diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2010-10-24 15:47:25 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2010-10-24 15:47:25 -0400 |
commit | 1765a1fe5d6f82c0eceb1ad10594cfc83759b6d0 (patch) | |
tree | a701020f0fa3a1932a36d174c5fffd20496303a9 | |
parent | bdaf12b41235b0c59949914de022341e77907461 (diff) | |
parent | 2a31339aa014c0d0b97c57d3ebc997732f8f47fc (diff) |
Merge branch 'kvm-updates/2.6.37' of git://git.kernel.org/pub/scm/virt/kvm/kvm
* 'kvm-updates/2.6.37' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (321 commits)
KVM: Drop CONFIG_DMAR dependency around kvm_iommu_map_pages
KVM: Fix signature of kvm_iommu_map_pages stub
KVM: MCE: Send SRAR SIGBUS directly
KVM: MCE: Add MCG_SER_P into KVM_MCE_CAP_SUPPORTED
KVM: fix typo in copyright notice
KVM: Disable interrupts around get_kernel_ns()
KVM: MMU: Avoid sign extension in mmu_alloc_direct_roots() pae root address
KVM: MMU: move access code parsing to FNAME(walk_addr) function
KVM: MMU: audit: check whether have unsync sps after root sync
KVM: MMU: audit: introduce audit_printk to cleanup audit code
KVM: MMU: audit: unregister audit tracepoints before module unloaded
KVM: MMU: audit: fix vcpu's spte walking
KVM: MMU: set access bit for direct mapping
KVM: MMU: cleanup for error mask set while walk guest page table
KVM: MMU: update 'root_hpa' out of loop in PAE shadow path
KVM: x86 emulator: Eliminate compilation warning in x86_decode_insn()
KVM: x86: Fix constant type in kvm_get_time_scale
KVM: VMX: Add AX to list of registers clobbered by guest switch
KVM guest: Move a printk that's using the clock before it's ready
KVM: x86: TSC catchup mode
...
73 files changed, 6583 insertions, 2271 deletions
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index 4cd8b86e00ea..9533af74a127 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt | |||
@@ -1131,9 +1131,13 @@ and is between 256 and 4096 characters. It is defined in the file | |||
1131 | kvm.oos_shadow= [KVM] Disable out-of-sync shadow paging. | 1131 | kvm.oos_shadow= [KVM] Disable out-of-sync shadow paging. |
1132 | Default is 1 (enabled) | 1132 | Default is 1 (enabled) |
1133 | 1133 | ||
1134 | kvm-amd.nested= [KVM,AMD] Allow nested virtualization in KVM/SVM. | 1134 | kvm.mmu_audit= [KVM] This is a R/W parameter which allows audit |
1135 | KVM MMU at runtime. | ||
1135 | Default is 0 (off) | 1136 | Default is 0 (off) |
1136 | 1137 | ||
1138 | kvm-amd.nested= [KVM,AMD] Allow nested virtualization in KVM/SVM. | ||
1139 | Default is 1 (enabled) | ||
1140 | |||
1137 | kvm-amd.npt= [KVM,AMD] Disable nested paging (virtualized MMU) | 1141 | kvm-amd.npt= [KVM,AMD] Disable nested paging (virtualized MMU) |
1138 | for all guests. | 1142 | for all guests. |
1139 | Default is 1 (enabled) if in 64bit or 32bit-PAE mode | 1143 | Default is 1 (enabled) if in 64bit or 32bit-PAE mode |
@@ -1698,6 +1702,8 @@ and is between 256 and 4096 characters. It is defined in the file | |||
1698 | 1702 | ||
1699 | nojitter [IA64] Disables jitter checking for ITC timers. | 1703 | nojitter [IA64] Disables jitter checking for ITC timers. |
1700 | 1704 | ||
1705 | no-kvmclock [X86,KVM] Disable paravirtualized KVM clock driver | ||
1706 | |||
1701 | nolapic [X86-32,APIC] Do not enable or use the local APIC. | 1707 | nolapic [X86-32,APIC] Do not enable or use the local APIC. |
1702 | 1708 | ||
1703 | nolapic_timer [X86-32,APIC] Do not use the local APIC timer. | 1709 | nolapic_timer [X86-32,APIC] Do not use the local APIC timer. |
diff --git a/Documentation/kvm/api.txt b/Documentation/kvm/api.txt index 5f5b64982b1a..b336266bea5e 100644 --- a/Documentation/kvm/api.txt +++ b/Documentation/kvm/api.txt | |||
@@ -320,13 +320,13 @@ struct kvm_translation { | |||
320 | 4.15 KVM_INTERRUPT | 320 | 4.15 KVM_INTERRUPT |
321 | 321 | ||
322 | Capability: basic | 322 | Capability: basic |
323 | Architectures: x86 | 323 | Architectures: x86, ppc |
324 | Type: vcpu ioctl | 324 | Type: vcpu ioctl |
325 | Parameters: struct kvm_interrupt (in) | 325 | Parameters: struct kvm_interrupt (in) |
326 | Returns: 0 on success, -1 on error | 326 | Returns: 0 on success, -1 on error |
327 | 327 | ||
328 | Queues a hardware interrupt vector to be injected. This is only | 328 | Queues a hardware interrupt vector to be injected. This is only |
329 | useful if in-kernel local APIC is not used. | 329 | useful if in-kernel local APIC or equivalent is not used. |
330 | 330 | ||
331 | /* for KVM_INTERRUPT */ | 331 | /* for KVM_INTERRUPT */ |
332 | struct kvm_interrupt { | 332 | struct kvm_interrupt { |
@@ -334,8 +334,37 @@ struct kvm_interrupt { | |||
334 | __u32 irq; | 334 | __u32 irq; |
335 | }; | 335 | }; |
336 | 336 | ||
337 | X86: | ||
338 | |||
337 | Note 'irq' is an interrupt vector, not an interrupt pin or line. | 339 | Note 'irq' is an interrupt vector, not an interrupt pin or line. |
338 | 340 | ||
341 | PPC: | ||
342 | |||
343 | Queues an external interrupt to be injected. This ioctl is overleaded | ||
344 | with 3 different irq values: | ||
345 | |||
346 | a) KVM_INTERRUPT_SET | ||
347 | |||
348 | This injects an edge type external interrupt into the guest once it's ready | ||
349 | to receive interrupts. When injected, the interrupt is done. | ||
350 | |||
351 | b) KVM_INTERRUPT_UNSET | ||
352 | |||
353 | This unsets any pending interrupt. | ||
354 | |||
355 | Only available with KVM_CAP_PPC_UNSET_IRQ. | ||
356 | |||
357 | c) KVM_INTERRUPT_SET_LEVEL | ||
358 | |||
359 | This injects a level type external interrupt into the guest context. The | ||
360 | interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET | ||
361 | is triggered. | ||
362 | |||
363 | Only available with KVM_CAP_PPC_IRQ_LEVEL. | ||
364 | |||
365 | Note that any value for 'irq' other than the ones stated above is invalid | ||
366 | and incurs unexpected behavior. | ||
367 | |||
339 | 4.16 KVM_DEBUG_GUEST | 368 | 4.16 KVM_DEBUG_GUEST |
340 | 369 | ||
341 | Capability: basic | 370 | Capability: basic |
@@ -1013,8 +1042,9 @@ number is just right, the 'nent' field is adjusted to the number of valid | |||
1013 | entries in the 'entries' array, which is then filled. | 1042 | entries in the 'entries' array, which is then filled. |
1014 | 1043 | ||
1015 | The entries returned are the host cpuid as returned by the cpuid instruction, | 1044 | The entries returned are the host cpuid as returned by the cpuid instruction, |
1016 | with unknown or unsupported features masked out. The fields in each entry | 1045 | with unknown or unsupported features masked out. Some features (for example, |
1017 | are defined as follows: | 1046 | x2apic), may not be present in the host cpu, but are exposed by kvm if it can |
1047 | emulate them efficiently. The fields in each entry are defined as follows: | ||
1018 | 1048 | ||
1019 | function: the eax value used to obtain the entry | 1049 | function: the eax value used to obtain the entry |
1020 | index: the ecx value used to obtain the entry (for entries that are | 1050 | index: the ecx value used to obtain the entry (for entries that are |
@@ -1032,6 +1062,29 @@ are defined as follows: | |||
1032 | eax, ebx, ecx, edx: the values returned by the cpuid instruction for | 1062 | eax, ebx, ecx, edx: the values returned by the cpuid instruction for |
1033 | this function/index combination | 1063 | this function/index combination |
1034 | 1064 | ||
1065 | 4.46 KVM_PPC_GET_PVINFO | ||
1066 | |||
1067 | Capability: KVM_CAP_PPC_GET_PVINFO | ||
1068 | Architectures: ppc | ||
1069 | Type: vm ioctl | ||
1070 | Parameters: struct kvm_ppc_pvinfo (out) | ||
1071 | Returns: 0 on success, !0 on error | ||
1072 | |||
1073 | struct kvm_ppc_pvinfo { | ||
1074 | __u32 flags; | ||
1075 | __u32 hcall[4]; | ||
1076 | __u8 pad[108]; | ||
1077 | }; | ||
1078 | |||
1079 | This ioctl fetches PV specific information that need to be passed to the guest | ||
1080 | using the device tree or other means from vm context. | ||
1081 | |||
1082 | For now the only implemented piece of information distributed here is an array | ||
1083 | of 4 instructions that make up a hypercall. | ||
1084 | |||
1085 | If any additional field gets added to this structure later on, a bit for that | ||
1086 | additional piece of information will be set in the flags bitmap. | ||
1087 | |||
1035 | 5. The kvm_run structure | 1088 | 5. The kvm_run structure |
1036 | 1089 | ||
1037 | Application code obtains a pointer to the kvm_run structure by | 1090 | Application code obtains a pointer to the kvm_run structure by |
diff --git a/Documentation/kvm/ppc-pv.txt b/Documentation/kvm/ppc-pv.txt new file mode 100644 index 000000000000..a7f2244b3be9 --- /dev/null +++ b/Documentation/kvm/ppc-pv.txt | |||
@@ -0,0 +1,196 @@ | |||
1 | The PPC KVM paravirtual interface | ||
2 | ================================= | ||
3 | |||
4 | The basic execution principle by which KVM on PowerPC works is to run all kernel | ||
5 | space code in PR=1 which is user space. This way we trap all privileged | ||
6 | instructions and can emulate them accordingly. | ||
7 | |||
8 | Unfortunately that is also the downfall. There are quite some privileged | ||
9 | instructions that needlessly return us to the hypervisor even though they | ||
10 | could be handled differently. | ||
11 | |||
12 | This is what the PPC PV interface helps with. It takes privileged instructions | ||
13 | and transforms them into unprivileged ones with some help from the hypervisor. | ||
14 | This cuts down virtualization costs by about 50% on some of my benchmarks. | ||
15 | |||
16 | The code for that interface can be found in arch/powerpc/kernel/kvm* | ||
17 | |||
18 | Querying for existence | ||
19 | ====================== | ||
20 | |||
21 | To find out if we're running on KVM or not, we leverage the device tree. When | ||
22 | Linux is running on KVM, a node /hypervisor exists. That node contains a | ||
23 | compatible property with the value "linux,kvm". | ||
24 | |||
25 | Once you determined you're running under a PV capable KVM, you can now use | ||
26 | hypercalls as described below. | ||
27 | |||
28 | KVM hypercalls | ||
29 | ============== | ||
30 | |||
31 | Inside the device tree's /hypervisor node there's a property called | ||
32 | 'hypercall-instructions'. This property contains at most 4 opcodes that make | ||
33 | up the hypercall. To call a hypercall, just call these instructions. | ||
34 | |||
35 | The parameters are as follows: | ||
36 | |||
37 | Register IN OUT | ||
38 | |||
39 | r0 - volatile | ||
40 | r3 1st parameter Return code | ||
41 | r4 2nd parameter 1st output value | ||
42 | r5 3rd parameter 2nd output value | ||
43 | r6 4th parameter 3rd output value | ||
44 | r7 5th parameter 4th output value | ||
45 | r8 6th parameter 5th output value | ||
46 | r9 7th parameter 6th output value | ||
47 | r10 8th parameter 7th output value | ||
48 | r11 hypercall number 8th output value | ||
49 | r12 - volatile | ||
50 | |||
51 | Hypercall definitions are shared in generic code, so the same hypercall numbers | ||
52 | apply for x86 and powerpc alike with the exception that each KVM hypercall | ||
53 | also needs to be ORed with the KVM vendor code which is (42 << 16). | ||
54 | |||
55 | Return codes can be as follows: | ||
56 | |||
57 | Code Meaning | ||
58 | |||
59 | 0 Success | ||
60 | 12 Hypercall not implemented | ||
61 | <0 Error | ||
62 | |||
63 | The magic page | ||
64 | ============== | ||
65 | |||
66 | To enable communication between the hypervisor and guest there is a new shared | ||
67 | page that contains parts of supervisor visible register state. The guest can | ||
68 | map this shared page using the KVM hypercall KVM_HC_PPC_MAP_MAGIC_PAGE. | ||
69 | |||
70 | With this hypercall issued the guest always gets the magic page mapped at the | ||
71 | desired location in effective and physical address space. For now, we always | ||
72 | map the page to -4096. This way we can access it using absolute load and store | ||
73 | functions. The following instruction reads the first field of the magic page: | ||
74 | |||
75 | ld rX, -4096(0) | ||
76 | |||
77 | The interface is designed to be extensible should there be need later to add | ||
78 | additional registers to the magic page. If you add fields to the magic page, | ||
79 | also define a new hypercall feature to indicate that the host can give you more | ||
80 | registers. Only if the host supports the additional features, make use of them. | ||
81 | |||
82 | The magic page has the following layout as described in | ||
83 | arch/powerpc/include/asm/kvm_para.h: | ||
84 | |||
85 | struct kvm_vcpu_arch_shared { | ||
86 | __u64 scratch1; | ||
87 | __u64 scratch2; | ||
88 | __u64 scratch3; | ||
89 | __u64 critical; /* Guest may not get interrupts if == r1 */ | ||
90 | __u64 sprg0; | ||
91 | __u64 sprg1; | ||
92 | __u64 sprg2; | ||
93 | __u64 sprg3; | ||
94 | __u64 srr0; | ||
95 | __u64 srr1; | ||
96 | __u64 dar; | ||
97 | __u64 msr; | ||
98 | __u32 dsisr; | ||
99 | __u32 int_pending; /* Tells the guest if we have an interrupt */ | ||
100 | }; | ||
101 | |||
102 | Additions to the page must only occur at the end. Struct fields are always 32 | ||
103 | or 64 bit aligned, depending on them being 32 or 64 bit wide respectively. | ||
104 | |||
105 | Magic page features | ||
106 | =================== | ||
107 | |||
108 | When mapping the magic page using the KVM hypercall KVM_HC_PPC_MAP_MAGIC_PAGE, | ||
109 | a second return value is passed to the guest. This second return value contains | ||
110 | a bitmap of available features inside the magic page. | ||
111 | |||
112 | The following enhancements to the magic page are currently available: | ||
113 | |||
114 | KVM_MAGIC_FEAT_SR Maps SR registers r/w in the magic page | ||
115 | |||
116 | For enhanced features in the magic page, please check for the existence of the | ||
117 | feature before using them! | ||
118 | |||
119 | MSR bits | ||
120 | ======== | ||
121 | |||
122 | The MSR contains bits that require hypervisor intervention and bits that do | ||
123 | not require direct hypervisor intervention because they only get interpreted | ||
124 | when entering the guest or don't have any impact on the hypervisor's behavior. | ||
125 | |||
126 | The following bits are safe to be set inside the guest: | ||
127 | |||
128 | MSR_EE | ||
129 | MSR_RI | ||
130 | MSR_CR | ||
131 | MSR_ME | ||
132 | |||
133 | If any other bit changes in the MSR, please still use mtmsr(d). | ||
134 | |||
135 | Patched instructions | ||
136 | ==================== | ||
137 | |||
138 | The "ld" and "std" instructions are transormed to "lwz" and "stw" instructions | ||
139 | respectively on 32 bit systems with an added offset of 4 to accomodate for big | ||
140 | endianness. | ||
141 | |||
142 | The following is a list of mapping the Linux kernel performs when running as | ||
143 | guest. Implementing any of those mappings is optional, as the instruction traps | ||
144 | also act on the shared page. So calling privileged instructions still works as | ||
145 | before. | ||
146 | |||
147 | From To | ||
148 | ==== == | ||
149 | |||
150 | mfmsr rX ld rX, magic_page->msr | ||
151 | mfsprg rX, 0 ld rX, magic_page->sprg0 | ||
152 | mfsprg rX, 1 ld rX, magic_page->sprg1 | ||
153 | mfsprg rX, 2 ld rX, magic_page->sprg2 | ||
154 | mfsprg rX, 3 ld rX, magic_page->sprg3 | ||
155 | mfsrr0 rX ld rX, magic_page->srr0 | ||
156 | mfsrr1 rX ld rX, magic_page->srr1 | ||
157 | mfdar rX ld rX, magic_page->dar | ||
158 | mfdsisr rX lwz rX, magic_page->dsisr | ||
159 | |||
160 | mtmsr rX std rX, magic_page->msr | ||
161 | mtsprg 0, rX std rX, magic_page->sprg0 | ||
162 | mtsprg 1, rX std rX, magic_page->sprg1 | ||
163 | mtsprg 2, rX std rX, magic_page->sprg2 | ||
164 | mtsprg 3, rX std rX, magic_page->sprg3 | ||
165 | mtsrr0 rX std rX, magic_page->srr0 | ||
166 | mtsrr1 rX std rX, magic_page->srr1 | ||
167 | mtdar rX std rX, magic_page->dar | ||
168 | mtdsisr rX stw rX, magic_page->dsisr | ||
169 | |||
170 | tlbsync nop | ||
171 | |||
172 | mtmsrd rX, 0 b <special mtmsr section> | ||
173 | mtmsr rX b <special mtmsr section> | ||
174 | |||
175 | mtmsrd rX, 1 b <special mtmsrd section> | ||
176 | |||
177 | [Book3S only] | ||
178 | mtsrin rX, rY b <special mtsrin section> | ||
179 | |||
180 | [BookE only] | ||
181 | wrteei [0|1] b <special wrteei section> | ||
182 | |||
183 | |||
184 | Some instructions require more logic to determine what's going on than a load | ||
185 | or store instruction can deliver. To enable patching of those, we keep some | ||
186 | RAM around where we can live translate instructions to. What happens is the | ||
187 | following: | ||
188 | |||
189 | 1) copy emulation code to memory | ||
190 | 2) patch that code to fit the emulated instruction | ||
191 | 3) patch that code to return to the original pc + 4 | ||
192 | 4) patch the original instruction to branch to the new code | ||
193 | |||
194 | That way we can inject an arbitrary amount of code as replacement for a single | ||
195 | instruction. This allows us to check for pending interrupts when setting EE=1 | ||
196 | for example. | ||
diff --git a/Documentation/kvm/timekeeping.txt b/Documentation/kvm/timekeeping.txt new file mode 100644 index 000000000000..0c5033a58c9e --- /dev/null +++ b/Documentation/kvm/timekeeping.txt | |||
@@ -0,0 +1,612 @@ | |||
1 | |||
2 | Timekeeping Virtualization for X86-Based Architectures | ||
3 | |||
4 | Zachary Amsden <zamsden@redhat.com> | ||
5 | Copyright (c) 2010, Red Hat. All rights reserved. | ||
6 | |||
7 | 1) Overview | ||
8 | 2) Timing Devices | ||
9 | 3) TSC Hardware | ||
10 | 4) Virtualization Problems | ||
11 | |||
12 | ========================================================================= | ||
13 | |||
14 | 1) Overview | ||
15 | |||
16 | One of the most complicated parts of the X86 platform, and specifically, | ||
17 | the virtualization of this platform is the plethora of timing devices available | ||
18 | and the complexity of emulating those devices. In addition, virtualization of | ||
19 | time introduces a new set of challenges because it introduces a multiplexed | ||
20 | division of time beyond the control of the guest CPU. | ||
21 | |||
22 | First, we will describe the various timekeeping hardware available, then | ||
23 | present some of the problems which arise and solutions available, giving | ||
24 | specific recommendations for certain classes of KVM guests. | ||
25 | |||
26 | The purpose of this document is to collect data and information relevant to | ||
27 | timekeeping which may be difficult to find elsewhere, specifically, | ||
28 | information relevant to KVM and hardware-based virtualization. | ||
29 | |||
30 | ========================================================================= | ||
31 | |||
32 | 2) Timing Devices | ||
33 | |||
34 | First we discuss the basic hardware devices available. TSC and the related | ||
35 | KVM clock are special enough to warrant a full exposition and are described in | ||
36 | the following section. | ||
37 | |||
38 | 2.1) i8254 - PIT | ||
39 | |||
40 | One of the first timer devices available is the programmable interrupt timer, | ||
41 | or PIT. The PIT has a fixed frequency 1.193182 MHz base clock and three | ||
42 | channels which can be programmed to deliver periodic or one-shot interrupts. | ||
43 | These three channels can be configured in different modes and have individual | ||
44 | counters. Channel 1 and 2 were not available for general use in the original | ||
45 | IBM PC, and historically were connected to control RAM refresh and the PC | ||
46 | speaker. Now the PIT is typically integrated as part of an emulated chipset | ||
47 | and a separate physical PIT is not used. | ||
48 | |||
49 | The PIT uses I/O ports 0x40 - 0x43. Access to the 16-bit counters is done | ||
50 | using single or multiple byte access to the I/O ports. There are 6 modes | ||
51 | available, but not all modes are available to all timers, as only timer 2 | ||
52 | has a connected gate input, required for modes 1 and 5. The gate line is | ||
53 | controlled by port 61h, bit 0, as illustrated in the following diagram. | ||
54 | |||
55 | -------------- ---------------- | ||
56 | | | | | | ||
57 | | 1.1932 MHz |---------->| CLOCK OUT | ---------> IRQ 0 | ||
58 | | Clock | | | | | ||
59 | -------------- | +->| GATE TIMER 0 | | ||
60 | | ---------------- | ||
61 | | | ||
62 | | ---------------- | ||
63 | | | | | ||
64 | |------>| CLOCK OUT | ---------> 66.3 KHZ DRAM | ||
65 | | | | (aka /dev/null) | ||
66 | | +->| GATE TIMER 1 | | ||
67 | | ---------------- | ||
68 | | | ||
69 | | ---------------- | ||
70 | | | | | ||
71 | |------>| CLOCK OUT | ---------> Port 61h, bit 5 | ||
72 | | | | | ||
73 | Port 61h, bit 0 ---------->| GATE TIMER 2 | \_.---- ____ | ||
74 | ---------------- _| )--|LPF|---Speaker | ||
75 | / *---- \___/ | ||
76 | Port 61h, bit 1 -----------------------------------/ | ||
77 | |||
78 | The timer modes are now described. | ||
79 | |||
80 | Mode 0: Single Timeout. This is a one-shot software timeout that counts down | ||
81 | when the gate is high (always true for timers 0 and 1). When the count | ||
82 | reaches zero, the output goes high. | ||
83 | |||
84 | Mode 1: Triggered One-shot. The output is intially set high. When the gate | ||
85 | line is set high, a countdown is initiated (which does not stop if the gate is | ||
86 | lowered), during which the output is set low. When the count reaches zero, | ||
87 | the output goes high. | ||
88 | |||
89 | Mode 2: Rate Generator. The output is initially set high. When the countdown | ||
90 | reaches 1, the output goes low for one count and then returns high. The value | ||
91 | is reloaded and the countdown automatically resumes. If the gate line goes | ||
92 | low, the count is halted. If the output is low when the gate is lowered, the | ||
93 | output automatically goes high (this only affects timer 2). | ||
94 | |||
95 | Mode 3: Square Wave. This generates a high / low square wave. The count | ||
96 | determines the length of the pulse, which alternates between high and low | ||
97 | when zero is reached. The count only proceeds when gate is high and is | ||
98 | automatically reloaded on reaching zero. The count is decremented twice at | ||
99 | each clock to generate a full high / low cycle at the full periodic rate. | ||
100 | If the count is even, the clock remains high for N/2 counts and low for N/2 | ||
101 | counts; if the clock is odd, the clock is high for (N+1)/2 counts and low | ||
102 | for (N-1)/2 counts. Only even values are latched by the counter, so odd | ||
103 | values are not observed when reading. This is the intended mode for timer 2, | ||
104 | which generates sine-like tones by low-pass filtering the square wave output. | ||
105 | |||
106 | Mode 4: Software Strobe. After programming this mode and loading the counter, | ||
107 | the output remains high until the counter reaches zero. Then the output | ||
108 | goes low for 1 clock cycle and returns high. The counter is not reloaded. | ||
109 | Counting only occurs when gate is high. | ||
110 | |||
111 | Mode 5: Hardware Strobe. After programming and loading the counter, the | ||
112 | output remains high. When the gate is raised, a countdown is initiated | ||
113 | (which does not stop if the gate is lowered). When the counter reaches zero, | ||
114 | the output goes low for 1 clock cycle and then returns high. The counter is | ||
115 | not reloaded. | ||
116 | |||
117 | In addition to normal binary counting, the PIT supports BCD counting. The | ||
118 | command port, 0x43 is used to set the counter and mode for each of the three | ||
119 | timers. | ||
120 | |||
121 | PIT commands, issued to port 0x43, using the following bit encoding: | ||
122 | |||
123 | Bit 7-4: Command (See table below) | ||
124 | Bit 3-1: Mode (000 = Mode 0, 101 = Mode 5, 11X = undefined) | ||
125 | Bit 0 : Binary (0) / BCD (1) | ||
126 | |||
127 | Command table: | ||
128 | |||
129 | 0000 - Latch Timer 0 count for port 0x40 | ||
130 | sample and hold the count to be read in port 0x40; | ||
131 | additional commands ignored until counter is read; | ||
132 | mode bits ignored. | ||
133 | |||
134 | 0001 - Set Timer 0 LSB mode for port 0x40 | ||
135 | set timer to read LSB only and force MSB to zero; | ||
136 | mode bits set timer mode | ||
137 | |||
138 | 0010 - Set Timer 0 MSB mode for port 0x40 | ||
139 | set timer to read MSB only and force LSB to zero; | ||
140 | mode bits set timer mode | ||
141 | |||
142 | 0011 - Set Timer 0 16-bit mode for port 0x40 | ||
143 | set timer to read / write LSB first, then MSB; | ||
144 | mode bits set timer mode | ||
145 | |||
146 | 0100 - Latch Timer 1 count for port 0x41 - as described above | ||
147 | 0101 - Set Timer 1 LSB mode for port 0x41 - as described above | ||
148 | 0110 - Set Timer 1 MSB mode for port 0x41 - as described above | ||
149 | 0111 - Set Timer 1 16-bit mode for port 0x41 - as described above | ||
150 | |||
151 | 1000 - Latch Timer 2 count for port 0x42 - as described above | ||
152 | 1001 - Set Timer 2 LSB mode for port 0x42 - as described above | ||
153 | 1010 - Set Timer 2 MSB mode for port 0x42 - as described above | ||
154 | 1011 - Set Timer 2 16-bit mode for port 0x42 as described above | ||
155 | |||
156 | 1101 - General counter latch | ||
157 | Latch combination of counters into corresponding ports | ||
158 | Bit 3 = Counter 2 | ||
159 | Bit 2 = Counter 1 | ||
160 | Bit 1 = Counter 0 | ||
161 | Bit 0 = Unused | ||
162 | |||
163 | 1110 - Latch timer status | ||
164 | Latch combination of counter mode into corresponding ports | ||
165 | Bit 3 = Counter 2 | ||
166 | Bit 2 = Counter 1 | ||
167 | Bit 1 = Counter 0 | ||
168 | |||
169 | The output of ports 0x40-0x42 following this command will be: | ||
170 | |||
171 | Bit 7 = Output pin | ||
172 | Bit 6 = Count loaded (0 if timer has expired) | ||
173 | Bit 5-4 = Read / Write mode | ||
174 | 01 = MSB only | ||
175 | 10 = LSB only | ||
176 | 11 = LSB / MSB (16-bit) | ||
177 | Bit 3-1 = Mode | ||
178 | Bit 0 = Binary (0) / BCD mode (1) | ||
179 | |||
180 | 2.2) RTC | ||
181 | |||
182 | The second device which was available in the original PC was the MC146818 real | ||
183 | time clock. The original device is now obsolete, and usually emulated by the | ||
184 | system chipset, sometimes by an HPET and some frankenstein IRQ routing. | ||
185 | |||
186 | The RTC is accessed through CMOS variables, which uses an index register to | ||
187 | control which bytes are read. Since there is only one index register, read | ||
188 | of the CMOS and read of the RTC require lock protection (in addition, it is | ||
189 | dangerous to allow userspace utilities such as hwclock to have direct RTC | ||
190 | access, as they could corrupt kernel reads and writes of CMOS memory). | ||
191 | |||
192 | The RTC generates an interrupt which is usually routed to IRQ 8. The interrupt | ||
193 | can function as a periodic timer, an additional once a day alarm, and can issue | ||
194 | interrupts after an update of the CMOS registers by the MC146818 is complete. | ||
195 | The type of interrupt is signalled in the RTC status registers. | ||
196 | |||
197 | The RTC will update the current time fields by battery power even while the | ||
198 | system is off. The current time fields should not be read while an update is | ||
199 | in progress, as indicated in the status register. | ||
200 | |||
201 | The clock uses a 32.768kHz crystal, so bits 6-4 of register A should be | ||
202 | programmed to a 32kHz divider if the RTC is to count seconds. | ||
203 | |||
204 | This is the RAM map originally used for the RTC/CMOS: | ||
205 | |||
206 | Location Size Description | ||
207 | ------------------------------------------ | ||
208 | 00h byte Current second (BCD) | ||
209 | 01h byte Seconds alarm (BCD) | ||
210 | 02h byte Current minute (BCD) | ||
211 | 03h byte Minutes alarm (BCD) | ||
212 | 04h byte Current hour (BCD) | ||
213 | 05h byte Hours alarm (BCD) | ||
214 | 06h byte Current day of week (BCD) | ||
215 | 07h byte Current day of month (BCD) | ||
216 | 08h byte Current month (BCD) | ||
217 | 09h byte Current year (BCD) | ||
218 | 0Ah byte Register A | ||
219 | bit 7 = Update in progress | ||
220 | bit 6-4 = Divider for clock | ||
221 | 000 = 4.194 MHz | ||
222 | 001 = 1.049 MHz | ||
223 | 010 = 32 kHz | ||
224 | 10X = test modes | ||
225 | 110 = reset / disable | ||
226 | 111 = reset / disable | ||
227 | bit 3-0 = Rate selection for periodic interrupt | ||
228 | 000 = periodic timer disabled | ||
229 | 001 = 3.90625 uS | ||
230 | 010 = 7.8125 uS | ||
231 | 011 = .122070 mS | ||
232 | 100 = .244141 mS | ||
233 | ... | ||
234 | 1101 = 125 mS | ||
235 | 1110 = 250 mS | ||
236 | 1111 = 500 mS | ||
237 | 0Bh byte Register B | ||
238 | bit 7 = Run (0) / Halt (1) | ||
239 | bit 6 = Periodic interrupt enable | ||
240 | bit 5 = Alarm interrupt enable | ||
241 | bit 4 = Update-ended interrupt enable | ||
242 | bit 3 = Square wave interrupt enable | ||
243 | bit 2 = BCD calendar (0) / Binary (1) | ||
244 | bit 1 = 12-hour mode (0) / 24-hour mode (1) | ||
245 | bit 0 = 0 (DST off) / 1 (DST enabled) | ||
246 | OCh byte Register C (read only) | ||
247 | bit 7 = interrupt request flag (IRQF) | ||
248 | bit 6 = periodic interrupt flag (PF) | ||
249 | bit 5 = alarm interrupt flag (AF) | ||
250 | bit 4 = update interrupt flag (UF) | ||
251 | bit 3-0 = reserved | ||
252 | ODh byte Register D (read only) | ||
253 | bit 7 = RTC has power | ||
254 | bit 6-0 = reserved | ||
255 | 32h byte Current century BCD (*) | ||
256 | (*) location vendor specific and now determined from ACPI global tables | ||
257 | |||
258 | 2.3) APIC | ||
259 | |||
260 | On Pentium and later processors, an on-board timer is available to each CPU | ||
261 | as part of the Advanced Programmable Interrupt Controller. The APIC is | ||
262 | accessed through memory-mapped registers and provides interrupt service to each | ||
263 | CPU, used for IPIs and local timer interrupts. | ||
264 | |||
265 | Although in theory the APIC is a safe and stable source for local interrupts, | ||
266 | in practice, many bugs and glitches have occurred due to the special nature of | ||
267 | the APIC CPU-local memory-mapped hardware. Beware that CPU errata may affect | ||
268 | the use of the APIC and that workarounds may be required. In addition, some of | ||
269 | these workarounds pose unique constraints for virtualization - requiring either | ||
270 | extra overhead incurred from extra reads of memory-mapped I/O or additional | ||
271 | functionality that may be more computationally expensive to implement. | ||
272 | |||
273 | Since the APIC is documented quite well in the Intel and AMD manuals, we will | ||
274 | avoid repetition of the detail here. It should be pointed out that the APIC | ||
275 | timer is programmed through the LVT (local vector timer) register, is capable | ||
276 | of one-shot or periodic operation, and is based on the bus clock divided down | ||
277 | by the programmable divider register. | ||
278 | |||
279 | 2.4) HPET | ||
280 | |||
281 | HPET is quite complex, and was originally intended to replace the PIT / RTC | ||
282 | support of the X86 PC. It remains to be seen whether that will be the case, as | ||
283 | the de facto standard of PC hardware is to emulate these older devices. Some | ||
284 | systems designated as legacy free may support only the HPET as a hardware timer | ||
285 | device. | ||
286 | |||
287 | The HPET spec is rather loose and vague, requiring at least 3 hardware timers, | ||
288 | but allowing implementation freedom to support many more. It also imposes no | ||
289 | fixed rate on the timer frequency, but does impose some extremal values on | ||
290 | frequency, error and slew. | ||
291 | |||
292 | In general, the HPET is recommended as a high precision (compared to PIT /RTC) | ||
293 | time source which is independent of local variation (as there is only one HPET | ||
294 | in any given system). The HPET is also memory-mapped, and its presence is | ||
295 | indicated through ACPI tables by the BIOS. | ||
296 | |||
297 | Detailed specification of the HPET is beyond the current scope of this | ||
298 | document, as it is also very well documented elsewhere. | ||
