aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorIra Snyder <iws@ovro.caltech.edu>2009-09-08 20:53:04 -0400
committerDan Williams <dan.j.williams@intel.com>2009-09-08 20:53:04 -0400
commitbbea0b6e0d214ef1511b9c6ccf3af26b38f0af7d (patch)
tree5f2145c023b9145d1461ecb63c839fd32f762378
parente6c7ecb64e08ef346cb7062b4a5421f00bc602bd (diff)
fsldma: Add DMA_SLAVE support
Use the DMA_SLAVE capability of the DMAEngine API to copy/from a scatterlist into an arbitrary list of hardware address/length pairs. This allows a single DMA transaction to copy data from several different devices into a scatterlist at the same time. This also adds support to enable some controller-specific features such as external start and external pause for a DMA transaction. [dan.j.williams@intel.com: rebased on tx_list movement] Signed-off-by: Ira W. Snyder <iws@ovro.caltech.edu> Acked-by: Li Yang <leoli@freescale.com> Acked-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-rw-r--r--arch/powerpc/include/asm/fsldma.h136
-rw-r--r--drivers/dma/fsldma.c227
2 files changed, 363 insertions, 0 deletions
diff --git a/arch/powerpc/include/asm/fsldma.h b/arch/powerpc/include/asm/fsldma.h
new file mode 100644
index 000000000000..a67aeed17d40
--- /dev/null
+++ b/arch/powerpc/include/asm/fsldma.h
@@ -0,0 +1,136 @@
1/*
2 * Freescale MPC83XX / MPC85XX DMA Controller
3 *
4 * Copyright (c) 2009 Ira W. Snyder <iws@ovro.caltech.edu>
5 *
6 * This file is licensed under the terms of the GNU General Public License
7 * version 2. This program is licensed "as is" without any warranty of any
8 * kind, whether express or implied.
9 */
10
11#ifndef __ARCH_POWERPC_ASM_FSLDMA_H__
12#define __ARCH_POWERPC_ASM_FSLDMA_H__
13
14#include <linux/dmaengine.h>
15
16/*
17 * Definitions for the Freescale DMA controller's DMA_SLAVE implemention
18 *
19 * The Freescale DMA_SLAVE implementation was designed to handle many-to-many
20 * transfers. An example usage would be an accelerated copy between two
21 * scatterlists. Another example use would be an accelerated copy from
22 * multiple non-contiguous device buffers into a single scatterlist.
23 *
24 * A DMA_SLAVE transaction is defined by a struct fsl_dma_slave. This
25 * structure contains a list of hardware addresses that should be copied
26 * to/from the scatterlist passed into device_prep_slave_sg(). The structure
27 * also has some fields to enable hardware-specific features.
28 */
29
30/**
31 * struct fsl_dma_hw_addr
32 * @entry: linked list entry
33 * @address: the hardware address
34 * @length: length to transfer
35 *
36 * Holds a single physical hardware address / length pair for use
37 * with the DMAEngine DMA_SLAVE API.
38 */
39struct fsl_dma_hw_addr {
40 struct list_head entry;
41
42 dma_addr_t address;
43 size_t length;
44};
45
46/**
47 * struct fsl_dma_slave
48 * @addresses: a linked list of struct fsl_dma_hw_addr structures
49 * @request_count: value for DMA request count
50 * @src_loop_size: setup and enable constant source-address DMA transfers
51 * @dst_loop_size: setup and enable constant destination address DMA transfers
52 * @external_start: enable externally started DMA transfers
53 * @external_pause: enable externally paused DMA transfers
54 *
55 * Holds a list of address / length pairs for use with the DMAEngine
56 * DMA_SLAVE API implementation for the Freescale DMA controller.
57 */
58struct fsl_dma_slave {
59
60 /* List of hardware address/length pairs */
61 struct list_head addresses;
62
63 /* Support for extra controller features */
64 unsigned int request_count;
65 unsigned int src_loop_size;
66 unsigned int dst_loop_size;
67 bool external_start;
68 bool external_pause;
69};
70
71/**
72 * fsl_dma_slave_append - add an address/length pair to a struct fsl_dma_slave
73 * @slave: the &struct fsl_dma_slave to add to
74 * @address: the hardware address to add
75 * @length: the length of bytes to transfer from @address
76 *
77 * Add a hardware address/length pair to a struct fsl_dma_slave. Returns 0 on
78 * success, -ERRNO otherwise.
