
90 | 129 | ||
91 | feather_callback void save_timestamp_def(unsigned long event, | 130 | feather_callback void save_timestamp_def(unsigned long event, |
92 | unsigned long type) | 131 | unsigned long type) |
93 | { | 132 | { |
94 | __save_timestamp(event, (uint8_t) type); | 133 | write_timestamp(event, type, |
134 | raw_smp_processor_id(), | ||
135 | current->pid, | ||
136 | 0, 1, 0, | ||
137 | 0, 1); | ||
95 | } | 138 | } |
96 | 139 | ||
97 | feather_callback void save_timestamp_task(unsigned long event, | 140 | feather_callback void save_timestamp_task(unsigned long event, |
98 | unsigned long t_ptr) | 141 | unsigned long t_ptr) |
99 | { | 142 | { |
100 | int rt = is_realtime((struct task_struct *) t_ptr); | 143 | struct task_struct *t = (struct task_struct *) t_ptr; |
101 | __save_timestamp(event, rt ? TSK_RT : TSK_BE); | 144 | int rt = is_realtime(t); |
145 | |||
146 | write_timestamp(event, rt ? TSK_RT : TSK_BE, | ||
147 | raw_smp_processor_id(), | ||
148 | t->pid, | ||
149 | 0, 1, 0, | ||
150 | 0, 1); | ||
102 | } | 151 | } |
103 | 152 | ||
104 | feather_callback void save_timestamp_cpu(unsigned long event, | 153 | feather_callback void save_timestamp_cpu(unsigned long event, |
105 | unsigned long cpu) | 154 | unsigned long cpu) |
106 | { | 155 | { |
107 | __save_timestamp_cpu(event, TSK_UNKNOWN, cpu); | 156 | write_timestamp(event, TSK_UNKNOWN, cpu, current->pid, |
157 | 0, 1, 0, | ||
158 | 0, 1); | ||
108 | } | 159 | } |
109 | 160 | ||
110 | feather_callback void save_task_latency(unsigned long event, | 161 | feather_callback void save_task_latency(unsigned long event, |
@@ -112,20 +163,44 @@ feather_callback void save_task_latency(unsigned long event, | |||
112 | { | 163 | { |
113 | lt_t now = litmus_clock(); | 164 | lt_t now = litmus_clock(); |
114 | lt_t *when = (lt_t*) when_ptr; | 165 | lt_t *when = (lt_t*) when_ptr; |
115 | unsigned int seq_no; | ||
116 | int cpu = raw_smp_processor_id(); | ||
117 | struct timestamp *ts; | ||
118 | 166 | ||
119 | seq_no = fetch_and_inc((int *) &ts_seq_no); | 167 | write_timestamp(event, TSK_RT, raw_smp_processor_id(), 0, |
120 | if (ft_buffer_start_write(trace_ts_buf, (void**) &ts)) { | 168 | 0, 1, 0, |
121 | ts->event = event; | 169 | now - *when, 0); |
122 | ts->timestamp = now - *when; | 170 | } |
123 | ts->seq_no = seq_no; | 171 | |
124 | ts->cpu = cpu; | 172 | /* fake timestamp to user-reported time */ |
125 | ts->task_type = TSK_RT; | 173 | feather_callback void save_timestamp_time(unsigned long event, |
126 | __save_irq_flags(ts); | 174 | unsigned long ptr) |
127 | ft_buffer_finish_write(trace_ts_buf, ts); | 175 | { |
128 | } | 176 | uint64_t* time = (uint64_t*) ptr; |
177 | |||
178 | write_timestamp(event, is_realtime(current) ? TSK_RT : TSK_BE, | ||
179 | raw_smp_processor_id(), current->pid, | ||
180 | 0, 1, 0, | ||
181 | *time, 0); | ||
182 | } | ||
183 | |||
184 | /* Record user-reported IRQ count */ | ||
185 | feather_callback void save_timestamp_irq(unsigned long event, | ||
186 | unsigned long irq_counter_ptr) | ||
187 | { | ||
188 | uint64_t* irqs = (uint64_t*) irq_counter_ptr; | ||
189 | |||
190 | write_timestamp(event, is_realtime(current) ? TSK_RT : TSK_BE, | ||
191 | raw_smp_processor_id(), current->pid, | ||
192 | *irqs, 0, 0, | ||
193 | 0, 1); | ||
194 | } | ||
195 | |||
196 | /* Suppress one IRQ from the irq count. Used by TS_SEND_RESCHED_END, which is | ||
197 | * called from within an interrupt that is expected. */ | ||
198 | feather_callback void save_timestamp_hide_irq(unsigned long event) | ||
199 | { | ||
200 | write_timestamp(event, is_realtime(current) ? TSK_RT : TSK_BE, | ||
201 | raw_smp_processor_id(), current->pid, | ||
202 | 0, 1, 1, | ||
203 | 0, 1); | ||
129 | } | 204 | } |
130 | 205 | ||
131 | /******************************************************************************/ | 206 | /******************************************************************************/ |