299 | |||
300 | 2.5) Offboard Timers | ||
301 | |||
302 | Several cards, both proprietary (watchdog boards) and commonplace (e1000) have | ||
303 | timing chips built into the cards which may have registers which are accessible | ||
304 | to kernel or user drivers. To the author's knowledge, using these to generate | ||
305 | a clocksource for a Linux or other kernel has not yet been attempted and is in | ||
306 | general frowned upon as not playing by the agreed rules of the game. Such a | ||
307 | timer device would require additional support to be virtualized properly and is | ||
308 | not considered important at this time as no known operating system does this. | ||
309 | |||
310 | ========================================================================= | ||
311 | |||
312 | 3) TSC Hardware | ||
313 | |||
314 | The TSC or time stamp counter is relatively simple in theory; it counts | ||
315 | instruction cycles issued by the processor, which can be used as a measure of | ||
316 | time. In practice, due to a number of problems, it is the most complicated | ||
317 | timekeeping device to use. | ||
318 | |||
319 | The TSC is represented internally as a 64-bit MSR which can be read with the | ||
320 | RDMSR, RDTSC, or RDTSCP (when available) instructions. In the past, hardware | ||
321 | limitations made it possible to write the TSC, but generally on old hardware it | ||
322 | was only possible to write the low 32-bits of the 64-bit counter, and the upper | ||
323 | 32-bits of the counter were cleared. Now, however, on Intel processors family | ||
324 | 0Fh, for models 3, 4 and 6, and family 06h, models e and f, this restriction | ||
325 | has been lifted and all 64-bits are writable. On AMD systems, the ability to | ||
326 | write the TSC MSR is not an architectural guarantee. | ||
327 | |||
328 | The TSC is accessible from CPL-0 and conditionally, for CPL > 0 software by | ||
329 | means of the CR4.TSD bit, which when enabled, disables CPL > 0 TSC access. | ||
330 | |||
331 | Some vendors have implemented an additional instruction, RDTSCP, which returns | ||
332 | atomically not just the TSC, but an indicator which corresponds to the | ||
333 | processor number. This can be used to index into an array of TSC variables to | ||
334 | determine offset information in SMP systems where TSCs are not synchronized. | ||
335 | The presence of this instruction must be determined by consulting CPUID feature | ||
336 | bits. | ||
337 | |||
338 | Both VMX and SVM provide extension fields in the virtualization hardware which | ||
339 | allows the guest visible TSC to be offset by a constant. Newer implementations | ||
340 | promise to allow the TSC to additionally be scaled, but this hardware is not | ||
341 | yet widely available. | ||
342 | |||
343 | 3.1) TSC synchronization | ||
344 | |||
345 | The TSC is a CPU-local clock in most implementations. This means, on SMP | ||
346 | platforms, the TSCs of different CPUs may start at different times depending | ||
347 | on when the CPUs are powered on. Generally, CPUs on the same die will share | ||
348 | the same clock, however, this is not always the case. | ||
349 | |||
350 | The BIOS may attempt to resynchronize the TSCs during the poweron process and | ||
351 | the operating system or other system software may attempt to do this as well. | ||
352 | Several hardware limitations make the problem worse - if it is not possible to | ||
353 | write the full 64-bits of the TSC, it may be impossible to match the TSC in | ||
354 | newly arriving CPUs to that of the rest of the system, resulting in | ||
355 | unsynchronized TSCs. This may be done by BIOS or system software, but in | ||
356 | practice, getting a perfectly synchronized TSC will not be possible unless all | ||
357 | values are read from the same clock, which generally only is possible on single | ||
358 | socket systems or those with special hardware support. | ||
359 | |||
360 | 3.2) TSC and CPU hotplug | ||
361 | |||
362 | As touched on already, CPUs which arrive later than the boot time of the system | ||
363 | may not have a TSC value that is synchronized with the rest of the system. | ||
364 | Either system software, BIOS, or SMM code may actually try to establish the TSC | ||
365 | to a value matching the rest of the system, but a perfect match is usually not | ||
366 | a guarantee. This can have the effect of bringing a system from a state where | ||
367 | TSC is synchronized back to a state where TSC synchronization flaws, however | ||
368 | small, may be exposed to the OS and any virtualization environment. | ||
369 | |||
370 | 3.3) TSC and multi-socket / NUMA | ||
371 | |||
372 | Multi-socket systems, especially large multi-socket systems are likely to have | ||
373 | individual clocksources rather than a single, universally distributed clock. | ||
374 | Since these clocks are driven by different crystals, they will not have | ||
375 | perfectly matched frequency, and temperature and electrical variations will | ||
376 | cause the CPU clocks, and thus the TSCs to drift over time. Depending on the | ||
377 | exact clock and bus design, the drift may or may not be fixed in absolute | ||
378 | error, and may accumulate over time. | ||
379 | |||
380 | In addition, very large systems may deliberately slew the clocks of individual | ||
381 | cores. This technique, known as spread-spectrum clocking, reduces EMI at the | ||
382 | clock frequency and harmonics of it, which may be required to pass FCC | ||
383 | standards for telecommunications and computer equipment. | ||
384 | |||
385 | It is recommended not to trust the TSCs to remain synchronized on NUMA or | ||
386 | multiple socket systems for these reasons. | ||
387 | |||
388 | 3.4) TSC and C-states | ||
389 | |||
390 | C-states, or idling states of the processor, especially C1E and deeper sleep | ||
391 | states may be problematic for TSC as well. The TSC may stop advancing in such | ||
392 | a state, resulting in a TSC which is behind that of other CPUs when execution | ||
393 | is resumed. Such CPUs must be detected and flagged by the operating system | ||
394 | based on CPU and chipset identifications. | ||
395 | |||
396 | The TSC in such a case may be corrected by catching it up to a known external | ||
397 | clocksource. | ||
398 | |||
399 | 3.5) TSC frequency change / P-states | ||
400 | |||
401 | To make things slightly more interesting, some CPUs may change frequency. They | ||
402 | may or may not run the TSC at the same rate, and because the frequency change | ||
403 | may be staggered or slewed, at some points in time, the TSC rate may not be | ||
404 | known other than falling within a range of values. In this case, the TSC will | ||
405 | not be a stable time source, and must be calibrated against a known, stable, | ||
406 | external clock to be a usable source of time. | ||
407 | |||
408 | Whether the TSC runs at a constant rate or scales with the P-state is model | ||
409 | dependent and must be determined by inspecting CPUID, chipset or vendor | ||
410 | specific MSR fields. | ||
411 | |||
412 | In addition, some vendors have known bugs where the P-state is actually | ||
413 | compensated for properly during normal operation, but when the processor is | ||
414 | inactive, the P-state may be raised temporarily to service cache misses from | ||
415 | other processors. In such cases, the TSC on halted CPUs could advance faster | ||
416 | than that of non-halted processors. AMD Turion processors are known to have | ||
417 | this problem. | ||
418 | |||
419 | 3.6) TSC and STPCLK / T-states | ||
420 | |||
421 | External signals given to the processor may also have the effect of stopping | ||
422 | the TSC. This is typically done for thermal emergency power control to prevent | ||
423 | an overheating condition, and typically, there is no way to detect that this | ||
424 | condition has happened. | ||
425 | |||
426 | 3.7) TSC virtualization - VMX | ||
427 | |||
428 | VMX provides conditional trapping of RDTSC, RDMSR, WRMSR and RDTSCP | ||
429 | instructions, which is enough for full virtualization of TSC in any manner. In | ||
430 | addition, VMX allows passing through the host TSC plus an additional TSC_OFFSET | ||
431 | field specified in the VMCS. Special instructions must be used to read and | ||
432 | write the VMCS field. | ||
433 | |||
434 | 3.8) TSC virtualization - SVM | ||
435 | |||
436 | SVM provides conditional trapping of RDTSC, RDMSR, WRMSR and RDTSCP | ||
437 | instructions, which is enough for full virtualization of TSC in any manner. In | ||
438 | addition, SVM allows passing through the host TSC plus an additional offset | ||
439 | field specified in the SVM control block. | ||
440 | |||
441 | 3.9) TSC feature bits in Linux | ||
442 | |||
443 | In summary, there is no way to guarantee the TSC remains in perfect | ||
444 | synchronization unless it is explicitly guaranteed by the architecture. Even | ||
445 | if so, the TSCs in multi-sockets or NUMA systems may still run independently | ||
446 | despite being locally consistent. | ||
447 | |||
448 | The following feature bits are used by Linux to signal various TSC attributes, | ||
449 | but they can only be taken to be meaningful for UP or single node systems. | ||
450 | |||
451 | X86_FEATURE_TSC : The TSC is available in hardware | ||
452 | X86_FEATURE_RDTSCP : The RDTSCP instruction is available | ||
453 | X86_FEATURE_CONSTANT_TSC : The TSC rate is unchanged with P-states | ||
454 | X86_FEATURE_NONSTOP_TSC : The TSC does not stop in C-states | ||
455 | X86_FEATURE_TSC_RELIABLE : TSC sync checks are skipped (VMware) | ||
456 | |||
457 | 4) Virtualization Problems | ||
458 | |||
459 | Timekeeping is especially problematic for virtualization because a number of | ||
460 | challenges arise. The most obvious problem is that time is now shared between | ||
461 | the host and, potentially, a number of virtual machines. Thus the virtual | ||
462 | operating system does not run with 100% usage of the CPU, despite the fact that | ||
463 | it may very well make that assumption. It may expect it to remain true to very | ||
464 | exacting bounds when interrupt sources are disabled, but in reality only its | ||
465 | virtual interrupt sources are disabled, and the machine may still be preempted | ||
466 | at any time. This causes problems as the passage of real time, the injection | ||
467 | of machine interrupts and the associated clock sources are no longer completely | ||
468 | synchronized with real time. | ||
469 | |||
470 | This same problem can occur on native harware to a degree, as SMM mode may | ||
471 | steal cycles from the naturally on X86 systems when SMM mode is used by the | ||
472 | BIOS, but not in such an extreme fashion. However, the fact that SMM mode may | ||
473 | cause similar problems to virtualization makes it a good justification for | ||
474 | solving many of these problems on bare metal. | ||
475 | |||
476 | 4.1) Interrupt clocking | ||
477 | |||
478 | One of the most immediate problems that occurs with legacy operating systems | ||
479 | is that the system timekeeping routines are often designed to keep track of | ||
480 | time by counting periodic interrupts. These interrupts may come from the PIT | ||
481 | or the RTC, but the problem is the same: the host virtualization engine may not | ||
482 | be able to deliver the proper number of interrupts per second, and so guest | ||
483 | time may fall behind. This is especially problematic if a high interrupt rate | ||
484 | is selected, such as 1000 HZ, which is unfortunately the default for many Linux | ||
485 | guests. | ||
486 | |||
487 | There are three approaches to solving this problem; first, it may be possible | ||
488 | to simply ignore it. Guests which have a separate time source for tracking | ||
489 | 'wall clock' or 'real time' may not need any adjustment of their interrupts to | ||
490 | maintain proper time. If this is not sufficient, it may be necessary to inject | ||
491 | additional interrupts into the guest in order to increase the effective | ||
492 | interrupt rate. This approach leads to complications in extreme conditions, | ||
493 | where host load or guest lag is too much to compensate for, and thus another | ||
494 | solution to the problem has risen: the guest may need to become aware of lost | ||
495 | ticks and compensate for them internally. Although promising in theory, the | ||
496 | implementation of this policy in Linux has been extremely error prone, and a | ||
497 | number of buggy variants of lost tick compensation are distributed across | ||
498 | commonly used Linux systems. | ||
499 | |||
500 | Windows uses periodic RTC clocking as a means of keeping time internally, and | ||
501 | thus requires interrupt slewing to keep proper time. It does use a low enough | ||
502 | rate (ed: is it 18.2 Hz?) however that it has not yet been a problem in | ||
503 | practice. | ||
504 | |||
505 | 4.2) TSC sampling and serialization | ||
506 | |||
507 | As the highest precision time source available, the cycle counter of the CPU | ||
508 | has aroused much interest from developers. As explained above, this timer has | ||
509 | many problems unique to its nature as a local, potentially unstable and | ||
510 | potentially unsynchronized source. One issue which is not unique to the TSC, | ||
511 | but is highlighted because of its very precise nature is sampling delay. By | ||
512 | definition, the counter, once read is already old. However, it is also | ||
513 | possible for the counter to be read ahead of the actual use of the result. | ||
514 | This is a consequence of the superscalar execution of the instruction stream, | ||
515 | which may execute instructions out of order. Such execution is called | ||
516 | non-serialized. Forcing serialized execution is necessary for precise | ||
517 | measurement with the TSC, and requires a serializing instruction, such as CPUID | ||
518 | or an MSR read. | ||
519 | |||
520 | Since CPUID may actually be virtualized by a trap and emulate mechanism, this | ||
521 | serialization can pose a performance issue for hardware virtualization. An | ||
522 | accurate time stamp counter reading may therefore not always be available, and | ||
523 | it may be necessary for an implementation to guard against "backwards" reads of | ||
524 | the TSC as seen from other CPUs, even in an otherwise perfectly synchronized | ||
525 | system. | ||
526 | |||
527 | 4.3) Timespec aliasing | ||
528 | |||
529 | Additionally, this lack of serialization from the TSC poses another challenge | ||
530 | when using results of the TSC when measured against another time source. As | ||
531 | the TSC is much higher precision, many possible values of the TSC may be read | ||
532 | while another clock is still expressing the same value. | ||
533 | |||
534 | That is, you may read (T,T+10) while external clock C maintains the same value. | ||
535 | Due to non-serialized reads, you may actually end up with a range which | ||
536 | fluctuates - from (T-1.. T+10). Thus, any time calculated from a TSC, but | ||
537 | calibrated against an external value may have a range of valid values. | ||
538 | Re-calibrating this computation may actually cause time, as computed after the | ||
539 | calibration, to go backwards, compared with time computed before the | ||
540 | calibration. | ||
541 | |||
542 | This problem is particularly pronounced with an internal time source in Linux, | ||
543 | the kernel time, which is expressed in the theoretically high resolution | ||
544 | timespec - but which advances in much larger granularity intervals, sometimes | ||
545 | at the rate of jiffies, and possibly in catchup modes, at a much larger step. | ||
546 | |||
547 | This aliasing requires care in the computation and recalibration of kvmclock | ||
548 | and any other values derived from TSC computation (such as TSC virtualization | ||
549 | itself). | ||
550 | |||
551 | 4.4) Migration | ||
552 | |||
553 | Migration of a virtual machine raises problems for timekeeping in two ways. | ||
554 | First, the migration itself may take time, during which interrupts cannot be | ||
555 | delivered, and after which, the guest time may need to be caught up. NTP may | ||
556 | be able to help to some degree here, as the clock correction required is | ||
557 | typically small enough to fall in the NTP-correctable window. | ||
558 | |||
559 | An additional concern is that timers based off the TSC (or HPET, if the raw bus | ||
560 | clock is exposed) may now be running at different rates, requiring compensation | ||
561 | in some way in the hypervisor by virtualizing these timers. In addition, | ||
562 | migrating to a faster machine may preclude the use of a passthrough TSC, as a | ||
563 | faster clock cannot be made visible to a guest without the potential of time | ||
564 | advancing faster than usual. A slower clock is less of a problem, as it can | ||
565 | always be caught up to the original rate. KVM clock avoids these problems by | ||
566 | simply storing multipliers and offsets against the TSC for the guest to convert | ||
567 | back into nanosecond resolution values. | ||
568 | |||
569 | 4.5) Scheduling | ||
570 | |||
571 | Since scheduling may be based on precise timing and firing of interrupts, the | ||
572 | scheduling algorithms of an operating system may be adversely affected by | ||
573 | virtualization. In theory, the effect is random and should be universally | ||
574 | distributed, but in contrived as well as real scenarios (guest device access, | ||
575 | causes of virtualization exits, possible context switch), this may not always | ||
576 | be the case. The effect of this has not been well studied. | ||
577 | |||
578 | In an attempt to work around this, several implementations have provided a | ||
579 | paravirtualized scheduler clock, which reveals the true amount of CPU time for | ||
580 | which a virtual machine has been running. | ||
581 | |||
582 | 4.6) Watchdogs | ||
583 | |||
584 | Watchdog timers, such as the lock detector in Linux may fire accidentally when | ||
585 | running under hardware virtualization due to timer interrupts being delayed or | ||
586 | misinterpretation of the passage of real time. Usually, these warnings are | ||
587 | spurious and can be ignored, but in some circumstances it may be necessary to | ||
588 | disable such detection. | ||
589 | |||
590 | 4.7) Delays and precision timing | ||
591 | |||
592 | Precise timing and delays may not be possible in a virtualized system. This | ||
593 | can happen if the system is controlling physical hardware, or issues delays to | ||
594 | compensate for slower I/O to and from devices. The first issue is not solvable | ||
595 | in general for a virtualized system; hardware control software can't be | ||
596 | adequately virtualized without a full real-time operating system, which would | ||
597 | require an RT aware virtualization platform. | ||
598 | |||
599 | The second issue may cause performance problems, but this is unlikely to be a | ||
600 | significant issue. In many cases these delays may be eliminated through | ||
601 | configuration or paravirtualization. | ||
602 | |||
603 | 4.8) Covert channels and leaks | ||
604 | |||
605 | In addition to the above problems, time information will inevitably leak to the | ||
606 | guest about the host in anything but a perfect implementation of virtualized | ||
607 | time. This may allow the guest to infer the presence of a hypervisor (as in a | ||
608 | red-pill type detection), and it may allow information to leak between guests | ||
609 | by using CPU utilization itself as a signalling channel. Preventing such | ||
610 | problems would require completely isolated virtual time which may not track | ||
611 | real time any longer. This may be useful in certain security or QA contexts, | ||
612 | but in general isn't recommended for real-world deployment scenarios. | ||
diff --git a/arch/ia64/kvm/lapic.h b/arch/ia64/kvm/lapic.h index ee541cebcd78..c5f92a926a9a 100644 --- a/arch/ia64/kvm/lapic.h +++ b/arch/ia64/kvm/lapic.h | |||
@@ -25,5 +25,6 @@ int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, | |||
25 | int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2); | 25 | int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2); |
26 | int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq); | 26 | int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq); |
27 | #define kvm_apic_present(x) (true) | 27 | #define kvm_apic_present(x) (true) |
28 | #define kvm_lapic_enabled(x) (true) | ||
28 | 29 | ||
29 | #endif | 30 | #endif |
diff --git a/arch/powerpc/include/asm/kvm.h b/arch/powerpc/include/asm/kvm.h index 6c5547d82bbe..18ea6963ad77 100644 --- a/arch/powerpc/include/asm/kvm.h +++ b/arch/powerpc/include/asm/kvm.h | |||
@@ -86,5 +86,6 @@ struct kvm_guest_debug_arch { | |||
86 | 86 | ||
87 | #define KVM_INTERRUPT_SET -1U | 87 | #define KVM_INTERRUPT_SET -1U |
88 | #define KVM_INTERRUPT_UNSET -2U | 88 | #define KVM_INTERRUPT_UNSET -2U |
89 | #define KVM_INTERRUPT_SET_LEVEL -3U | ||
89 | 90 | ||
90 | #endif /* __LINUX_KVM_POWERPC_H */ | 91 | #endif /* __LINUX_KVM_POWERPC_H */ |
diff --git a/arch/powerpc/include/asm/kvm_asm.h b/arch/powerpc/include/asm/kvm_asm.h index c5ea4cda34b3..5b7504674397 100644 --- a/arch/powerpc/include/asm/kvm_asm.h +++ b/arch/powerpc/include/asm/kvm_asm.h | |||
@@ -58,6 +58,7 @@ | |||
58 | #define BOOK3S_INTERRUPT_INST_STORAGE 0x400 | 58 | #define BOOK3S_INTERRUPT_INST_STORAGE 0x400 |
59 | #define BOOK3S_INTERRUPT_INST_SEGMENT 0x480 | 59 | #define BOOK3S_INTERRUPT_INST_SEGMENT 0x480 |
60 | #define BOOK3S_INTERRUPT_EXTERNAL 0x500 | 60 | #define BOOK3S_INTERRUPT_EXTERNAL 0x500 |
61 | #define BOOK3S_INTERRUPT_EXTERNAL_LEVEL 0x501 | ||
61 | #define BOOK3S_INTERRUPT_ALIGNMENT 0x600 | 62 | #define BOOK3S_INTERRUPT_ALIGNMENT 0x600 |
62 | #define BOOK3S_INTERRUPT_PROGRAM 0x700 | 63 | #define BOOK3S_INTERRUPT_PROGRAM 0x700 |
63 | #define BOOK3S_INTERRUPT_FP_UNAVAIL 0x800 | 64 | #define BOOK3S_INTERRUPT_FP_UNAVAIL 0x800 |
@@ -84,7 +85,8 @@ | |||
84 | #define BOOK3S_IRQPRIO_EXTERNAL 13 | 85 | #define BOOK3S_IRQPRIO_EXTERNAL 13 |
85 | #define BOOK3S_IRQPRIO_DECREMENTER 14 | 86 | #define BOOK3S_IRQPRIO_DECREMENTER 14 |
86 | #define BOOK3S_IRQPRIO_PERFORMANCE_MONITOR 15 | 87 | #define BOOK3S_IRQPRIO_PERFORMANCE_MONITOR 15 |
87 | #define BOOK3S_IRQPRIO_MAX 16 | 88 | #define BOOK3S_IRQPRIO_EXTERNAL_LEVEL 16 |
89 | #define BOOK3S_IRQPRIO_MAX 17 | ||
88 | 90 | ||
89 | #define BOOK3S_HFLAG_DCBZ32 0x1 | 91 | #define BOOK3S_HFLAG_DCBZ32 0x1 |
90 | #define BOOK3S_HFLAG_SLB 0x2 | 92 | #define BOOK3S_HFLAG_SLB 0x2 |
diff --git a/arch/powerpc/include/asm/kvm_book3s.h b/arch/powerpc/include/asm/kvm_book3s.h index 8274a2d43925..d62e703f1214 100644 --- a/arch/powerpc/include/asm/kvm_book3s.h +++ b/arch/powerpc/include/asm/kvm_book3s.h | |||
@@ -38,15 +38,6 @@ struct kvmppc_slb { | |||
38 | bool class : 1; | 38 | bool class : 1; |
39 | }; | 39 | }; |
40 | 40 | ||
41 | struct kvmppc_sr { | ||
42 | u32 raw; | ||
43 | u32 vsid; | ||
44 | bool Ks : 1; | ||
45 | bool Kp : 1; | ||
46 | bool nx : 1; | ||
47 | bool valid : 1; | ||
48 | }; | ||
49 | |||
50 | struct kvmppc_bat { | 41 | struct kvmppc_bat { |
51 | u64 raw; | 42 | u64 raw; |
52 | u32 bepi; | 43 | u32 bepi; |
@@ -69,6 +60,13 @@ struct kvmppc_sid_map { | |||
69 | #define SID_MAP_NUM (1 << SID_MAP_BITS) | 60 | #define SID_MAP_NUM (1 << SID_MAP_BITS) |
70 | #define SID_MAP_MASK (SID_MAP_NUM - 1) | 61 | #define SID_MAP_MASK (SID_MAP_NUM - 1) |
71 | 62 | ||
63 | #ifdef CONFIG_PPC_BOOK3S_64 | ||
64 | #define SID_CONTEXTS 1 | ||
65 | #else | ||
66 | #define SID_CONTEXTS 128 | ||
67 | #define VSID_POOL_SIZE (SID_CONTEXTS * 16) | ||
68 | #endif | ||
69 | |||
72 | struct kvmppc_vcpu_book3s { | 70 | struct kvmppc_vcpu_book3s { |
73 | struct kvm_vcpu vcpu; | 71 | struct kvm_vcpu vcpu; |
74 | struct kvmppc_book3s_shadow_vcpu *shadow_vcpu; | 72 | struct kvmppc_book3s_shadow_vcpu *shadow_vcpu; |
@@ -79,20 +77,22 @@ struct kvmppc_vcpu_book3s { | |||
79 | u64 vsid; | 77 | u64 vsid; |
80 | } slb_shadow[64]; | 78 | } slb_shadow[64]; |
81 | u8 slb_shadow_max; | 79 | u8 slb_shadow_max; |
82 | struct kvmppc_sr sr[16]; | ||
83 | struct kvmppc_bat ibat[8]; | 80 | struct kvmppc_bat ibat[8]; |
84 | struct kvmppc_bat dbat[8]; | 81 | struct kvmppc_bat dbat[8]; |
85 | u64 hid[6]; | 82 | u64 hid[6]; |
86 | u64 gqr[8]; | 83 | u64 gqr[8]; |
87 | int slb_nr; | 84 | int slb_nr; |
88 | u32 dsisr; | ||
89 | u64 sdr1; | 85 | u64 sdr1; |
90 | u64 hior; | 86 | u64 hior; |
91 | u64 msr_mask; | 87 | u64 msr_mask; |
92 | u64 vsid_first; | ||
93 | u64 vsid_next; | 88 | u64 vsid_next; |
89 | #ifdef CONFIG_PPC_BOOK3S_32 | ||
90 | u32 vsid_pool[VSID_POOL_SIZE]; | ||
91 | #else | ||
92 | u64 vsid_first; | ||
94 | u64 vsid_max; | 93 | u64 vsid_max; |
95 | int context_id; | 94 | #endif |
95 | int context_id[SID_CONTEXTS]; | ||
96 | ulong prog_flags; /* flags to inject when giving a 700 trap */ | 96 | ulong prog_flags; /* flags to inject when giving a 700 trap */ |
97 | }; | 97 | }; |
98 | 98 | ||
@@ -131,9 +131,10 @@ extern void kvmppc_set_bat(struct kvm_vcpu *vcpu, struct kvmppc_bat *bat, | |||
131 | bool upper, u32 val); | 131 | bool upper, u32 val); |
132 | extern void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr); | 132 | extern void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr); |
133 | extern int kvmppc_emulate_paired_single(struct kvm_run *run, struct kvm_vcpu *vcpu); | 133 | extern int kvmppc_emulate_paired_single(struct kvm_run *run, struct kvm_vcpu *vcpu); |
134 | extern pfn_t kvmppc_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); | ||
134 | 135 | ||
135 | extern u32 kvmppc_trampoline_lowmem; | 136 | extern ulong kvmppc_trampoline_lowmem; |
136 | extern u32 kvmppc_trampoline_enter; | 137 | extern ulong kvmppc_trampoline_enter; |
137 | extern void kvmppc_rmcall(ulong srr0, ulong srr1); | 138 | extern void kvmppc_rmcall(ulong srr0, ulong srr1); |
138 | extern void kvmppc_load_up_fpu(void); | 139 | extern void kvmppc_load_up_fpu(void); |
139 | extern void kvmppc_load_up_altivec(void); | 140 | extern void kvmppc_load_up_altivec(void); |
diff --git a/arch/powerpc/include/asm/kvm_host.h b/arch/powerpc/include/asm/kvm_host.h index b0b23c007d6e..bba3b9b72a39 100644 --- a/arch/powerpc/include/asm/kvm_host.h +++ b/arch/powerpc/include/asm/kvm_host.h | |||
@@ -25,6 +25,7 @@ | |||
25 | #include <linux/interrupt.h> | 25 | #include <linux/interrupt.h> |
26 | #include <linux/types.h> | 26 | #include <linux/types.h> |
27 | #include <linux/kvm_types.h> | 27 | #include <linux/kvm_types.h> |
28 | #include <linux/kvm_para.h> | ||
28 | #include <asm/kvm_asm.h> | 29 | #include <asm/kvm_asm.h> |
29 | 30 | ||
30 | #define KVM_MAX_VCPUS 1 | 31 | #define KVM_MAX_VCPUS 1 |
@@ -41,12 +42,17 @@ | |||
41 | 42 | ||
42 | #define HPTEG_CACHE_NUM (1 << 15) | 43 | #define HPTEG_CACHE_NUM (1 << 15) |
43 | #define HPTEG_HASH_BITS_PTE 13 | 44 | #define HPTEG_HASH_BITS_PTE 13 |
45 | #define HPTEG_HASH_BITS_PTE_LONG 12 | ||
44 | #define HPTEG_HASH_BITS_VPTE 13 | 46 | #define HPTEG_HASH_BITS_VPTE 13 |
45 | #define HPTEG_HASH_BITS_VPTE_LONG 5 | 47 | #define HPTEG_HASH_BITS_VPTE_LONG 5 |
46 | #define HPTEG_HASH_NUM_PTE (1 << HPTEG_HASH_BITS_PTE) | 48 | #define HPTEG_HASH_NUM_PTE (1 << HPTEG_HASH_BITS_PTE) |
49 | #define HPTEG_HASH_NUM_PTE_LONG (1 << HPTEG_HASH_BITS_PTE_LONG) | ||
47 | #define HPTEG_HASH_NUM_VPTE (1 << HPTEG_HASH_BITS_VPTE) | 50 | #define HPTEG_HASH_NUM_VPTE (1 << HPTEG_HASH_BITS_VPTE) |
48 | #define HPTEG_HASH_NUM_VPTE_LONG (1 << HPTEG_HASH_BITS_VPTE_LONG) | 51 | #define HPTEG_HASH_NUM_VPTE_LONG (1 << HPTEG_HASH_BITS_VPTE_LONG) |
49 | 52 | ||
53 | /* Physical Address Mask - allowed range of real mode RAM access */ | ||
54 | #define KVM_PAM 0x0fffffffffffffffULL | ||
55 | |||
50 | struct kvm; | 56 | struct kvm; |
51 | struct kvm_run; | 57 | struct kvm_run; |
52 | struct kvm_vcpu; | 58 | struct kvm_vcpu; |
@@ -159,8 +165,10 @@ struct kvmppc_mmu { | |||
159 | 165 | ||
160 | struct hpte_cache { | 166 | struct hpte_cache { |
161 | struct hlist_node list_pte; | 167 | struct hlist_node list_pte; |
168 | struct hlist_node list_pte_long; | ||
162 | struct hlist_node list_vpte; | 169 | struct hlist_node list_vpte; |
163 | struct hlist_node list_vpte_long; | 170 | struct hlist_node list_vpte_long; |
171 | struct rcu_head rcu_head; | ||
164 | u64 host_va; | 172 | u64 host_va; |
165 | u64 pfn; | 173 | u64 pfn; |
166 | ulong slot; | 174 | ulong slot; |
@@ -210,28 +218,20 @@ struct kvm_vcpu_arch { | |||
210 | u32 cr; | 218 | u32 cr; |
211 | #endif | 219 | #endif |
212 | 220 | ||
213 | ulong msr; | ||
214 | #ifdef CONFIG_PPC_BOOK3S | 221 | #ifdef CONFIG_PPC_BOOK3S |
215 | ulong shadow_msr; | 222 | ulong shadow_msr; |
216 | ulong hflags; | 223 | ulong hflags; |
217 | ulong guest_owned_ext; | 224 | ulong guest_owned_ext; |
218 | #endif | 225 | #endif |
219 | u32 mmucr; | 226 | u32 mmucr; |
220 | ulong sprg0; | ||
221 | ulong sprg1; | ||
222 | ulong sprg2; | ||
223 | ulong sprg3; | ||
224 | ulong sprg4; | 227 | ulong sprg4; |
225 | ulong sprg5; | 228 | ulong sprg5; |
226 | ulong sprg6; | 229 | ulong sprg6; |
227 | ulong sprg7; | 230 | ulong sprg7; |
228 | ulong srr0; | ||
229 | ulong srr1; | ||
230 | ulong csrr0; | 231 | ulong csrr0; |
231 | ulong csrr1; | 232 | ulong csrr1; |
232 | ulong dsrr0; | 233 | ulong dsrr0; |
233 | ulong dsrr1; | 234 | ulong dsrr1; |
234 | ulong dear; | ||
235 | ulong esr; | 235 | ulong esr; |
236 | u32 dec; | 236 | u32 dec; |
237 | u32 decar; | 237 | u32 decar; |
@@ -290,12 +290,17 @@ struct kvm_vcpu_arch { | |||
290 | struct tasklet_struct tasklet; | 290 | struct tasklet_struct tasklet; |
291 | u64 dec_jiffies; | 291 | u64 dec_jiffies; |
292 | unsigned long pending_exceptions; | 292 | unsigned long pending_exceptions; |
293 | struct kvm_vcpu_arch_shared *shared; | ||
294 | unsigned long magic_page_pa; /* phys addr to map the magic page to */ | ||
295 | unsigned long magic_page_ea; /* effect. addr to map the magic page to */ | ||
293 | 296 | ||
294 | #ifdef CONFIG_PPC_BOOK3S | 297 | #ifdef CONFIG_PPC_BOOK3S |
295 | struct hlist_head hpte_hash_pte[HPTEG_HASH_NUM_PTE]; | 298 | struct hlist_head hpte_hash_pte[HPTEG_HASH_NUM_PTE]; |
299 | struct hlist_head hpte_hash_pte_long[HPTEG_HASH_NUM_PTE_LONG]; | ||
296 | struct hlist_head hpte_hash_vpte[HPTEG_HASH_NUM_VPTE]; | 300 | struct hlist_head hpte_hash_vpte[HPTEG_HASH_NUM_VPTE]; |
297 | struct hlist_head hpte_hash_vpte_long[HPTEG_HASH_NUM_VPTE_LONG]; | 301 | struct hlist_head hpte_hash_vpte_long[HPTEG_HASH_NUM_VPTE_LONG]; |
298 | int hpte_cache_count; | 302 | int hpte_cache_count; |
303 | spinlock_t mmu_lock; | ||
299 | #endif | 304 | #endif |
300 | }; | 305 | }; |
301 | 306 | ||
diff --git a/arch/powerpc/include/asm/kvm_para.h b/arch/powerpc/include/asm/kvm_para.h index 2d48f6a63d0b..50533f9adf40 100644 --- a/arch/powerpc/include/asm/kvm_para.h +++ b/arch/powerpc/include/asm/kvm_para.h | |||
@@ -20,16 +20,153 @@ | |||
20 | #ifndef __POWERPC_KVM_PARA_H__ | 20 | #ifndef __POWERPC_KVM_PARA_H__ |
21 | #define __POWERPC_KVM_PARA_H__ | 21 | #define __POWERPC_KVM_PARA_H__ |
22 | 22 | ||
23 | #include <linux/types.h> | ||
24 | |||
25 | struct kvm_vcpu_arch_shared { | ||
26 | __u64 scratch1; | ||
27 | __u64 scratch2; | ||
28 | __u64 scratch3; | ||
29 | __u64 critical; /* Guest may not get interrupts if == r1 */ | ||
30 | __u64 sprg0; | ||
31 | __u64 sprg1; | ||
32 | __u64 sprg2; | ||
33 | __u64 sprg3; | ||
34 | __u64 srr0; | ||
35 | __u64 srr1; | ||
36 | __u64 dar; | ||
37 | __u64 msr; | ||
38 | __u32 dsisr; | ||
39 | __u32 int_pending; /* Tells the guest if we have an interrupt */ | ||
40 | __u32 sr[16]; | ||
41 | }; | ||
42 | |||
43 | #define KVM_SC_MAGIC_R0 0x4b564d21 /* "KVM!" */ | ||
44 | #define HC_VENDOR_KVM (42 << 16) | ||
45 | #define HC_EV_SUCCESS 0 | ||
46 | #define HC_EV_UNIMPLEMENTED 12 | ||
47 | |||
48 | #define KVM_FEATURE_MAGIC_PAGE 1 | ||
49 | |||
50 | #define KVM_MAGIC_FEAT_SR (1 << 0) | ||
51 | |||
23 | #ifdef __KERNEL__ | 52 | #ifdef __KERNEL__ |
24 | 53 | ||
54 | #ifdef CONFIG_KVM_GUEST | ||
55 | |||
56 | #include <linux/of.h> | ||
57 | |||