79 */
80static inline int fsl_dma_slave_append(struct fsl_dma_slave *slave,
81 dma_addr_t address, size_t length)
82{
83 struct fsl_dma_hw_addr *addr;
84
85 addr = kzalloc(sizeof(*addr), GFP_ATOMIC);
86 if (!addr)
87 return -ENOMEM;
88
89 INIT_LIST_HEAD(&addr->entry);
90 addr->address = address;
91 addr->length = length;
92
93 list_add_tail(&addr->entry, &slave->addresses);
94 return 0;
95}
96
97/**
98 * fsl_dma_slave_free - free a struct fsl_dma_slave
99 * @slave: the struct fsl_dma_slave to free
100 *
101 * Free a struct fsl_dma_slave and all associated address/length pairs
102 */
103static inline void fsl_dma_slave_free(struct fsl_dma_slave *slave)
104{
105 struct fsl_dma_hw_addr *addr, *tmp;
106
107 if (slave) {
108 list_for_each_entry_safe(addr, tmp, &slave->addresses, entry) {
109 list_del(&addr->entry);
110 kfree(addr);
111 }
112
113 kfree(slave);
114 }
115}
116
117/**
118 * fsl_dma_slave_alloc - allocate a struct fsl_dma_slave
119 * @gfp: the flags to pass to kmalloc when allocating this structure
120 *
121 * Allocate a struct fsl_dma_slave for use by the DMA_SLAVE API. Returns a new
122 * struct fsl_dma_slave on success, or NULL on failure.
123 */
124static inline struct fsl_dma_slave *fsl_dma_slave_alloc(gfp_t gfp)
125{
126 struct fsl_dma_slave *slave;
127
128 slave = kzalloc(sizeof(*slave), gfp);
129 if (!slave)
130 return NULL;
131
132 INIT_LIST_HEAD(&slave->addresses);
133 return slave;
134}
135
136#endif /* __ARCH_POWERPC_ASM_FSLDMA_H__ */
diff --git a/drivers/dma/fsldma.c b/drivers/dma/fsldma.c
index 7a0cb6064f83..296f9e747fac 100644
--- a/drivers/dma/fsldma.c
+++ b/drivers/dma/fsldma.c
@@ -34,6 +34,7 @@
34#include <linux/dmapool.h> 34#include <linux/dmapool.h>
35#include <linux/of_platform.h> 35#include <linux/of_platform.h>
36 36
37#include <asm/fsldma.h>
37#include "fsldma.h" 38#include "fsldma.h"
38 39
39static void dma_init(struct fsl_dma_chan *fsl_chan) 40static void dma_init(struct fsl_dma_chan *fsl_chan)
@@ -552,6 +553,229 @@ fail:
552} 553}
553 554
554/** 555/**
556 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
557 * @chan: DMA channel
558 * @sgl: scatterlist to transfer to/from
559 * @sg_len: number of entries in @scatterlist
560 * @direction: DMA direction
561 * @flags: DMAEngine flags
562 *
563 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
564 * DMA_SLAVE API, this gets the device-specific information from the
565 * chan->private variable.
566 */
567static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
568 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
569 enum dma_data_direction direction, unsigned long flags)
570{
571 struct fsl_dma_chan *fsl_chan;
572 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
573 struct fsl_dma_slave *slave;
574 struct list_head *tx_list;
575 size_t copy;
576
577 int i;
578 struct scatterlist *sg;
579 size_t sg_used;
580 size_t hw_used;
581 struct fsl_dma_hw_addr *hw;
582 dma_addr_t dma_dst, dma_src;
583
584 if (!chan)
585 return NULL;
586
587 if (!chan->private)
588 return NULL;
589
590 fsl_chan = to_fsl_chan(chan);
591 slave = chan->private;
592
593 if (list_empty(&slave->addresses))
594 return NULL;
595
596 hw = list_first_entry(&slave->addresses, struct fsl_dma_hw_addr, entry);
597 hw_used = 0;
598
599 /*
600 * Build the hardware transaction to copy from the scatterlist to
601 * the hardware, or from the hardware to the scatterlist
602 *
603 * If you are copying from the hardware to the scatterlist and it
604 * takes two hardware entries to fill an entire page, then both
605 * hardware entries will be coalesced into the same page
606 *
607 * If you are copying from the scatterlist to the hardware and a
608 * single page can fill two hardware entries, then the data will
609 * be read out of the page into the first hardware entry, and so on
610 */
611 for_each_sg(sgl, sg, sg_len, i) {
612 sg_used = 0;
613
614 /* Loop until the entire scatterlist entry is used */
615 while (sg_used < sg_dma_len(sg)) {
616
617 /*
618 * If we've used up the current hardware address/length
619 * pair, we need to load a new one
620 *
621 * This is done in a while loop so that descriptors with
622 * length == 0 will be skipped
623 */
624 while (hw_used >= hw->length) {
625
626 /*
627 * If the current hardware entry is the last
628 * entry in the list, we're finished
629 */
630 if (list_is_last(&hw->entry, &slave->addresses))
631 goto finished;
632
633 /* Get the next hardware address/length pair */
634 hw = list_entry(hw->entry.next,
635 struct fsl_dma_hw_addr, entry);
636 hw_used = 0;
637 }
638
639 /* Allocate the link descriptor from DMA pool */
640 new = fsl_dma_alloc_descriptor(fsl_chan);
641 if (!new) {
642 dev_err(fsl_chan->dev, "No free memory for "
643 "link descriptor\n");
644 goto fail;
645 }
646#ifdef FSL_DMA_LD_DEBUG
647 dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new);
648#endif
649
650 /*
651 * Calculate the maximum number of bytes to transfer,
652 * making sure it is less than the DMA controller limit
653 */
654 copy = min_t(size_t, sg_dma_len(sg) - sg_used,