58 | static inline int kvm_para_available(void) | ||
59 | { | ||
60 | struct device_node *hyper_node; | ||
61 | |||
62 | hyper_node = of_find_node_by_path("/hypervisor"); | ||
63 | if (!hyper_node) | ||
64 | return 0; | ||
65 | |||
66 | if (!of_device_is_compatible(hyper_node, "linux,kvm")) | ||
67 | return 0; | ||
68 | |||
69 | return 1; | ||
70 | } | ||
71 | |||
72 | extern unsigned long kvm_hypercall(unsigned long *in, | ||
73 | unsigned long *out, | ||
74 | unsigned long nr); | ||
75 | |||
76 | #else | ||
77 | |||
25 | static inline int kvm_para_available(void) | 78 | static inline int kvm_para_available(void) |
26 | { | 79 | { |
27 | return 0; | 80 | return 0; |
28 | } | 81 | } |
29 | 82 | ||
83 | static unsigned long kvm_hypercall(unsigned long *in, | ||
84 | unsigned long *out, | ||
85 | unsigned long nr) | ||
86 | { | ||
87 | return HC_EV_UNIMPLEMENTED; | ||
88 | } | ||
89 | |||
90 | #endif | ||
91 | |||
92 | static inline long kvm_hypercall0_1(unsigned int nr, unsigned long *r2) | ||
93 | { | ||
94 | unsigned long in[8]; | ||
95 | unsigned long out[8]; | ||
96 | unsigned long r; | ||
97 | |||
98 | r = kvm_hypercall(in, out, nr | HC_VENDOR_KVM); | ||
99 | *r2 = out[0]; | ||
100 | |||
101 | return r; | ||
102 | } | ||
103 | |||
104 | static inline long kvm_hypercall0(unsigned int nr) | ||
105 | { | ||
106 | unsigned long in[8]; | ||
107 | unsigned long out[8]; | ||
108 | |||
109 | return kvm_hypercall(in, out, nr | HC_VENDOR_KVM); | ||
110 | } | ||
111 | |||
112 | static inline long kvm_hypercall1(unsigned int nr, unsigned long p1) | ||
113 | { | ||
114 | unsigned long in[8]; | ||
115 | unsigned long out[8]; | ||
116 | |||
117 | in[0] = p1; | ||
118 | return kvm_hypercall(in, out, nr | HC_VENDOR_KVM); | ||
119 | } | ||
120 | |||
121 | static inline long kvm_hypercall2(unsigned int nr, unsigned long p1, | ||
122 | unsigned long p2) | ||
123 | { | ||
124 | unsigned long in[8]; | ||
125 | unsigned long out[8]; | ||
126 | |||
127 | in[0] = p1; | ||
128 | in[1] = p2; | ||
129 | return kvm_hypercall(in, out, nr | HC_VENDOR_KVM); | ||
130 | } | ||
131 | |||
132 | static inline long kvm_hypercall3(unsigned int nr, unsigned long p1, | ||
133 | unsigned long p2, unsigned long p3) | ||
134 | { | ||
135 | unsigned long in[8]; | ||
136 | unsigned long out[8]; | ||
137 | |||
138 | in[0] = p1; | ||
139 | in[1] = p2; | ||
140 | in[2] = p3; | ||
141 | return kvm_hypercall(in, out, nr | HC_VENDOR_KVM); | ||
142 | } | ||
143 | |||
144 | static inline long kvm_hypercall4(unsigned int nr, unsigned long p1, | ||
145 | unsigned long p2, unsigned long p3, | ||
146 | unsigned long p4) | ||
147 | { | ||
148 | unsigned long in[8]; | ||
149 | unsigned long out[8]; | ||
150 | |||
151 | in[0] = p1; | ||
152 | in[1] = p2; | ||
153 | in[2] = p3; | ||
154 | in[3] = p4; | ||
155 | return kvm_hypercall(in, out, nr | HC_VENDOR_KVM); | ||
156 | } | ||
157 | |||
158 | |||
30 | static inline unsigned int kvm_arch_para_features(void) | 159 | static inline unsigned int kvm_arch_para_features(void) |
31 | { | 160 | { |
32 | return 0; | 161 | unsigned long r; |
162 | |||
163 | if (!kvm_para_available()) | ||
164 | return 0; | ||
165 | |||
166 | if(kvm_hypercall0_1(KVM_HC_FEATURES, &r)) | ||
167 | return 0; | ||
168 | |||
169 | return r; | ||
33 | } | 170 | } |
34 | 171 | ||
35 | #endif /* __KERNEL__ */ | 172 | #endif /* __KERNEL__ */ |
diff --git a/arch/powerpc/include/asm/kvm_ppc.h b/arch/powerpc/include/asm/kvm_ppc.h index 18d139ec2d22..ecb3bc74c344 100644 --- a/arch/powerpc/include/asm/kvm_ppc.h +++ b/arch/powerpc/include/asm/kvm_ppc.h | |||
@@ -107,6 +107,7 @@ extern int kvmppc_booke_init(void); | |||
107 | extern void kvmppc_booke_exit(void); | 107 | extern void kvmppc_booke_exit(void); |
108 | 108 | ||
109 | extern void kvmppc_core_destroy_mmu(struct kvm_vcpu *vcpu); | 109 | extern void kvmppc_core_destroy_mmu(struct kvm_vcpu *vcpu); |
110 | extern int kvmppc_kvm_pv(struct kvm_vcpu *vcpu); | ||
110 | 111 | ||
111 | /* | 112 | /* |
112 | * Cuts out inst bits with ordering according to spec. | 113 | * Cuts out inst bits with ordering according to spec. |
diff --git a/arch/powerpc/kernel/Makefile b/arch/powerpc/kernel/Makefile index 4ed076a4db24..36c30f31ec93 100644 --- a/arch/powerpc/kernel/Makefile +++ b/arch/powerpc/kernel/Makefile | |||
@@ -129,6 +129,8 @@ ifneq ($(CONFIG_XMON)$(CONFIG_KEXEC),) | |||
129 | obj-y += ppc_save_regs.o | 129 | obj-y += ppc_save_regs.o |
130 | endif | 130 | endif |
131 | 131 | ||
132 | obj-$(CONFIG_KVM_GUEST) += kvm.o kvm_emul.o | ||
133 | |||
132 | # Disable GCOV in odd or sensitive code | 134 | # Disable GCOV in odd or sensitive code |
133 | GCOV_PROFILE_prom_init.o := n | 135 | GCOV_PROFILE_prom_init.o := n |
134 | GCOV_PROFILE_ftrace.o := n | 136 | GCOV_PROFILE_ftrace.o := n |
diff --git a/arch/powerpc/kernel/asm-offsets.c b/arch/powerpc/kernel/asm-offsets.c index c3e01945ad4f..bd0df2e6aa8f 100644 --- a/arch/powerpc/kernel/asm-offsets.c +++ b/arch/powerpc/kernel/asm-offsets.c | |||
@@ -48,11 +48,11 @@ | |||
48 | #ifdef CONFIG_PPC_ISERIES | 48 | #ifdef CONFIG_PPC_ISERIES |
49 | #include <asm/iseries/alpaca.h> | 49 | #include <asm/iseries/alpaca.h> |
50 | #endif | 50 | #endif |
51 | #ifdef CONFIG_KVM | 51 | #if defined(CONFIG_KVM) || defined(CONFIG_KVM_GUEST) |
52 | #include <linux/kvm_host.h> | 52 | #include <linux/kvm_host.h> |
53 | #ifndef CONFIG_BOOKE | ||
54 | #include <asm/kvm_book3s.h> | ||
55 | #endif | 53 | #endif |
54 | #if defined(CONFIG_KVM) && defined(CONFIG_PPC_BOOK3S) | ||
55 | #include <asm/kvm_book3s.h> | ||
56 | #endif | 56 | #endif |
57 | 57 | ||
58 | #ifdef CONFIG_PPC32 | 58 | #ifdef CONFIG_PPC32 |
@@ -396,12 +396,13 @@ int main(void) | |||
396 | DEFINE(VCPU_HOST_STACK, offsetof(struct kvm_vcpu, arch.host_stack)); | 396 | DEFINE(VCPU_HOST_STACK, offsetof(struct kvm_vcpu, arch.host_stack)); |
397 | DEFINE(VCPU_HOST_PID, offsetof(struct kvm_vcpu, arch.host_pid)); | 397 | DEFINE(VCPU_HOST_PID, offsetof(struct kvm_vcpu, arch.host_pid)); |
398 | DEFINE(VCPU_GPRS, offsetof(struct kvm_vcpu, arch.gpr)); | 398 | DEFINE(VCPU_GPRS, offsetof(struct kvm_vcpu, arch.gpr)); |
399 | DEFINE(VCPU_MSR, offsetof(struct kvm_vcpu, arch.msr)); | ||
400 | DEFINE(VCPU_SPRG4, offsetof(struct kvm_vcpu, arch.sprg4)); | 399 | DEFINE(VCPU_SPRG4, offsetof(struct kvm_vcpu, arch.sprg4)); |
401 | DEFINE(VCPU_SPRG5, offsetof(struct kvm_vcpu, arch.sprg5)); | 400 | DEFINE(VCPU_SPRG5, offsetof(struct kvm_vcpu, arch.sprg5)); |
402 | DEFINE(VCPU_SPRG6, offsetof(struct kvm_vcpu, arch.sprg6)); | 401 | DEFINE(VCPU_SPRG6, offsetof(struct kvm_vcpu, arch.sprg6)); |
403 | DEFINE(VCPU_SPRG7, offsetof(struct kvm_vcpu, arch.sprg7)); | 402 | DEFINE(VCPU_SPRG7, offsetof(struct kvm_vcpu, arch.sprg7)); |
404 | DEFINE(VCPU_SHADOW_PID, offsetof(struct kvm_vcpu, arch.shadow_pid)); | 403 | DEFINE(VCPU_SHADOW_PID, offsetof(struct kvm_vcpu, arch.shadow_pid)); |
404 | DEFINE(VCPU_SHARED, offsetof(struct kvm_vcpu, arch.shared)); | ||
405 | DEFINE(VCPU_SHARED_MSR, offsetof(struct kvm_vcpu_arch_shared, msr)); | ||
405 | 406 | ||
406 | /* book3s */ | 407 | /* book3s */ |
407 | #ifdef CONFIG_PPC_BOOK3S | 408 | #ifdef CONFIG_PPC_BOOK3S |
@@ -466,6 +467,22 @@ int main(void) | |||
466 | DEFINE(VCPU_FAULT_ESR, offsetof(struct kvm_vcpu, arch.fault_esr)); | 467 | DEFINE(VCPU_FAULT_ESR, offsetof(struct kvm_vcpu, arch.fault_esr)); |
467 | #endif /* CONFIG_PPC_BOOK3S */ | 468 | #endif /* CONFIG_PPC_BOOK3S */ |
468 | #endif | 469 | #endif |
470 | |||
471 | #ifdef CONFIG_KVM_GUEST | ||
472 | DEFINE(KVM_MAGIC_SCRATCH1, offsetof(struct kvm_vcpu_arch_shared, | ||
473 | scratch1)); | ||
474 | DEFINE(KVM_MAGIC_SCRATCH2, offsetof(struct kvm_vcpu_arch_shared, | ||
475 | scratch2)); | ||
476 | DEFINE(KVM_MAGIC_SCRATCH3, offsetof(struct kvm_vcpu_arch_shared, | ||
477 | scratch3)); | ||
478 | DEFINE(KVM_MAGIC_INT, offsetof(struct kvm_vcpu_arch_shared, | ||
479 | int_pending)); | ||
480 | DEFINE(KVM_MAGIC_MSR, offsetof(struct kvm_vcpu_arch_shared, msr)); | ||
481 | DEFINE(KVM_MAGIC_CRITICAL, offsetof(struct kvm_vcpu_arch_shared, | ||
482 | critical)); | ||
483 | DEFINE(KVM_MAGIC_SR, offsetof(struct kvm_vcpu_arch_shared, sr)); | ||
484 | #endif | ||
485 | |||
469 | #ifdef CONFIG_44x | 486 | #ifdef CONFIG_44x |
470 | DEFINE(PGD_T_LOG2, PGD_T_LOG2); | 487 | DEFINE(PGD_T_LOG2, PGD_T_LOG2); |
471 | DEFINE(PTE_T_LOG2, PTE_T_LOG2); | 488 | DEFINE(PTE_T_LOG2, PTE_T_LOG2); |
diff --git a/arch/powerpc/kernel/exceptions-64s.S b/arch/powerpc/kernel/exceptions-64s.S index 39b0c48872d2..9f8b01d6466f 100644 --- a/arch/powerpc/kernel/exceptions-64s.S +++ b/arch/powerpc/kernel/exceptions-64s.S | |||
@@ -299,6 +299,12 @@ slb_miss_user_pseries: | |||
299 | b . /* prevent spec. execution */ | 299 | b . /* prevent spec. execution */ |
300 | #endif /* __DISABLED__ */ | 300 | #endif /* __DISABLED__ */ |
301 | 301 | ||
302 | /* KVM's trampoline code needs to be close to the interrupt handlers */ | ||
303 | |||
304 | #ifdef CONFIG_KVM_BOOK3S_64_HANDLER | ||
305 | #include "../kvm/book3s_rmhandlers.S" | ||
306 | #endif | ||
307 | |||
302 | .align 7 | 308 | .align 7 |
303 | .globl __end_interrupts | 309 | .globl __end_interrupts |
304 | __end_interrupts: | 310 | __end_interrupts: |
diff --git a/arch/powerpc/kernel/head_64.S b/arch/powerpc/kernel/head_64.S index c571cd3c1453..f0dd577e4a5b 100644 --- a/arch/powerpc/kernel/head_64.S +++ b/arch/powerpc/kernel/head_64.S | |||
@@ -166,12 +166,6 @@ exception_marker: | |||
166 | #include "exceptions-64s.S" | 166 | #include "exceptions-64s.S" |
167 | #endif | 167 | #endif |
168 | 168 | ||
169 | /* KVM trampoline code needs to be close to the interrupt handlers */ | ||
170 | |||
171 | #ifdef CONFIG_KVM_BOOK3S_64_HANDLER | ||
172 | #include "../kvm/book3s_rmhandlers.S" | ||
173 | #endif | ||
174 | |||
175 | _GLOBAL(generic_secondary_thread_init) | 169 | _GLOBAL(generic_secondary_thread_init) |
176 | mr r24,r3 | 170 | mr r24,r3 |
177 | 171 | ||
diff --git a/arch/powerpc/kernel/kvm.c b/arch/powerpc/kernel/kvm.c new file mode 100644 index 000000000000..428d0e538aec --- /dev/null +++ b/arch/powerpc/kernel/kvm.c | |||
@@ -0,0 +1,596 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2010 SUSE Linux Products GmbH. All rights reserved. | ||
3 | * | ||
4 | * Authors: | ||
5 | * Alexander Graf <agraf@suse.de> | ||
6 | * | ||
7 | * This program is free software; you can redistribute it and/or modify | ||
8 | * it under the terms of the GNU General Public License, version 2, as | ||
9 | * published by the Free Software Foundation. | ||
10 | * | ||
11 | * This program is distributed in the hope that it will be useful, | ||
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | * GNU General Public License for more details. | ||
15 | * | ||
16 | * You should have received a copy of the GNU General Public License | ||
17 | * along with this program; if not, write to the Free Software | ||
18 | * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. | ||
19 | */ | ||
20 | |||
21 | #include <linux/kvm_host.h> | ||
22 | #include <linux/init.h> | ||
23 | #include <linux/kvm_para.h> | ||
24 | #include <linux/slab.h> | ||
25 | #include <linux/of.h> | ||
26 | |||
27 | #include <asm/reg.h> | ||
28 | #include <asm/sections.h> | ||
29 | #include <asm/cacheflush.h> | ||
30 | #include <asm/disassemble.h> | ||
31 | |||
32 | #define KVM_MAGIC_PAGE (-4096L) | ||
33 | #define magic_var(x) KVM_MAGIC_PAGE + offsetof(struct kvm_vcpu_arch_shared, x) | ||
34 | |||
35 | #define KVM_INST_LWZ 0x80000000 | ||
36 | #define KVM_INST_STW 0x90000000 | ||
37 | #define KVM_INST_LD 0xe8000000 | ||
38 | #define KVM_INST_STD 0xf8000000 | ||
39 | #define KVM_INST_NOP 0x60000000 | ||
40 | #define KVM_INST_B 0x48000000 | ||
41 | #define KVM_INST_B_MASK 0x03ffffff | ||
42 | #define KVM_INST_B_MAX 0x01ffffff | ||
43 | |||
44 | #define KVM_MASK_RT 0x03e00000 | ||
45 | #define KVM_RT_30 0x03c00000 | ||
46 | #define KVM_MASK_RB 0x0000f800 | ||
47 | #define KVM_INST_MFMSR 0x7c0000a6 | ||
48 | #define KVM_INST_MFSPR_SPRG0 0x7c1042a6 | ||
49 | #define KVM_INST_MFSPR_SPRG1 0x7c1142a6 | ||
50 | #define KVM_INST_MFSPR_SPRG2 0x7c1242a6 | ||
51 | #define KVM_INST_MFSPR_SPRG3 0x7c1342a6 | ||
52 | #define KVM_INST_MFSPR_SRR0 0x7c1a02a6 | ||
53 | #define KVM_INST_MFSPR_SRR1 0x7c1b02a6 | ||
54 | #define KVM_INST_MFSPR_DAR 0x7c1302a6 | ||
55 | #define KVM_INST_MFSPR_DSISR 0x7c1202a6 | ||
56 | |||
57 | #define KVM_INST_MTSPR_SPRG0 0x7c1043a6 | ||
58 | #define KVM_INST_MTSPR_SPRG1 0x7c1143a6 | ||
59 | #define KVM_INST_MTSPR_SPRG2 0x7c1243a6 | ||
60 | #define KVM_INST_MTSPR_SPRG3 0x7c1343a6 | ||
61 | #define KVM_INST_MTSPR_SRR0 0x7c1a03a6 | ||
62 | #define KVM_INST_MTSPR_SRR1 0x7c1b03a6 | ||
63 | #define KVM_INST_MTSPR_DAR 0x7c1303a6 | ||
64 | #define KVM_INST_MTSPR_DSISR 0x7c1203a6 | ||
65 | |||
66 | #define KVM_INST_TLBSYNC 0x7c00046c | ||
67 | #define KVM_INST_MTMSRD_L0 0x7c000164 | ||
68 | #define KVM_INST_MTMSRD_L1 0x7c010164 | ||
69 | #define KVM_INST_MTMSR 0x7c000124 | ||
70 | |||
71 | #define KVM_INST_WRTEEI_0 0x7c000146 | ||
72 | #define KVM_INST_WRTEEI_1 0x7c008146 | ||
73 | |||
74 | #define KVM_INST_MTSRIN 0x7c0001e4 | ||
75 | |||
76 | static bool kvm_patching_worked = true; | ||
77 | static char kvm_tmp[1024 * 1024]; | ||
78 | static int kvm_tmp_index; | ||
79 | |||
80 | static inline void kvm_patch_ins(u32 *inst, u32 new_inst) | ||
81 | { | ||
82 | *inst = new_inst; | ||
83 | flush_icache_range((ulong)inst, (ulong)inst + 4); | ||
84 | } | ||
85 | |||
86 | static void kvm_patch_ins_ll(u32 *inst, long addr, u32 rt) | ||
87 | { | ||
88 | #ifdef CONFIG_64BIT | ||
89 | kvm_patch_ins(inst, KVM_INST_LD | rt | (addr & 0x0000fffc)); | ||
90 | #else | ||
91 | kvm_patch_ins(inst, KVM_INST_LWZ | rt | (addr & 0x0000fffc)); | ||
92 | #endif | ||
93 | } | ||
94 | |||
95 | static void kvm_patch_ins_ld(u32 *inst, long addr, u32 rt) | ||
96 | { | ||
97 | #ifdef CONFIG_64BIT | ||
98 | kvm_patch_ins(inst, KVM_INST_LD | rt | (addr & 0x0000fffc)); | ||
99 | #else | ||
100 | kvm_patch_ins(inst, KVM_INST_LWZ | rt | ((addr + 4) & 0x0000fffc)); | ||
101 | #endif | ||
102 | } | ||
103 | |||
104 | static void kvm_patch_ins_lwz(u32 *inst, long addr, u32 rt) | ||
105 | { | ||
106 | kvm_patch_ins(inst, KVM_INST_LWZ | rt | (addr & 0x0000ffff)); | ||
107 | } | ||
108 | |||
109 | static void kvm_patch_ins_std(u32 *inst, long addr, u32 rt) | ||
110 | { | ||
111 | #ifdef CONFIG_64BIT | ||
112 | kvm_patch_ins(inst, KVM_INST_STD | rt | (addr & 0x0000fffc)); | ||
113 | #else | ||
114 | kvm_patch_ins(inst, KVM_INST_STW | rt | ((addr + 4) & 0x0000fffc)); | ||
115 | #endif | ||
116 | } | ||
117 | |||
118 | static void kvm_patch_ins_stw(u32 *inst, long addr, u32 rt) | ||
119 | { | ||
120 | kvm_patch_ins(inst, KVM_INST_STW | rt | (addr & 0x0000fffc)); | ||
121 | } | ||
122 | |||
123 | static void kvm_patch_ins_nop(u32 *inst) | ||
124 | { | ||
125 | kvm_patch_ins(inst, KVM_INST_NOP); | ||
126 | } | ||
127 | |||
128 | static void kvm_patch_ins_b(u32 *inst, int addr) | ||
129 | { | ||
130 | #ifdef CONFIG_RELOCATABLE | ||
131 | /* On relocatable kernels interrupts handlers and our code | ||
132 | can be in different regions, so we don't patch them */ | ||
133 | |||
134 | extern u32 __end_interrupts; | ||
135 | if ((ulong)inst < (ulong)&__end_interrupts) | ||
136 | return; | ||
137 | #endif | ||
138 | |||
139 | kvm_patch_ins(inst, KVM_INST_B | (addr & KVM_INST_B_MASK)); | ||
140 | } | ||
141 | |||
142 | static u32 *kvm_alloc(int len) | ||
143 | { | ||
144 | u32 *p; | ||
145 | |||
146 | if ((kvm_tmp_index + len) > ARRAY_SIZE(kvm_tmp)) { | ||
147 | printk(KERN_ERR "KVM: No more space (%d + %d)\n", | ||
148 | kvm_tmp_index, len); | ||
149 | kvm_patching_worked = false; | ||
150 | return NULL; | ||
151 | } | ||
152 | |||
153 | p = (void*)&kvm_tmp[kvm_tmp_index]; | ||
154 | kvm_tmp_index += len; | ||
155 | |||
156 | return p; | ||
157 | } | ||
158 | |||
159 | extern u32 kvm_emulate_mtmsrd_branch_offs; | ||
160 | extern u32 kvm_emulate_mtmsrd_reg_offs; | ||
161 | extern u32 kvm_emulate_mtmsrd_orig_ins_offs; | ||
162 | extern u32 kvm_emulate_mtmsrd_len; | ||
163 | extern u32 kvm_emulate_mtmsrd[]; | ||
164 | |||
165 | static void kvm_patch_ins_mtmsrd(u32 *inst, u32 rt) | ||
166 | { | ||
167 | u32 *p; | ||
168 | int distance_start; | ||
169 | int distance_end; | ||
170 | ulong next_inst; | ||
171 | |||
172 | p = kvm_alloc(kvm_emulate_mtmsrd_len * 4); | ||
173 | if (!p) | ||
174 | return; | ||
175 | |||
176 | /* Find out where we are and put everything there */ | ||
177 | distance_start = (ulong)p - (ulong)inst; | ||
178 | next_inst = ((ulong)inst + 4); | ||
179 | distance_end = next_inst - (ulong)&p[kvm_emulate_mtmsrd_branch_offs]; | ||
180 | |||
181 | /* Make sure we only write valid b instructions */ | ||
182 | if (distance_start > KVM_INST_B_MAX) { | ||
183 | kvm_patching_worked = false; | ||
184 | return; | ||
185 | } | ||
186 | |||
187 | /* Modify the chunk to fit the invocation */ | ||
188 | memcpy(p, kvm_emulate_mtmsrd, kvm_emulate_mtmsrd_len * 4); | ||
189 | p[kvm_emulate_mtmsrd_branch_offs] |= distance_end & KVM_INST_B_MASK; | ||
190 | switch (get_rt(rt)) { | ||
191 | case 30: | ||
192 | kvm_patch_ins_ll(&p[kvm_emulate_mtmsrd_reg_offs], | ||
193 | magic_var(scratch2), KVM_RT_30); | ||
194 | break; | ||
195 | case 31: | ||
196 | kvm_patch_ins_ll(&p[kvm_emulate_mtmsrd_reg_offs], | ||
197 | magic_var(scratch1), KVM_RT_30); | ||
198 | break; | ||
199 | default: | ||
200 | p[kvm_emulate_mtmsrd_reg_offs] |= rt; | ||
201 | break; | ||
202 | } | ||
203 | |||
204 | p[kvm_emulate_mtmsrd_orig_ins_offs] = *inst; | ||
205 | flush_icache_range((ulong)p, (ulong)p + kvm_emulate_mtmsrd_len * 4); | ||
206 | |||
207 | /* Patch the invocation */ | ||
208 | kvm_patch_ins_b(inst, distance_start); | ||
209 | } | ||
210 | |||
211 | extern u32 kvm_emulate_mtmsr_branch_offs; | ||
212 | extern u32 kvm_emulate_mtmsr_reg1_offs; | ||
213 | extern u32 kvm_emulate_mtmsr_reg2_offs; | ||
214 | extern u32 kvm_emulate_mtmsr_orig_ins_offs; | ||
215 | extern u32 kvm_emulate_mtmsr_len; | ||
216 | extern u32 kvm_emulate_mtmsr[]; | ||
217 | |||
218 | static void kvm_patch_ins_mtmsr(u32 *inst, u32 rt) | ||
219 | { | ||
220 | u32 *p; | ||
221 | int distance_start; | ||
222 | int distance_end; | ||
223 | ulong next_inst; | ||
224 | |||
225 | p = kvm_alloc(kvm_emulate_mtmsr_len * 4); | ||
226 | if (!p) | ||
227 | return; | ||
228 | |||
229 | /* Find out where we are and put everything there */ | ||
230 | distance_start = (ulong)p - (ulong)inst; | ||
231 | next_inst = ((ulong)inst + 4); | ||
232 | distance_end = next_inst - (ulong)&p[kvm_emulate_mtmsr_branch_offs]; | ||
233 | |||
234 | /* Make sure we only write valid b instructions */ | ||
235 | if (distance_start > KVM_INST_B_MAX) { | ||
236 | kvm_patching_worked = false; | ||
237 | return; | ||
238 | } | ||
239 | |||
240 | /* Modify the chunk to fit the invocation */ | ||
241 | memcpy(p, kvm_emulate_mtmsr, kvm_emulate_mtmsr_len * 4); | ||
242 | p[kvm_emulate_mtmsr_branch_offs] |= distance_end & KVM_INST_B_MASK; | ||
243 | |||
244 | /* Make clobbered registers work too */ | ||
245 | switch (get_rt(rt)) { | ||
246 | case 30: | ||
247 | kvm_patch_ins_ll(&p[kvm_emulate_mtmsr_reg1_offs], | ||
248 | magic_var(scratch2), KVM_RT_30); | ||
249 | kvm_patch_ins_ll(&p[kvm_emulate_mtmsr_reg2_offs], | ||
250 | magic_var(scratch2), KVM_RT_30); | ||
251 | break; | ||
252 | case 31: | ||
253 | kvm_patch_ins_ll(&p[kvm_emulate_mtmsr_reg1_offs], | ||
254 | magic_var(scratch1), KVM_RT_30); | ||
255 | kvm_patch_ins_ll(&p[kvm_emulate_mtmsr_reg2_offs], | ||
256 | magic_var(scratch1), KVM_RT_30); | ||
257 | break; | ||
258 | default: | ||
259 | p[kvm_emulate_mtmsr_reg1_offs] |= rt; | ||
260 | p[kvm_emulate_mtmsr_reg2_offs] |= rt; | ||
261 | break; | ||
262 | } | ||
263 | |||
264 | p[kvm_emulate_mtmsr_orig_ins_offs] = *inst; | ||
265 | flush_icache_range((ulong)p, (ulong)p + kvm_emulate_mtmsr_len * 4); | ||
266 | |||
267 | /* Patch the invocation */ | ||
268 | kvm_patch_ins_b(inst, distance_start); | ||
269 | } | ||
270 | |||
271 | #ifdef CONFIG_BOOKE | ||
272 | |||
273 | extern u32 kvm_emulate_wrteei_branch_offs; | ||
274 | extern u32 kvm_emulate_wrteei_ee_offs; | ||
275 | extern u32 kvm_emulate_wrteei_len; | ||
276 | extern u32 kvm_emulate_wrteei[]; | ||
277 | |||
278 | static void kvm_patch_ins_wrteei(u32 *inst) | ||
279 | { | ||
280 | u32 *p; | ||
281 | int distance_start; | ||
282 | int distance_end; | ||
283 | ulong next_inst; | ||
284 | |||
285 | p = kvm_alloc(kvm_emulate_wrteei_len * 4); | ||
286 | if (!p) | ||
287 | return; | ||
288 | |||
289 | /* Find out where we are and put everything there */ | ||
290 | distance_start = (ulong)p - (ulong)inst; | ||
291 | next_inst = ((ulong)inst + 4); | ||
292 | distance_end = next_inst - (ulong)&p[kvm_emulate_wrteei_branch_offs]; | ||
293 | |||
294 | /* Make sure we only write valid b instructions */ | ||
295 | if (distance_start > KVM_INST_B_MAX) { | ||
296 | kvm_patching_worked = false; | ||
297 | return; | ||
298 | } | ||
299 | |||
300 | /* Modify the chunk to fit the invocation */ | ||
301 | memcpy(p, kvm_emulate_wrteei, kvm_emulate_wrteei_len * 4); | ||
302 | p[kvm_emulate_wrteei_branch_offs] |= distance_end & KVM_INST_B_MASK; | ||
303 | p[kvm_emulate_wrteei_ee_offs] |= (*inst & MSR_EE); | ||
304 | flush_icache_range((ulong)p, (ulong)p + kvm_emulate_wrteei_len * 4); | ||
305 | |||
306 | /* Patch the invocation */ | ||
307 | kvm_patch_ins_b(inst, distance_start); | ||
308 | } | ||
309 | |||
310 | #endif | ||
311 | |||
312 | #ifdef CONFIG_PPC_BOOK3S_32 | ||
313 | |||
314 | extern u32 kvm_emulate_mtsrin_branch_offs; | ||
315 | extern u32 kvm_emulate_mtsrin_reg1_offs; | ||
316 | extern u32 kvm_emulate_mtsrin_reg2_offs; | ||
317 | extern u32 kvm_emulate_mtsrin_orig_ins_offs; | ||
318 | extern u32 kvm_emulate_mtsrin_len; | ||
319 | extern u32 kvm_emulate_mtsrin[]; | ||
320 | |||
321 | static void kvm_patch_ins_mtsrin(u32 *inst, u32 rt, u32 rb) | ||
322 | { | ||
323 | u32 *p; | ||
324 | int distance_start; | ||
325 | int distance_end; | ||
326 | ulong next_inst; | ||
327 | |||
328 | p = kvm_alloc(kvm_emulate_mtsrin_len * 4); | ||
329 | if (!p) | ||
330 | return; | ||
331 | |||
332 | /* Find out where we are and put everything there */ | ||
333 | distance_start = (ulong)p - (ulong)inst; | ||
334 | next_inst = ((ulong)inst + 4); | ||
335 | distance_end = next_inst - (ulong)&p[kvm_emulate_mtsrin_branch_offs]; | ||
336 | |||
337 | /* Make sure we only write valid b instructions */ | ||
338 | if (distance_start > KVM_INST_B_MAX) { | ||
339 | kvm_patching_worked = false; | ||
340 | return; | ||
341 | } | ||
342 | |||
343 | /* Modify the chunk to fit the invocation */ | ||
344 | memcpy(p, kvm_emulate_mtsrin, kvm_emulate_mtsrin_len * 4); | ||
345 | p[kvm_emulate_mtsrin_branch_offs] |= distance_end & KVM_INST_B_MASK; | ||
346 | p[kvm_emulate_mtsrin_reg1_offs] |= (rb << 10); | ||
347 | p[kvm_emulate_mtsrin_reg2_offs] |= rt; | ||
348 | p[kvm_emulate_mtsrin_orig_ins_offs] = *inst; | ||
349 | flush_icache_range((ulong)p, (ulong)p + kvm_emulate_mtsrin_len * 4); | ||
350 | |||
351 | /* Patch the invocation */ | ||
352 | kvm_patch_ins_b(inst, distance_start); | ||
353 | } | ||
354 | |||
355 | #endif | ||
356 | |||
357 | static void kvm_map_magic_page(void *data) | ||
358 | { | ||
359 | u32 *features = data; | ||
360 | |||
361 | ulong in[8]; | ||
362 | ulong out[8]; | ||
363 | |||
364 | in[0] = KVM_MAGIC_PAGE; | ||
365 | in[1] = KVM_MAGIC_PAGE; | ||
366 | |||
367 | kvm_hypercall(in, out, HC_VENDOR_KVM | KVM_HC_PPC_MAP_MAGIC_PAGE); | ||
368 | |||
369 | *features = out[0]; | ||
370 | } | ||
371 | |||
372 | static void kvm_check_ins(u32 *inst, u32 features) | ||
373 | { | ||
374 | u32 _inst = *inst; | ||
375 | u32 inst_no_rt = _inst & ~KVM_MASK_RT; | ||
376 | u32 inst_rt = _inst & KVM_MASK_RT; | ||
377 | |||
378 | switch (inst_no_rt) { | ||
379 | /* Loads */ | ||
380 | case KVM_INST_MFMSR: | ||
381 | kvm_patch_ins_ld(inst, magic_var(msr), inst_rt); | ||
382 | break; | ||
383 | case KVM_INST_MFSPR_SPRG0: | ||
384 | kvm_patch_ins_ld(inst, magic_var(sprg0), inst_rt); | ||
385 | break; | ||
386 | case KVM_INST_MFSPR_SPRG1: | ||
387 | kvm_patch_ins_ld(inst, magic_var(sprg1), inst_rt); | ||
388 | break; | ||
389 | case KVM_INST_MFSPR_SPRG2: | ||
390 | kvm_patch_ins_ld(inst, magic_var(sprg2), inst_rt); | ||
391 | break; | ||
392 | case KVM_INST_MFSPR_SPRG3: | ||
393 | kvm_patch_ins_ld(inst, magic_var(sprg3), inst_rt); | ||
394 | break; | ||
395 | case KVM_INST_MFSPR_SRR0: | ||
396 | kvm_patch_ins_ld(inst, magic_var(srr0), inst_rt); | ||
397 | break; | ||
398 | case KVM_INST_MFSPR_SRR1: | ||
399 | kvm_patch_ins_ld(inst, magic_var(srr1), inst_rt); | ||
400 | break; | ||
401 | case KVM_INST_MFSPR_DAR: | ||
402 | kvm_patch_ins_ld(inst, magic_var(dar), inst_rt); | ||
403 | break; | ||
404 | case KVM_INST_MFSPR_DSISR: | ||
405 | kvm_patch_ins_lwz(inst, magic_var(dsisr), inst_rt); | ||
406 | break; | ||
407 | |||
408 | /* Stores */ | ||
409 | case KVM_INST_MTSPR_SPRG0: | ||
410 | kvm_patch_ins_std(inst, magic_var(sprg0), inst_rt); | ||
411 | break; | ||
412 | case KVM_INST_MTSPR_SPRG1: | ||
413 | kvm_patch_ins_std(inst, magic_var(sprg1), inst_rt); | ||
414 | break; | ||
415 | case KVM_INST_MTSPR_SPRG2: | ||
416 | kvm_patch_ins_std(inst, magic_var(sprg2), inst_rt); | ||
417 | break; | ||
418 | case KVM_INST_MTSPR_SPRG3: | ||
419 | kvm_patch_ins_std(inst, magic_var(sprg3), inst_rt); | ||
420 | break; | ||
421 | case KVM_INST_MTSPR_SRR0: | ||
422 | kvm_patch_ins_std(inst, magic_var(srr0), inst_rt); | ||
423 | break; | ||
424 | case KVM_INST_MTSPR_SRR1: | ||
425 | kvm_patch_ins_std(inst, magic_var(srr1), inst_rt); | ||
426 | break; | ||
427 | case KVM_INST_MTSPR_DAR: | ||
428 | kvm_patch_ins_std(inst, magic_var(dar), inst_rt); | ||
429 | break; | ||
430 | case KVM_INST_MTSPR_DSISR: | ||
431 | kvm_patch_ins_stw(inst, magic_var(dsisr), inst_rt); | ||
432 | break; | ||
433 | |||
434 | /* Nops */ | ||
435 | case KVM_INST_TLBSYNC: | ||
436 | kvm_patch_ins_nop(inst); | ||
437 | break; | ||
438 | |||
439 | /* Rewrites */ | ||
440 | case KVM_INST_MTMSRD_L1: | ||
441 | kvm_patch_ins_mtmsrd(inst, inst_rt); | ||
442 | break; | ||
443 | case KVM_INST_MTMSR: | ||
444 | case KVM_INST_MTMSRD_L0: | ||
445 | kvm_patch_ins_mtmsr(inst, inst_rt); | ||
446 | break; | ||
447 | } | ||
448 | |||
449 | switch (inst_no_rt & ~KVM_MASK_RB) { | ||
450 | #ifdef CONFIG_PPC_BOOK3S_32 | ||
451 | case KVM_INST_MTSRIN: | ||
452 | if (features & KVM_MAGIC_FEAT_SR) { | ||
453 | u32 inst_rb = _inst & KVM_MASK_RB; | ||
454 | kvm_patch_ins_mtsrin(inst, inst_rt, inst_rb); | ||
455 | } | ||
456 | break; | ||
457 | break; | ||
458 | #endif | ||
459 | } | ||
460 | |||
461 | switch (_inst) { | ||
462 | #ifdef CONFIG_BOOKE | ||
463 | case KVM_INST_WRTEEI_0: | ||
464 | case KVM_INST_WRTEEI_1: | ||
465 | kvm_patch_ins_wrteei(inst); | ||
466 | break; | ||
467 | #endif | ||
468 | } | ||
469 | } | ||
470 | |||
471 | static void kvm_use_magic_page(void) | ||
472 | { | ||
473 | u32 *p; | ||
474 | u32 *start, *end; | ||
475 | u32 tmp; | ||
476 | u32 features; | ||
477 | |||
478 | /* Tell the host to map the magic page to -4096 on all CPUs */ | ||
479 | on_each_cpu(kvm_map_magic_page, &features, 1); | ||
480 | |||
481 | /* Quick self-test to see if the mapping works */ | ||
482 | if (__get_user(tmp, (u32*)KVM_MAGIC_PAGE)) { | ||
483 | kvm_patching_worked = false; | ||
484 | return; | ||
485 | } | ||
486 | |||
487 | /* Now loop through all code and find instructions */ | ||
488 | start = (void*)_stext; | ||
489 | end = (void*)_etext; | ||
490 | |||
491 | for (p = start; p < end; p++) | ||
492 | kvm_check_ins(p, features); | ||
493 | |||
494 | printk(KERN_INFO "KVM: Live patching for a fast VM %s\n", | ||
495 | kvm_patching_worked ? "worked" : "failed"); | ||
496 | } | ||
497 | |||
498 | unsigned long kvm_hypercall(unsigned long *in, | ||
499 | unsigned long *out, | ||
500 | unsigned long nr) | ||
501 | { | ||
502 | unsigned long register r0 asm("r0"); | ||
503 | unsigned long register r3 asm("r3") = in[0]; | ||
504 | unsigned long register r4 asm("r4") = in[1]; | ||
505 | unsigned long register r5 asm("r5") = in[2]; | ||
506 | unsigned long register r6 asm("r6") = in[3]; | ||
507 | unsigned long register r7 asm("r7") = in[4]; | ||
508 | unsigned long register r8 asm("r8") = in[5]; | ||
509 | unsigned long register r9 asm("r9") = in[6]; | ||
510 | unsigned long register r10 asm("r10") = in[7]; | ||
511 | unsigned long register r11 asm("r11") = nr; | ||
512 | unsigned long register r12 asm("r12"); | ||
513 | |||
514 | asm volatile("bl kvm_hypercall_start" | ||
515 | : "=r"(r0), "=r"(r3), "=r"(r4), "=r"(r5), "=r"(r6), | ||
516 | "=r"(r7), "=r"(r8), "=r"(r9), "=r"(r10), "=r"(r11), | ||
517 | "=r"(r12) | ||
518 | : "r"(r3), "r"(r4), "r"(r5), "r"(r6), "r"(r7), "r"(r8), | ||
519 | "r"(r9), "r"(r10), "r"(r11) | ||
520 | : "memory", "cc", "xer", "ctr", "lr"); | ||
521 | |||
522 | out[0] = r4; | ||
523 | out[1] = r5; | ||
524 | out[2] = r6; | ||
525 | out[3] = r7; | ||
526 | out[4] = r8; | ||
527 | out[5] = r9; | ||
528 | out[6] = r10; | ||
529 | out[7] = r11; | ||
530 | |||
531 | return r3; | ||
532 | } | ||
533 | EXPORT_SYMBOL_GPL(kvm_hypercall); | ||
534 | |||
535 | static int kvm_para_setup(void) | ||
536 | { | ||
537 | extern u32 kvm_hypercall_start; | ||
538 | struct device_node *hyper_node; | ||
539 | u32 *insts; | ||
540 | int len, i; | ||
541 | |||
542 | hyper_node = of_find_node_by_path("/hypervisor"); | ||
543 | if (!hyper_node) | ||
544 | return -1; | ||
545 | |||
546 | insts = (u32*)of_get_property(hyper_node, "hcall-instructions", &len); | ||
547 | if (len % 4) | ||
548 | return -1; | ||
549 | if (len > (4 * 4)) | ||
550 | return -1; | ||
551 | |||
552 | for (i = 0; i < (len / 4); i++) | ||
553 | kvm_patch_ins(&(&kvm_hypercall_start)[i], insts[i]); | ||
554 | |||
555 | return 0; | ||
556 | } | ||
557 | |||
558 | static __init void kvm_free_tmp(void) | ||
559 | { | ||
560 | unsigned long start, end; | ||
561 | |||
562 | start = (ulong)&kvm_tmp[kvm_tmp_index + (PAGE_SIZE - 1)] & PAGE_MASK; | ||
563 | end = (ulong)&kvm_tmp[ARRAY_SIZE(kvm_tmp)] & PAGE_MASK; | ||
564 | |||
565 | /* Free the tmp space we don't need */ | ||
566 | for (; start < end; start += PAGE_SIZE) { | ||
567 | ClearPageReserved(virt_to_page(start)); | ||
568 | init_page_count(virt_to_page(start)); | ||
569 | free_page(start); | ||
570 | totalram_pages++; | ||
571 | } | ||
572 | } | ||
573 | |||
574 | static int __init kvm_guest_init(void) | ||
575 | { | ||
576 | if (!kvm_para_available()) | ||
577 | goto free_tmp; | ||
578 | |||
579 | if (kvm_para_setup()) | ||
580 | goto free_tmp; | ||
581 | |||
582 | if (kvm_para_has_feature(KVM_FEATURE_MAGIC_PAGE)) | ||
583 | kvm_use_magic_page(); | ||
584 | |||
585 | #ifdef CONFIG_PPC_BOOK3S_64 | ||
586 | /* Enable napping */ | ||
587 | powersave_nap = 1; | ||
588 | #endif | ||
589 | |||
590 | free_tmp: | ||
591 | kvm_free_tmp(); | ||
592 | |||
593 | return 0; | ||
594 | } | ||
595 | |||
596 | postcore_initcall(kvm_guest_init); | ||
diff --git a/arch/powerpc/kernel/kvm_emul.S b/arch/powerpc/kernel/kvm_emul.S new file mode 100644 index 000000000000..f2b1b2523e61 --- /dev/null +++ b/arch/powerpc/kernel/kvm_emul.S | |||
@@ -0,0 +1,302 @@ | |||
1 | /* | ||
2 | * This program is free software; you can redistribute it and/or modify | ||
3 | * it under the terms of the GNU General Public License, version 2, as | ||
4 | * published by the Free Software Foundation. | ||
5 | * | ||
6 | * This program is distributed in the hope that it will be useful, | ||
7 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
8 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
9 | * GNU General Public License for more details. | ||
10 | * | ||
11 | * You should have received a copy of the GNU General Public License | ||
12 | * along with this program; if not, write to the Free Software | ||
13 | * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. | ||
14 | * | ||
15 | * Copyright SUSE Linux Products GmbH 2010 | ||
16 | * | ||
17 | * Authors: Alexander Graf <agraf@suse.de> | ||
18 | */ | ||
19 | |||
20 | #include <asm/ppc_asm.h> | ||
21 | #include <asm/kvm_asm.h> | ||
22 | #include <asm/reg.h> | ||
23 | #include <asm/page.h> | ||
24 | #include <asm/asm-offsets.h> | ||
25 | |||
26 | /* Hypercall entry point. Will be patched with device tree instructions. */ | ||
27 | |||
28 | .global kvm_hypercall_start | ||
29 | kvm_hypercall_start: | ||
30 | li r3, -1 | ||
31 | nop | ||
32 | nop | ||
33 | nop | ||
34 | blr | ||
35 | |||
36 | #define KVM_MAGIC_PAGE (-4096) | ||
37 | |||
38 | #ifdef CONFIG_64BIT | ||
39 | #define LL64(reg, offs, reg2) ld reg, (offs)(reg2) | ||
40 | #define STL64(reg, offs, reg2) std reg, (offs)(reg2) | ||
41 | #else | ||
42 | #define LL64(reg, offs, reg2) lwz reg, (offs + 4)(reg2) | ||
43 | #define STL64(reg, offs, reg2) stw reg, (offs + 4)(reg2) | ||
44 | #endif | ||
45 | |||
46 | #define SCRATCH_SAVE \ | ||
47 | /* Enable critical section. We are critical if \ | ||
48 | shared->critical == r1 */ \ | ||
49 | STL64(r1, KVM_MAGIC_PAGE + KVM_MAGIC_CRITICAL, 0); \ | ||
50 | \ | ||
51 | /* Save state */ \ | ||
52 | PPC_STL r31, (KVM_MAGIC_PAGE + KVM_MAGIC_SCRATCH1)(0); \ | ||
53 | PPC_STL r30, (KVM_MAGIC_PAGE + KVM_MAGIC_SCRATCH2)(0); \ | ||
54 | mfcr r31; \ | ||
55 | stw r31, (KVM_MAGIC_PAGE + KVM_MAGIC_SCRATCH3)(0); | ||
56 | |||
57 | #define SCRATCH_RESTORE \ | ||
58 | /* Restore state */ \ | ||
59 | PPC_LL r31, (KVM_MAGIC_PAGE + KVM_MAGIC_SCRATCH1)(0); \ | ||
60 | lwz r30, (KVM_MAGIC_PAGE + KVM_MAGIC_SCRATCH3)(0); \ | ||
61 | mtcr r30; \ | ||
62 | PPC_LL r30, (KVM_MAGIC_PAGE + KVM_MAGIC_SCRATCH2)(0); \ | ||
63 | \ | ||
64 | /* Disable critical section. We are critical if \ | ||
65 | shared->critical == r1 and r2 is always != r1 */ \ | ||
66 | STL64(r2, KVM_MAGIC_PAGE + KVM_MAGIC_CRITICAL, 0); | ||
67 | |||
68 | .global kvm_emulate_mtmsrd | ||
69 | kvm_emulate_mtmsrd: | ||
70 | |||
71 | SCRATCH_SAVE | ||
72 | |||
73 | /* Put MSR & ~(MSR_EE|MSR_RI) in r31 */ | ||
74 | LL64(r31, KVM_MAGIC_PAGE + KVM_MAGIC_MSR, 0) | ||
75 | lis r30, (~(MSR_EE | MSR_RI))@h | ||
76 | ori r30, r30, (~(MSR_EE | MSR_RI))@l | ||
77 | and r31, r31, r30 | ||
78 | |||
79 | /* OR the register's (MSR_EE|MSR_RI) on MSR */ | ||
80 | kvm_emulate_mtmsrd_reg: | ||
81 | ori r30, r0, 0 | ||
82 | andi. r30, r30, (MSR_EE|MSR_RI) | ||
83 | or r31, r31, r30 | ||
84 | |||
85 | /* Put MSR back into magic page */ | ||
86 | STL64(r31, KVM_MAGIC_PAGE + KVM_MAGIC_MSR, 0) | ||
87 | |||
88 | /* Check if we have to fetch an interrupt */ | ||
89 | lwz r31, (KVM_MAGIC_PAGE + KVM_MAGIC_INT)(0) | ||
90 | cmpwi r31, 0 | ||
91 | beq+ no_check | ||
92 | |||
93 | /* Check if we may trigger an interrupt */ | ||
94 | andi. r30, r30, MSR_EE | ||
95 | beq no_check | ||
96 | |||
97 | SCRATCH_RESTORE | ||
98 | |||
99 | /* Nag hypervisor */ | ||
100 | kvm_emulate_mtmsrd_orig_ins: | ||
101 | tlbsync | ||
102 | |||
103 | b kvm_emulate_mtmsrd_branch | ||
104 | |||
105 | no_check: | ||
106 | |||
107 | SCRATCH_RESTORE | ||
108 | |||
109 | /* Go back to caller */ | ||
110 | kvm_emulate_mtmsrd_branch: | ||
111 | b . | ||
112 | kvm_emulate_mtmsrd_end: | ||
113 | |||
114 | .global kvm_emulate_mtmsrd_branch_offs | ||
115 | kvm_emulate_mtmsrd_branch_offs: | ||
116 | .long (kvm_emulate_mtmsrd_branch - kvm_emulate_mtmsrd) / 4 | ||
117 | |||
118 | .global kvm_emulate_mtmsrd_reg_offs | ||
119 | kvm_emulate_mtmsrd_reg_offs: | ||
120 | .long (kvm_emulate_mtmsrd_reg - kvm_emulate_mtmsrd) / 4 | ||
121 | |||
122 | .global kvm_emulate_mtmsrd_orig_ins_offs | ||
123 | kvm_emulate_mtmsrd_orig_ins_offs: | ||
124 | .long (kvm_emulate_mtmsrd_orig_ins - kvm_emulate_mtmsrd) / 4 | ||
125 | |||
126 | .global kvm_emulate_mtmsrd_len | ||
127 | kvm_emulate_mtmsrd_len: | ||
128 | .long (kvm_emulate_mtmsrd_end - kvm_emulate_mtmsrd) / 4 | ||
129 | |||
130 | |||
131 | #define MSR_SAFE_BITS (MSR_EE | MSR_CE | MSR_ME | MSR_RI) | ||
132 | #define MSR_CRITICAL_BITS ~MSR_SAFE_BITS | ||
133 | |||
134 | .global kvm_emulate_mtmsr | ||
135 | kvm_emulate_mtmsr: | ||
136 | |||
137 | SCRATCH_SAVE | ||
138 | |||
139 | /* Fetch old MSR in r31 */ | ||
140 | LL64(r31, KVM_MAGIC_PAGE + KVM_MAGIC_MSR, 0) | ||
141 | |||
142 | /* Find the changed bits between old and new MSR */ | ||
143 | kvm_emulate_mtmsr_reg1: | ||
144 | ori r30, r0, 0 | ||
145 | xor r31, r30, r31 | ||
146 | |||
147 | /* Check if we need to really do mtmsr */ | ||
148 | LOAD_REG_IMMEDIATE(r30, MSR_CRITICAL_BITS) | ||
149 | and. r31, r31, r30 | ||
150 | |||
151 | /* No critical bits changed? Maybe we can stay in the guest. */ | ||
152 | beq maybe_stay_in_guest | ||
153 | |||
154 | do_mtmsr: | ||
155 | |||
156 | SCRATCH_RESTORE | ||
157 | |||
158 | /* Just fire off the mtmsr if it's critical */ | ||
159 | kvm_emulate_mtmsr_orig_ins: | ||
160 | mtmsr r0 | ||
161 | |||
162 | b kvm_emulate_mtmsr_branch | ||
163 | |||
164 | maybe_stay_in_guest: | ||
165 | |||
166 | /* Get the target register in r30 */ | ||
167 | kvm_emulate_mtmsr_reg2: | ||
168 | ori r30, r0, 0 | ||
169 | |||
170 | /* Check if we have to fetch an interrupt */ | ||
171 | lwz r31, (KVM_MAGIC_PAGE + KVM_MAGIC_INT)(0) | ||
172 | cmpwi r31, 0 | ||
173 | beq+ no_mtmsr | ||
174 | |||
175 | /* Check if we may trigger an interrupt */ | ||
176 | andi. r31, r30, MSR_EE | ||
177 | beq no_mtmsr | ||
178 | |||
179 | b do_mtmsr | ||
180 | |||
181 | no_mtmsr: | ||
182 | |||
183 | /* Put MSR into magic page because we don't call mtmsr */ | ||
184 | STL64(r30, KVM_MAGIC_PAGE + KVM_MAGIC_MSR, 0) | ||
185 | |||
186 | SCRATCH_RESTORE | ||
187 | |||
188 | /* Go back to caller */ | ||
189 | kvm_emulate_mtmsr_branch: | ||
190 | b . | ||
191 | kvm_emulate_mtmsr_end: | ||
192 | |||
193 | .global kvm_emulate_mtmsr_branch_offs | ||
194 | kvm_emulate_mtmsr_branch_offs: | ||
195 | .long (kvm_emulate_mtmsr_branch - kvm_emulate_mtmsr) / 4 | ||
196 | |||
197 | .global kvm_emulate_mtmsr_reg1_offs | ||
198 | kvm_emulate_mtmsr_reg1_offs: | ||
199 | .long (kvm_emulate_mtmsr_reg1 - kvm_emulate_mtmsr) / 4 | ||
200 | |||
201 | .global kvm_emulate_mtmsr_reg2_offs | ||
202 | kvm_emulate_mtmsr_reg2_offs: | ||
203 | .long (kvm_emulate_mtmsr_reg2 - kvm_emulate_mtmsr) / 4 | ||
204 | |||
205 | .global kvm_emulate_mtmsr_orig_ins_offs | ||
206 | kvm_emulate_mtmsr_orig_ins_offs: | ||
207 | .long (kvm_emulate_mtmsr_orig_ins - kvm_emulate_mtmsr) / 4 | ||
208 | |||
209 | .global kvm_emulate_mtmsr_len | ||
210 | kvm_emulate_mtmsr_len: | ||
211 | .long (kvm_emulate_mtmsr_end - kvm_emulate_mtmsr) / 4 | ||
212 | |||
213 | |||
214 | |||
215 | .global kvm_emulate_wrteei | ||
216 | kvm_emulate_wrteei: | ||
217 | |||
218 | SCRATCH_SAVE | ||
219 | |||
220 | /* Fetch old MSR in r31 */ | ||
221 | LL64(r31, KVM_MAGIC_PAGE + KVM_MAGIC_MSR, 0) | ||
222 | |||
223 | /* Remove MSR_EE from old MSR */ | ||
224 | li r30, 0 | ||
225 | ori r30, r30, MSR_EE | ||
226 | andc r31, r31, r30 | ||
227 | |||
228 | /* OR new MSR_EE onto the old MSR */ | ||
229 | kvm_emulate_wrteei_ee: | ||
230 | ori r31, r31, 0 | ||
231 | |||
232 | /* Write new MSR value back */ | ||
233 | STL64(r31, KVM_MAGIC_PAGE + KVM_MAGIC_MSR, 0) | ||
234 | |||
235 | SCRATCH_RESTORE | ||
236 | |||
237 | /* Go back to caller */ | ||
238 | kvm_emulate_wrteei_branch: | ||
239 | b . | ||
240 | kvm_emulate_wrteei_end: | ||
241 | |||
242 | .global kvm_emulate_wrteei_branch_offs | ||
243 | kvm_emulate_wrteei_branch_offs: | ||
244 | .long (kvm_emulate_wrteei_branch - kvm_emulate_wrteei) / 4 | ||
245 | |||
246 | .global kvm_emulate_wrteei_ee_offs | ||
247 | kvm_emulate_wrteei_ee_offs: | ||
248 | .long (kvm_emulate_wrteei_ee - kvm_emulate_wrteei) / 4 | ||
249 | |||
250 | .global kvm_emulate_wrteei_len | ||
251 | kvm_emulate_wrteei_len: | ||
252 | .long (kvm_emulate_wrteei_end - kvm_emulate_wrteei) / 4 | ||
253 | |||
254 | |||
255 | .global kvm_emulate_mtsrin | ||
256 | kvm_emulate_mtsrin: | ||
257 | |||
258 | SCRATCH_SAVE | ||
259 | |||
260 | LL64(r31, KVM_MAGIC_PAGE + KVM_MAGIC_MSR, 0) | ||
261 | andi. r31, r31, MSR_DR | MSR_IR | ||
262 | beq kvm_emulate_mtsrin_reg1 | ||
263 | |||
264 | SCRATCH_RESTORE | ||
265 | |||
266 | kvm_emulate_mtsrin_orig_ins: | ||
267 | nop | ||
268 | b kvm_emulate_mtsrin_branch | ||
269 | |||
270 | kvm_emulate_mtsrin_reg1: | ||
271 | /* rX >> 26 */ | ||
272 | rlwinm r30,r0,6,26,29 | ||
273 | |||
274 | kvm_emulate_mtsrin_reg2: | ||
275 | stw r0, (KVM_MAGIC_PAGE + KVM_MAGIC_SR)(r30) | ||
276 | |||
277 | SCRATCH_RESTORE | ||
278 | |||
279 | /* Go back to caller */ | ||
280 | kvm_emulate_mtsrin_branch: | ||
281 | b . | ||
282 | kvm_emulate_mtsrin_end: | ||
283 | |||
284 | .global kvm_emulate_mtsrin_branch_offs | ||
285 | kvm_emulate_mtsrin_branch_offs: | ||
286 | .long (kvm_emulate_mtsrin_branch - kvm_emulate_mtsrin) / 4 | ||
287 | |||
288 | .global kvm_emulate_mtsrin_reg1_offs | ||
289 | kvm_emulate_mtsrin_reg1_offs: | ||
290 | .long (kvm_emulate_mtsrin_reg1 - kvm_emulate_mtsrin) / 4 | ||
291 | |||
292 | .global kvm_emulate_mtsrin_reg2_offs | ||
293 | kvm_emulate_mtsrin_reg2_offs: | ||
294 | .long (kvm_emulate_mtsrin_reg2 - kvm_emulate_mtsrin) / 4 | ||
295 | |||
296 | .global kvm_emulate_mtsrin_orig_ins_offs | ||
297 | kvm_emulate_mtsrin_orig_ins_offs: | ||
298 | .long (kvm_emulate_mtsrin_orig_ins - kvm_emulate_mtsrin) / 4 | ||
299 | |||
300 | .global kvm_emulate_mtsrin_len | ||
301 | kvm_emulate_mtsrin_len: | ||
302 | .long (kvm_emulate_mtsrin_end - kvm_emulate_mtsrin) / 4 | ||
diff --git a/arch/powerpc/kvm/44x.c b/arch/powerpc/kvm/44x.c index 73c0a3f64ed1..74d0e7421143 100644 --- a/arch/powerpc/kvm/44x.c +++ b/arch/powerpc/kvm/44x.c | |||
@@ -43,7 +43,7 @@ int kvmppc_core_check_processor_compat(void) | |||
43 | { | 43 | { |
44 | int r; | 44 | int r; |
45 | 45 | ||
46 | if (strcmp(cur_cpu_spec->platform, "ppc440") == 0) | 46 | if (strncmp(cur_cpu_spec->platform, "ppc440", 6) == 0) |
47 | r = 0; | 47 | r = 0; |
48 | else | 48 | else |
49 | r = -ENOTSUPP; | 49 | r = -ENOTSUPP; |
@@ -72,6 +72,7 @@ int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu) | |||
72 | /* Since the guest can directly access the timebase, it must know the | 72 | /* Since the guest can directly access the timebase, it must know the |
73 | * real timebase frequency. Accordingly, it must see the state of | 73 | * real timebase frequency. Accordingly, it must see the state of |
74 | * CCR1[TCS]. */ | 74 | * CCR1[TCS]. */ |
75 | /* XXX CCR1 doesn't exist on all 440 SoCs. */ | ||
75 | vcpu->arch.ccr1 = mfspr(SPRN_CCR1); | 76 | vcpu->arch.ccr1 = mfspr(SPRN_CCR1); |
76 | 77 | ||
77 | for (i = 0; i < ARRAY_SIZE(vcpu_44x->shadow_refs); i++) | 78 | for (i = 0; i < ARRAY_SIZE(vcpu_44x->shadow_refs); i++) |
@@ -123,8 +124,14 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) | |||
123 | if (err) | 124 | if (err) |
124 | goto free_vcpu; | 125 | goto free_vcpu; |
125 | 126 | ||
127 | vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO); | ||
128 | if (!vcpu->arch.shared) | ||
129 | goto uninit_vcpu; | ||
130 | |||
126 | return vcpu; | 131 | return vcpu; |
127 | 132 | ||
133 | uninit_vcpu: | ||
134 | kvm_vcpu_uninit(vcpu); | ||
128 | free_vcpu: | 135 | free_vcpu: |
129 | kmem_cache_free(kvm_vcpu_cache, vcpu_44x); | 136 | kmem_cache_free(kvm_vcpu_cache, vcpu_44x); |
130 | out: | 137 | out: |
@@ -135,6 +142,7 @@ void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu) | |||
135 | { | 142 | { |
136 | struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu); | 143 | struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu); |
137 | 144 | ||
145 | free_page((unsigned long)vcpu->arch.shared); | ||
138 | kvm_vcpu_uninit(vcpu); | 146 | kvm_vcpu_uninit(vcpu); |
139 | kmem_cache_free(kvm_vcpu_cache, vcpu_44x); | 147 | kmem_cache_free(kvm_vcpu_cache, vcpu_44x); |
140 | } | 148 | } |
diff --git a/arch/powerpc/kvm/44x_tlb.c b/arch/powerpc/kvm/44x_tlb.c index 9b9b5cdea840..5f3cff83e089 100644 --- a/arch/powerpc/kvm/44x_tlb.c +++ b/arch/powerpc/kvm/44x_tlb.c | |||
@@ -47,6 +47,7 @@ | |||
47 | #ifdef DEBUG | 47 | #ifdef DEBUG |
48 | void kvmppc_dump_tlbs(struct kvm_vcpu *vcpu) | 48 | void kvmppc_dump_tlbs(struct kvm_vcpu *vcpu) |
49 | { | 49 | { |
50 | struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu); | ||
50 | struct kvmppc_44x_tlbe *tlbe; | 51 | struct kvmppc_44x_tlbe *tlbe; |
51 | int i; | 52 | int i; |
52 | 53 | ||
@@ -221,14 +222,14 @@ gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int gtlb_index, | |||
221 | 222 | ||
222 | int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr) | 223 | int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr) |
223 | { | 224 | { |
224 | unsigned int as = !!(vcpu->arch.msr & MSR_IS); | 225 | unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS); |
225 | 226 | ||
226 | return kvmppc_44x_tlb_index(vcpu, eaddr, vcpu->arch.pid, as); | 227 | return kvmppc_44x_tlb_index(vcpu, eaddr, vcpu->arch.pid, as); |
227 | } | 228 | } |
228 | 229 | ||
229 | int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr) | 230 | int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr) |
230 | { | 231 | { |
231 | unsigned int as = !!(vcpu->arch.msr & MSR_DS); | 232 | unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS); |
232 | 233 | ||
233 | return kvmppc_44x_tlb_index(vcpu, eaddr, vcpu->arch.pid, as); | 234 | return kvmppc_44x_tlb_index(vcpu, eaddr, vcpu->arch.pid, as); |
234 | } | 235 | } |
@@ -354,7 +355,7 @@ void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 gvaddr, gpa_t gpaddr, | |||
354 | 355 | ||
355 | stlbe.word1 = (hpaddr & 0xfffffc00) | ((hpaddr >> 32) & 0xf); | 356 | stlbe.word1 = (hpaddr & 0xfffffc00) | ((hpaddr >> 32) & 0xf); |
356 | stlbe.word2 = kvmppc_44x_tlb_shadow_attrib(flags, | 357 | stlbe.word2 = kvmppc_44x_tlb_shadow_attrib(flags, |
357 | vcpu->arch.msr & MSR_PR); | 358 | vcpu->arch.shared->msr & MSR_PR); |
358 | stlbe.tid = !(asid & 0xff); | 359 | stlbe.tid = !(asid & 0xff); |
359 | 360 | ||
360 | /* Keep track of the reference so we can properly release it later. */ | 361 | /* Keep track of the reference so we can properly release it later. */ |
@@ -423,7 +424,7 @@ static int tlbe_is_host_safe(const struct kvm_vcpu *vcpu, | |||
423 | 424 | ||
424 | /* Does it match current guest AS? */ | 425 | /* Does it match current guest AS? */ |
425 | /* XXX what about IS != DS? */ | 426 | /* XXX what about IS != DS? */ |
426 | if (get_tlb_ts(tlbe) != !!(vcpu->arch.msr & MSR_IS)) | 427 | if (get_tlb_ts(tlbe) != !!(vcpu->arch.shared->msr & MSR_IS)) |
427 | return 0; | 428 | return 0; |
428 | 429 | ||
429 | gpa = get_tlb_raddr(tlbe); | 430 | gpa = get_tlb_raddr(tlbe); |
diff --git a/arch/powerpc/kvm/book3s.c b/arch/powerpc/kvm/book3s.c index a3cef30d1d42..e316847c08c0 100644 --- a/arch/powerpc/kvm/book3s.c +++ b/arch/powerpc/kvm/book3s.c | |||
@@ -17,6 +17,7 @@ | |||
17 | #include <linux/kvm_host.h> | 17 | #include <linux/kvm_host.h> |
18 | #include <linux/err.h> | 18 | #include <linux/err.h> |
19 | #include <linux/slab.h> | 19 | #include <linux/slab.h> |
20 | #include "trace.h" | ||
20 | 21 | ||
21 | #include <asm/reg.h> | 22 | #include <asm/reg.h> |
22 | #include <asm/cputable.h> | 23 | #include <asm/cputable.h> |
@@ -35,7 +36,6 @@ | |||
35 | #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU | 36 | #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU |
36 | 37 | ||
37 | /* #define EXIT_DEBUG */ | 38 | /* #define EXIT_DEBUG */ |
38 | /* #define EXIT_DEBUG_SIMPLE */ | ||
39 | /* #define DEBUG_EXT */ | 39 | /* #define DEBUG_EXT */ |
40 | 40 | ||
41 | static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, | 41 | static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, |
@@ -105,65 +105,71 @@ void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu) | |||
105 | kvmppc_giveup_ext(vcpu, MSR_VSX); | 105 | kvmppc_giveup_ext(vcpu, MSR_VSX); |
106 | } | 106 | } |
107 | 107 | ||
108 | #if defined(EXIT_DEBUG) | ||
109 | static u32 kvmppc_get_dec(struct kvm_vcpu *vcpu) | ||
110 | { | ||
111 | u64 jd = mftb() - vcpu->arch.dec_jiffies; | ||
112 | return vcpu->arch.dec - jd; | ||
113 | } | ||
114 | #endif | ||
115 | |||
116 | static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu) | 108 | static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu) |
117 | { | 109 | { |
118 | vcpu->arch.shadow_msr = vcpu->arch.msr; | 110 | ulong smsr = vcpu->arch.shared->msr; |
111 | |||
119 | /* Guest MSR values */ | 112 | /* Guest MSR values */ |
120 | vcpu->arch.shadow_msr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | | 113 | smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_DE; |
121 | MSR_BE | MSR_DE; | ||
122 | /* Process MSR values */ | 114 | /* Process MSR values */ |
123 | vcpu->arch.shadow_msr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | | 115 | smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE; |
124 | MSR_EE; | ||
125 | /* External providers the guest reserved */ | 116 | /* External providers the guest reserved */ |
126 | vcpu->arch.shadow_msr |= (vcpu->arch.msr & vcpu->arch.guest_owned_ext); | 117 | smsr |= (vcpu->arch.shared->msr & vcpu->arch.guest_owned_ext); |
127 | /* 64-bit Process MSR values */ | 118 | /* 64-bit Process MSR values */ |
128 | #ifdef CONFIG_PPC_BOOK3S_64 | 119 | #ifdef CONFIG_PPC_BOOK3S_64 |
129 | vcpu->arch.shadow_msr |= MSR_ISF | MSR_HV; | 120 | smsr |= MSR_ISF | MSR_HV; |
130 | #endif | 121 | #endif |
122 | vcpu->arch.shadow_msr = smsr; | ||
131 | } | 123 | } |
132 | 124 | ||
133 | void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr) | 125 | void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr) |
134 | { | 126 | { |
135 | ulong old_msr = vcpu->arch.msr; | 127 | ulong old_msr = vcpu->arch.shared->msr; |
136 | 128 | ||
137 | #ifdef EXIT_DEBUG | 129 | #ifdef EXIT_DEBUG |
138 | printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr); | 130 | printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr); |
139 | #endif | 131 | #endif |
140 | 132 | ||
141 | msr &= to_book3s(vcpu)->msr_mask; | 133 | msr &= to_book3s(vcpu)->msr_mask; |
142 | vcpu->arch.msr = msr; | 134 | vcpu->arch.shared->msr = msr; |
143 | kvmppc_recalc_shadow_msr(vcpu); | 135 | kvmppc_recalc_shadow_msr(vcpu); |
144 | 136 | ||
145 | if (msr & (MSR_WE|MSR_POW)) { | 137 | if (msr & MSR_POW) { |
146 | if (!vcpu->arch.pending_exceptions) { | 138 | if (!vcpu->arch.pending_exceptions) { |
147 | kvm_vcpu_block(vcpu); | 139 | kvm_vcpu_block(vcpu); |
148 | vcpu->stat.halt_wakeup++; | 140 | vcpu->stat.halt_wakeup++; |
141 | |||
142 | /* Unset POW bit after we woke up */ | ||
143 | msr &= ~MSR_POW; | ||
144 | vcpu->arch.shared->msr = msr; | ||
149 | } | 145 | } |
150 | } | 146 | } |
151 | 147 | ||
152 | if ((vcpu->arch.msr & (MSR_PR|MSR_IR|MSR_DR)) != | 148 | if ((vcpu->arch.shared->msr & (MSR_PR|MSR_IR|MSR_DR)) != |
153 | (old_msr & (MSR_PR|MSR_IR|MSR_DR))) { | 149 | (old_msr & (MSR_PR|MSR_IR|MSR_DR))) { |
154 | kvmppc_mmu_flush_segments(vcpu); | 150 | kvmppc_mmu_flush_segments(vcpu); |
155 | kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); | 151 | kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); |
152 | |||
153 | /* Preload magic page segment when in kernel mode */ | ||
154 | if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) { | ||
155 | struct kvm_vcpu_arch *a = &vcpu->arch; | ||
156 | |||
157 | if (msr & MSR_DR) | ||
158 | kvmppc_mmu_map_segment(vcpu, a->magic_page_ea); | ||
159 | else | ||
160 | kvmppc_mmu_map_segment(vcpu, a->magic_page_pa); | ||
161 | } | ||
156 | } | 162 | } |
157 | 163 | ||
158 | /* Preload FPU if it's enabled */ | 164 | /* Preload FPU if it's enabled */ |
159 | if (vcpu->arch.msr & MSR_FP) | 165 | if (vcpu->arch.shared->msr & MSR_FP) |
160 | kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); | 166 | kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); |
161 | } | 167 | } |
162 | 168 | ||
163 | void kvmppc_inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 flags) | 169 | void kvmppc_inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 flags) |
164 | { | 170 | { |
165 | vcpu->arch.srr0 = kvmppc_get_pc(vcpu); | 171 | vcpu->arch.shared->srr0 = kvmppc_get_pc(vcpu); |
166 | vcpu->arch.srr1 = vcpu->arch.msr | flags; | 172 | vcpu->arch.shared->srr1 = vcpu->arch.shared->msr | flags; |
167 | kvmppc_set_pc(vcpu, to_book3s(vcpu)->hior + vec); | 173 | kvmppc_set_pc(vcpu, to_book3s(vcpu)->hior + vec); |
168 | vcpu->arch.mmu.reset_msr(vcpu); | 174 | vcpu->arch.mmu.reset_msr(vcpu); |
169 | } | 175 | } |
@@ -180,6 +186,7 @@ static int kvmppc_book3s_vec2irqprio(unsigned int vec) | |||
180 | case 0x400: prio = BOOK3S_IRQPRIO_INST_STORAGE; break; | 186 | case 0x400: prio = BOOK3S_IRQPRIO_INST_STORAGE; break; |
181 | case 0x480: prio = BOOK3S_IRQPRIO_INST_SEGMENT; break; | 187 | case 0x480: prio = BOOK3S_IRQPRIO_INST_SEGMENT; break; |
182 | case 0x500: prio = BOOK3S_IRQPRIO_EXTERNAL; break; | 188 | case 0x500: prio = BOOK3S_IRQPRIO_EXTERNAL; break; |
189 | case 0x501: prio = BOOK3S_IRQPRIO_EXTERNAL_LEVEL; break; | ||
183 | case 0x600: prio = BOOK3S_IRQPRIO_ALIGNMENT; break; | 190 | case 0x600: prio = BOOK3S_IRQPRIO_ALIGNMENT; break; |
184 | case 0x700: prio = BOOK3S_IRQPRIO_PROGRAM; break; | 191 | case 0x700: prio = BOOK3S_IRQPRIO_PROGRAM; break; |
185 | case 0x800: prio = BOOK3S_IRQPRIO_FP_UNAVAIL; break; | 192 | case 0x800: prio = BOOK3S_IRQPRIO_FP_UNAVAIL; break; |
@@ -199,6 +206,9 @@ static void kvmppc_book3s_dequeue_irqprio(struct kvm_vcpu *vcpu, | |||
199 | { | 206 | { |
200 | clear_bit(kvmppc_book3s_vec2irqprio(vec), | 207 | clear_bit(kvmppc_book3s_vec2irqprio(vec), |
201 | &vcpu->arch.pending_exceptions); | 208 | &vcpu->arch.pending_exceptions); |
209 | |||
210 | if (!vcpu->arch.pending_exceptions) | ||
211 | vcpu->arch.shared->int_pending = 0; | ||
202 | } | 212 | } |
203 | 213 | ||
204 | void kvmppc_book3s_queue_irqprio(struct kvm_vcpu *vcpu, unsigned int vec) | 214 | void kvmppc_book3s_queue_irqprio(struct kvm_vcpu *vcpu, unsigned int vec) |
@@ -237,13 +247,19 @@ void kvmppc_core_dequeue_dec(struct kvm_vcpu *vcpu) | |||
237 | void kvmppc_core_queue_external(struct kvm_vcpu *vcpu, | 247 | void kvmppc_core_queue_external(struct kvm_vcpu *vcpu, |
238 | struct kvm_interrupt *irq) | 248 | struct kvm_interrupt *irq) |
239 | { | 249 | { |
240 | kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL); | 250 | unsigned int vec = BOOK3S_INTERRUPT_EXTERNAL; |
251 | |||
252 | if (irq->irq == KVM_INTERRUPT_SET_LEVEL) | ||
253 | vec = BOOK3S_INTERRUPT_EXTERNAL_LEVEL; | ||
254 | |||
255 | kvmppc_book3s_queue_irqprio(vcpu, vec); | ||
241 | } | 256 | } |
242 | 257 | ||
243 | void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu, | 258 | void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu, |
244 | struct kvm_interrupt *irq) | 259 | struct kvm_interrupt *irq) |
245 | { | 260 | { |
246 | kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL); | 261 | kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL); |
262 | kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL_LEVEL); | ||
247 | } | 263 | } |
248 | 264 | ||
249 | int kvmppc_book3s_irqprio_deliver(struct kvm_vcpu *vcpu, unsigned int priority) | 265 | int kvmppc_book3s_irqprio_deliver(struct kvm_vcpu *vcpu, unsigned int priority) |
@@ -251,14 +267,29 @@ int kvmppc_book3s_irqprio_deliver(struct kvm_vcpu *vcpu, unsigned int priority) | |||
251 | int deliver = 1; | 267 | int deliver = 1; |
252 | int vec = 0; | 268 | int vec = 0; |
253 | ulong flags = 0ULL; | 269 | ulong flags = 0ULL; |
270 | ulong crit_raw = vcpu->arch.shared->critical; | ||
271 | ulong crit_r1 = kvmppc_get_gpr(vcpu, 1); | ||
272 | bool crit; | ||
273 | |||
274 | /* Truncate crit indicators in 32 bit mode */ | ||
275 | if (!(vcpu->arch.shared->msr & MSR_SF)) { | ||
276 | crit_raw &= 0xffffffff; | ||
277 | crit_r1 &= 0xffffffff; | ||
278 | } | ||
279 | |||
280 | /* Critical section when crit == r1 */ | ||
281 | crit = (crit_raw == crit_r1); | ||
282 | /* ... and we're in supervisor mode */ | ||
283 | crit = crit && !(vcpu->arch.shared->msr & MSR_PR); | ||
254 | 284 | ||
255 | switch (priority) { | 285 | switch (priority) { |
256 | case BOOK3S_IRQPRIO_DECREMENTER: | 286 | case BOOK3S_IRQPRIO_DECREMENTER: |
257 | deliver = vcpu->arch.msr & MSR_EE; | 287 | deliver = (vcpu->arch.shared->msr & MSR_EE) && !crit; |
258 | vec = BOOK3S_INTERRUPT_DECREMENTER; | 288 | vec = BOOK3S_INTERRUPT_DECREMENTER; |
259 | break; | 289 | break; |
260 | case BOOK3S_IRQPRIO_EXTERNAL: | 290 | case BOOK3S_IRQPRIO_EXTERNAL: |
261 | deliver = vcpu->arch.msr & MSR_EE; | 291 | case BOOK3S_IRQPRIO_EXTERNAL_LEVEL: |
292 | deliver = (vcpu->arch.shared->msr & MSR_EE) && !crit; | ||
262 | vec = BOOK3S_INTERRUPT_EXTERNAL; | 293 | vec = BOOK3S_INTERRUPT_EXTERNAL; |
263 | break; | 294 | break; |
264 | case BOOK3S_IRQPRIO_SYSTEM_RESET: | 295 | case BOOK3S_IRQPRIO_SYSTEM_RESET: |
@@ -320,9 +351,27 @@ int kvmppc_book3s_irqprio_deliver(struct kvm_vcpu *vcpu, unsigned int priority) | |||
320 | return deliver; | 351 | return deliver; |
321 | } | 352 | } |
322 | 353 | ||
354 | /* | ||
355 | * This function determines if an irqprio should be cleared once issued. | ||
356 | */ | ||
357 | static bool clear_irqprio(struct kvm_vcpu *vcpu, unsigned int priority) | ||
358 | { | ||
359 | switch (priority) { | ||
360 | case BOOK3S_IRQPRIO_DECREMENTER: | ||
361 | /* DEC interrupts get cleared by mtdec */ | ||
362 | return false; | ||
363 | case BOOK3S_IRQPRIO_EXTERNAL_LEVEL: | ||
364 | /* External interrupts get cleared by userspace */ | ||
365 | return false; | ||
366 | } | ||
367 | |||
368 | return true; | ||
369 | } | ||
370 | |||
323 | void kvmppc_core_deliver_interrupts(struct kvm_vcpu *vcpu) | 371 | void kvmppc_core_deliver_interrupts(struct kvm_vcpu *vcpu) |
324 | { | 372 | { |
325 | unsigned long *pending = &vcpu->arch.pending_exceptions; | 373 | unsigned long *pending = &vcpu->arch.pending_exceptions; |
374 | unsigned long old_pending = vcpu->arch.pending_exceptions; | ||
326 | unsigned int priority; | 375 | unsigned int priority; |
327 | 376 | ||
328 | #ifdef EXIT_DEBUG | 377 | #ifdef EXIT_DEBUG |
@@ -332,8 +381,7 @@ void kvmppc_core_deliver_interrupts(struct kvm_vcpu *vcpu) | |||
332 | priority = __ffs(*pending); | 381 | priority = __ffs(*pending); |
333 | while (priority < BOOK3S_IRQPRIO_MAX) { | 382 | while (priority < BOOK3S_IRQPRIO_MAX) { |
334 | if (kvmppc_book3s_irqprio_deliver(vcpu, priority) && | 383 | if (kvmppc_book3s_irqprio_deliver(vcpu, priority) && |
335 | (priority != BOOK3S_IRQPRIO_DECREMENTER)) { | 384 | clear_irqprio(vcpu, priority)) { |
336 | /* DEC interrupts get cleared by mtdec */ | ||
337 | clear_bit(priority, &vcpu->arch.pending_exceptions); | 385 | clear_bit(priority, &vcpu->arch.pending_exceptions); |
338 | break; | 386 | break; |
339 | } | 387 | } |
@@ -342,6 +390,12 @@ void kvmppc_core_deliver_interrupts(struct kvm_vcpu *vcpu) | |||
342 | BITS_PER_BYTE * sizeof(*pending), | 390 | BITS_PER_BYTE * sizeof(*pending), |
343 | priority + 1); | 391 | priority + 1); |
344 | } | 392 | } |
393 | |||
394 | /* Tell the guest about our interrupt status */ | ||
395 | if (*pending) | ||
396 | vcpu->arch.shared->int_pending = 1; | ||
397 | else if (old_pending) | ||
398 | vcpu->arch.shared->int_pending = 0; | ||
345 | } | 399 | } |
346 | 400 | ||
347 | void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr) | 401 | void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr) |
@@ -398,6 +452,25 @@ void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr) | |||
398 | } | 452 | } |
399 | } | 453 | } |
400 | 454 | ||
455 | pfn_t kvmppc_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) | ||
456 | { | ||
457 | ulong mp_pa = vcpu->arch.magic_page_pa; | ||
458 | |||
459 | /* Magic page override */ | ||
460 | if (unlikely(mp_pa) && | ||
461 | unlikely(((gfn << PAGE_SHIFT) & KVM_PAM) == | ||
462 | ((mp_pa & PAGE_MASK) & KVM_PAM))) { | ||
463 | ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK; | ||
464 | pfn_t pfn; | ||
465 | |||
466 | pfn = (pfn_t)virt_to_phys((void*)shared_page) >> PAGE_SHIFT; | ||
467 | get_page(pfn_to_page(pfn)); | ||
468 | return pfn; | ||
469 | } | ||
470 | |||
471 | return gfn_to_pfn(vcpu->kvm, gfn); | ||
472 | } | ||
473 | |||
401 | /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To | 474 | /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To |
402 | * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to | 475 | * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to |
403 | * emulate 32 bytes dcbz length. | 476 | * emulate 32 bytes dcbz length. |
@@ -415,8 +488,10 @@ static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte) | |||
415 | int i; | 488 | int i; |
416 | 489 | ||
417 | hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT); | 490 | hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT); |
418 | if (is_error_page(hpage)) | 491 | if (is_error_page(hpage)) { |
492 | kvm_release_page_clean(hpage); | ||
419 | return; | 493 | return; |
494 | } | ||
420 | 495 | ||
421 | hpage_offset = pte->raddr & ~PAGE_MASK; | 496 | hpage_offset = pte->raddr & ~PAGE_MASK; |
422 | hpage_offset &= ~0xFFFULL; | 497 | hpage_offset &= ~0xFFFULL; |
@@ -437,14 +512,14 @@ static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte) | |||
437 | static int kvmppc_xlate(struct kvm_vcpu *vcpu, ulong eaddr, bool data, | 512 | static int kvmppc_xlate(struct kvm_vcpu *vcpu, ulong eaddr, bool data, |
438 | struct kvmppc_pte *pte) | 513 | struct kvmppc_pte *pte) |
439 | { | 514 | { |
440 | int relocated = (vcpu->arch.msr & (data ? MSR_DR : MSR_IR)); | 515 | int relocated = (vcpu->arch.shared->msr & (data ? MSR_DR : MSR_IR)); |
441 | int r; | 516 | int r; |
442 | 517 | ||
443 | if (relocated) { | 518 | if (relocated) { |
444 | r = vcpu->arch.mmu.xlate(vcpu, eaddr, pte, data); | 519 | r = vcpu->arch.mmu.xlate(vcpu, eaddr, pte, data); |
445 | } else { | 520 | } else { |
446 | pte->eaddr = eaddr; | 521 | pte->eaddr = eaddr; |
447 | pte->raddr = eaddr & 0xffffffff; | 522 | pte->raddr = eaddr & KVM_PAM; |
448 | pte->vpage = VSID_REAL | eaddr >> 12; | 523 | pte->vpage = VSID_REAL | eaddr >> 12; |
449 | pte->may_read = true; | 524 | pte->may_read = true; |
450 | pte->may_write = true; | 525 | pte->may_write = true; |
@@ -533,6 +608,13 @@ mmio: | |||
533 | 608 | ||
534 | static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | 609 | static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) |
535 | { | 610 | { |
611 | ulong mp_pa = vcpu->arch.magic_page_pa; | ||
612 | |||
613 | if (unlikely(mp_pa) && | ||
614 | unlikely((mp_pa & KVM_PAM) >> PAGE_SHIFT == gfn)) { | ||
615 | return 1; | ||
616 | } | ||
617 | |||
536 | return kvm_is_visible_gfn(vcpu->kvm, gfn); | 618 | return kvm_is_visible_gfn(vcpu->kvm, gfn); |
537 | } | 619 | } |
538 | 620 | ||
@@ -545,8 +627,8 @@ int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu, | |||
545 | int page_found = 0; | 627 | int page_found = 0; |
546 | struct kvmppc_pte pte; | 628 | struct kvmppc_pte pte; |
547 | bool is_mmio = false; | 629 | bool is_mmio = false; |
548 | bool dr = (vcpu->arch.msr & MSR_DR) ? true : false; | 630 | bool dr = (vcpu->arch.shared->msr & MSR_DR) ? true : false; |
549 | bool ir = (vcpu->arch.msr & MSR_IR) ? true : false; | 631 | bool ir = (vcpu->arch.shared->msr & MSR_IR) ? true : false; |
550 | u64 vsid; | 632 | u64 vsid; |
551 | 633 | ||
552 | relocated = data ? dr : ir; | 634 | relocated = data ? dr : ir; |
@@ -558,12 +640,12 @@ int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu, | |||
558 | pte.may_execute = true; | 640 | pte.may_execute = true; |
559 | pte.may_read = true; | 641 | pte.may_read = true; |
560 | pte.may_write = true; | 642 | pte.may_write = true; |
561 | pte.raddr = eaddr & 0xffffffff; | 643 | pte.raddr = eaddr & KVM_PAM; |
562 | pte.eaddr = eaddr; | 644 | pte.eaddr = eaddr; |
563 | pte.vpage = eaddr >> 12; | 645 | pte.vpage = eaddr >> 12; |
564 | } | 646 | } |
565 | 647 | ||
566 | switch (vcpu->arch.msr & (MSR_DR|MSR_IR)) { | 648 | switch (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) { |
567 | case 0: | 649 | case 0: |
568 | pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12)); | 650 | pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12)); |
569 | break; | 651 | break; |
@@ -571,7 +653,7 @@ int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu, | |||
571 | case MSR_IR: | 653 | case MSR_IR: |
572 | vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid); | 654 | vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid); |
573 | 655 | ||
574 | if ((vcpu->arch.msr & (MSR_DR|MSR_IR)) == MSR_DR) | 656 | if ((vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) == MSR_DR) |