655 hw->length - hw_used);
656 copy = min_t(size_t, copy, FSL_DMA_BCR_MAX_CNT);
657
658 /*
659 * DMA_FROM_DEVICE
660 * from the hardware to the scatterlist
661 *
662 * DMA_TO_DEVICE
663 * from the scatterlist to the hardware
664 */
665 if (direction == DMA_FROM_DEVICE) {
666 dma_src = hw->address + hw_used;
667 dma_dst = sg_dma_address(sg) + sg_used;
668 } else {
669 dma_src = sg_dma_address(sg) + sg_used;
670 dma_dst = hw->address + hw_used;
671 }
672
673 /* Fill in the descriptor */
674 set_desc_cnt(fsl_chan, &new->hw, copy);
675 set_desc_src(fsl_chan, &new->hw, dma_src);
676 set_desc_dest(fsl_chan, &new->hw, dma_dst);
677
678 /*
679 * If this is not the first descriptor, chain the
680 * current descriptor after the previous descriptor
681 */
682 if (!first) {
683 first = new;
684 } else {
685 set_desc_next(fsl_chan, &prev->hw,
686 new->async_tx.phys);
687 }
688
689 new->async_tx.cookie = 0;
690 async_tx_ack(&new->async_tx);
691
692 prev = new;
693 sg_used += copy;
694 hw_used += copy;
695
696 /* Insert the link descriptor into the LD ring */
697 list_add_tail(&new->node, &first->tx_list);
698 }
699 }
700
701finished:
702
703 /* All of the hardware address/length pairs had length == 0 */
704 if (!first || !new)
705 return NULL;
706
707 new->async_tx.flags = flags;
708 new->async_tx.cookie = -EBUSY;
709
710 /* Set End-of-link to the last link descriptor of new list */
711 set_ld_eol(fsl_chan, new);
712
713 /* Enable extra controller features */
714 if (fsl_chan->set_src_loop_size)
715 fsl_chan->set_src_loop_size(fsl_chan, slave->src_loop_size);
716
717 if (fsl_chan->set_dest_loop_size)
718 fsl_chan->set_dest_loop_size(fsl_chan, slave->dst_loop_size);
719
720 if (fsl_chan->toggle_ext_start)
721 fsl_chan->toggle_ext_start(fsl_chan, slave->external_start);
722
723 if (fsl_chan->toggle_ext_pause)
724 fsl_chan->toggle_ext_pause(fsl_chan, slave->external_pause);
725
726 if (fsl_chan->set_request_count)
727 fsl_chan->set_request_count(fsl_chan, slave->request_count);
728
729 return &first->async_tx;
730
731fail:
732 /* If first was not set, then we failed to allocate the very first
733 * descriptor, and we're done */
734 if (!first)
735 return NULL;
736
737 /*
738 * First is set, so all of the descriptors we allocated have been added
739 * to first->tx_list, INCLUDING "first" itself. Therefore we
740 * must traverse the list backwards freeing each descriptor in turn
741 *
742 * We're re-using variables for the loop, oh well
743 */
744 tx_list = &first->tx_list;
745 list_for_each_entry_safe_reverse(new, prev, tx_list, node) {
746 list_del_init(&new->node);
747 dma_pool_free(fsl_chan->desc_pool, new, new->async_tx.phys);
748 }
749
750 return NULL;
751}
752
753static void fsl_dma_device_terminate_all(struct dma_chan *chan)
754{
755 struct fsl_dma_chan *fsl_chan;
756 struct fsl_desc_sw *desc, *tmp;
757 unsigned long flags;
758
759 if (!chan)
760 return;
761
762 fsl_chan = to_fsl_chan(chan);
763
764 /* Halt the DMA engine */
765 dma_halt(fsl_chan);
766
767 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
768
769 /* Remove and free all of the descriptors in the LD queue */
770 list_for_each_entry_safe(desc, tmp, &fsl_chan->ld_queue, node) {
771 list_del(&desc->node);
772 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
773 }
774
775 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
776}
777
778/**
555 * fsl_dma_update_completed_cookie - Update the completed cookie. 779 * fsl_dma_update_completed_cookie - Update the completed cookie.
556 * @fsl_chan : Freescale DMA channel 780 * @fsl_chan : Freescale DMA channel
557 */ 781 */
@@ -977,12 +1201,15 @@ static int __devinit of_fsl_dma_probe(struct of_device *dev,
977 1201
978 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask); 1202 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
979 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask); 1203 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1204 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
980 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources; 1205 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
981 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources; 1206 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
982 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt; 1207 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
983 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy; 1208 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
984 fdev->common.device_is_tx_complete = fsl_dma_is_complete; 1209 fdev->common.device_is_tx_complete = fsl_dma_is_complete;
985 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending; 1210 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1211 fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1212 fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
986 fdev->common.dev = &dev->dev; 1213 fdev->common.dev = &dev->dev;
987 1214
988 fdev->irq = irq_of_parse_and_map(dev->node, 0); 1215 fdev->irq = irq_of_parse_and_map(dev->node, 0);