575 | pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12)); | 657 | pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12)); |
576 | else | 658 | else |
577 | pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12)); | 659 | pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12)); |
@@ -594,20 +676,23 @@ int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu, | |||
594 | 676 | ||
595 | if (page_found == -ENOENT) { | 677 | if (page_found == -ENOENT) { |
596 | /* Page not found in guest PTE entries */ | 678 | /* Page not found in guest PTE entries */ |
597 | vcpu->arch.dear = kvmppc_get_fault_dar(vcpu); | 679 | vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu); |
598 | to_book3s(vcpu)->dsisr = to_svcpu(vcpu)->fault_dsisr; | 680 | vcpu->arch.shared->dsisr = to_svcpu(vcpu)->fault_dsisr; |
599 | vcpu->arch.msr |= (to_svcpu(vcpu)->shadow_srr1 & 0x00000000f8000000ULL); | 681 | vcpu->arch.shared->msr |= |
682 | (to_svcpu(vcpu)->shadow_srr1 & 0x00000000f8000000ULL); | ||
600 | kvmppc_book3s_queue_irqprio(vcpu, vec); | 683 | kvmppc_book3s_queue_irqprio(vcpu, vec); |
601 | } else if (page_found == -EPERM) { | 684 | } else if (page_found == -EPERM) { |
602 | /* Storage protection */ | 685 | /* Storage protection */ |
603 | vcpu->arch.dear = kvmppc_get_fault_dar(vcpu); | 686 | vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu); |
604 | to_book3s(vcpu)->dsisr = to_svcpu(vcpu)->fault_dsisr & ~DSISR_NOHPTE; | 687 | vcpu->arch.shared->dsisr = |
605 | to_book3s(vcpu)->dsisr |= DSISR_PROTFAULT; | 688 | to_svcpu(vcpu)->fault_dsisr & ~DSISR_NOHPTE; |
606 | vcpu->arch.msr |= (to_svcpu(vcpu)->shadow_srr1 & 0x00000000f8000000ULL); | 689 | vcpu->arch.shared->dsisr |= DSISR_PROTFAULT; |
690 | vcpu->arch.shared->msr |= | ||
691 | (to_svcpu(vcpu)->shadow_srr1 & 0x00000000f8000000ULL); | ||
607 | kvmppc_book3s_queue_irqprio(vcpu, vec); | 692 | kvmppc_book3s_queue_irqprio(vcpu, vec); |
608 | } else if (page_found == -EINVAL) { | 693 | } else if (page_found == -EINVAL) { |
609 | /* Page not found in guest SLB */ | 694 | /* Page not found in guest SLB */ |
610 | vcpu->arch.dear = kvmppc_get_fault_dar(vcpu); | 695 | vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu); |
611 | kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80); | 696 | kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80); |
612 | } else if (!is_mmio && | 697 | } else if (!is_mmio && |
613 | kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) { | 698 | kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) { |
@@ -695,9 +780,11 @@ static int kvmppc_read_inst(struct kvm_vcpu *vcpu) | |||
695 | 780 | ||
696 | ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false); | 781 | ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false); |
697 | if (ret == -ENOENT) { | 782 | if (ret == -ENOENT) { |
698 | vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 33, 33, 1); | 783 | ulong msr = vcpu->arch.shared->msr; |
699 | vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 34, 36, 0); | 784 | |
700 | vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 42, 47, 0); | 785 | msr = kvmppc_set_field(msr, 33, 33, 1); |
786 | msr = kvmppc_set_field(msr, 34, 36, 0); | ||
787 | vcpu->arch.shared->msr = kvmppc_set_field(msr, 42, 47, 0); | ||
701 | kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE); | 788 | kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE); |
702 | return EMULATE_AGAIN; | 789 | return EMULATE_AGAIN; |
703 | } | 790 | } |
@@ -736,7 +823,7 @@ static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, | |||
736 | if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) | 823 | if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) |
737 | return RESUME_GUEST; | 824 | return RESUME_GUEST; |
738 | 825 | ||
739 | if (!(vcpu->arch.msr & msr)) { | 826 | if (!(vcpu->arch.shared->msr & msr)) { |
740 | kvmppc_book3s_queue_irqprio(vcpu, exit_nr); | 827 | kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
741 | return RESUME_GUEST; | 828 | return RESUME_GUEST; |
742 | } | 829 | } |
@@ -796,16 +883,8 @@ int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, | |||
796 | 883 | ||
797 | run->exit_reason = KVM_EXIT_UNKNOWN; | 884 | run->exit_reason = KVM_EXIT_UNKNOWN; |
798 | run->ready_for_interrupt_injection = 1; | 885 | run->ready_for_interrupt_injection = 1; |
799 | #ifdef EXIT_DEBUG | 886 | |
800 | printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | dar=0x%lx | dec=0x%x | msr=0x%lx\n", | 887 | trace_kvm_book3s_exit(exit_nr, vcpu); |
801 | exit_nr, kvmppc_get_pc(vcpu), kvmppc_get_fault_dar(vcpu), | ||
802 | kvmppc_get_dec(vcpu), to_svcpu(vcpu)->shadow_srr1); | ||
803 | #elif defined (EXIT_DEBUG_SIMPLE) | ||
804 | if ((exit_nr != 0x900) && (exit_nr != 0x500)) | ||
805 | printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | dar=0x%lx | msr=0x%lx\n", | ||
806 | exit_nr, kvmppc_get_pc(vcpu), kvmppc_get_fault_dar(vcpu), | ||
807 | vcpu->arch.msr); | ||
808 | #endif | ||
809 | kvm_resched(vcpu); | 888 | kvm_resched(vcpu); |
810 | switch (exit_nr) { | 889 | switch (exit_nr) { |
811 | case BOOK3S_INTERRUPT_INST_STORAGE: | 890 | case BOOK3S_INTERRUPT_INST_STORAGE: |
@@ -836,9 +915,9 @@ int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, | |||
836 | kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL); | 915 | kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL); |
837 | r = RESUME_GUEST; | 916 | r = RESUME_GUEST; |
838 | } else { | 917 | } else { |
839 | vcpu->arch.msr |= to_svcpu(vcpu)->shadow_srr1 & 0x58000000; | 918 | vcpu->arch.shared->msr |= |
919 | to_svcpu(vcpu)->shadow_srr1 & 0x58000000; | ||
840 | kvmppc_book3s_queue_irqprio(vcpu, exit_nr); | 920 | kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
841 | kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL); | ||
842 | r = RESUME_GUEST; | 921 | r = RESUME_GUEST; |
843 | } | 922 | } |
844 | break; | 923 | break; |
@@ -861,17 +940,16 @@ int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, | |||
861 | if (to_svcpu(vcpu)->fault_dsisr & DSISR_NOHPTE) { | 940 | if (to_svcpu(vcpu)->fault_dsisr & DSISR_NOHPTE) { |
862 | r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr); | 941 | r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr); |
863 | } else { | 942 | } else { |
864 | vcpu->arch.dear = dar; | 943 | vcpu->arch.shared->dar = dar; |
865 | to_book3s(vcpu)->dsisr = to_svcpu(vcpu)->fault_dsisr; | 944 | vcpu->arch.shared->dsisr = to_svcpu(vcpu)->fault_dsisr; |
866 | kvmppc_book3s_queue_irqprio(vcpu, exit_nr); | 945 | kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
867 | kvmppc_mmu_pte_flush(vcpu, vcpu->arch.dear, ~0xFFFUL); | ||
868 | r = RESUME_GUEST; | 946 | r = RESUME_GUEST; |
869 | } | 947 | } |
870 | break; | 948 | break; |
871 | } | 949 | } |
872 | case BOOK3S_INTERRUPT_DATA_SEGMENT: | 950 | case BOOK3S_INTERRUPT_DATA_SEGMENT: |
873 | if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) { | 951 | if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) { |
874 | vcpu->arch.dear = kvmppc_get_fault_dar(vcpu); | 952 | vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu); |
875 | kvmppc_book3s_queue_irqprio(vcpu, | 953 | kvmppc_book3s_queue_irqprio(vcpu, |
876 | BOOK3S_INTERRUPT_DATA_SEGMENT); | 954 | BOOK3S_INTERRUPT_DATA_SEGMENT); |
877 | } | 955 | } |
@@ -904,7 +982,7 @@ int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, | |||
904 | program_interrupt: | 982 | program_interrupt: |
905 | flags = to_svcpu(vcpu)->shadow_srr1 & 0x1f0000ull; | 983 | flags = to_svcpu(vcpu)->shadow_srr1 & 0x1f0000ull; |
906 | 984 | ||
907 | if (vcpu->arch.msr & MSR_PR) { | 985 | if (vcpu->arch.shared->msr & MSR_PR) { |
908 | #ifdef EXIT_DEBUG | 986 | #ifdef EXIT_DEBUG |
909 | printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu)); | 987 | printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu)); |
910 | #endif | 988 | #endif |
@@ -941,10 +1019,10 @@ program_interrupt: | |||
941 | break; | 1019 | break; |
942 | } | 1020 | } |
943 | case BOOK3S_INTERRUPT_SYSCALL: | 1021 | case BOOK3S_INTERRUPT_SYSCALL: |
944 | // XXX make user settable | ||
945 | if (vcpu->arch.osi_enabled && | 1022 | if (vcpu->arch.osi_enabled && |
946 | (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) && | 1023 | (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) && |
947 | (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) { | 1024 | (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) { |
1025 | /* MOL hypercalls */ | ||
948 | u64 *gprs = run->osi.gprs; | 1026 | u64 *gprs = run->osi.gprs; |
949 | int i; | 1027 | int i; |
950 | 1028 | ||
@@ -953,8 +1031,13 @@ program_interrupt: | |||
953 | gprs[i] = kvmppc_get_gpr(vcpu, i); | 1031 | gprs[i] = kvmppc_get_gpr(vcpu, i); |
954 | vcpu->arch.osi_needed = 1; | 1032 | vcpu->arch.osi_needed = 1; |
955 | r = RESUME_HOST_NV; | 1033 | r = RESUME_HOST_NV; |
956 | 1034 | } else if (!(vcpu->arch.shared->msr & MSR_PR) && | |
1035 | (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) { | ||
1036 | /* KVM PV hypercalls */ | ||
1037 | kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu)); | ||
1038 | r = RESUME_GUEST; | ||
957 | } else { | 1039 | } else { |
1040 | /* Guest syscalls */ | ||
958 | vcpu->stat.syscall_exits++; | 1041 | vcpu->stat.syscall_exits++; |
959 | kvmppc_book3s_queue_irqprio(vcpu, exit_nr); | 1042 | kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
960 | r = RESUME_GUEST; | 1043 | r = RESUME_GUEST; |
@@ -989,9 +1072,9 @@ program_interrupt: | |||
989 | } | 1072 | } |
990 | case BOOK3S_INTERRUPT_ALIGNMENT: | 1073 | case BOOK3S_INTERRUPT_ALIGNMENT: |
991 | if (kvmppc_read_inst(vcpu) == EMULATE_DONE) { | 1074 | if (kvmppc_read_inst(vcpu) == EMULATE_DONE) { |
992 | to_book3s(vcpu)->dsisr = kvmppc_alignment_dsisr(vcpu, | 1075 | vcpu->arch.shared->dsisr = kvmppc_alignment_dsisr(vcpu, |
993 | kvmppc_get_last_inst(vcpu)); | 1076 | kvmppc_get_last_inst(vcpu)); |
994 | vcpu->arch.dear = kvmppc_alignment_dar(vcpu, | 1077 | vcpu->arch.shared->dar = kvmppc_alignment_dar(vcpu, |
995 | kvmppc_get_last_inst(vcpu)); | 1078 | kvmppc_get_last_inst(vcpu)); |
996 | kvmppc_book3s_queue_irqprio(vcpu, exit_nr); | 1079 | kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
997 | } | 1080 | } |
@@ -1031,9 +1114,7 @@ program_interrupt: | |||
1031 | } | 1114 | } |
1032 | } | 1115 | } |
1033 | 1116 | ||
1034 | #ifdef EXIT_DEBUG | 1117 | trace_kvm_book3s_reenter(r, vcpu); |
1035 | printk(KERN_EMERG "KVM exit: vcpu=0x%p pc=0x%lx r=0x%x\n", vcpu, kvmppc_get_pc(vcpu), r); | ||
1036 | #endif | ||
1037 | 1118 | ||
1038 | return r; | 1119 | return r; |
1039 | } | 1120 | } |
@@ -1052,14 +1133,14 @@ int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | |||
1052 | regs->ctr = kvmppc_get_ctr(vcpu); | 1133 | regs->ctr = kvmppc_get_ctr(vcpu); |
1053 | regs->lr = kvmppc_get_lr(vcpu); | 1134 | regs->lr = kvmppc_get_lr(vcpu); |
1054 | regs->xer = kvmppc_get_xer(vcpu); | 1135 | regs->xer = kvmppc_get_xer(vcpu); |
1055 | regs->msr = vcpu->arch.msr; | 1136 | regs->msr = vcpu->arch.shared->msr; |
1056 | regs->srr0 = vcpu->arch.srr0; | 1137 | regs->srr0 = vcpu->arch.shared->srr0; |
1057 | regs->srr1 = vcpu->arch.srr1; | 1138 | regs->srr1 = vcpu->arch.shared->srr1; |
1058 | regs->pid = vcpu->arch.pid; | 1139 | regs->pid = vcpu->arch.pid; |
1059 | regs->sprg0 = vcpu->arch.sprg0; | 1140 | regs->sprg0 = vcpu->arch.shared->sprg0; |
1060 | regs->sprg1 = vcpu->arch.sprg1; | 1141 | regs->sprg1 = vcpu->arch.shared->sprg1; |
1061 | regs->sprg2 = vcpu->arch.sprg2; | 1142 | regs->sprg2 = vcpu->arch.shared->sprg2; |
1062 | regs->sprg3 = vcpu->arch.sprg3; | 1143 | regs->sprg3 = vcpu->arch.shared->sprg3; |
1063 | regs->sprg5 = vcpu->arch.sprg4; | 1144 | regs->sprg5 = vcpu->arch.sprg4; |
1064 | regs->sprg6 = vcpu->arch.sprg5; | 1145 | regs->sprg6 = vcpu->arch.sprg5; |
1065 | regs->sprg7 = vcpu->arch.sprg6; | 1146 | regs->sprg7 = vcpu->arch.sprg6; |
@@ -1080,12 +1161,12 @@ int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | |||
1080 | kvmppc_set_lr(vcpu, regs->lr); | 1161 | kvmppc_set_lr(vcpu, regs->lr); |
1081 | kvmppc_set_xer(vcpu, regs->xer); | 1162 | kvmppc_set_xer(vcpu, regs->xer); |
1082 | kvmppc_set_msr(vcpu, regs->msr); | 1163 | kvmppc_set_msr(vcpu, regs->msr); |
1083 | vcpu->arch.srr0 = regs->srr0; | 1164 | vcpu->arch.shared->srr0 = regs->srr0; |
1084 | vcpu->arch.srr1 = regs->srr1; | 1165 | vcpu->arch.shared->srr1 = regs->srr1; |
1085 | vcpu->arch.sprg0 = regs->sprg0; | 1166 | vcpu->arch.shared->sprg0 = regs->sprg0; |
1086 | vcpu->arch.sprg1 = regs->sprg1; | 1167 | vcpu->arch.shared->sprg1 = regs->sprg1; |
1087 | vcpu->arch.sprg2 = regs->sprg2; | 1168 | vcpu->arch.shared->sprg2 = regs->sprg2; |
1088 | vcpu->arch.sprg3 = regs->sprg3; | 1169 | vcpu->arch.shared->sprg3 = regs->sprg3; |
1089 | vcpu->arch.sprg5 = regs->sprg4; | 1170 | vcpu->arch.sprg5 = regs->sprg4; |
1090 | vcpu->arch.sprg6 = regs->sprg5; | 1171 | vcpu->arch.sprg6 = regs->sprg5; |
1091 | vcpu->arch.sprg7 = regs->sprg6; | 1172 | vcpu->arch.sprg7 = regs->sprg6; |
@@ -1111,10 +1192,9 @@ int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, | |||
1111 | sregs->u.s.ppc64.slb[i].slbv = vcpu3s->slb[i].origv; | 1192 | sregs->u.s.ppc64.slb[i].slbv = vcpu3s->slb[i].origv; |
1112 | } | 1193 | } |
1113 | } else { | 1194 | } else { |
1114 | for (i = 0; i < 16; i++) { | 1195 | for (i = 0; i < 16; i++) |
1115 | sregs->u.s.ppc32.sr[i] = vcpu3s->sr[i].raw; | 1196 | sregs->u.s.ppc32.sr[i] = vcpu->arch.shared->sr[i]; |
1116 | sregs->u.s.ppc32.sr[i] = vcpu3s->sr[i].raw; | 1197 | |
1117 | } | ||
1118 | for (i = 0; i < 8; i++) { | 1198 | for (i = 0; i < 8; i++) { |
1119 | sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw; | 1199 | sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw; |
1120 | sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw; | 1200 | sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw; |
@@ -1225,6 +1305,7 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) | |||
1225 | struct kvmppc_vcpu_book3s *vcpu_book3s; | 1305 | struct kvmppc_vcpu_book3s *vcpu_book3s; |
1226 | struct kvm_vcpu *vcpu; | 1306 | struct kvm_vcpu *vcpu; |
1227 | int err = -ENOMEM; | 1307 | int err = -ENOMEM; |
1308 | unsigned long p; | ||
1228 | 1309 | ||
1229 | vcpu_book3s = vmalloc(sizeof(struct kvmppc_vcpu_book3s)); | 1310 | vcpu_book3s = vmalloc(sizeof(struct kvmppc_vcpu_book3s)); |
1230 | if (!vcpu_book3s) | 1311 | if (!vcpu_book3s) |
@@ -1242,6 +1323,12 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) | |||
1242 | if (err) | 1323 | if (err) |
1243 | goto free_shadow_vcpu; | 1324 | goto free_shadow_vcpu; |
1244 | 1325 | ||
1326 | p = __get_free_page(GFP_KERNEL|__GFP_ZERO); | ||
1327 | /* the real shared page fills the last 4k of our page */ | ||
1328 | vcpu->arch.shared = (void*)(p + PAGE_SIZE - 4096); | ||
1329 | if (!p) | ||
1330 | goto uninit_vcpu; | ||
1331 | |||
1245 | vcpu->arch.host_retip = kvm_return_point; | 1332 | vcpu->arch.host_retip = kvm_return_point; |
1246 | vcpu->arch.host_msr = mfmsr(); | 1333 | vcpu->arch.host_msr = mfmsr(); |
1247 | #ifdef CONFIG_PPC_BOOK3S_64 | 1334 | #ifdef CONFIG_PPC_BOOK3S_64 |
@@ -1268,10 +1355,12 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) | |||
1268 | 1355 | ||
1269 | err = kvmppc_mmu_init(vcpu); | 1356 | err = kvmppc_mmu_init(vcpu); |
1270 | if (err < 0) | 1357 | if (err < 0) |
1271 | goto free_shadow_vcpu; | 1358 | goto uninit_vcpu; |
1272 | 1359 | ||
1273 | return vcpu; | 1360 | return vcpu; |
1274 | 1361 | ||
1362 | uninit_vcpu: | ||
1363 | kvm_vcpu_uninit(vcpu); | ||
1275 | free_shadow_vcpu: | 1364 | free_shadow_vcpu: |
1276 | kfree(vcpu_book3s->shadow_vcpu); | 1365 | kfree(vcpu_book3s->shadow_vcpu); |
1277 | free_vcpu: | 1366 | free_vcpu: |
@@ -1284,6 +1373,7 @@ void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu) | |||
1284 | { | 1373 | { |
1285 | struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); | 1374 | struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); |
1286 | 1375 | ||
1376 | free_page((unsigned long)vcpu->arch.shared & PAGE_MASK); | ||
1287 | kvm_vcpu_uninit(vcpu); | 1377 | kvm_vcpu_uninit(vcpu); |
1288 | kfree(vcpu_book3s->shadow_vcpu); | 1378 | kfree(vcpu_book3s->shadow_vcpu); |
1289 | vfree(vcpu_book3s); | 1379 | vfree(vcpu_book3s); |
@@ -1346,7 +1436,7 @@ int __kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) | |||
1346 | local_irq_enable(); | 1436 | local_irq_enable(); |
1347 | 1437 | ||
1348 | /* Preload FPU if it's enabled */ | 1438 | /* Preload FPU if it's enabled */ |
1349 | if (vcpu->arch.msr & MSR_FP) | 1439 | if (vcpu->arch.shared->msr & MSR_FP) |
1350 | kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); | 1440 | kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); |
1351 | 1441 | ||
1352 | ret = __kvmppc_vcpu_entry(kvm_run, vcpu); | 1442 | ret = __kvmppc_vcpu_entry(kvm_run, vcpu); |
diff --git a/arch/powerpc/kvm/book3s_32_mmu.c b/arch/powerpc/kvm/book3s_32_mmu.c index 3292d76101d2..c8cefdd15fd8 100644 --- a/arch/powerpc/kvm/book3s_32_mmu.c +++ b/arch/powerpc/kvm/book3s_32_mmu.c | |||
@@ -58,14 +58,39 @@ static inline bool check_debug_ip(struct kvm_vcpu *vcpu) | |||
58 | #endif | 58 | #endif |
59 | } | 59 | } |
60 | 60 | ||
61 | static inline u32 sr_vsid(u32 sr_raw) | ||
62 | { | ||
63 | return sr_raw & 0x0fffffff; | ||
64 | } | ||
65 | |||
66 | static inline bool sr_valid(u32 sr_raw) | ||
67 | { | ||
68 | return (sr_raw & 0x80000000) ? false : true; | ||
69 | } | ||
70 | |||
71 | static inline bool sr_ks(u32 sr_raw) | ||
72 | { | ||
73 | return (sr_raw & 0x40000000) ? true: false; | ||
74 | } | ||
75 | |||
76 | static inline bool sr_kp(u32 sr_raw) | ||
77 | { | ||
78 | return (sr_raw & 0x20000000) ? true: false; | ||
79 | } | ||
80 | |||
81 | static inline bool sr_nx(u32 sr_raw) | ||
82 | { | ||
83 | return (sr_raw & 0x10000000) ? true: false; | ||
84 | } | ||
85 | |||
61 | static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr, | 86 | static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr, |
62 | struct kvmppc_pte *pte, bool data); | 87 | struct kvmppc_pte *pte, bool data); |
63 | static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid, | 88 | static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid, |
64 | u64 *vsid); | 89 | u64 *vsid); |
65 | 90 | ||
66 | static struct kvmppc_sr *find_sr(struct kvmppc_vcpu_book3s *vcpu_book3s, gva_t eaddr) | 91 | static u32 find_sr(struct kvm_vcpu *vcpu, gva_t eaddr) |
67 | { | 92 | { |
68 | return &vcpu_book3s->sr[(eaddr >> 28) & 0xf]; | 93 | return vcpu->arch.shared->sr[(eaddr >> 28) & 0xf]; |
69 | } | 94 | } |
70 | 95 | ||
71 | static u64 kvmppc_mmu_book3s_32_ea_to_vp(struct kvm_vcpu *vcpu, gva_t eaddr, | 96 | static u64 kvmppc_mmu_book3s_32_ea_to_vp(struct kvm_vcpu *vcpu, gva_t eaddr, |
@@ -87,7 +112,7 @@ static void kvmppc_mmu_book3s_32_reset_msr(struct kvm_vcpu *vcpu) | |||
87 | } | 112 | } |
88 | 113 | ||
89 | static hva_t kvmppc_mmu_book3s_32_get_pteg(struct kvmppc_vcpu_book3s *vcpu_book3s, | 114 | static hva_t kvmppc_mmu_book3s_32_get_pteg(struct kvmppc_vcpu_book3s *vcpu_book3s, |
90 | struct kvmppc_sr *sre, gva_t eaddr, | 115 | u32 sre, gva_t eaddr, |
91 | bool primary) | 116 | bool primary) |
92 | { | 117 | { |
93 | u32 page, hash, pteg, htabmask; | 118 | u32 page, hash, pteg, htabmask; |
@@ -96,7 +121,7 @@ static hva_t kvmppc_mmu_book3s_32_get_pteg(struct kvmppc_vcpu_book3s *vcpu_book3 | |||
96 | page = (eaddr & 0x0FFFFFFF) >> 12; | 121 | page = (eaddr & 0x0FFFFFFF) >> 12; |
97 | htabmask = ((vcpu_book3s->sdr1 & 0x1FF) << 16) | 0xFFC0; | 122 | htabmask = ((vcpu_book3s->sdr1 & 0x1FF) << 16) | 0xFFC0; |
98 | 123 | ||
99 | hash = ((sre->vsid ^ page) << 6); | 124 | hash = ((sr_vsid(sre) ^ page) << 6); |
100 | if (!primary) | 125 | if (!primary) |
101 | hash = ~hash; | 126 | hash = ~hash; |
102 | hash &= htabmask; | 127 | hash &= htabmask; |
@@ -104,8 +129,8 @@ static hva_t kvmppc_mmu_book3s_32_get_pteg(struct kvmppc_vcpu_book3s *vcpu_book3 | |||
104 | pteg = (vcpu_book3s->sdr1 & 0xffff0000) | hash; | 129 | pteg = (vcpu_book3s->sdr1 & 0xffff0000) | hash; |
105 | 130 | ||
106 | dprintk("MMU: pc=0x%lx eaddr=0x%lx sdr1=0x%llx pteg=0x%x vsid=0x%x\n", | 131 | dprintk("MMU: pc=0x%lx eaddr=0x%lx sdr1=0x%llx pteg=0x%x vsid=0x%x\n", |
107 | vcpu_book3s->vcpu.arch.pc, eaddr, vcpu_book3s->sdr1, pteg, | 132 | kvmppc_get_pc(&vcpu_book3s->vcpu), eaddr, vcpu_book3s->sdr1, pteg, |
108 | sre->vsid); | 133 | sr_vsid(sre)); |
109 | 134 | ||
110 | r = gfn_to_hva(vcpu_book3s->vcpu.kvm, pteg >> PAGE_SHIFT); | 135 | r = gfn_to_hva(vcpu_book3s->vcpu.kvm, pteg >> PAGE_SHIFT); |
111 | if (kvm_is_error_hva(r)) | 136 | if (kvm_is_error_hva(r)) |
@@ -113,10 +138,9 @@ static hva_t kvmppc_mmu_book3s_32_get_pteg(struct kvmppc_vcpu_book3s *vcpu_book3 | |||
113 | return r | (pteg & ~PAGE_MASK); | 138 | return r | (pteg & ~PAGE_MASK); |
114 | } | 139 | } |
115 | 140 | ||
116 | static u32 kvmppc_mmu_book3s_32_get_ptem(struct kvmppc_sr *sre, gva_t eaddr, | 141 | static u32 kvmppc_mmu_book3s_32_get_ptem(u32 sre, gva_t eaddr, bool primary) |
117 | bool primary) | ||
118 | { | 142 | { |
119 | return ((eaddr & 0x0fffffff) >> 22) | (sre->vsid << 7) | | 143 | return ((eaddr & 0x0fffffff) >> 22) | (sr_vsid(sre) << 7) | |
120 | (primary ? 0 : 0x40) | 0x80000000; | 144 | (primary ? 0 : 0x40) | 0x80000000; |
121 | } | 145 | } |
122 | 146 | ||
@@ -133,7 +157,7 @@ static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr, | |||
133 | else | 157 | else |
134 | bat = &vcpu_book3s->ibat[i]; | 158 | bat = &vcpu_book3s->ibat[i]; |
135 | 159 | ||
136 | if (vcpu->arch.msr & MSR_PR) { | 160 | if (vcpu->arch.shared->msr & MSR_PR) { |
137 | if (!bat->vp) | 161 | if (!bat->vp) |
138 | continue; | 162 | continue; |
139 | } else { | 163 | } else { |
@@ -180,17 +204,17 @@ static int kvmppc_mmu_book3s_32_xlate_pte(struct kvm_vcpu *vcpu, gva_t eaddr, | |||
180 | bool primary) | 204 | bool primary) |
181 | { | 205 | { |
182 | struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); | 206 | struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); |
183 | struct kvmppc_sr *sre; | 207 | u32 sre; |
184 | hva_t ptegp; | 208 | hva_t ptegp; |
185 | u32 pteg[16]; | 209 | u32 pteg[16]; |
186 | u32 ptem = 0; | 210 | u32 ptem = 0; |
187 | int i; | 211 | int i; |
188 | int found = 0; | 212 | int found = 0; |
189 | 213 | ||
190 | sre = find_sr(vcpu_book3s, eaddr); | 214 | sre = find_sr(vcpu, eaddr); |
191 | 215 | ||
192 | dprintk_pte("SR 0x%lx: vsid=0x%x, raw=0x%x\n", eaddr >> 28, | 216 | dprintk_pte("SR 0x%lx: vsid=0x%x, raw=0x%x\n", eaddr >> 28, |
193 | sre->vsid, sre->raw); | 217 | sr_vsid(sre), sre); |
194 | 218 | ||
195 | pte->vpage = kvmppc_mmu_book3s_32_ea_to_vp(vcpu, eaddr, data); | 219 | pte->vpage = kvmppc_mmu_book3s_32_ea_to_vp(vcpu, eaddr, data); |
196 | 220 | ||
@@ -214,8 +238,8 @@ static int kvmppc_mmu_book3s_32_xlate_pte(struct kvm_vcpu *vcpu, gva_t eaddr, | |||
214 | pte->raddr = (pteg[i+1] & ~(0xFFFULL)) | (eaddr & 0xFFF); | 238 | pte->raddr = (pteg[i+1] & ~(0xFFFULL)) | (eaddr & 0xFFF); |
215 | pp = pteg[i+1] & 3; | 239 | pp = pteg[i+1] & 3; |
216 | 240 | ||
217 | if ((sre->Kp && (vcpu->arch.msr & MSR_PR)) || | 241 | if ((sr_kp(sre) && (vcpu->arch.shared->msr & MSR_PR)) || |
218 | (sre->Ks && !(vcpu->arch.msr & MSR_PR))) | 242 | (sr_ks(sre) && !(vcpu->arch.shared->msr & MSR_PR))) |
219 | pp |= 4; | 243 | pp |= 4; |
220 | 244 | ||
221 | pte->may_write = false; | 245 | pte->may_write = false; |
@@ -269,7 +293,7 @@ no_page_found: | |||
269 | dprintk_pte("KVM MMU: No PTE found (sdr1=0x%llx ptegp=0x%lx)\n", | 293 | dprintk_pte("KVM MMU: No PTE found (sdr1=0x%llx ptegp=0x%lx)\n", |
270 | to_book3s(vcpu)->sdr1, ptegp); | 294 | to_book3s(vcpu)->sdr1, ptegp); |
271 | for (i=0; i<16; i+=2) { | 295 | for (i=0; i<16; i+=2) { |
272 | dprintk_pte(" %02d: 0x%x - 0x%x (0x%llx)\n", | 296 | dprintk_pte(" %02d: 0x%x - 0x%x (0x%x)\n", |
273 | i, pteg[i], pteg[i+1], ptem); | 297 | i, pteg[i], pteg[i+1], ptem); |
274 | } | 298 | } |
275 | } | 299 | } |
@@ -281,8 +305,24 @@ static int kvmppc_mmu_book3s_32_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, | |||
281 | struct kvmppc_pte *pte, bool data) | 305 | struct kvmppc_pte *pte, bool data) |
282 | { | 306 | { |
283 | int r; | 307 | int r; |
308 | ulong mp_ea = vcpu->arch.magic_page_ea; | ||
284 | 309 | ||
285 | pte->eaddr = eaddr; | 310 | pte->eaddr = eaddr; |
311 | |||
312 | /* Magic page override */ | ||
313 | if (unlikely(mp_ea) && | ||
314 | unlikely((eaddr & ~0xfffULL) == (mp_ea & ~0xfffULL)) && | ||
315 | !(vcpu->arch.shared->msr & MSR_PR)) { | ||
316 | pte->vpage = kvmppc_mmu_book3s_32_ea_to_vp(vcpu, eaddr, data); | ||
317 | pte->raddr = vcpu->arch.magic_page_pa | (pte->raddr & 0xfff); | ||
318 | pte->raddr &= KVM_PAM; | ||
319 | pte->may_execute = true; | ||
320 | pte->may_read = true; | ||
321 | pte->may_write = true; | ||
322 | |||
323 | return 0; | ||
324 | } | ||
325 | |||
286 | r = kvmppc_mmu_book3s_32_xlate_bat(vcpu, eaddr, pte, data); | 326 | r = kvmppc_mmu_book3s_32_xlate_bat(vcpu, eaddr, pte, data); |
287 | if (r < 0) | 327 | if (r < 0) |
288 | r = kvmppc_mmu_book3s_32_xlate_pte(vcpu, eaddr, pte, data, true); | 328 | r = kvmppc_mmu_book3s_32_xlate_pte(vcpu, eaddr, pte, data, true); |
@@ -295,30 +335,13 @@ static int kvmppc_mmu_book3s_32_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, | |||
295 | 335 | ||
296 | static u32 kvmppc_mmu_book3s_32_mfsrin(struct kvm_vcpu *vcpu, u32 srnum) | 336 | static u32 kvmppc_mmu_book3s_32_mfsrin(struct kvm_vcpu *vcpu, u32 srnum) |
297 | { | 337 | { |
298 | return to_book3s(vcpu)->sr[srnum].raw; | 338 | return vcpu->arch.shared->sr[srnum]; |
299 | } | 339 | } |
300 | 340 | ||
301 | static void kvmppc_mmu_book3s_32_mtsrin(struct kvm_vcpu *vcpu, u32 srnum, | 341 | static void kvmppc_mmu_book3s_32_mtsrin(struct kvm_vcpu *vcpu, u32 srnum, |
302 | ulong value) | 342 | ulong value) |
303 | { | 343 | { |
304 | struct kvmppc_sr *sre; | 344 | vcpu->arch.shared->sr[srnum] = value; |
305 | |||
306 | sre = &to_book3s(vcpu)->sr[srnum]; | ||
307 | |||
308 | /* Flush any left-over shadows from the previous SR */ | ||
309 | |||
310 | /* XXX Not necessary? */ | ||
311 | /* kvmppc_mmu_pte_flush(vcpu, ((u64)sre->vsid) << 28, 0xf0000000ULL); */ | ||
312 | |||
313 | /* And then put in the new SR */ | ||
314 | sre->raw = value; | ||
315 | sre->vsid = (value & 0x0fffffff); | ||
316 | sre->valid = (value & 0x80000000) ? false : true; | ||
317 | sre->Ks = (value & 0x40000000) ? true : false; | ||
318 | sre->Kp = (value & 0x20000000) ? true : false; | ||
319 | sre->nx = (value & 0x10000000) ? true : false; | ||
320 | |||
321 | /* Map the new segment */ | ||
322 | kvmppc_mmu_map_segment(vcpu, srnum << SID_SHIFT); | 345 | kvmppc_mmu_map_segment(vcpu, srnum << SID_SHIFT); |
323 | } | 346 | } |
324 | 347 | ||
@@ -331,19 +354,19 @@ static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid, | |||
331 | u64 *vsid) | 354 | u64 *vsid) |
332 | { | 355 | { |
333 | ulong ea = esid << SID_SHIFT; | 356 | ulong ea = esid << SID_SHIFT; |
334 | struct kvmppc_sr *sr; | 357 | u32 sr; |
335 | u64 gvsid = esid; | 358 | u64 gvsid = esid; |
336 | 359 | ||
337 | if (vcpu->arch.msr & (MSR_DR|MSR_IR)) { | 360 | if (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) { |
338 | sr = find_sr(to_book3s(vcpu), ea); | 361 | sr = find_sr(vcpu, ea); |
339 | if (sr->valid) | 362 | if (sr_valid(sr)) |
340 | gvsid = sr->vsid; | 363 | gvsid = sr_vsid(sr); |
341 | } | 364 | } |
342 | 365 | ||
343 | /* In case we only have one of MSR_IR or MSR_DR set, let's put | 366 | /* In case we only have one of MSR_IR or MSR_DR set, let's put |
344 | that in the real-mode context (and hope RM doesn't access | 367 | that in the real-mode context (and hope RM doesn't access |
345 | high memory) */ | 368 | high memory) */ |
346 | switch (vcpu->arch.msr & (MSR_DR|MSR_IR)) { | 369 | switch (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) { |
347 | case 0: | 370 | case 0: |
348 | *vsid = VSID_REAL | esid; | 371 | *vsid = VSID_REAL | esid; |
349 | break; | 372 | break; |
@@ -354,8 +377,8 @@ static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid, | |||
354 | *vsid = VSID_REAL_DR | gvsid; | 377 | *vsid = VSID_REAL_DR | gvsid; |
355 | break; | 378 | break; |
356 | case MSR_DR|MSR_IR: | 379 | case MSR_DR|MSR_IR: |
357 | if (sr->valid) | 380 | if (sr_valid(sr)) |
358 | *vsid = sr->vsid; | 381 | *vsid = sr_vsid(sr); |
359 | else | 382 | else |
360 | *vsid = VSID_BAT | gvsid; | 383 | *vsid = VSID_BAT | gvsid; |
361 | break; | 384 | break; |
@@ -363,7 +386,7 @@ static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid, | |||
363 | BUG(); | 386 | BUG(); |
364 | } | 387 | } |
365 | 388 | ||
366 | if (vcpu->arch.msr & MSR_PR) | 389 | if (vcpu->arch.shared->msr & MSR_PR) |
367 | *vsid |= VSID_PR; | 390 | *vsid |= VSID_PR; |
368 | 391 | ||
369 | return 0; | 392 | return 0; |
diff --git a/arch/powerpc/kvm/book3s_32_mmu_host.c b/arch/powerpc/kvm/book3s_32_mmu_host.c index 0b51ef872c1e..9fecbfbce773 100644 --- a/arch/powerpc/kvm/book3s_32_mmu_host.c +++ b/arch/powerpc/kvm/book3s_32_mmu_host.c | |||
@@ -19,7 +19,6 @@ | |||
19 | */ | 19 | */ |
20 | 20 | ||
21 | #include <linux/kvm_host.h> | 21 | #include <linux/kvm_host.h> |
22 | #include <linux/hash.h> | ||
23 | 22 | ||
24 | #include <asm/kvm_ppc.h> | 23 | #include <asm/kvm_ppc.h> |
25 | #include <asm/kvm_book3s.h> | 24 | #include <asm/kvm_book3s.h> |
@@ -77,7 +76,14 @@ void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte) | |||
77 | * a hash, so we don't waste cycles on looping */ | 76 | * a hash, so we don't waste cycles on looping */ |
78 | static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid) | 77 | static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid) |
79 | { | 78 | { |
80 | return hash_64(gvsid, SID_MAP_BITS); | 79 | return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^ |
80 | ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^ | ||
81 | ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^ | ||
82 | ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^ | ||
83 | ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^ | ||
84 | ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^ | ||
85 | ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^ | ||
86 | ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK)); | ||
81 | } | 87 | } |
82 | 88 | ||
83 | 89 | ||
@@ -86,7 +92,7 @@ static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid) | |||
86 | struct kvmppc_sid_map *map; | 92 | struct kvmppc_sid_map *map; |
87 | u16 sid_map_mask; | 93 | u16 sid_map_mask; |
88 | 94 | ||
89 | if (vcpu->arch.msr & MSR_PR) | 95 | if (vcpu->arch.shared->msr & MSR_PR) |
90 | gvsid |= VSID_PR; | 96 | gvsid |= VSID_PR; |
91 | 97 | ||
92 | sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); | 98 | sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); |
@@ -147,8 +153,8 @@ int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte) | |||
147 | struct hpte_cache *pte; | 153 | struct hpte_cache *pte; |
148 | 154 | ||
149 | /* Get host physical address for gpa */ | 155 | /* Get host physical address for gpa */ |
150 | hpaddr = gfn_to_pfn(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT); | 156 | hpaddr = kvmppc_gfn_to_pfn(vcpu, orig_pte->raddr >> PAGE_SHIFT); |
151 | if (kvm_is_error_hva(hpaddr)) { | 157 | if (is_error_pfn(hpaddr)) { |
152 | printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n", | 158 | printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n", |
153 | orig_pte->eaddr); | 159 | orig_pte->eaddr); |
154 | return -EINVAL; | 160 | return -EINVAL; |
@@ -253,7 +259,7 @@ static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid) | |||
253 | u16 sid_map_mask; | 259 | u16 sid_map_mask; |
254 | static int backwards_map = 0; | 260 | static int backwards_map = 0; |
255 | 261 | ||
256 | if (vcpu->arch.msr & MSR_PR) | 262 | if (vcpu->arch.shared->msr & MSR_PR) |
257 | gvsid |= VSID_PR; | 263 | gvsid |= VSID_PR; |
258 | 264 | ||
259 | /* We might get collisions that trap in preceding order, so let's | 265 | /* We might get collisions that trap in preceding order, so let's |
@@ -269,18 +275,15 @@ static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid) | |||
269 | backwards_map = !backwards_map; | 275 | backwards_map = !backwards_map; |
270 | 276 | ||
271 | /* Uh-oh ... out of mappings. Let's flush! */ | 277 | /* Uh-oh ... out of mappings. Let's flush! */ |
272 | if (vcpu_book3s->vsid_next >= vcpu_book3s->vsid_max) { | 278 | if (vcpu_book3s->vsid_next >= VSID_POOL_SIZE) { |
273 | vcpu_book3s->vsid_next = vcpu_book3s->vsid_first; | 279 | vcpu_book3s->vsid_next = 0; |
274 | memset(vcpu_book3s->sid_map, 0, | 280 | memset(vcpu_book3s->sid_map, 0, |
275 | sizeof(struct kvmppc_sid_map) * SID_MAP_NUM); | 281 | sizeof(struct kvmppc_sid_map) * SID_MAP_NUM); |
276 | kvmppc_mmu_pte_flush(vcpu, 0, 0); | 282 | kvmppc_mmu_pte_flush(vcpu, 0, 0); |
277 | kvmppc_mmu_flush_segments(vcpu); | 283 | kvmppc_mmu_flush_segments(vcpu); |
278 | } | 284 | } |
279 | map->host_vsid = vcpu_book3s->vsid_next; | 285 | map->host_vsid = vcpu_book3s->vsid_pool[vcpu_book3s->vsid_next]; |
280 | 286 | vcpu_book3s->vsid_next++; | |
281 | /* Would have to be 111 to be completely aligned with the rest of | ||
282 | Linux, but that is just way too little space! */ | ||
283 | vcpu_book3s->vsid_next+=1; | ||
284 | 287 | ||
285 | map->guest_vsid = gvsid; | 288 | map->guest_vsid = gvsid; |
286 | map->valid = true; | 289 | map->valid = true; |
@@ -327,40 +330,38 @@ void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu) | |||
327 | 330 | ||
328 | void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu) | 331 | void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu) |
329 | { | 332 | { |
333 | int i; | ||
334 | |||
330 | kvmppc_mmu_hpte_destroy(vcpu); | 335 | kvmppc_mmu_hpte_destroy(vcpu); |
331 | preempt_disable(); | 336 | preempt_disable(); |
332 | __destroy_context(to_book3s(vcpu)->context_id); | 337 | for (i = 0; i < SID_CONTEXTS; i++) |
338 | __destroy_context(to_book3s(vcpu)->context_id[i]); | ||
333 | preempt_enable(); | 339 | preempt_enable(); |
334 | } | 340 | } |
335 | 341 | ||
336 | /* From mm/mmu_context_hash32.c */ | 342 | /* From mm/mmu_context_hash32.c */ |
337 | #define CTX_TO_VSID(ctx) (((ctx) * (897 * 16)) & 0xffffff) | 343 | #define CTX_TO_VSID(c, id) ((((c) * (897 * 16)) + (id * 0x111)) & 0xffffff) |
338 | 344 | ||
339 | int kvmppc_mmu_init(struct kvm_vcpu *vcpu) | 345 | int kvmppc_mmu_init(struct kvm_vcpu *vcpu) |
340 | { | 346 | { |
341 | struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); | 347 | struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); |
342 | int err; | 348 | int err; |
343 | ulong sdr1; | 349 | ulong sdr1; |
350 | int i; | ||
351 | int j; | ||
344 | 352 | ||
345 | err = __init_new_context(); | 353 | for (i = 0; i < SID_CONTEXTS; i++) { |
346 | if (err < 0) | 354 | err = __init_new_context(); |
347 | return -1; | 355 | if (err < 0) |
348 | vcpu3s->context_id = err; | 356 | goto init_fail; |
349 | 357 | vcpu3s->context_id[i] = err; | |
350 | vcpu3s->vsid_max = CTX_TO_VSID(vcpu3s->context_id + 1) - 1; | ||
351 | vcpu3s->vsid_first = CTX_TO_VSID(vcpu3s->context_id); | ||
352 | |||
353 | #if 0 /* XXX still doesn't guarantee uniqueness */ | ||
354 | /* We could collide with the Linux vsid space because the vsid | ||
355 | * wraps around at 24 bits. We're safe if we do our own space | ||
356 | * though, so let's always set the highest bit. */ | ||
357 | 358 | ||
358 | vcpu3s->vsid_max |= 0x00800000; | 359 | /* Remember context id for this combination */ |
359 | vcpu3s->vsid_first |= 0x00800000; | 360 | for (j = 0; j < 16; j++) |
360 | #endif | 361 | vcpu3s->vsid_pool[(i * 16) + j] = CTX_TO_VSID(err, j); |
361 | BUG_ON(vcpu3s->vsid_max < vcpu3s->vsid_first); | 362 | } |
362 | 363 | ||
363 | vcpu3s->vsid_next = vcpu3s->vsid_first; | 364 | vcpu3s->vsid_next = 0; |
364 | 365 | ||
365 | /* Remember where the HTAB is */ | 366 | /* Remember where the HTAB is */ |
366 | asm ( "mfsdr1 %0" : "=r"(sdr1) ); | 367 | asm ( "mfsdr1 %0" : "=r"(sdr1) ); |
@@ -370,4 +371,14 @@ int kvmppc_mmu_init(struct kvm_vcpu *vcpu) | |||
370 | kvmppc_mmu_hpte_init(vcpu); | 371 | kvmppc_mmu_hpte_init(vcpu); |
371 | 372 | ||
372 | return 0; | 373 | return 0; |
374 | |||
375 | init_fail: | ||
376 | for (j = 0; j < i; j++) { | ||
377 | if (!vcpu3s->context_id[j]) | ||
378 | continue; | ||
379 | |||
380 | __destroy_context(to_book3s(vcpu)->context_id[j]); | ||
381 | } | ||
382 | |||
383 | return -1; | ||
373 | } | 384 | } |
diff --git a/arch/powerpc/kvm/book3s_64_mmu.c b/arch/powerpc/kvm/book3s_64_mmu.c index 4025ea26b3c1..d7889ef3211e 100644 --- a/arch/powerpc/kvm/book3s_64_mmu.c +++ b/arch/powerpc/kvm/book3s_64_mmu.c | |||
@@ -163,6 +163,22 @@ static int kvmppc_mmu_book3s_64_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, | |||
163 | bool found = false; | 163 | bool found = false; |
164 | bool perm_err = false; | 164 | bool perm_err = false; |
165 | int second = 0; | 165 | int second = 0; |
166 | ulong mp_ea = vcpu->arch.magic_page_ea; | ||
167 | |||
168 | /* Magic page override */ | ||
169 | if (unlikely(mp_ea) && | ||
170 | unlikely((eaddr & ~0xfffULL) == (mp_ea & ~0xfffULL)) && | ||
171 | !(vcpu->arch.shared->msr & MSR_PR)) { | ||
172 | gpte->eaddr = eaddr; | ||
173 | gpte->vpage = kvmppc_mmu_book3s_64_ea_to_vp(vcpu, eaddr, data); | ||
174 | gpte->raddr = vcpu->arch.magic_page_pa | (gpte->raddr & 0xfff); | ||
175 | gpte->raddr &= KVM_PAM; | ||
176 | gpte->may_execute = true; | ||
177 | gpte->may_read = true; | ||
178 | gpte->may_write = true; | ||
179 | |||
180 | return 0; | ||
181 | } | ||
166 | 182 | ||
167 | slbe = kvmppc_mmu_book3s_64_find_slbe(vcpu_book3s, eaddr); | 183 | slbe = kvmppc_mmu_book3s_64_find_slbe(vcpu_book3s, eaddr); |
168 | if (!slbe) | 184 | if (!slbe) |
@@ -180,9 +196,9 @@ do_second: | |||
180 | goto no_page_found; | 196 | goto no_page_found; |
181 | } | 197 | } |
182 | 198 | ||
183 | if ((vcpu->arch.msr & MSR_PR) && slbe->Kp) | 199 | if ((vcpu->arch.shared->msr & MSR_PR) && slbe->Kp) |
184 | key = 4; | 200 | key = 4; |
185 | else if (!(vcpu->arch.msr & MSR_PR) && slbe->Ks) | 201 | else if (!(vcpu->arch.shared->msr & MSR_PR) && slbe->Ks) |
186 | key = 4; | 202 | key = 4; |
187 | 203 | ||
188 | for (i=0; i<16; i+=2) { | 204 | for (i=0; i<16; i+=2) { |
@@ -381,7 +397,7 @@ static void kvmppc_mmu_book3s_64_slbia(struct kvm_vcpu *vcpu) | |||
381 | for (i = 1; i < vcpu_book3s->slb_nr; i++) | 397 | for (i = 1; i < vcpu_book3s->slb_nr; i++) |
382 | vcpu_book3s->slb[i].valid = false; | 398 | vcpu_book3s->slb[i].valid = false; |
383 | 399 | ||
384 | if (vcpu->arch.msr & MSR_IR) { | 400 | if (vcpu->arch.shared->msr & MSR_IR) { |
385 | kvmppc_mmu_flush_segments(vcpu); | 401 | kvmppc_mmu_flush_segments(vcpu); |
386 | kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); | 402 | kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); |
387 | } | 403 | } |
@@ -445,14 +461,15 @@ static int kvmppc_mmu_book3s_64_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid, | |||
445 | ulong ea = esid << SID_SHIFT; | 461 | ulong ea = esid << SID_SHIFT; |
446 | struct kvmppc_slb *slb; | 462 | struct kvmppc_slb *slb; |
447 | u64 gvsid = esid; | 463 | u64 gvsid = esid; |
464 | ulong mp_ea = vcpu->arch.magic_page_ea; | ||
448 | 465 | ||
449 | if (vcpu->arch.msr & (MSR_DR|MSR_IR)) { | 466 | if (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) { |
450 | slb = kvmppc_mmu_book3s_64_find_slbe(to_book3s(vcpu), ea); | 467 | slb = kvmppc_mmu_book3s_64_find_slbe(to_book3s(vcpu), ea); |
451 | if (slb) | 468 | if (slb) |
452 | gvsid = slb->vsid; | 469 | gvsid = slb->vsid; |
453 | } | 470 | } |
454 | 471 | ||
455 | switch (vcpu->arch.msr & (MSR_DR|MSR_IR)) { | 472 | switch (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) { |
456 | case 0: | 473 | case 0: |
457 | *vsid = VSID_REAL | esid; | 474 | *vsid = VSID_REAL | esid; |
458 | break; | 475 | break; |
@@ -464,7 +481,7 @@ static int kvmppc_mmu_book3s_64_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid, | |||
464 | break; | 481 | break; |
465 | case MSR_DR|MSR_IR: | 482 | case MSR_DR|MSR_IR: |
466 | if (!slb) | 483 | if (!slb) |
467 | return -ENOENT; | 484 | goto no_slb; |
468 | 485 | ||
469 | *vsid = gvsid; | 486 | *vsid = gvsid; |
470 | break; | 487 | break; |
@@ -473,10 +490,21 @@ static int kvmppc_mmu_book3s_64_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid, | |||
473 | break; | 490 | break; |
474 | } | 491 | } |
475 | 492 | ||
476 | if (vcpu->arch.msr & MSR_PR) | 493 | if (vcpu->arch.shared->msr & MSR_PR) |
477 | *vsid |= VSID_PR; | 494 | *vsid |= VSID_PR; |
478 | 495 | ||
479 | return 0; | 496 | return 0; |
497 | |||
498 | no_slb: | ||
499 | /* Catch magic page case */ | ||
500 | if (unlikely(mp_ea) && | ||
501 | unlikely(esid == (mp_ea >> SID_SHIFT)) && | ||
502 | !(vcpu->arch.shared->msr & MSR_PR)) { | ||
503 | *vsid = VSID_REAL | esid; | ||
504 | return 0; | ||
505 | } | ||
506 | |||
507 | return -EINVAL; | ||
480 | } | 508 | } |
481 | 509 | ||
482 | static bool kvmppc_mmu_book3s_64_is_dcbz32(struct kvm_vcpu *vcpu) | 510 | static bool kvmppc_mmu_book3s_64_is_dcbz32(struct kvm_vcpu *vcpu) |
diff --git a/arch/powerpc/kvm/book3s_64_mmu_host.c b/arch/powerpc/kvm/book3s_64_mmu_host.c index 384179a5002b..fa2f08434ba5 100644 --- a/arch/powerpc/kvm/book3s_64_mmu_host.c +++ b/arch/powerpc/kvm/book3s_64_mmu_host.c | |||
@@ -20,7 +20,6 @@ | |||
20 | */ | 20 | */ |
21 | 21 | ||
22 | #include <linux/kvm_host.h> | 22 | #include <linux/kvm_host.h> |
23 | #include <linux/hash.h> | ||
24 | 23 | ||
25 | #include <asm/kvm_ppc.h> | 24 | #include <asm/kvm_ppc.h> |
26 | #include <asm/kvm_book3s.h> | 25 | #include <asm/kvm_book3s.h> |
@@ -28,24 +27,9 @@ | |||
28 | #include <asm/machdep.h> | 27 | #include <asm/machdep.h> |
29 | #include <asm/mmu_context.h> | 28 | #include <asm/mmu_context.h> |
30 | #include <asm/hw_irq.h> | 29 | #include <asm/hw_irq.h> |
30 | #include "trace.h" | ||
31 | 31 | ||
32 | #define PTE_SIZE 12 | 32 | #define PTE_SIZE 12 |
33 | #define VSID_ALL 0 | ||
34 | |||
35 | /* #define DEBUG_MMU */ | ||
36 | /* #define DEBUG_SLB */ | ||
37 | |||
38 | #ifdef DEBUG_MMU | ||
39 | #define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__) | ||
40 | #else | ||
41 | #define dprintk_mmu(a, ...) do { } while(0) | ||
42 | #endif | ||
43 | |||
44 | #ifdef DEBUG_SLB | ||
45 | #define dprintk_slb(a, ...) printk(KERN_INFO a, __VA_ARGS__) | ||
46 | #else | ||
47 | #define dprintk_slb(a, ...) do { } while(0) | ||
48 | #endif | ||
49 | 33 | ||
50 | void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte) | 34 | void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte) |
51 | { | 35 | { |
@@ -58,34 +42,39 @@ void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte) | |||
58 | * a hash, so we don't waste cycles on looping */ | 42 | * a hash, so we don't waste cycles on looping */ |
59 | static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid) | 43 | static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid) |
60 | { | 44 | { |
61 | return hash_64(gvsid, SID_MAP_BITS); | 45 | return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^ |
46 | ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^ | ||
47 | ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^ | ||
48 | ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^ | ||
49 | ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^ | ||
50 | ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^ | ||
51 | ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^ | ||
52 | ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK)); | ||
62 | } | 53 | } |
63 | 54 | ||
55 | |||
64 | static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid) | 56 | static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid) |
65 | { | 57 | { |
66 | struct kvmppc_sid_map *map; | 58 | struct kvmppc_sid_map *map; |
67 | u16 sid_map_mask; | 59 | u16 sid_map_mask; |
68 | 60 | ||
69 | if (vcpu->arch.msr & MSR_PR) | 61 | if (vcpu->arch.shared->msr & MSR_PR) |
70 | gvsid |= VSID_PR; | 62 | gvsid |= VSID_PR; |
71 | 63 | ||
72 | sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); | 64 | sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); |
73 | map = &to_book3s(vcpu)->sid_map[sid_map_mask]; | 65 | map = &to_book3s(vcpu)->sid_map[sid_map_mask]; |
74 | if (map->guest_vsid == gvsid) { | 66 | if (map->valid && (map->guest_vsid == gvsid)) { |
75 | dprintk_slb("SLB: Searching: 0x%llx -> 0x%llx\n", | 67 | trace_kvm_book3s_slb_found(gvsid, map->host_vsid); |
76 | gvsid, map->host_vsid); | ||
77 | return map; | 68 | return map; |
78 | } | 69 | } |
79 | 70 | ||
80 | map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask]; | 71 | map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask]; |
81 | if (map->guest_vsid == gvsid) { | 72 | if (map->valid && (map->guest_vsid == gvsid)) { |
82 | dprintk_slb("SLB: Searching 0x%llx -> 0x%llx\n", | 73 | trace_kvm_book3s_slb_found(gvsid, map->host_vsid); |
83 | gvsid, map->host_vsid); | ||
84 | return map; | 74 | return map; |
85 | } | 75 | } |
86 | 76 | ||
87 | dprintk_slb("SLB: Searching %d/%d: 0x%llx -> not found\n", | 77 | trace_kvm_book3s_slb_fail(sid_map_mask, gvsid); |
88 | sid_map_mask, SID_MAP_MASK - sid_map_mask, gvsid); | ||
89 | return NULL; | 78 | return NULL; |
90 | } | 79 | } |
91 | 80 | ||
@@ -101,18 +90,13 @@ int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte) | |||
101 | struct kvmppc_sid_map *map; | 90 | struct kvmppc_sid_map *map; |
102 | 91 | ||
103 | /* Get host physical address for gpa */ | 92 | /* Get host physical address for gpa */ |
104 | hpaddr = gfn_to_pfn(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT); | 93 | hpaddr = kvmppc_gfn_to_pfn(vcpu, orig_pte->raddr >> PAGE_SHIFT); |
105 | if (kvm_is_error_hva(hpaddr)) { | 94 | if (is_error_pfn(hpaddr)) { |
106 | printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n", orig_pte->eaddr); | 95 | printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n", orig_pte->eaddr); |
107 | return -EINVAL; | 96 | return -EINVAL; |
108 | } | 97 | } |
109 | hpaddr <<= PAGE_SHIFT; | 98 | hpaddr <<= PAGE_SHIFT; |
110 | #if PAGE_SHIFT == 12 | 99 | hpaddr |= orig_pte->raddr & (~0xfffULL & ~PAGE_MASK); |
111 | #elif PAGE_SHIFT == 16 | ||
112 | hpaddr |= orig_pte->raddr & 0xf000; | ||
113 | #else | ||
114 | #error Unknown page size | ||
115 | #endif | ||
116 | 100 | ||
117 | /* and write the mapping ea -> hpa into the pt */ | 101 | /* and write the mapping ea -> hpa into the pt */ |
118 | vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid); | 102 | vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid); |
@@ -161,10 +145,7 @@ map_again: | |||
161 | } else { | 145 | } else { |
162 | struct hpte_cache *pte = kvmppc_mmu_hpte_cache_next(vcpu); | 146 | struct hpte_cache *pte = kvmppc_mmu_hpte_cache_next(vcpu); |
163 | 147 | ||
164 | dprintk_mmu("KVM: %c%c Map 0x%lx: [%lx] 0x%lx (0x%llx) -> %lx\n", | 148 | trace_kvm_book3s_64_mmu_map(rflags, hpteg, va, hpaddr, orig_pte); |
165 | ((rflags & HPTE_R_PP) == 3) ? '-' : 'w', | ||
166 | (rflags & HPTE_R_N) ? '-' : 'x', | ||
167 | orig_pte->eaddr, hpteg, va, orig_pte->vpage, hpaddr); | ||
168 | 149 | ||
169 | /* The ppc_md code may give us a secondary entry even though we | 150 | /* The ppc_md code may give us a secondary entry even though we |
170 | asked for a primary. Fix up. */ | 151 | asked for a primary. Fix up. */ |
@@ -191,7 +172,7 @@ static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid) | |||
191 | u16 sid_map_mask; | 172 | u16 sid_map_mask; |
192 | static int backwards_map = 0; | 173 | static int backwards_map = 0; |
193 | 174 | ||
194 | if (vcpu->arch.msr & MSR_PR) | 175 | if (vcpu->arch.shared->msr & MSR_PR) |
195 | gvsid |= VSID_PR; | 176 | gvsid |= VSID_PR; |
196 | 177 | ||
197 | /* We might get collisions that trap in preceding order, so let's | 178 | /* We might get collisions that trap in preceding order, so let's |
@@ -219,8 +200,7 @@ static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid) | |||
219 | map->guest_vsid = gvsid; | 200 | map->guest_vsid = gvsid; |
220 | map->valid = true; | 201 | map->valid = true; |
221 | 202 | ||
222 | dprintk_slb("SLB: New mapping at %d: 0x%llx -> 0x%llx\n", | 203 | trace_kvm_book3s_slb_map(sid_map_mask, gvsid, map->host_vsid); |
223 | sid_map_mask, gvsid, map->host_vsid); | ||
224 | 204 | ||
225 | return map; | 205 | return map; |
226 | } | 206 | } |
@@ -292,7 +272,7 @@ int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr) | |||
292 | to_svcpu(vcpu)->slb[slb_index].esid = slb_esid; | 272 | to_svcpu(vcpu)->slb[slb_index].esid = slb_esid; |
293 | to_svcpu(vcpu)->slb[slb_index].vsid = slb_vsid; | 273 | to_svcpu(vcpu)->slb[slb_index].vsid = slb_vsid; |
294 | 274 | ||
295 | dprintk_slb("slbmte %#llx, %#llx\n", slb_vsid, slb_esid); | 275 | trace_kvm_book3s_slbmte(slb_vsid, slb_esid); |
296 | 276 | ||
297 | return 0; | 277 | return 0; |
298 | } | 278 | } |
@@ -306,7 +286,7 @@ void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu) | |||
306 | void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu) | 286 | void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu) |
307 | { | 287 | { |
308 | kvmppc_mmu_hpte_destroy(vcpu); | 288 | kvmppc_mmu_hpte_destroy(vcpu); |
309 | __destroy_context(to_book3s(vcpu)->context_id); | 289 | __destroy_context(to_book3s(vcpu)->context_id[0]); |
310 | } | 290 | } |
311 | 291 | ||
312 | int kvmppc_mmu_init(struct kvm_vcpu *vcpu) | 292 | int kvmppc_mmu_init(struct kvm_vcpu *vcpu) |
@@ -317,10 +297,10 @@ int kvmppc_mmu_init(struct kvm_vcpu *vcpu) | |||
317 | err = __init_new_context(); | 297 | err = __init_new_context(); |
318 | if (err < 0) | 298 | if (err < 0) |
319 | return -1; | 299 | return -1; |
320 | vcpu3s->context_id = err; | 300 | vcpu3s->context_id[0] = err; |
321 | 301 | ||
322 | vcpu3s->vsid_max = ((vcpu3s->context_id + 1) << USER_ESID_BITS) - 1; | 302 | vcpu3s->vsid_max = ((vcpu3s->context_id[0] + 1) << USER_ESID_BITS) - 1; |
323 | vcpu3s->vsid_first = vcpu3s->context_id << USER_ESID_BITS; | 303 | vcpu3s->vsid_first = vcpu3s->context_id[0] << USER_ESID_BITS; |
324 | vcpu3s->vsid_next = vcpu3s->vsid_first; | 304 | vcpu3s->vsid_next = vcpu3s->vsid_first; |
325 | 305 | ||
326 | kvmppc_mmu_hpte_init(vcpu); | 306 | kvmppc_mmu_hpte_init(vcpu); |
diff --git a/arch/powerpc/kvm/book3s_emulate.c b/arch/powerpc/kvm/book3s_emulate.c index c85f906038ce..466846557089 100644 --- a/arch/powerpc/kvm/book3s_emulate.c +++ b/arch/powerpc/kvm/book3s_emulate.c | |||
@@ -73,8 +73,8 @@ int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu, | |||
73 | switch (get_xop(inst)) { | 73 | switch (get_xop(inst)) { |
74 | case OP_19_XOP_RFID: | 74 | case OP_19_XOP_RFID: |
75 | case OP_19_XOP_RFI: | 75 | case OP_19_XOP_RFI: |
76 | kvmppc_set_pc(vcpu, vcpu->arch.srr0); | 76 | kvmppc_set_pc(vcpu, vcpu->arch.shared->srr0); |
77 | kvmppc_set_msr(vcpu, vcpu->arch.srr1); | 77 | kvmppc_set_msr(vcpu, vcpu->arch.shared->srr1); |
78 | *advance = 0; | 78 | *advance = 0; |
79 | break; | 79 | break; |
80 | 80 | ||
@@ -86,14 +86,15 @@ int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu, | |||
86 | case 31: | 86 | case 31: |
87 | switch (get_xop(inst)) { | 87 | switch (get_xop(inst)) { |
88 | case OP_31_XOP_MFMSR: | 88 | case OP_31_XOP_MFMSR: |
89 | kvmppc_set_gpr(vcpu, get_rt(inst), vcpu->arch.msr); | 89 | kvmppc_set_gpr(vcpu, get_rt(inst), |
90 | vcpu->arch.shared->msr); | ||
90 | break; | 91 | break; |
91 | case OP_31_XOP_MTMSRD: | 92 | case OP_31_XOP_MTMSRD: |
92 | { | 93 | { |
93 | ulong rs = kvmppc_get_gpr(vcpu, get_rs(inst)); | 94 | ulong rs = kvmppc_get_gpr(vcpu, get_rs(inst)); |
94 | if (inst & 0x10000) { | 95 | if (inst & 0x10000) { |
95 | vcpu->arch.msr &= ~(MSR_RI | MSR_EE); | 96 | vcpu->arch.shared->msr &= ~(MSR_RI | MSR_EE); |
96 | vcpu->arch.msr |= rs & (MSR_RI | MSR_EE); | 97 | vcpu->arch.shared->msr |= rs & (MSR_RI | MSR_EE); |
97 | } else | 98 | } else |
98 | kvmppc_set_msr(vcpu, rs); | 99 | kvmppc_set_msr(vcpu, rs); |
99 | break; | 100 | break; |
@@ -204,14 +205,14 @@ int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu, | |||
204 | ra = kvmppc_get_gpr(vcpu, get_ra(inst)); | 205 | ra = kvmppc_get_gpr(vcpu, get_ra(inst)); |
205 | 206 | ||
206 | addr = (ra + rb) & ~31ULL; | 207 | addr = (ra + rb) & ~31ULL; |
207 | if (!(vcpu->arch.msr & MSR_SF)) | 208 | if (!(vcpu->arch.shared->msr & MSR_SF)) |
208 | addr &= 0xffffffff; | 209 | addr &= 0xffffffff; |
209 | vaddr = addr; | 210 | vaddr = addr; |
210 | 211 | ||
211 | r = kvmppc_st(vcpu, &addr, 32, zeros, true); | 212 | r = kvmppc_st(vcpu, &addr, 32, zeros, true); |
212 | if ((r == -ENOENT) || (r == -EPERM)) { | 213 | if ((r == -ENOENT) || (r == -EPERM)) { |
213 | *advance = 0; | 214 | *advance = 0; |
214 | vcpu->arch.dear = vaddr; | 215 | vcpu->arch.shared->dar = vaddr; |
215 | to_svcpu(vcpu)->fault_dar = vaddr; | 216 | to_svcpu(vcpu)->fault_dar = vaddr; |
216 | 217 | ||
217 | dsisr = DSISR_ISSTORE; | 218 | dsisr = DSISR_ISSTORE; |
@@ -220,7 +221,7 @@ int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu, | |||
220 | else if (r == -EPERM) | 221 | else if (r == -EPERM) |
221 | dsisr |= DSISR_PROTFAULT; | 222 | dsisr |= DSISR_PROTFAULT; |
222 | 223 | ||
223 | to_book3s(vcpu)->dsisr = dsisr; | 224 | vcpu->arch.shared->dsisr = dsisr; |
224 | to_svcpu(vcpu)->fault_dsisr = dsisr; | 225 | to_svcpu(vcpu)->fault_dsisr = dsisr; |
225 | 226 | ||
226 | kvmppc_book3s_queue_irqprio(vcpu, | 227 | kvmppc_book3s_queue_irqprio(vcpu, |
@@ -263,7 +264,7 @@ void kvmppc_set_bat(struct kvm_vcpu *vcpu, struct kvmppc_bat *bat, bool upper, | |||
263 | } | 264 | } |
264 | } | 265 | } |
265 | 266 | ||
266 | static u32 kvmppc_read_bat(struct kvm_vcpu *vcpu, int sprn) | 267 | static struct kvmppc_bat *kvmppc_find_bat(struct kvm_vcpu *vcpu, int sprn) |
267 | { | 268 | { |
268 | struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); | 269 | struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); |
269 | struct kvmppc_bat *bat; | 270 | struct kvmppc_bat *bat; |
@@ -285,35 +286,7 @@ static u32 kvmppc_read_bat(struct kvm_vcpu *vcpu, int sprn) | |||
285 | BUG(); | 286 | BUG(); |
286 | } | 287 | } |
287 | 288 | ||
288 | if (sprn % 2) | 289 | return bat; |
289 | return bat->raw >> 32; | ||
290 | else | ||
291 | return bat->raw; | ||
292 | } | ||
293 | |||
294 | static void kvmppc_write_bat(struct kvm_vcpu *vcpu, int sprn, u32 val) | ||
295 | { | ||
296 | struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); | ||
297 | struct kvmppc_bat *bat; | ||
298 | |||
299 | switch (sprn) { | ||
300 | case SPRN_IBAT0U ... SPRN_IBAT3L: | ||
301 | bat = &vcpu_book3s->ibat[(sprn - SPRN_IBAT0U) / 2]; | ||
302 | break; | ||
303 | case SPRN_IBAT4U ... SPRN_IBAT7L: | ||
304 | bat = &vcpu_book3s->ibat[4 + ((sprn - SPRN_IBAT4U) / 2)]; | ||
305 | break; | ||
306 | case SPRN_DBAT0U ... SPRN_DBAT3L: | ||
307 | bat = &vcpu_book3s->dbat[(sprn - SPRN_DBAT0U) / 2]; | ||
308 | break; | ||
309 | case SPRN_DBAT4U ... SPRN_DBAT7L: | ||
310 | bat = &vcpu_book3s->dbat[4 + ((sprn - SPRN_DBAT4U) / 2)]; | ||
311 | break; | ||
312 | default: | ||
313 | BUG(); | ||
314 | } | ||
315 | |||
316 | kvmppc_set_bat(vcpu, bat, !(sprn % 2), val); | ||
317 | } | 290 | } |
318 | 291 | ||
319 | int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs) | 292 | int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs) |
@@ -326,10 +299,10 @@ int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs) | |||
326 | to_book3s(vcpu)->sdr1 = spr_val; | 299 | to_book3s(vcpu)->sdr1 = spr_val; |
327 | break; | 300 | break; |
328 | case SPRN_DSISR: | 301 | case SPRN_DSISR: |
329 | to_book3s(vcpu)->dsisr = spr_val; | 302 | vcpu->arch.shared->dsisr = spr_val; |
330 | break; | 303 | break; |
331 | case SPRN_DAR: | 304 | case SPRN_DAR: |
332 | vcpu->arch.dear = spr_val; | 305 | vcpu->arch.shared->dar = spr_val; |
333 | break; | 306 | break; |
334 | case SPRN_HIOR: | 307 | case SPRN_HIOR: |
335 | to_book3s(vcpu)->hior = spr_val; | 308 | to_book3s(vcpu)->hior = spr_val; |
@@ -338,12 +311,16 @@ int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs) | |||
338 | case SPRN_IBAT4U ... SPRN_IBAT7L: | 311 | case SPRN_IBAT4U ... SPRN_IBAT7L: |
339 | case SPRN_DBAT0U ... SPRN_DBAT3L: | 312 | case SPRN_DBAT0U ... SPRN_DBAT3L: |
340 | case SPRN_DBAT4U ... SPRN_DBAT7L: | 313 | case SPRN_DBAT4U ... SPRN_DBAT7L: |
341 | kvmppc_write_bat(vcpu, sprn, (u32)spr_val); | 314 | { |
315 | struct kvmppc_bat *bat = kvmppc_find_bat(vcpu, sprn); | ||
316 | |||
317 | kvmppc_set_bat(vcpu, bat, !(sprn % 2), (u32)spr_val); | ||
342 | /* BAT writes happen so rarely that we're ok to flush | 318 | /* BAT writes happen so rarely that we're ok to flush |
343 | * everything here */ | 319 | * everything here */ |
344 | kvmppc_mmu_pte_flush(vcpu, 0, 0); | 320 | kvmppc_mmu_pte_flush(vcpu, 0, 0); |
345 | kvmppc_mmu_flush_segments(vcpu); | 321 | kvmppc_mmu_flush_segments(vcpu); |
346 | break; | 322 | break; |
323 | } | ||
347 | case SPRN_HID0: | 324 | case SPRN_HID0: |
348 | to_book3s(vcpu)->hid[0] = spr_val; | 325 | to_book3s(vcpu)->hid[0] = spr_val; |
349 | break; | 326 | break; |
@@ -433,16 +410,24 @@ int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt) | |||
433 | case SPRN_IBAT4U ... SPRN_IBAT7L: | 410 | case SPRN_IBAT4U ... SPRN_IBAT7L: |
434 | case SPRN_DBAT0U ... SPRN_DBAT3L: | 411 | case SPRN_DBAT0U ... SPRN_DBAT3L: |
435 | case SPRN_DBAT4U ... SPRN_DBAT7L: | 412 | case SPRN_DBAT4U ... SPRN_DBAT7L: |
436 | kvmppc_set_gpr(vcpu, rt, kvmppc_read_bat(vcpu, sprn)); | 413 | { |
414 | struct kvmppc_bat *bat = kvmppc_find_bat(vcpu, sprn); | ||
415 | |||
416 | if (sprn % 2) | ||
417 | kvmppc_set_gpr(vcpu, rt, bat->raw >> 32); | ||
418 | else | ||
419 | kvmppc_set_gpr(vcpu, rt, bat->raw); | ||
420 | |||
437 | break; | 421 | break; |
422 | } | ||
438 | case SPRN_SDR1: | 423 | case SPRN_SDR1: |
439 | kvmppc_set_gpr(vcpu, rt, to_book3s(vcpu)->sdr1); | 424 | kvmppc_set_gpr(vcpu, rt, to_book3s(vcpu)->sdr1); |
440 | break; | 425 | break; |
441 | case SPRN_DSISR: | 426 | case SPRN_DSISR: |
442 | kvmppc_set_gpr(vcpu, rt, to_book3s(vcpu)->dsisr); | 427 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->dsisr); |
443 | break; | 428 | break; |
444 | case SPRN_DAR: | 429 | case SPRN_DAR: |
445 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.dear); | 430 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->dar); |
446 | break; | 431 | break; |
447 | case SPRN_HIOR: | 432 | case SPRN_HIOR: |
448 | kvmppc_set_gpr(vcpu, rt, to_book3s(vcpu)->hior); | 433 | kvmppc_set_gpr(vcpu, rt, to_book3s(vcpu)->hior); |
diff --git a/arch/powerpc/kvm/book3s_mmu_hpte.c b/arch/powerpc/kvm/book3s_mmu_hpte.c index 4868d4a7ebc5..79751d8dd131 100644 --- a/arch/powerpc/kvm/book3s_mmu_hpte.c +++ b/arch/powerpc/kvm/book3s_mmu_hpte.c | |||
@@ -21,6 +21,7 @@ | |||
21 | #include <linux/kvm_host.h> | 21 | #include <linux/kvm_host.h> |
22 | #include <linux/hash.h> | 22 | #include <linux/hash.h> |
23 | #include <linux/slab.h> | 23 | #include <linux/slab.h> |
24 | #include "trace.h" | ||
24 | 25 | ||
25 | #include <asm/kvm_ppc.h> | 26 | #include <asm/kvm_ppc.h> |
26 | #include <asm/kvm_book3s.h> | 27 | #include <asm/kvm_book3s.h> |
@@ -30,14 +31,6 @@ | |||
30 | 31 | ||
31 | #define PTE_SIZE 12 | 32 | #define PTE_SIZE 12 |
32 | 33 | ||
33 | /* #define DEBUG_MMU */ | ||
34 | |||
35 | #ifdef DEBUG_MMU | ||
36 | #define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__) | ||
37 | #else | ||
38 | #define dprintk_mmu(a, ...) do { } while(0) | ||
39 | #endif | ||
40 | |||
41 | static struct kmem_cache *hpte_cache; | 34 | static struct kmem_cache *hpte_cache; |
42 | 35 | ||
43 | static inline u64 kvmppc_mmu_hash_pte(u64 eaddr) | 36 | static inline u64 kvmppc_mmu_hash_pte(u64 eaddr) |
@@ -45,6 +38,12 @@ static inline u64 kvmppc_mmu_hash_pte(u64 eaddr) | |||
45 | return hash_64(eaddr >> PTE_SIZE, HPTEG_HASH_BITS_PTE); | 38 | return hash_64(eaddr >> PTE_SIZE, HPTEG_HASH_BITS_PTE); |
46 | } | 39 | } |
47 | 40 | ||
41 | static inline u64 kvmppc_mmu_hash_pte_long(u64 eaddr) | ||
42 | { | ||
43 | return hash_64((eaddr & 0x0ffff000) >> PTE_SIZE, | ||
44 | HPTEG_HASH_BITS_PTE_LONG); | ||
45 | } | ||
46 | |||
48 | static inline u64 kvmppc_mmu_hash_vpte(u64 vpage) | 47 | static inline u64 kvmppc_mmu_hash_vpte(u64 vpage) |
49 | { | 48 | { |
50 | return hash_64(vpage & 0xfffffffffULL, HPTEG_HASH_BITS_VPTE); | 49 | return hash_64(vpage & 0xfffffffffULL, HPTEG_HASH_BITS_VPTE); |
@@ -60,77 +59,128 @@ void kvmppc_mmu_hpte_cache_map(struct kvm_vcpu *vcpu, struct hpte_cache *pte) | |||
60 | { | 59 | { |
61 | u64 index; | 60 | u64 index; |
62 | 61 | ||
62 | trace_kvm_book3s_mmu_map(pte); | ||
63 | |||
64 | spin_lock(&vcpu->arch.mmu_lock); | ||
65 | |||
63 | /* Add to ePTE list */ | 66 | /* Add to ePTE list */ |
64 | index = kvmppc_mmu_hash_pte(pte->pte.eaddr); | 67 | index = kvmppc_mmu_hash_pte(pte->pte.eaddr); |
65 | hlist_add_head(&pte->list_pte, &vcpu->arch.hpte_hash_pte[index]); | 68 | hlist_add_head_rcu(&pte->list_pte, &vcpu->arch.hpte_hash_pte[index]); |
69 | |||
70 | /* Add to ePTE_long list */ | ||
71 | index = kvmppc_mmu_hash_pte_long(pte->pte.eaddr); | ||
72 | hlist_add_head_rcu(&pte->list_pte_long, | ||
73 | &vcpu->arch.hpte_hash_pte_long[index]); | ||
66 | 74 | ||
67 | /* Add to vPTE list */ | 75 | /* Add to vPTE list */ |
68 | index = kvmppc_mmu_hash_vpte(pte->pte.vpage); | 76 | index = kvmppc_mmu_hash_vpte(pte->pte.vpage); |
69 | hlist_add_head(&pte->list_vpte, &vcpu->arch.hpte_hash_vpte[index]); | 77 | hlist_add_head_rcu(&pte->list_vpte, &vcpu->arch.hpte_hash_vpte[index]); |
70 | 78 | ||
71 | /* Add to vPTE_long list */ | 79 | /* Add to vPTE_long list */ |
72 | index = kvmppc_mmu_hash_vpte_long(pte->pte.vpage); | 80 | index = kvmppc_mmu_hash_vpte_long(pte->pte.vpage); |
73 | hlist_add_head(&pte->list_vpte_long, | 81 | hlist_add_head_rcu(&pte->list_vpte_long, |
74 | &vcpu->arch.hpte_hash_vpte_long[index]); | 82 | &vcpu->arch.hpte_hash_vpte_long[index]); |
83 | |||
84 | spin_unlock(&vcpu->arch.mmu_lock); | ||
85 | } | ||
86 | |||
87 | static void free_pte_rcu(struct rcu_head *head) | ||
88 | { | ||
89 | struct hpte_cache *pte = container_of(head, struct hpte_cache, rcu_head); | ||
90 | kmem_cache_free(hpte_cache, pte); | ||
75 | } | 91 | } |
76 | 92 | ||
77 | static void invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte) | 93 | static void invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte) |
78 | { | 94 | { |
79 | dprintk_mmu("KVM: Flushing SPT: 0x%lx (0x%llx) -> 0x%llx\n", | 95 | trace_kvm_book3s_mmu_invalidate(pte); |
80 | pte->pte.eaddr, pte->pte.vpage, pte->host_va); | ||
81 | 96 | ||
82 | /* Different for 32 and 64 bit */ | 97 | /* Different for 32 and 64 bit */ |
83 | kvmppc_mmu_invalidate_pte(vcpu, pte); | 98 | kvmppc_mmu_invalidate_pte(vcpu, pte); |
84 | 99 | ||
100 | spin_lock(&vcpu->arch.mmu_lock); | ||
101 | |||
102 | /* pte already invalidated in between? */ | ||
103 | if (hlist_unhashed(&pte->list_pte)) { | ||
104 | spin_unlock(&vcpu->arch.mmu_lock); | ||
105 | return; | ||
106 | } | ||
107 | |||
108 | hlist_del_init_rcu(&pte->list_pte); | ||
109 | hlist_del_init_rcu(&pte->list_pte_long); | ||
110 | hlist_del_init_rcu(&pte->list_vpte); | ||
111 | hlist_del_init_rcu(&pte->list_vpte_long); | ||
112 | |||
85 | if (pte->pte.may_write) | 113 | if (pte->pte.may_write) |
86 | kvm_release_pfn_dirty(pte->pfn); | 114 | kvm_release_pfn_dirty(pte->pfn); |
87 | else | 115 | else |
88 | kvm_release_pfn_clean(pte->pfn); | 116 | kvm_release_pfn_clean(pte->pfn); |
89 | 117 | ||
90 | hlist_del(&pte->list_pte); | 118 | spin_unlock(&vcpu->arch.mmu_lock); |
91 | hlist_del(&pte->list_vpte); | ||
92 | hlist_del(&pte->list_vpte_long); | ||
93 | 119 | ||
94 | vcpu->arch.hpte_cache_count--; | 120 | vcpu->arch.hpte_cache_count--; |
95 | kmem_cache_free(hpte_cache, pte); | 121 | call_rcu(&pte->rcu_head, free_pte_rcu); |
96 | } | 122 | } |
97 | 123 | ||
98 | static void kvmppc_mmu_pte_flush_all(struct kvm_vcpu *vcpu) | 124 | static void kvmppc_mmu_pte_flush_all(struct kvm_vcpu *vcpu) |
99 | { | 125 | { |
100 | struct hpte_cache *pte; | 126 | struct hpte_cache *pte; |
101 | struct hlist_node *node, *tmp; | 127 | struct hlist_node *node; |
102 | int i; | 128 | int i; |
103 | 129 | ||
130 | rcu_read_lock(); | ||
131 | |||
104 | for (i = 0; i < HPTEG_HASH_NUM_VPTE_LONG; i++) { | 132 | for (i = 0; i < HPTEG_HASH_NUM_VPTE_LONG; i++) { |
105 | struct hlist_head *list = &vcpu->arch.hpte_hash_vpte_long[i]; | 133 | struct hlist_head *list = &vcpu->arch.hpte_hash_vpte_long[i]; |
106 | 134 | ||
107 | hlist_for_each_entry_safe(pte, node, tmp, list, list_vpte_long) | 135 | hlist_for_each_entry_rcu(pte, node, list, list_vpte_long) |
108 | invalidate_pte(vcpu, pte); | 136 | invalidate_pte(vcpu, pte); |
109 | } | 137 | } |
138 | |||
139 | rcu_read_unlock(); | ||
110 | } | 140 | } |
111 | 141 | ||
112 | static void kvmppc_mmu_pte_flush_page(struct kvm_vcpu *vcpu, ulong guest_ea) | 142 | static void kvmppc_mmu_pte_flush_page(struct kvm_vcpu *vcpu, ulong guest_ea) |
113 | { | 143 | { |
114 | struct hlist_head *list; | 144 | struct hlist_head *list; |
115 | struct hlist_node *node, *tmp; | 145 | struct hlist_node *node; |
116 | struct hpte_cache *pte; | 146 | struct hpte_cache *pte; |
117 | 147 | ||
118 | /* Find the list of entries in the map */ | 148 | /* Find the list of entries in the map */ |
119 | list = &vcpu->arch.hpte_hash_pte[kvmppc_mmu_hash_pte(guest_ea)]; | 149 | list = &vcpu->arch.hpte_hash_pte[kvmppc_mmu_hash_pte(guest_ea)]; |
120 | 150 | ||
151 | rcu_read_lock(); | ||
152 | |||
121 | /* Check the list for matching entries and invalidate */ | 153 | /* Check the list for matching entries and invalidate */ |
122 | hlist_for_each_entry_safe(pte, node, tmp, list, list_pte) | 154 | hlist_for_each_entry_rcu(pte, node, list, list_pte) |
123 | if ((pte->pte.eaddr & ~0xfffUL) == guest_ea) | 155 | if ((pte->pte.eaddr & ~0xfffUL) == guest_ea) |
124 | invalidate_pte(vcpu, pte); | 156 | invalidate_pte(vcpu, pte); |
157 | |||
158 | rcu_read_unlock(); | ||
125 | } | 159 | } |
126 | 160 | ||
127 | void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, ulong guest_ea, ulong ea_mask) | 161 | static void kvmppc_mmu_pte_flush_long(struct kvm_vcpu *vcpu, ulong guest_ea) |
128 | { | 162 | { |
129 | u64 i; | 163 | struct hlist_head *list; |
164 | struct hlist_node *node; | ||
165 | struct hpte_cache *pte; | ||
130 | 166 | ||
131 | dprintk_mmu("KVM: Flushing %d Shadow PTEs: 0x%lx & 0x%lx\n", | 167 | /* Find the list of entries in the map */ |
132 | vcpu->arch.hpte_cache_count, guest_ea, ea_mask); | 168 | list = &vcpu->arch.hpte_hash_pte_long[ |
169 | kvmppc_mmu_hash_pte_long(guest_ea)]; | ||
133 | 170 | ||
171 | rcu_read_lock(); | ||
172 | |||
173 | /* Check the list for matching entries and invalidate */ | ||
174 | hlist_for_each_entry_rcu(pte, node, list, list_pte_long) | ||
175 | if ((pte->pte.eaddr & 0x0ffff000UL) == guest_ea) | ||
176 | invalidate_pte(vcpu, pte); | ||
177 | |||
178 | rcu_read_unlock(); | ||
179 | } | ||
180 | |||
181 | void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, ulong guest_ea, ulong ea_mask) | ||
182 | { | ||
183 | trace_kvm_book3s_mmu_flush("", vcpu, guest_ea, ea_mask); | ||
134 | guest_ea &= ea_mask; | 184 | guest_ea &= ea_mask; |
135 | 185 | ||
136 | switch (ea_mask) { | 186 | switch (ea_mask) { |
@@ -138,9 +188,7 @@ void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, ulong guest_ea, ulong ea_mask) | |||
138 | kvmppc_mmu_pte_flush_page(vcpu, guest_ea); | 188 | kvmppc_mmu_pte_flush_page(vcpu, guest_ea); |
139 | break; | 189 | break; |
140 | case 0x0ffff000: | 190 | case 0x0ffff000: |
141 | /* 32-bit flush w/o segment, go through all possible segments */ | 191 | kvmppc_mmu_pte_flush_long(vcpu, guest_ea); |
142 | for (i = 0; i < 0x100000000ULL; i += 0x10000000ULL) | ||
143 | kvmppc_mmu_pte_flush(vcpu, guest_ea | i, ~0xfffUL); | ||
144 | break; | 192 | break; |
145 | case 0: | 193 | case 0: |
146 | /* Doing a complete flush -> start from scratch */ | 194 | /* Doing a complete flush -> start from scratch */ |
@@ -156,39 +204,46 @@ void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, ulong guest_ea, ulong ea_mask) | |||
156 | static void kvmppc_mmu_pte_vflush_short(struct kvm_vcpu *vcpu, u64 guest_vp) | 204 | static void kvmppc_mmu_pte_vflush_short(struct kvm_vcpu *vcpu, u64 guest_vp) |
157 | { | 205 | { |
158 | struct hlist_head *list; | 206 | struct hlist_head *list; |
159 | struct hlist_node *node, *tmp; | 207 | struct hlist_node *node; |
160 | struct hpte_cache *pte; | 208 | struct hpte_cache *pte; |
161 | u64 vp_mask = 0xfffffffffULL; | 209 | u64 vp_mask = 0xfffffffffULL; |
162 | 210 | ||
163 | list = &vcpu->arch.hpte_hash_vpte[kvmppc_mmu_hash_vpte(guest_vp)]; | 211 | list = &vcpu->arch.hpte_hash_vpte[kvmppc_mmu_hash_vpte(guest_vp)]; |
164 | 212 | ||
213 | rcu_read_lock(); | ||
214 | |||
165 | /* Check the list for matching entries and invalidate */ | 215 | /* Check the list for matching entries and invalidate */ |
166 | hlist_for_each_entry_safe(pte, node, tmp, list, list_vpte) | 216 | hlist_for_each_entry_rcu(pte, node, list, list_vpte) |
167 | if ((pte->pte.vpage & vp_mask) == guest_vp) | 217 | if ((pte->pte.vpage & vp_mask) == guest_vp) |
168 | invalidate_pte(vcpu, pte); | 218 | invalidate_pte(vcpu, pte); |
219 | |||
220 | rcu_read_unlock(); | ||
169 | } | 221 | } |
170 | 222 | ||
171 | /* Flush with mask 0xffffff000 */ | 223 | /* Flush with mask 0xffffff000 */ |
172 | static void kvmppc_mmu_pte_vflush_long(struct kvm_vcpu *vcpu, u64 guest_vp) | 224 | static void kvmppc_mmu_pte_vflush_long(struct kvm_vcpu *vcpu, u64 guest_vp) |
173 | { | 225 | { |
174 | struct hlist_head *list; | 226 | struct hlist_head *list; |
175 | struct hlist_node *node, *tmp; | 227 | struct hlist_node *node; |
176 | struct hpte_cache *pte; | 228 | struct hpte_cache *pte; |
177 | u64 vp_mask = 0xffffff000ULL; | 229 | u64 vp_mask = 0xffffff000ULL; |
178 | 230 | ||
179 | list = &vcpu->arch.hpte_hash_vpte_long[ | 231 | list = &vcpu->arch.hpte_hash_vpte_long[ |
180 | kvmppc_mmu_hash_vpte_long(guest_vp)]; | 232 | kvmppc_mmu_hash_vpte_long(guest_vp)]; |
181 | 233 | ||
234 | rcu_read_lock(); | ||
235 | |||
182 | /* Check the list for matching entries and invalidate */ | 236 | /* Check the list for matching entries and invalidate */ |
183 | hlist_for_each_entry_safe(pte, node, tmp, list, list_vpte_long) | 237 | hlist_for_each_entry_rcu(pte, node, list, list_vpte_long) |
184 | if ((pte->pte.vpage & vp_mask) == guest_vp) | 238 | if ((pte->pte.vpage & vp_mask) == guest_vp) |
185 | invalidate_pte(vcpu, pte); | 239 | invalidate_pte(vcpu, pte); |
240 | |||
241 | rcu_read_unlock(); | ||
186 | } | 242 | } |
187 | 243 | ||
188 | void kvmppc_mmu_pte_vflush(struct kvm_vcpu *vcpu, u64 guest_vp, u64 vp_mask) | 244 | void kvmppc_mmu_pte_vflush(struct kvm_vcpu *vcpu, u64 guest_vp, u64 vp_mask) |
189 | { | 245 | { |
190 | dprintk_mmu("KVM: Flushing %d Shadow vPTEs: 0x%llx & 0x%llx\n", | 246 | trace_kvm_book3s_mmu_flush("v", vcpu, guest_vp, vp_mask); |
191 | vcpu->arch.hpte_cache_count, guest_vp, vp_mask); | ||
192 | guest_vp &= vp_mask; | 247 | guest_vp &= vp_mask; |
193 | 248 | ||
194 | switch(vp_mask) { | 249 | switch(vp_mask) { |
@@ -206,21 +261,24 @@ void kvmppc_mmu_pte_vflush(struct kvm_vcpu *vcpu, u64 guest_vp, u64 vp_mask) | |||
206 | 261 | ||
207 | void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end) | 262 | void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end) |
208 | { | 263 | { |
209 | struct hlist_node *node, *tmp; | 264 | struct hlist_node *node; |
210 | struct hpte_cache *pte; | 265 | struct hpte_cache *pte; |
211 | int i; | 266 | int i; |
212 | 267 | ||
213 | dprintk_mmu("KVM: Flushing %d Shadow pPTEs: 0x%lx - 0x%lx\n", | 268 | trace_kvm_book3s_mmu_flush("p", vcpu, pa_start, pa_end); |
214 | vcpu->arch.hpte_cache_count, pa_start, pa_end); | 269 | |
270 | rcu_read_lock(); | ||
215 | 271 | ||
216 | for (i = 0; i < HPTEG_HASH_NUM_VPTE_LONG; i++) { | 272 | for (i = 0; i < HPTEG_HASH_NUM_VPTE_LONG; i++) { |
217 | struct hlist_head *list = &vcpu->arch.hpte_hash_vpte_long[i]; | 273 | struct hlist_head *list = &vcpu->arch.hpte_hash_vpte_long[i]; |
218 | 274 | ||
219 | hlist_for_each_entry_safe(pte, node, tmp, list, list_vpte_long) | 275 | hlist_for_each_entry_rcu(pte, node, list, list_vpte_long) |
220 | if ((pte->pte.raddr >= pa_start) && | 276 | if ((pte->pte.raddr >= pa_start) && |
221 | (pte->pte.raddr < pa_end)) | 277 | (pte->pte.raddr < pa_end)) |
222 | invalidate_pte(vcpu, pte); | 278 | invalidate_pte(vcpu, pte); |
223 | } | 279 | } |
280 | |||
281 | rcu_read_unlock(); | ||
224 | } | 282 | } |
225 | 283 | ||
226 | struct hpte_cache *kvmppc_mmu_hpte_cache_next(struct kvm_vcpu *vcpu) | 284 | struct hpte_cache *kvmppc_mmu_hpte_cache_next(struct kvm_vcpu *vcpu) |
@@ -254,11 +312,15 @@ int kvmppc_mmu_hpte_init(struct kvm_vcpu *vcpu) | |||
254 | /* init hpte lookup hashes */ | 312 | /* init hpte lookup hashes */ |
255 | kvmppc_mmu_hpte_init_hash(vcpu->arch.hpte_hash_pte, | 313 | kvmppc_mmu_hpte_init_hash(vcpu->arch.hpte_hash_pte, |
256 | ARRAY_SIZE(vcpu->arch.hpte_hash_pte)); | 314 | ARRAY_SIZE(vcpu->arch.hpte_hash_pte)); |
315 | kvmppc_mmu_hpte_init_hash(vcpu->arch.hpte_hash_pte_long, | ||
316 | ARRAY_SIZE(vcpu->arch.hpte_hash_pte_long)); | ||
257 | kvmppc_mmu_hpte_init_hash(vcpu->arch.hpte_hash_vpte, | 317 | kvmppc_mmu_hpte_init_hash(vcpu->arch.hpte_hash_vpte, |
258 | ARRAY_SIZE(vcpu->arch.hpte_hash_vpte)); | 318 | ARRAY_SIZE(vcpu->arch.hpte_hash_vpte)); |
259 | kvmppc_mmu_hpte_init_hash(vcpu->arch.hpte_hash_vpte_long, | 319 | kvmppc_mmu_hpte_init_hash(vcpu->arch.hpte_hash_vpte_long, |
260 | ARRAY_SIZE(vcpu->arch.hpte_hash_vpte_long)); | 320 | ARRAY_SIZE(vcpu->arch.hpte_hash_vpte_long)); |
261 | 321 | ||
322 | spin_lock_init(&vcpu->arch.mmu_lock); | ||
323 | |||
262 | return 0; | 324 | return 0; |
263 | } | 325 | } |
264 | 326 | ||
diff --git a/arch/powerpc/kvm/book3s_paired_singles.c b/arch/powerpc/kvm/book3s_paired_singles.c index 35a701f3ece4..7b0ee96c1bed 100644 --- a/arch/powerpc/kvm/book3s_paired_singles.c +++ b/arch/powerpc/kvm/book3s_paired_singles.c | |||
@@ -165,14 +165,15 @@ static inline void kvmppc_sync_qpr(struct kvm_vcpu *vcpu, int rt) | |||
165 | static void kvmppc_inject_pf(struct kvm_vcpu *vcpu, ulong eaddr, bool is_store) | 165 | static void kvmppc_inject_pf(struct kvm_vcpu *vcpu, ulong eaddr, bool is_store) |
166 | { | 166 | { |
167 | u64 dsisr; | 167 | u64 dsisr; |
168 | struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; | ||
168 | 169 | ||
169 | vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 33, 36, 0); | 170 | shared->msr = kvmppc_set_field(shared->msr, 33, 36, 0); |
170 | vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 42, 47, 0); | 171 | shared->msr = kvmppc_set_field(shared->msr, 42, 47, 0); |
171 | vcpu->arch.dear = eaddr; | 172 | shared->dar = eaddr; |
172 | /* Page Fault */ | 173 | /* Page Fault */ |
173 | dsisr = kvmppc_set_field(0, 33, 33, 1); | 174 | dsisr = kvmppc_set_field(0, 33, 33, 1); |
174 | if (is_store) | 175 | if (is_store) |
175 | to_book3s(vcpu)->dsisr = kvmppc_set_field(dsisr, 38, 38, 1); | 176 | shared->dsisr = kvmppc_set_field(dsisr, 38, 38, 1); |
176 | kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE); | 177 | kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE); |
177 | } | 178 | } |
178 | 179 | ||
@@ -658,7 +659,7 @@ int kvmppc_emulate_paired_single(struct kvm_run *run, struct kvm_vcpu *vcpu) | |||
658 | if (!kvmppc_inst_is_paired_single(vcpu, inst)) | 659 | if (!kvmppc_inst_is_paired_single(vcpu, inst)) |
659 | return EMULATE_FAIL; | 660 | return EMULATE_FAIL; |
660 | 661 | ||
661 | if (!(vcpu->arch.msr & MSR_FP)) { | 662 | if (!(vcpu->arch.shared->msr & MSR_FP)) { |
662 | kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL); | 663 | kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL); |
663 | return EMULATE_AGAIN; | 664 | return EMULATE_AGAIN; |
664 | } | 665 | } |
diff --git a/arch/powerpc/kvm/book3s_rmhandlers.S b/arch/powerpc/kvm/book3s_rmhandlers.S index 506d5c316c96..2b9c9088d00e 100644 --- a/arch/powerpc/kvm/book3s_rmhandlers.S +++ b/arch/powerpc/kvm/book3s_rmhandlers.S | |||
@@ -202,8 +202,25 @@ _GLOBAL(kvmppc_rmcall) | |||
202 | 202 | ||
203 | #if defined(CONFIG_PPC_BOOK3S_32) | 203 | #if defined(CONFIG_PPC_BOOK3S_32) |
204 | #define STACK_LR INT_FRAME_SIZE+4 | 204 | #define STACK_LR INT_FRAME_SIZE+4 |
205 | |||
206 | /* load_up_xxx have to run with MSR_DR=0 on Book3S_32 */ | ||
207 | #define MSR_EXT_START \ | ||
208 | PPC_STL r20, _NIP(r1); \ | ||
209 | mfmsr r20; \ | ||
210 | LOAD_REG_IMMEDIATE(r3, MSR_DR|MSR_EE); \ | ||
211 | andc r3,r20,r3; /* Disable DR,EE */ \ | ||
212 | mtmsr r3; \ | ||
213 | sync | ||
214 | |||
215 | #define MSR_EXT_END \ | ||
216 | mtmsr r20; /* Enable DR,EE */ \ | ||
217 | sync; \ | ||
218 | PPC_LL r20, _NIP(r1) | ||
219 | |||
205 | #elif defined(CONFIG_PPC_BOOK3S_64) | 220 | #elif defined(CONFIG_PPC_BOOK3S_64) |
206 | #define STACK_LR _LINK | 221 | #define STACK_LR _LINK |
222 | #define MSR_EXT_START | ||
223 | #define MSR_EXT_END | ||
207 | #endif | 224 | #endif |
208 | 225 | ||
209 | /* | 226 | /* |
@@ -215,19 +232,12 @@ _GLOBAL(kvmppc_load_up_ ## what); \ | |||
215 | PPC_STLU r1, -INT_FRAME_SIZE(r1); \ | 232 | PPC_STLU r1, -INT_FRAME_SIZE(r1); \ |
216 | mflr r3; \ | 233 | mflr r3; \ |
217 | PPC_STL r3, STACK_LR(r1); \ | 234 | PPC_STL r3, STACK_LR(r1); \ |
218 | PPC_STL r20, _NIP(r1); \ | 235 | MSR_EXT_START; \ |
219 | mfmsr r20; \ | ||
220 | LOAD_REG_IMMEDIATE(r3, MSR_DR|MSR_EE); \ | ||
221 | andc r3,r20,r3; /* Disable DR,EE */ \ | ||
222 | mtmsr r3; \ | ||
223 | sync; \ | ||
224 | \ | 236 | \ |
225 | bl FUNC(load_up_ ## what); \ | 237 | bl FUNC(load_up_ ## what); \ |
226 | \ | 238 | \ |
227 | mtmsr r20; /* Enable DR,EE */ \ | 239 | MSR_EXT_END; \ |
228 | sync; \ | ||
229 | PPC_LL r3, STACK_LR(r1); \ | 240 | PPC_LL r3, STACK_LR(r1); \ |
230 | PPC_LL r20, _NIP(r1); \ | ||
231 | mtlr r3; \ | 241 | mtlr r3; \ |
232 | addi r1, r1, INT_FRAME_SIZE; \ | 242 | addi r1, r1, INT_FRAME_SIZE; \ |
233 | blr | 243 | blr |
@@ -242,10 +252,10 @@ define_load_up(vsx) | |||
242 | 252 | ||
243 | .global kvmppc_trampoline_lowmem | 253 | .global kvmppc_trampoline_lowmem |
244 | kvmppc_trampoline_lowmem: | 254 | kvmppc_trampoline_lowmem: |
245 | .long kvmppc_handler_lowmem_trampoline - CONFIG_KERNEL_START | 255 | PPC_LONG kvmppc_handler_lowmem_trampoline - CONFIG_KERNEL_START |
246 | 256 | ||
247 | .global kvmppc_trampoline_enter | 257 | .global kvmppc_trampoline_enter |
248 | kvmppc_trampoline_enter: | 258 | kvmppc_trampoline_enter: |
249 | .long kvmppc_handler_trampoline_enter - CONFIG_KERNEL_START | 259 | PPC_LONG kvmppc_handler_trampoline_enter - CONFIG_KERNEL_START |
250 | 260 | ||
251 | #include "book3s_segment.S" | 261 | #include "book3s_segment.S" |
diff --git a/arch/powerpc/kvm/booke.c b/arch/powerpc/kvm/booke.c index 8d4e35f5372c..77575d08c818 100644 --- a/arch/powerpc/kvm/booke.c +++ b/arch/powerpc/kvm/booke.c | |||
@@ -62,9 +62,10 @@ void kvmppc_dump_vcpu(struct kvm_vcpu *vcpu) | |||
62 | { | 62 | { |
63 | int i; | 63 | int i; |
64 | 64 | ||
65 | printk("pc: %08lx msr: %08lx\n", vcpu->arch.pc, vcpu->arch.msr); | 65 | printk("pc: %08lx msr: %08llx\n", vcpu->arch.pc, vcpu->arch.shared->msr); |
66 | printk("lr: %08lx ctr: %08lx\n", vcpu->arch.lr, vcpu->arch.ctr); | 66 | printk("lr: %08lx ctr: %08lx\n", vcpu->arch.lr, vcpu->arch.ctr); |
67 | printk("srr0: %08lx srr1: %08lx\n", vcpu->arch.srr0, vcpu->arch.srr1); | 67 | printk("srr0: %08llx srr1: %08llx\n", vcpu->arch.shared->srr0, |
68 | vcpu->arch.shared->srr1); | ||
68 | 69 | ||
69 | printk("exceptions: %08lx\n", vcpu->arch.pending_exceptions); | 70 | printk("exceptions: %08lx\n", vcpu->arch.pending_exceptions); |
70 | 71 | ||
@@ -130,13 +131,19 @@ void kvmppc_core_dequeue_dec(struct kvm_vcpu *vcpu) | |||
130 | void kvmppc_core_queue_external(struct kvm_vcpu *vcpu, | 131 | void kvmppc_core_queue_external(struct kvm_vcpu *vcpu, |
131 | struct kvm_interrupt *irq) | 132 | struct kvm_interrupt *irq) |
132 | { | 133 | { |
133 | kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_EXTERNAL); | 134 | unsigned int prio = BOOKE_IRQPRIO_EXTERNAL; |
135 | |||
136 | if (irq->irq == KVM_INTERRUPT_SET_LEVEL) | ||
137 | prio = BOOKE_IRQPRIO_EXTERNAL_LEVEL; | ||
138 | |||
139 | kvmppc_booke_queue_irqprio(vcpu, prio); | ||
134 | } | 140 | } |
135 | 141 | ||
136 | void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu, | 142 | void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu, |
137 | struct kvm_interrupt *irq) | 143 | struct kvm_interrupt *irq) |
138 | { | 144 | { |
139 | clear_bit(BOOKE_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions); | 145 | clear_bit(BOOKE_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions); |
146 | clear_bit(BOOKE_IRQPRIO_EXTERNAL_LEVEL, &vcpu->arch.pending_exceptions); | ||
140 | } | 147 | } |
141 | 148 | ||
142 | /* Deliver the interrupt of the corresponding priority, if possible. */ | 149 | /* Deliver the interrupt of the corresponding priority, if possible. */ |
@@ -146,6 +153,26 @@ static int kvmppc_booke_irqprio_deliver(struct kvm_vcpu *vcpu, | |||
146 | int allowed = 0; | 153 | int allowed = 0; |
147 | ulong uninitialized_var(msr_mask); | 154 | ulong uninitialized_var(msr_mask); |
148 | bool update_esr = false, update_dear = false; | 155 | bool update_esr = false, update_dear = false; |
156 | ulong crit_raw = vcpu->arch.shared->critical; | ||
157 | ulong crit_r1 = kvmppc_get_gpr(vcpu, 1); | ||
158 | bool crit; | ||
159 | bool keep_irq = false; | ||
160 | |||
161 | /* Truncate crit indicators in 32 bit mode */ | ||
162 | if (!(vcpu->arch.shared->msr & MSR_SF)) { | ||
163 | crit_raw &= 0xffffffff; | ||
164 | crit_r1 &= 0xffffffff; | ||
165 | } | ||
166 | |||
167 | /* Critical section when crit == r1 */ | ||
168 | crit = (crit_raw == crit_r1); | ||
169 | /* ... and we're in supervisor mode */ | ||
170 | crit = crit && !(vcpu->arch.shared->msr & MSR_PR); | ||
171 | |||
172 | if (priority == BOOKE_IRQPRIO_EXTERNAL_LEVEL) { | ||
173 | priority = BOOKE_IRQPRIO_EXTERNAL; | ||
174 | keep_irq = true; | ||
175 | } | ||
149 | 176 | ||
150 | switch (priority) { | 177 | switch (priority) { |
151 | case BOOKE_IRQPRIO_DTLB_MISS: | 178 | case BOOKE_IRQPRIO_DTLB_MISS: |
@@ -169,36 +196,38 @@ static int kvmppc_booke_irqprio_deliver(struct kvm_vcpu *vcpu, | |||
169 | break; | 196 | break; |
170 | case BOOKE_IRQPRIO_CRITICAL: | 197 | case BOOKE_IRQPRIO_CRITICAL: |
171 | case BOOKE_IRQPRIO_WATCHDOG: | 198 | case BOOKE_IRQPRIO_WATCHDOG: |
172 | allowed = vcpu->arch.msr & MSR_CE; | 199 | allowed = vcpu->arch.shared->msr & MSR_CE; |
173 | msr_mask = MSR_ME; | 200 | msr_mask = MSR_ME; |
174 | break; | 201 | break; |
175 | case BOOKE_IRQPRIO_MACHINE_CHECK: | 202 | case BOOKE_IRQPRIO_MACHINE_CHECK: |
176 | allowed = vcpu->arch.msr & MSR_ME; | 203 | allowed = vcpu->arch.shared->msr & MSR_ME; |
177 | msr_mask = 0; | 204 | msr_mask = 0; |
178 | break; | 205 | break; |
179 | case BOOKE_IRQPRIO_EXTERNAL: | 206 | case BOOKE_IRQPRIO_EXTERNAL: |
180 | case BOOKE_IRQPRIO_DECREMENTER: | 207 | case BOOKE_IRQPRIO_DECREMENTER: |
181 | case BOOKE_IRQPRIO_FIT: | 208 | case BOOKE_IRQPRIO_FIT: |
182 | allowed = vcpu->arch.msr & MSR_EE; | 209 | allowed = vcpu->arch.shared->msr & MSR_EE; |
210 | allowed = allowed && !crit; | ||
183 | msr_mask = MSR_CE|MSR_ME|MSR_DE; | 211 | msr_mask = MSR_CE|MSR_ME|MSR_DE; |
184 | break; | 212 | break; |
185 | case BOOKE_IRQPRIO_DEBUG: | 213 | case BOOKE_IRQPRIO_DEBUG: |
186 | allowed = vcpu->arch.msr & MSR_DE; | 214 | allowed = vcpu->arch.shared->msr & MSR_DE; |
187 | msr_mask = MSR_ME; | 215 | msr_mask = MSR_ME; |
188 | break; | 216 | break; |
189 | } | 217 | } |
190 | 218 | ||
191 | if (allowed) { | 219 | if (allowed) { |
192 | vcpu->arch.srr0 = vcpu->arch.pc; | 220 | vcpu->arch.shared->srr0 = vcpu->arch.pc; |
193 | vcpu->arch.srr1 = vcpu->arch.msr; | 221 | vcpu->arch.shared->srr1 = vcpu->arch.shared->msr; |
194 | vcpu->arch.pc = vcpu->arch.ivpr | vcpu->arch.ivor[priority]; | 222 | vcpu->arch.pc = vcpu->arch.ivpr | vcpu->arch.ivor[priority]; |
195 | if (update_esr == true) | 223 | if (update_esr == true) |
196 | vcpu->arch.esr = vcpu->arch.queued_esr; | 224 | vcpu->arch.esr = vcpu->arch.queued_esr; |
197 | if (update_dear == true) | 225 | if (update_dear == true) |
198 | vcpu->arch.dear = vcpu->arch.queued_dear; | 226 | vcpu->arch.shared->dar = vcpu->arch.queued_dear; |
199 | kvmppc_set_msr(vcpu, vcpu->arch.msr & msr_mask); | 227 | kvmppc_set_msr(vcpu, vcpu->arch.shared->msr & msr_mask); |
200 | 228 | ||
201 | clear_bit(priority, &vcpu->arch.pending_exceptions); | 229 | if (!keep_irq) |
230 | clear_bit(priority, &vcpu->arch.pending_exceptions); | ||
202 | } | 231 | } |
203 | 232 | ||
204 | return allowed; | 233 | return allowed; |
@@ -208,6 +237,7 @@ static int kvmppc_booke_irqprio_deliver(struct kvm_vcpu *vcpu, | |||
208 | void kvmppc_core_deliver_interrupts(struct kvm_vcpu *vcpu) | 237 | void kvmppc_core_deliver_interrupts(struct kvm_vcpu *vcpu) |
209 | { | 238 | { |
210 | unsigned long *pending = &vcpu->arch.pending_exceptions; | 239 | unsigned long *pending = &vcpu->arch.pending_exceptions; |
240 | unsigned long old_pending = vcpu->arch.pending_exceptions; | ||
211 | unsigned int priority; | 241 | unsigned int priority; |
212 | 242 | ||
213 | priority = __ffs(*pending); | 243 | priority = __ffs(*pending); |
@@ -219,6 +249,12 @@ void kvmppc_core_deliver_interrupts(struct kvm_vcpu *vcpu) | |||
219 | BITS_PER_BYTE * sizeof(*pending), | 249 | BITS_PER_BYTE * sizeof(*pending), |
220 | priority + 1); | 250 | priority + 1); |
221 | } | 251 | } |
252 | |||
253 | /* Tell the guest about our interrupt status */ | ||
254 | if (*pending) | ||
255 | vcpu->arch.shared->int_pending = 1; | ||
256 | else if (old_pending) | ||
257 | vcpu->arch.shared->int_pending = 0; | ||
222 | } | 258 | } |
223 | 259 | ||
224 | /** | 260 | /** |
@@ -265,7 +301,7 @@ int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, | |||
265 | break; | 301 | break; |
266 | 302 | ||
267 | case BOOKE_INTERRUPT_PROGRAM: | 303 | case BOOKE_INTERRUPT_PROGRAM: |
268 | if (vcpu->arch.msr & MSR_PR) { | 304 | if (vcpu->arch.shared->msr & MSR_PR) { |
269 | /* Program traps generated by user-level software must be handled | 305 | /* Program traps generated by user-level software must be handled |
270 | * by the guest kernel. */ | 306 | * by the guest kernel. */ |
271 | kvmppc_core_queue_program(vcpu, vcpu->arch.fault_esr); | 307 | kvmppc_core_queue_program(vcpu, vcpu->arch.fault_esr); |
@@ -337,7 +373,15 @@ int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, | |||
337 | break; | 373 | break; |
338 | 374 | ||
339 | case BOOKE_INTERRUPT_SYSCALL: | 375 | case BOOKE_INTERRUPT_SYSCALL: |
340 | kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SYSCALL); | 376 | if (!(vcpu->arch.shared->msr & MSR_PR) && |
377 | (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) { | ||
378 | /* KVM PV hypercalls */ | ||
379 | kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu)); | ||
380 | r = RESUME_GUEST; | ||
381 | } else { | ||
382 | /* Guest syscalls */ | ||
383 | kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SYSCALL); | ||
384 | } | ||
341 | kvmppc_account_exit(vcpu, SYSCALL_EXITS); | 385 | kvmppc_account_exit(vcpu, SYSCALL_EXITS); |
342 | r = RESUME_GUEST; | 386 | r = RESUME_GUEST; |
343 | break; | 387 | break; |
@@ -466,15 +510,19 @@ int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, | |||
466 | /* Initial guest state: 16MB mapping 0 -> 0, PC = 0, MSR = 0, R1 = 16MB */ | 510 | /* Initial guest state: 16MB mapping 0 -> 0, PC = 0, MSR = 0, R1 = 16MB */ |
467 | int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) | 511 | int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) |
468 | { | 512 | { |
513 | int i; | ||
514 | |||
469 | vcpu->arch.pc = 0; | 515 | vcpu->arch.pc = 0; |
470 | vcpu->arch.msr = 0; | 516 | vcpu->arch.shared->msr = 0; |
471 | kvmppc_set_gpr(vcpu, 1, (16<<20) - 8); /* -8 for the callee-save LR slot */ | 517 | kvmppc_set_gpr(vcpu, 1, (16<<20) - 8); /* -8 for the callee-save LR slot */ |
472 | 518 | ||
473 | vcpu->arch.shadow_pid = 1; | 519 | vcpu->arch.shadow_pid = 1; |
474 | 520 | ||
475 | /* Eye-catching number so we know if the guest takes an interrupt | 521 | /* Eye-catching numbers so we know if the guest takes an interrupt |
476 | * before it's programmed its own IVPR. */ | 522 | * before it's programmed its own IVPR/IVORs. */ |
477 | vcpu->arch.ivpr = 0x55550000; | 523 | vcpu->arch.ivpr = 0x55550000; |
524 | for (i = 0; i < BOOKE_IRQPRIO_MAX; i++) | ||
525 | vcpu->arch.ivor[i] = 0x7700 | i * 4; | ||
478 | 526 | ||
479 | kvmppc_init_timing_stats(vcpu); | 527 | kvmppc_init_timing_stats(vcpu); |
480 | 528 | ||
@@ -490,14 +538,14 @@ int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | |||
490 | regs->ctr = vcpu->arch.ctr; | 538 | regs->ctr = vcpu->arch.ctr; |
491 | regs->lr = vcpu->arch.lr; | 539 | regs->lr = vcpu->arch.lr; |
492 | regs->xer = kvmppc_get_xer(vcpu); | 540 | regs->xer = kvmppc_get_xer(vcpu); |
493 | regs->msr = vcpu->arch.msr; | 541 | regs->msr = vcpu->arch.shared->msr; |
494 | regs->srr0 = vcpu->arch.srr0; | 542 | regs->srr0 = vcpu->arch.shared->srr0; |
495 | regs->srr1 = vcpu->arch.srr1; | 543 | regs->srr1 = vcpu->arch.shared->srr1; |
496 | regs->pid = vcpu->arch.pid; | 544 | regs->pid = vcpu->arch.pid; |
497 | regs->sprg0 = vcpu->arch.sprg0; | 545 | regs->sprg0 = vcpu->arch.shared->sprg0; |
498 | regs->sprg1 = vcpu->arch.sprg1; | 546 | regs->sprg1 = vcpu->arch.shared->sprg1; |
499 | regs->sprg2 = vcpu->arch.sprg2; | 547 | regs->sprg2 = vcpu->arch.shared->sprg2; |
500 | regs->sprg3 = vcpu->arch.sprg3; | 548 | regs->sprg3 = vcpu->arch.shared->sprg3; |
501 | regs->sprg5 = vcpu->arch.sprg4; | 549 | regs->sprg5 = vcpu->arch.sprg4; |
502 | regs->sprg6 = vcpu->arch.sprg5; | 550 | regs->sprg6 = vcpu->arch.sprg5; |
503 | regs->sprg7 = vcpu->arch.sprg6; | 551 | regs->sprg7 = vcpu->arch.sprg6; |
@@ -518,12 +566,12 @@ int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | |||
518 | vcpu->arch.lr = regs->lr; | 566 | vcpu->arch.lr = regs->lr; |
519 | kvmppc_set_xer(vcpu, regs->xer); | 567 | kvmppc_set_xer(vcpu, regs->xer); |
520 | kvmppc_set_msr(vcpu, regs->msr); | 568 | kvmppc_set_msr(vcpu, regs->msr); |
521 | vcpu->arch.srr0 = regs->srr0; | 569 | vcpu->arch.shared->srr0 = regs->srr0; |
522 | vcpu->arch.srr1 = regs->srr1; | 570 | vcpu->arch.shared->srr1 = regs->srr1; |
523 | vcpu->arch.sprg0 = regs->sprg0; | 571 | vcpu->arch.shared->sprg0 = regs->sprg0; |
524 | vcpu->arch.sprg1 = regs->sprg1; | 572 | vcpu->arch.shared->sprg1 = regs->sprg1; |
525 | vcpu->arch.sprg2 = regs->sprg2; | 573 | vcpu->arch.shared->sprg2 = regs->sprg2; |
526 | vcpu->arch.sprg3 = regs->sprg3; | 574 | vcpu->arch.shared->sprg3 = regs->sprg3; |
527 | vcpu->arch.sprg5 = regs->sprg4; | 575 | vcpu->arch.sprg5 = regs->sprg4; |
528 | vcpu->arch.sprg6 = regs->sprg5; | 576 | vcpu->arch.sprg6 = regs->sprg5; |
529 | vcpu->arch.sprg7 = regs->sprg6; | 577 | vcpu->arch.sprg7 = regs->sprg6; |
diff --git a/arch/powerpc/kvm/booke.h b/arch/powerpc/kvm/booke.h index d59bcca1f9d8..492bb7030358 100644 --- a/arch/powerpc/kvm/booke.h +++ b/arch/powerpc/kvm/booke.h | |||
@@ -46,7 +46,9 @@ | |||
46 | #define BOOKE_IRQPRIO_FIT 17 | 46 | #define BOOKE_IRQPRIO_FIT 17 |
47 | #define BOOKE_IRQPRIO_DECREMENTER 18 | 47 | #define BOOKE_IRQPRIO_DECREMENTER 18 |
48 | #define BOOKE_IRQPRIO_PERFORMANCE_MONITOR 19 | 48 | #define BOOKE_IRQPRIO_PERFORMANCE_MONITOR 19 |
49 | #define BOOKE_IRQPRIO_MAX 19 | 49 | /* Internal pseudo-irqprio for level triggered externals */ |
50 | #define BOOKE_IRQPRIO_EXTERNAL_LEVEL 20 | ||
51 | #define BOOKE_IRQPRIO_MAX 20 | ||
50 | 52 | ||
51 | extern unsigned long kvmppc_booke_handlers; | 53 | extern unsigned long kvmppc_booke_handlers; |
52 | 54 | ||
@@ -54,12 +56,12 @@ extern unsigned long kvmppc_booke_handlers; | |||
54 | * changing. */ | 56 | * changing. */ |
55 | static inline void kvmppc_set_msr(struct kvm_vcpu *vcpu, u32 new_msr) | 57 | static inline void kvmppc_set_msr(struct kvm_vcpu *vcpu, u32 new_msr) |
56 | { | 58 | { |
57 | if ((new_msr & MSR_PR) != (vcpu->arch.msr & MSR_PR)) | 59 | if ((new_msr & MSR_PR) != (vcpu->arch.shared->msr & MSR_PR)) |
58 | kvmppc_mmu_priv_switch(vcpu, new_msr & MSR_PR); | 60 | kvmppc_mmu_priv_switch(vcpu, new_msr & MSR_PR); |
59 | 61 | ||
60 | vcpu->arch.msr = new_msr; | 62 | vcpu->arch.shared->msr = new_msr; |
61 | 63 | ||
62 | if (vcpu->arch.msr & MSR_WE) { | 64 | if (vcpu->arch.shared->msr & MSR_WE) { |
63 | kvm_vcpu_block(vcpu); | 65 | kvm_vcpu_block(vcpu); |
64 | kvmppc_set_exit_type(vcpu, EMULATED_MTMSRWE_EXITS); | 66 | kvmppc_set_exit_type(vcpu, EMULATED_MTMSRWE_EXITS); |
65 | }; | 67 | }; |
diff --git a/arch/powerpc/kvm/booke_emulate.c b/arch/powerpc/kvm/booke_emulate.c index cbc790ee1928..1260f5f24c0c 100644 --- a/arch/powerpc/kvm/booke_emulate.c +++ b/arch/powerpc/kvm/booke_emulate.c | |||
@@ -31,8 +31,8 @@ | |||
31 | 31 | ||
32 | static void kvmppc_emul_rfi(struct kvm_vcpu *vcpu) | 32 | static void kvmppc_emul_rfi(struct kvm_vcpu *vcpu) |
33 | { | 33 | { |
34 | vcpu->arch.pc = vcpu->arch.srr0; | 34 | vcpu->arch.pc = vcpu->arch.shared->srr0; |
35 | kvmppc_set_msr(vcpu, vcpu->arch.srr1); | 35 | kvmppc_set_msr(vcpu, vcpu->arch.shared->srr1); |
36 | } | 36 | } |
37 | 37 | ||
38 | int kvmppc_booke_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu, | 38 | int kvmppc_booke_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu, |
@@ -62,7 +62,7 @@ int kvmppc_booke_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu, | |||
62 | 62 | ||
63 | case OP_31_XOP_MFMSR: | 63 | case OP_31_XOP_MFMSR: |
64 | rt = get_rt(inst); | 64 | rt = get_rt(inst); |
65 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.msr); | 65 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->msr); |
66 | kvmppc_set_exit_type(vcpu, EMULATED_MFMSR_EXITS); | 66 | kvmppc_set_exit_type(vcpu, EMULATED_MFMSR_EXITS); |
67 | break; | 67 | break; |
68 | 68 | ||
@@ -74,13 +74,13 @@ int kvmppc_booke_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu, | |||
74 | 74 | ||
75 | case OP_31_XOP_WRTEE: | 75 | case OP_31_XOP_WRTEE: |
76 | rs = get_rs(inst); | 76 | rs = get_rs(inst); |
77 | vcpu->arch.msr = (vcpu->arch.msr & ~MSR_EE) | 77 | vcpu->arch.shared->msr = (vcpu->arch.shared->msr & ~MSR_EE) |
78 | | (kvmppc_get_gpr(vcpu, rs) & MSR_EE); | 78 | | (kvmppc_get_gpr(vcpu, rs) & MSR_EE); |
79 | kvmppc_set_exit_type(vcpu, EMULATED_WRTEE_EXITS); | 79 | kvmppc_set_exit_type(vcpu, EMULATED_WRTEE_EXITS); |
80 | break; | 80 | break; |
81 | 81 | ||
82 | case OP_31_XOP_WRTEEI: | 82 | case OP_31_XOP_WRTEEI: |
83 | vcpu->arch.msr = (vcpu->arch.msr & ~MSR_EE) | 83 | vcpu->arch.shared->msr = (vcpu->arch.shared->msr & ~MSR_EE) |
84 | | (inst & MSR_EE); | 84 | | (inst & MSR_EE); |
85 | kvmppc_set_exit_type(vcpu, EMULATED_WRTEE_EXITS); | 85 | kvmppc_set_exit_type(vcpu, EMULATED_WRTEE_EXITS); |
86 | break; | 86 | break; |
@@ -105,7 +105,7 @@ int kvmppc_booke_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs) | |||
105 | 105 | ||
106 | switch (sprn) { | 106 | switch (sprn) { |
107 | case SPRN_DEAR: | 107 | case SPRN_DEAR: |
108 | vcpu->arch.dear = spr_val; break; | 108 | vcpu->arch.shared->dar = spr_val; break; |
109 | case SPRN_ESR: | 109 | case SPRN_ESR: |
110 | vcpu->arch.esr = spr_val; break; | 110 | vcpu->arch.esr = spr_val; break; |
111 | case SPRN_DBCR0: | 111 | case SPRN_DBCR0: |
@@ -200,7 +200,7 @@ int kvmppc_booke_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt) | |||
200 | case SPRN_IVPR: | 200 | case SPRN_IVPR: |
201 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.ivpr); break; | 201 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.ivpr); break; |
202 | case SPRN_DEAR: | 202 | case SPRN_DEAR: |
203 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.dear); break; | 203 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->dar); break; |
204 | case SPRN_ESR: | 204 | case SPRN_ESR: |
205 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.esr); break; | 205 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.esr); break; |
206 | case SPRN_DBCR0: | 206 | case SPRN_DBCR0: |
diff --git a/arch/powerpc/kvm/booke_interrupts.S b/arch/powerpc/kvm/booke_interrupts.S index 380a78cf484d..049846911ce4 100644 --- a/arch/powerpc/kvm/booke_interrupts.S +++ b/arch/powerpc/kvm/booke_interrupts.S | |||
@@ -415,7 +415,8 @@ lightweight_exit: | |||
415 | lwz r8, VCPU_GPR(r8)(r4) | 415 | lwz r8, VCPU_GPR(r8)(r4) |
416 | lwz r3, VCPU_PC(r4) | 416 | lwz r3, VCPU_PC(r4) |
417 | mtsrr0 r3 | 417 | mtsrr0 r3 |
418 | lwz r3, VCPU_MSR(r4) | 418 | lwz r3, VCPU_SHARED(r4) |
419 | lwz r3, VCPU_SHARED_MSR(r3) | ||
419 | oris r3, r3, KVMPPC_MSR_MASK@h | 420 | oris r3, r3, KVMPPC_MSR_MASK@h |
420 | ori r3, r3, KVMPPC_MSR_MASK@l | 421 | ori r3, r3, KVMPPC_MSR_MASK@l |
421 | mtsrr1 r3 | 422 | mtsrr1 r3 |
diff --git a/arch/powerpc/kvm/e500.c b/arch/powerpc/kvm/e500.c index e8a00b0c4449..71750f2dd5d3 100644 --- a/arch/powerpc/kvm/e500.c +++ b/arch/powerpc/kvm/e500.c | |||
@@ -117,8 +117,14 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) | |||
117 | if (err) | 117 | if (err) |
118 | goto uninit_vcpu; | 118 | goto uninit_vcpu; |
119 | 119 | ||
120 | vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO); | ||
121 | if (!vcpu->arch.shared) | ||
122 | goto uninit_tlb; | ||
123 | |||
120 | return vcpu; | 124 | return vcpu; |
121 | 125 | ||
126 | uninit_tlb: | ||
127 | kvmppc_e500_tlb_uninit(vcpu_e500); | ||
122 | uninit_vcpu: | 128 | uninit_vcpu: |
123 | kvm_vcpu_uninit(vcpu); | 129 | kvm_vcpu_uninit(vcpu); |
124 | free_vcpu: | 130 | free_vcpu: |
@@ -131,6 +137,7 @@ void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu) | |||
131 | { | 137 | { |
132 | struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); | 138 | struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
133 | 139 | ||
140 | free_page((unsigned long)vcpu->arch.shared); | ||
134 | kvmppc_e500_tlb_uninit(vcpu_e500); | 141 | kvmppc_e500_tlb_uninit(vcpu_e500); |
135 | kvm_vcpu_uninit(vcpu); | 142 | kvm_vcpu_uninit(vcpu); |
136 | kmem_cache_free(kvm_vcpu_cache, vcpu_e500); | 143 | kmem_cache_free(kvm_vcpu_cache, vcpu_e500); |
diff --git a/arch/powerpc/kvm/e500_tlb.c b/arch/powerpc/kvm/e500_tlb.c index 21011e12caeb..d6d6d47a75a9 100644 --- a/arch/powerpc/kvm/e500_tlb.c +++ b/arch/powerpc/kvm/e500_tlb.c | |||
@@ -226,8 +226,7 @@ static void kvmppc_e500_stlbe_invalidate(struct kvmppc_vcpu_e500 *vcpu_e500, | |||
226 | 226 | ||
227 | kvmppc_e500_shadow_release(vcpu_e500, tlbsel, esel); | 227 | kvmppc_e500_shadow_release(vcpu_e500, tlbsel, esel); |
228 | stlbe->mas1 = 0; | 228 | stlbe->mas1 = 0; |
229 | trace_kvm_stlb_inval(index_of(tlbsel, esel), stlbe->mas1, stlbe->mas2, | 229 | trace_kvm_stlb_inval(index_of(tlbsel, esel)); |
230 | stlbe->mas3, stlbe->mas7); | ||
231 | } | 230 | } |
232 | 231 | ||
233 | static void kvmppc_e500_tlb1_invalidate(struct kvmppc_vcpu_e500 *vcpu_e500, | 232 | static void kvmppc_e500_tlb1_invalidate(struct kvmppc_vcpu_e500 *vcpu_e500, |
@@ -298,7 +297,8 @@ static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500, | |||
298 | /* Get reference to new page. */ | 297 | /* Get reference to new page. */ |
299 | new_page = gfn_to_page(vcpu_e500->vcpu.kvm, gfn); | 298 | new_page = gfn_to_page(vcpu_e500->vcpu.kvm, gfn); |
300 | if (is_error_page(new_page)) { | 299 | if (is_error_page(new_page)) { |
301 | printk(KERN_ERR "Couldn't get guest page for gfn %lx!\n", gfn); | 300 | printk(KERN_ERR "Couldn't get guest page for gfn %lx!\n", |
301 | (long)gfn); | ||
302 | kvm_release_page_clean(new_page); | 302 | kvm_release_page_clean(new_page); |
303 | return; | 303 | return; |
304 | } | 304 | } |
@@ -314,10 +314,10 @@ static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500, | |||
314 | | MAS1_TID(get_tlb_tid(gtlbe)) | MAS1_TS | MAS1_VALID; | 314 | | MAS1_TID(get_tlb_tid(gtlbe)) | MAS1_TS | MAS1_VALID; |
315 | stlbe->mas2 = (gvaddr & MAS2_EPN) | 315 | stlbe->mas2 = (gvaddr & MAS2_EPN) |
316 | | e500_shadow_mas2_attrib(gtlbe->mas2, | 316 | | e500_shadow_mas2_attrib(gtlbe->mas2, |
317 | vcpu_e500->vcpu.arch.msr & MSR_PR); | 317 | vcpu_e500->vcpu.arch.shared->msr & MSR_PR); |
318 | stlbe->mas3 = (hpaddr & MAS3_RPN) | 318 | stlbe->mas3 = (hpaddr & MAS3_RPN) |
319 | | e500_shadow_mas3_attrib(gtlbe->mas3, | 319 | | e500_shadow_mas3_attrib(gtlbe->mas3, |
320 | vcpu_e500->vcpu.arch.msr & MSR_PR); | 320 | vcpu_e500->vcpu.arch.shared->msr & MSR_PR); |
321 | stlbe->mas7 = (hpaddr >> 32) & MAS7_RPN; | 321 | stlbe->mas7 = (hpaddr >> 32) & MAS7_RPN; |
322 | 322 | ||
323 | trace_kvm_stlb_write(index_of(tlbsel, esel), stlbe->mas1, stlbe->mas2, | 323 | trace_kvm_stlb_write(index_of(tlbsel, esel), stlbe->mas1, stlbe->mas2, |
@@ -576,28 +576,28 @@ int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu) | |||
576 | 576 | ||
577 | int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr) | 577 | int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr) |
578 | { | 578 | { |
579 | unsigned int as = !!(vcpu->arch.msr & MSR_IS); | 579 | unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS); |
580 | 580 | ||
581 | return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as); | 581 | return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as); |
582 | } | 582 | } |
583 | 583 | ||
584 | int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr) | 584 | int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr) |
585 | { | 585 | { |
586 | unsigned int as = !!(vcpu->arch.msr & MSR_DS); | 586 | unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS); |
587 | 587 | ||
588 | return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as); | 588 | return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as); |
589 | } | 589 | } |
590 | 590 | ||
591 | void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu) | 591 | void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu) |
592 | { | 592 | { |
593 | unsigned int as = !!(vcpu->arch.msr & MSR_IS); | 593 | unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS); |
594 | 594 | ||
595 | kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as); | 595 | kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as); |
596 | } | 596 | } |
597 | 597 | ||
598 | void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu) | 598 | void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu) |
599 | { | 599 | { |
600 | unsigned int as = !!(vcpu->arch.msr & MSR_DS); | 600 | unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS); |
601 | 601 | ||
602 | kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as); | 602 | kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as); |
603 | } | 603 | } |
diff --git a/arch/powerpc/kvm/e500_tlb.h b/arch/powerpc/kvm/e500_tlb.h index d28e3010a5e2..458946b4775d 100644 --- a/arch/powerpc/kvm/e500_tlb.h +++ b/arch/powerpc/kvm/e500_tlb.h | |||
@@ -171,7 +171,7 @@ static inline int tlbe_is_host_safe(const struct kvm_vcpu *vcpu, | |||
171 | 171 | ||
172 | /* Does it match current guest AS? */ | 172 | /* Does it match current guest AS? */ |
173 | /* XXX what about IS != DS? */ | 173 | /* XXX what about IS != DS? */ |
174 | if (get_tlb_ts(tlbe) != !!(vcpu->arch.msr & MSR_IS)) | 174 | if (get_tlb_ts(tlbe) != !!(vcpu->arch.shared->msr & MSR_IS)) |
175 | return 0; | 175 | return 0; |
176 | 176 | ||
177 | gpa = get_tlb_raddr(tlbe); | 177 | gpa = get_tlb_raddr(tlbe); |
diff --git a/arch/powerpc/kvm/emulate.c b/arch/powerpc/kvm/emulate.c index b83ba581fd8e..c64fd2909bb2 100644 --- a/arch/powerpc/kvm/emulate.c +++ b/arch/powerpc/kvm/emulate.c | |||
@@ -242,9 +242,11 @@ int kvmppc_emulate_instruction(struct kvm_run *run, struct kvm_vcpu *vcpu) | |||
242 | 242 | ||
243 | switch (sprn) { | 243 | switch (sprn) { |
244 | case SPRN_SRR0: | 244 | case SPRN_SRR0: |
245 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.srr0); break; | 245 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->srr0); |
246 | break; | ||
246 | case SPRN_SRR1: | 247 | case SPRN_SRR1: |
247 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.srr1); break; | 248 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->srr1); |
249 | break; | ||
248 | case SPRN_PVR: | 250 | case SPRN_PVR: |
249 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.pvr); break; | 251 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.pvr); break; |
250 | case SPRN_PIR: | 252 | case SPRN_PIR: |
@@ -261,13 +263,17 @@ int kvmppc_emulate_instruction(struct kvm_run *run, struct kvm_vcpu *vcpu) | |||
261 | kvmppc_set_gpr(vcpu, rt, get_tb()); break; | 263 | kvmppc_set_gpr(vcpu, rt, get_tb()); break; |
262 | 264 | ||
263 | case SPRN_SPRG0: | 265 | case SPRN_SPRG0: |
264 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.sprg0); break; | 266 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->sprg0); |
267 | break; | ||
265 | case SPRN_SPRG1: | 268 | case SPRN_SPRG1: |
266 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.sprg1); break; | 269 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->sprg1); |
270 | break; | ||
267 | case SPRN_SPRG2: | 271 | case SPRN_SPRG2: |
268 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.sprg2); break; | 272 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->sprg2); |
273 | break; | ||
269 | case SPRN_SPRG3: | 274 | case SPRN_SPRG3: |
270 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.sprg3); break; | 275 | kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->sprg3); |
276 | break; | ||
271 | /* Note: SPRG4-7 are user-readable, so we don't get | 277 | /* Note: SPRG4-7 are user-readable, so we don't get |
272 | * a trap. */ | 278 | * a trap. */ |
273 | 279 | ||
@@ -320,9 +326,11 @@ int kvmppc_emulate_instruction(struct kvm_run *run, struct kvm_vcpu *vcpu) | |||
320 | rs = get_rs(inst); | 326 | rs = get_rs(inst); |
321 | switch (sprn) { | 327 | switch (sprn) { |
322 | case SPRN_SRR0: | 328 | case SPRN_SRR0: |
323 | vcpu->arch.srr0 = kvmppc_get_gpr(vcpu, rs); break; | 329 | vcpu->arch.shared->srr0 = kvmppc_get_gpr(vcpu, rs); |
330 | break; | ||
324 | case SPRN_SRR1: | 331 | case SPRN_SRR1: |
325 | vcpu->arch.srr1 = kvmppc_get_gpr(vcpu, rs); break; | 332 | vcpu->arch.shared->srr1 = kvmppc_get_gpr(vcpu, rs); |
333 | break; | ||
326 | 334 | ||
327 | /* XXX We need to context-switch the timebase for | 335 | /* XXX We need to context-switch the timebase for |
328 | * watchdog and FIT. */ | 336 | * watchdog and FIT. */ |
@@ -337,13 +345,17 @@ int kvmppc_emulate_instruction(struct kvm_run *run, struct kvm_vcpu *vcpu) | |||
337 | break; | 345 | break; |
338 | 346 | ||
339 | case SPRN_SPRG0: | 347 | case SPRN_SPRG0: |
340 | vcpu->arch.sprg0 = kvmppc_get_gpr(vcpu, rs); break; | 348 | vcpu->arch.shared->sprg0 = kvmppc_get_gpr(vcpu, rs); |
349 | break; | ||
341 | case SPRN_SPRG1: | 350 | case SPRN_SPRG1: |
342 | vcpu->arch.sprg1 = kvmppc_get_gpr(vcpu, rs); break; | 351 | vcpu->arch.shared->sprg1 = kvmppc_get_gpr(vcpu, rs); |
352 | break; | ||
343 | case SPRN_SPRG2: | 353 | case SPRN_SPRG2: |
344 | vcpu->arch.sprg2 = kvmppc_get_gpr(vcpu, rs); break; | 354 | vcpu->arch.shared->sprg2 = kvmppc_get_gpr(vcpu, rs); |
355 | break; | ||
345 | case SPRN_SPRG3: | 356 | case SPRN_SPRG3: |
346 | vcpu->arch.sprg3 = kvmppc_get_gpr(vcpu, rs); break; | 357 | vcpu->arch.shared->sprg3 = kvmppc_get_gpr(vcpu, rs); |
358 | break; | ||
347 | 359 | ||
348 | default: | 360 | default: |
349 | emulated = kvmppc_core_emulate_mtspr(vcpu, sprn, rs); | 361 | emulated = kvmppc_core_emulate_mtspr(vcpu, sprn, rs); |
diff --git a/arch/powerpc/kvm/powerpc.c b/arch/powerpc/kvm/powerpc.c index 72a4ad86ee91..2f87a1627f6c 100644 --- a/arch/powerpc/kvm/powerpc.c +++ b/arch/powerpc/kvm/powerpc.c | |||
@@ -38,9 +38,56 @@ | |||
38 | 38 | ||
39 | int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) | 39 | int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) |
40 | { | 40 | { |
41 | return !(v->arch.msr & MSR_WE) || !!(v->arch.pending_exceptions); | 41 | return !(v->arch.shared->msr & MSR_WE) || |
42 | !!(v->arch.pending_exceptions); | ||
42 | } | 43 | } |
43 | 44 | ||
45 | int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) | ||
46 | { | ||
47 | int nr = kvmppc_get_gpr(vcpu, 11); | ||
48 | int r; | ||
49 | unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); | ||
50 | unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); | ||
51 | unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); | ||
52 | unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); | ||
53 | unsigned long r2 = 0; | ||
54 | |||
55 | if (!(vcpu->arch.shared->msr & MSR_SF)) { | ||
56 | /* 32 bit mode */ | ||
57 | param1 &= 0xffffffff; | ||
58 | param2 &= 0xffffffff; | ||
59 | param3 &= 0xffffffff; | ||
60 | param4 &= 0xffffffff; | ||
61 | } | ||
62 | |||
63 | switch (nr) { | ||
64 | case HC_VENDOR_KVM | KVM_HC_PPC_MAP_MAGIC_PAGE: | ||
65 | { | ||
66 | vcpu->arch.magic_page_pa = param1; | ||
67 | vcpu->arch.magic_page_ea = param2; | ||
68 | |||
69 | r2 = KVM_MAGIC_FEAT_SR; | ||
70 | |||
71 | r = HC_EV_SUCCESS; | ||
72 | break; | ||
73 | } | ||
74 | case HC_VENDOR_KVM | KVM_HC_FEATURES: | ||
75 | r = HC_EV_SUCCESS; | ||
76 | #if defined(CONFIG_PPC_BOOK3S) /* XXX Missing magic page on BookE */ | ||
77 | r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); | ||
78 | #endif | ||
79 | |||
80 | /* Second return value is in r4 */ | ||
81 | break; | ||
82 | default: | ||
83 | r = HC_EV_UNIMPLEMENTED; | ||
84 | break; | ||
85 | } | ||
86 | |||
87 | kvmppc_set_gpr(vcpu, 4, r2); | ||
88 | |||
89 | return r; | ||
90 | } | ||
44 | 91 | ||
45 | int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu) | 92 | int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu) |
46 | { | 93 | { |
@@ -145,8 +192,10 @@ int kvm_dev_ioctl_check_extension(long ext) | |||
145 | case KVM_CAP_PPC_SEGSTATE: | 192 | case KVM_CAP_PPC_SEGSTATE: |
146 | case KVM_CAP_PPC_PAIRED_SINGLES: | 193 | case KVM_CAP_PPC_PAIRED_SINGLES: |
147 | case KVM_CAP_PPC_UNSET_IRQ: | 194 | case KVM_CAP_PPC_UNSET_IRQ: |
195 | case KVM_CAP_PPC_IRQ_LEVEL: | ||
148 | case KVM_CAP_ENABLE_CAP: | 196 | case KVM_CAP_ENABLE_CAP: |
149 | case KVM_CAP_PPC_OSI: | 197 | case KVM_CAP_PPC_OSI: |
198 | case KVM_CAP_PPC_GET_PVINFO: | ||
150 | r = 1; | 199 | r = 1; |
151 | break; | 200 | break; |
152 | case KVM_CAP_COALESCED_MMIO: | 201 | case KVM_CAP_COALESCED_MMIO: |
@@ -534,16 +583,53 @@ out: | |||
534 | return r; | 583 | return r; |
535 | } | 584 | } |
536 | 585 | ||
586 | static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) | ||
587 | { | ||
588 | u32 inst_lis = 0x3c000000; | ||
589 | u32 inst_ori = 0x60000000; | ||
590 | u32 inst_nop = 0x60000000; | ||
591 | u32 inst_sc = 0x44000002; | ||
592 | u32 inst_imm_mask = 0xffff; | ||
593 | |||
594 | /* | ||
595 | * The hypercall to get into KVM from within guest context is as | ||
596 | * follows: | ||
597 | * | ||
598 | * lis r0, r0, KVM_SC_MAGIC_R0@h | ||
599 | * ori r0, KVM_SC_MAGIC_R0@l | ||
600 | * sc | ||
601 | * nop | ||
602 | */ | ||
603 | pvinfo->hcall[0] = inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask); | ||
604 | pvinfo->hcall[1] = inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask); | ||
605 | pvinfo->hcall[2] = inst_sc; | ||
606 | pvinfo->hcall[3] = inst_nop; | ||
607 | |||
608 | return 0; | ||
609 | } | ||
610 | |||
537 | long kvm_arch_vm_ioctl(struct file *filp, | 611 | long kvm_arch_vm_ioctl(struct file *filp, |
538 | unsigned int ioctl, unsigned long arg) | 612 | unsigned int ioctl, unsigned long arg) |
539 | { | 613 | { |
614 | void __user *argp = (void __user *)arg; | ||
540 | long r; | 615 | long r; |
541 | 616 | ||
542 | switch (ioctl) { | 617 | switch (ioctl) { |
618 | case KVM_PPC_GET_PVINFO: { | ||
619 | struct kvm_ppc_pvinfo pvinfo; | ||
620 | r = kvm_vm_ioctl_get_pvinfo(&pvinfo); | ||
621 | if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { | ||
622 | r = -EFAULT; | ||
623 | goto out; | ||
624 | } | ||
625 | |||
626 | break; | ||
627 | } | ||
543 | default: | 628 | default: |
544 | r = -ENOTTY; | 629 | r = -ENOTTY; |
545 | } | 630 | } |
546 | 631 | ||
632 | out: | ||
547 | return r; | 633 | return r; |
548 | } | 634 | } |
549 | 635 | ||
diff --git a/arch/powerpc/kvm/trace.h b/arch/powerpc/kvm/trace.h index a8e840018052..3aca1b042b8c 100644 --- a/arch/powerpc/kvm/trace.h +++ b/arch/powerpc/kvm/trace.h | |||
@@ -98,6 +98,245 @@ TRACE_EVENT(kvm_gtlb_write, | |||
98 | __entry->word1, __entry->word2) | 98 | __entry->word1, __entry->word2) |
99 | ); | 99 | ); |
100 | 100 | ||
101 | |||
102 | /************************************************************************* | ||
103 | * Book3S trace points * | ||
104 | *************************************************************************/ | ||
105 | |||
106 | #ifdef CONFIG_PPC_BOOK3S | ||
107 | |||
108 | TRACE_EVENT(kvm_book3s_exit, | ||
109 | TP_PROTO(unsigned int exit_nr, struct kvm_vcpu *vcpu), | ||
110 | TP_ARGS(exit_nr, vcpu), | ||
111 | |||
112 | TP_STRUCT__entry( | ||
113 | __field( unsigned int, exit_nr ) | ||
114 | __field( unsigned long, pc ) | ||
115 | __field( unsigned long, msr ) | ||
116 | __field( unsigned long, dar ) | ||
117 | __field( unsigned long, srr1 ) | ||
118 | ), | ||
119 | |||
120 | TP_fast_assign( | ||
121 | __entry->exit_nr = exit_nr; | ||
122 | __entry->pc = kvmppc_get_pc(vcpu); | ||
123 | __entry->dar = kvmppc_get_fault_dar(vcpu); | ||
124 | __entry->msr = vcpu->arch.shared->msr; | ||
125 | __entry->srr1 = to_svcpu(vcpu)->shadow_srr1; | ||
126 | ), | ||
127 | |||
128 | TP_printk("exit=0x%x | pc=0x%lx | msr=0x%lx | dar=0x%lx | srr1=0x%lx", | ||
129 | __entry->exit_nr, __entry->pc, __entry->msr, __entry->dar, | ||
130 | __entry->srr1) | ||
131 | ); | ||
132 | |||
133 | TRACE_EVENT(kvm_book3s_reenter, | ||
134 | TP_PROTO(int r, struct kvm_vcpu *vcpu), | ||
135 | TP_ARGS(r, vcpu), | ||
136 | |||
137 | TP_STRUCT__entry( | ||
138 | __field( unsigned int, r ) | ||
139 | __field( unsigned long, pc ) | ||
140 | ), | ||
141 | |||
142 | TP_fast_assign( | ||
143 | __entry->r = r; | ||
144 | __entry->pc = kvmppc_get_pc(vcpu); | ||
145 | ), | ||
146 | |||
147 | TP_printk("reentry r=%d | pc=0x%lx", __entry->r, __entry->pc) | ||
148 | ); | ||
149 | |||
150 | #ifdef CONFIG_PPC_BOOK3S_64 | ||
151 | |||
152 | TRACE_EVENT(kvm_book3s_64_mmu_map, | ||
153 | TP_PROTO(int rflags, ulong hpteg, ulong va, pfn_t hpaddr, | ||
154 | struct kvmppc_pte *orig_pte), | ||
155 | TP_ARGS(rflags, hpteg, va, hpaddr, orig_pte), | ||
156 | |||
157 | TP_STRUCT__entry( | ||
158 | __field( unsigned char, flag_w ) | ||
159 | __field( unsigned char, flag_x ) | ||
160 | __field( unsigned long, eaddr ) | ||
161 | __field( unsigned long, hpteg ) | ||
162 | __field( unsigned long, va ) | ||
163 | __field( unsigned long long, vpage ) | ||
164 | __field( unsigned long, hpaddr ) | ||
165 | ), | ||
166 | |||
167 | TP_fast_assign( | ||
168 | __entry->flag_w = ((rflags & HPTE_R_PP) == 3) ? '-' : 'w'; | ||
169 | __entry->flag_x = (rflags & HPTE_R_N) ? '-' : 'x'; | ||
170 | __entry->eaddr = orig_pte->eaddr; | ||
171 | __entry->hpteg = hpteg; | ||
172 | __entry->va = va; | ||
173 | __entry->vpage = orig_pte->vpage; | ||
174 | __entry->hpaddr = hpaddr; | ||
175 | ), | ||
176 | |||
177 | TP_printk("KVM: %c%c Map 0x%lx: [%lx] 0x%lx (0x%llx) -> %lx", | ||
178 | __entry->flag_w, __entry->flag_x, __entry->eaddr, | ||
179 | __entry->hpteg, __entry->va, __entry->vpage, __entry->hpaddr) | ||
180 | ); | ||
181 | |||
182 | #endif /* CONFIG_PPC_BOOK3S_64 */ | ||
183 | |||
184 | TRACE_EVENT(kvm_book3s_mmu_map, | ||
185 | TP_PROTO(struct hpte_cache *pte), | ||
186 | TP_ARGS(pte), | ||
187 | |||
188 | TP_STRUCT__entry( | ||
189 | __field( u64, host_va ) | ||
190 | __field( u64, pfn ) | ||
191 | __field( ulong, eaddr ) | ||
192 | __field( u64, vpage ) | ||
193 | __field( ulong, raddr ) | ||
194 | __field( int, flags ) | ||
195 | ), | ||
196 | |||
197 | TP_fast_assign( | ||
198 | __entry->host_va = pte->host_va; | ||
199 | __entry->pfn = pte->pfn; | ||
200 | __entry->eaddr = pte->pte.eaddr; | ||
201 | __entry->vpage = pte->pte.vpage; | ||
202 | __entry->raddr = pte->pte.raddr; | ||
203 | __entry->flags = (pte->pte.may_read ? 0x4 : 0) | | ||
204 | (pte->pte.may_write ? 0x2 : 0) | | ||
205 | (pte->pte.may_execute ? 0x1 : 0); | ||
206 | ), | ||
207 | |||
208 | TP_printk("Map: hva=%llx pfn=%llx ea=%lx vp=%llx ra=%lx [%x]", | ||
209 | __entry->host_va, __entry->pfn, __entry->eaddr, | ||
210 | __entry->vpage, __entry->raddr, __entry->flags) | ||
211 | ); | ||
212 | |||
213 | TRACE_EVENT(kvm_book3s_mmu_invalidate, | ||
214 | TP_PROTO(struct hpte_cache *pte), | ||
215 | TP_ARGS(pte), | ||
216 | |||
217 | TP_STRUCT__entry( | ||
218 | __field( u64, host_va ) | ||
219 | __field( u64, pfn ) | ||
220 | __field( ulong, eaddr ) | ||
221 | __field( u64, vpage ) | ||
222 | __field( ulong, raddr ) | ||
223 | __field( int, flags ) | ||
224 | ), | ||
225 | |||
226 | TP_fast_assign( | ||
227 | __entry->host_va = pte->host_va; | ||
228 | __entry->pfn = pte->pfn; | ||
229 | __entry->eaddr = pte->pte.eaddr; | ||
230 | __entry->vpage = pte->pte.vpage; | ||
231 | __entry->raddr = pte->pte.raddr; | ||
232 | __entry->flags = (pte->pte.may_read ? 0x4 : 0) | | ||
233 | (pte->pte.may_write ? 0x2 : 0) | | ||
234 | (pte->pte.may_execute ? 0x1 : 0); | ||
235 | ), | ||
236 | |||
237 | TP_printk("Flush: hva=%llx pfn=%llx ea=%lx vp=%llx ra=%lx [%x]", | ||
238 | __entry->host_va, __entry->pfn, __entry->eaddr, | ||
239 | __entry->vpage, __entry->raddr, __entry->flags) | ||
240 | ); | ||
241 | |||
242 | TRACE_EVENT(kvm_book3s_mmu_flush, | ||
243 | TP_PROTO(const char *type, struct kvm_vcpu *vcpu, unsigned long long p1, | ||
244 | unsigned long long p2), | ||
245 | TP_ARGS(type, vcpu, p1, p2), | ||
246 | |||
247 | TP_STRUCT__entry( | ||
248 | __field( int, count ) | ||
249 | __field( unsigned long long, p1 ) | ||
250 | __field( unsigned long long, p2 ) | ||
251 | __field( const char *, type ) | ||
252 | ), | ||
253 | |||
254 | TP_fast_assign( | ||
255 | __entry->count = vcpu->arch.hpte_cache_count; | ||
256 | __entry->p1 = p1; | ||
257 | __entry->p2 = p2; | ||
258 | __entry->type = type; | ||
259 | ), | ||
260 | |||
261 | TP_printk("Flush %d %sPTEs: %llx - %llx", | ||
262 | __entry->count, __entry->type, __entry->p1, __entry->p2) | ||
263 | ); | ||
264 | |||
265 | TRACE_EVENT(kvm_book3s_slb_found, | ||
266 | TP_PROTO(unsigned long long gvsid, unsigned long long hvsid), | ||
267 | TP_ARGS(gvsid, hvsid), | ||
268 | |||
269 | TP_STRUCT__entry( | ||
270 | __field( unsigned long long, gvsid ) | ||
271 | __field( unsigned long long, hvsid ) | ||
272 | ), | ||
273 | |||
274 | TP_fast_assign( | ||
275 | __entry->gvsid = gvsid; | ||
276 | __entry->hvsid = hvsid; | ||
277 | ), | ||
278 | |||
279 | TP_printk("%llx -> %llx", __entry->gvsid, __entry->hvsid) | ||
280 | ); | ||
281 | |||
282 | TRACE_EVENT(kvm_book3s_slb_fail, | ||
283 | TP_PROTO(u16 sid_map_mask, unsigned long long gvsid), | ||
284 | TP_ARGS(sid_map_mask, gvsid), | ||
285 | |||
286 | TP_STRUCT__entry( | ||
287 | __field( unsigned short, sid_map_mask ) | ||
288 | __field( unsigned long long, gvsid ) | ||
289 | ), | ||
290 | |||
291 | TP_fast_assign( | ||
292 | __entry->sid_map_mask = sid_map_mask; | ||
293 | __entry->gvsid = gvsid; | ||
294 | ), | ||
295 | |||
296 | TP_printk("%x/%x: %llx", __entry->sid_map_mask, | ||
297 | SID_MAP_MASK - __entry->sid_map_mask, __entry->gvsid) | ||
298 | ); | ||
299 | |||
300 | TRACE_EVENT(kvm_book3s_slb_map, | ||
301 | TP_PROTO(u16 sid_map_mask, unsigned long long gvsid, | ||
302 | unsigned long long hvsid), | ||
303 | TP_ARGS(sid_map_mask, gvsid, hvsid), | ||
304 | |||
305 | TP_STRUCT__entry( | ||
306 | __field( unsigned short, sid_map_mask ) | ||
307 | __field( unsigned long long, guest_vsid ) | ||
308 | __field( unsigned long long, host_vsid ) | ||
309 | ), | ||
310 | |||
311 | TP_fast_assign( | ||
312 | __entry->sid_map_mask = sid_map_mask; | ||
313 | __entry->guest_vsid = gvsid; | ||
314 | __entry->host_vsid = hvsid; | ||
315 | ), | ||
316 | |||
317 | TP_printk("%x: %llx -> %llx", __entry->sid_map_mask, | ||
318 | __entry->guest_vsid, __entry->host_vsid) | ||
319 | ); | ||
320 | |||
321 | TRACE_EVENT(kvm_book3s_slbmte, | ||
322 | TP_PROTO(u64 slb_vsid, u64 slb_esid), | ||
323 | TP_ARGS(slb_vsid, slb_esid), | ||
324 | |||
325 | TP_STRUCT__entry( | ||
326 | __field( u64, slb_vsid ) | ||
327 | __field( u64, slb_esid ) | ||
328 | ), | ||
329 | |||
330 | TP_fast_assign( | ||
331 | __entry->slb_vsid = slb_vsid; | ||
332 | __entry->slb_esid = slb_esid; | ||
333 | ), | ||
334 | |||
335 | TP_printk("%llx, %llx", __entry->slb_vsid, __entry->slb_esid) | ||
336 | ); | ||
337 | |||
338 | #endif /* CONFIG_PPC_BOOK3S */ | ||
339 | |||
101 | #endif /* _TRACE_KVM_H */ | 340 | #endif /* _TRACE_KVM_H */ |
102 | 341 | ||
103 | /* This part must be outside protection */ | 342 | /* This part must be outside protection */ |
diff --git a/arch/powerpc/platforms/Kconfig b/arch/powerpc/platforms/Kconfig index 81c9208025fa..956154f32cfe 100644 --- a/arch/powerpc/platforms/Kconfig +++ b/arch/powerpc/platforms/Kconfig | |||
@@ -21,6 +21,16 @@ source "arch/powerpc/platforms/44x/Kconfig" | |||
21 | source "arch/powerpc/platforms/40x/Kconfig" | 21 | source "arch/powerpc/platforms/40x/Kconfig" |
22 | source "arch/powerpc/platforms/amigaone/Kconfig" | 22 | source "arch/powerpc/platforms/amigaone/Kconfig" |
23 | 23 | ||
24 | config KVM_GUEST | ||
25 | bool "KVM Guest support" | ||
26 | default y | ||
27 | ---help--- | ||
28 | This option enables various optimizations for running under the KVM | ||
29 | hypervisor. Overhead for the kernel when not running inside KVM should | ||
30 | be minimal. | ||
31 | |||
32 | In case of doubt, say Y | ||
33 | |||
24 | config PPC_NATIVE | 34 | config PPC_NATIVE |
25 | bool | 35 | bool |
26 | depends on 6xx || PPC64 | 36 | depends on 6xx || PPC64 |
diff --git a/arch/s390/include/asm/Kbuild b/arch/s390/include/asm/Kbuild index 42e512ba8b43..287d7bbb6d36 100644 --- a/arch/s390/include/asm/Kbuild +++ b/arch/s390/include/asm/Kbuild | |||
@@ -5,6 +5,7 @@ header-y += chsc.h | |||
5 | header-y += cmb.h | 5 | header-y += cmb.h |
6 | header-y += dasd.h | 6 | header-y += dasd.h |
7 | header-y += debug.h | 7 | header-y += debug.h |
8 | header-y += kvm_virtio.h | ||
8 | header-y += monwriter.h | 9 | header-y += monwriter.h |
9 | header-y += qeth.h | 10 | header-y += qeth.h |
10 | header-y += schid.h | 11 | header-y += schid.h |
diff --git a/arch/s390/include/asm/kvm_virtio.h b/arch/s390/include/asm/kvm_virtio.h index acdfdff26611..72f614181eff 100644 --- a/arch/s390/include/asm/kvm_virtio.h +++ b/arch/s390/include/asm/kvm_virtio.h | |||
@@ -54,4 +54,11 @@ struct kvm_vqconfig { | |||
54 | * This is pagesize for historical reasons. */ | 54 | * This is pagesize for historical reasons. */ |
55 | #define KVM_S390_VIRTIO_RING_ALIGN 4096 | 55 | #define KVM_S390_VIRTIO_RING_ALIGN 4096 |
56 | 56 | ||
57 | |||
58 | /* These values are supposed to be in ext_params on an interrupt */ | ||
59 | #define VIRTIO_PARAM_MASK 0xff | ||
60 | #define VIRTIO_PARAM_VRING_INTERRUPT 0x0 | ||
61 | #define VIRTIO_PARAM_CONFIG_CHANGED 0x1 | ||
62 | #define VIRTIO_PARAM_DEV_ADD 0x2 | ||
63 | |||
57 | #endif | 64 | #endif |
diff --git a/arch/x86/include/asm/kvm_emulate.h b/arch/x86/include/asm/kvm_emulate.h index 1f99ecfc48e1..b36c6b3fe144 100644 --- a/arch/x86/include/asm/kvm_emulate.h +++ b/arch/x86/include/asm/kvm_emulate.h | |||
@@ -139,6 +139,7 @@ struct x86_emulate_ops { | |||
139 | void (*set_segment_selector)(u16 sel, int seg, struct kvm_vcpu *vcpu); | 139 | void (*set_segment_selector)(u16 sel, int seg, struct kvm_vcpu *vcpu); |
140 | unsigned long (*get_cached_segment_base)(int seg, struct kvm_vcpu *vcpu); | 140 | unsigned long (*get_cached_segment_base)(int seg, struct kvm_vcpu *vcpu); |
141 | void (*get_gdt)(struct desc_ptr *dt, struct kvm_vcpu *vcpu); | 141 | void (*get_gdt)(struct desc_ptr *dt, struct kvm_vcpu *vcpu); |
142 | void (*get_idt)(struct desc_ptr *dt, struct kvm_vcpu *vcpu); | ||
142 | ulong (*get_cr)(int cr, struct kvm_vcpu *vcpu); | 143 | ulong (*get_cr)(int cr, struct kvm_vcpu *vcpu); |
143 | int (*set_cr)(int cr, ulong val, struct kvm_vcpu *vcpu); | 144 | int (*set_cr)(int cr, ulong val, struct kvm_vcpu *vcpu); |
144 | int (*cpl)(struct kvm_vcpu *vcpu); | 145 | int (*cpl)(struct kvm_vcpu *vcpu); |
@@ -156,7 +157,10 @@ struct operand { | |||
156 | unsigned long orig_val; | 157 | unsigned long orig_val; |
157 | u64 orig_val64; | 158 | u64 orig_val64; |
158 | }; | 159 | }; |
159 | unsigned long *ptr; | 160 | union { |
161 | unsigned long *reg; | ||
162 | unsigned long mem; | ||
163 | } addr; | ||
160 | union { | 164 | union { |
161 | unsigned long val; | 165 | unsigned long val; |
162 | u64 val64; | 166 | u64 val64; |
@@ -190,6 +194,7 @@ struct decode_cache { | |||
190 | bool has_seg_override; | 194 | bool has_seg_override; |
191 | u8 seg_override; | 195 | u8 seg_override; |
192 | unsigned int d; | 196 | unsigned int d; |
197 | int (*execute)(struct x86_emulate_ctxt *ctxt); | ||
193 | unsigned long regs[NR_VCPU_REGS]; | 198 | unsigned long regs[NR_VCPU_REGS]; |
194 | unsigned long eip; | 199 | unsigned long eip; |
195 | /* modrm */ | 200 | /* modrm */ |
@@ -197,17 +202,16 @@ struct decode_cache { | |||
197 | u8 modrm_mod; | 202 | u8 modrm_mod; |
198 | u8 modrm_reg; | 203 | u8 modrm_reg; |
199 | u8 modrm_rm; | 204 | u8 modrm_rm; |
200 | u8 use_modrm_ea; | 205 | u8 modrm_seg; |
201 | bool rip_relative; | 206 | bool rip_relative; |
202 | unsigned long modrm_ea; | ||
203 | void *modrm_ptr; | ||
204 | unsigned long modrm_val; | ||
205 | struct fetch_cache fetch; | 207 | struct fetch_cache fetch; |
206 | struct read_cache io_read; | 208 | struct read_cache io_read; |
207 | struct read_cache mem_read; | 209 | struct read_cache mem_read; |
208 | }; | 210 | }; |
209 | 211 | ||
210 | struct x86_emulate_ctxt { | 212 | struct x86_emulate_ctxt { |
213 | struct x86_emulate_ops *ops; | ||
214 | |||
211 | /* Register state before/after emulation. */ | 215 | /* Register state before/after emulation. */ |
212 | struct kvm_vcpu *vcpu; | 216 | struct kvm_vcpu *vcpu; |
213 | 217 | ||
@@ -220,12 +224,11 @@ struct x86_emulate_ctxt { | |||
220 | /* interruptibility state, as a result of execution of STI or MOV SS */ | 224 | /* interruptibility state, as a result of execution of STI or MOV SS */ |
221 | int interruptibility; | 225 | int interruptibility; |
222 | 226 | ||
223 | bool restart; /* restart string instruction after writeback */ | 227 | bool perm_ok; /* do not check permissions if true */ |
224 | 228 | ||
225 | int exception; /* exception that happens during emulation or -1 */ | 229 | int exception; /* exception that happens during emulation or -1 */ |
226 | u32 error_code; /* error code for exception */ | 230 | u32 error_code; /* error code for exception */ |
227 | bool error_code_valid; | 231 | bool error_code_valid; |
228 | unsigned long cr2; /* faulted address in case of #PF */ | ||
229 | 232 | ||
230 | /* decode cache */ | 233 | /* decode cache */ |
231 | struct decode_cache decode; | 234 | struct decode_cache decode; |
@@ -249,13 +252,14 @@ struct x86_emulate_ctxt { | |||
249 | #define X86EMUL_MODE_HOST X86EMUL_MODE_PROT64 | 252 | #define X86EMUL_MODE_HOST X86EMUL_MODE_PROT64 |
250 | #endif | 253 | #endif |
251 | 254 | ||
252 | int x86_decode_insn(struct x86_emulate_ctxt *ctxt, | 255 | int x86_decode_insn(struct x86_emulate_ctxt *ctxt); |
253 | struct x86_emulate_ops *ops); | 256 | #define EMULATION_FAILED -1 |
254 | int x86_emulate_insn(struct x86_emulate_ctxt *ctxt, | 257 | #define EMULATION_OK 0 |
255 | struct x86_emulate_ops *ops); | 258 | #define EMULATION_RESTART 1 |
259 | int x86_emulate_insn(struct x86_emulate_ctxt *ctxt); | ||
256 | int emulator_task_switch(struct x86_emulate_ctxt *ctxt, | 260 | int emulator_task_switch(struct x86_emulate_ctxt *ctxt, |
257 | struct x86_emulate_ops *ops, | ||
258 | u16 tss_selector, int reason, | 261 | u16 tss_selector, int reason, |
259 | bool has_error_code, u32 error_code); | 262 | bool has_error_code, u32 error_code); |
260 | 263 | int emulate_int_real(struct x86_emulate_ctxt *ctxt, | |
264 | struct x86_emulate_ops *ops, int irq); | ||
261 | #endif /* _ASM_X86_KVM_X86_EMULATE_H */ | 265 | #endif /* _ASM_X86_KVM_X86_EMULATE_H */ |
diff --git a/arch/x86/include/asm/kvm_host.h b/arch/x86/include/asm/kvm_host.h index c52e2eb40a1e..9e6fe391094e 100644 --- a/arch/x86/include/asm/kvm_host.h +++ b/arch/x86/include/asm/kvm_host.h | |||
@@ -236,10 +236,14 @@ struct kvm_pio_request { | |||
236 | */ | 236 | */ |
237 | struct kvm_mmu { | 237 | struct kvm_mmu { |
238 | void (*new_cr3)(struct kvm_vcpu *vcpu); | 238 | void (*new_cr3)(struct kvm_vcpu *vcpu); |
239 | void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long root); | ||
240 | unsigned long (*get_cr3)(struct kvm_vcpu *vcpu); | ||
239 | int (*page_fault)(struct kvm_vcpu *vcpu, gva_t gva, u32 err); | 241 | int (*page_fault)(struct kvm_vcpu *vcpu, gva_t gva, u32 err); |
242 | void (*inject_page_fault)(struct kvm_vcpu *vcpu); | ||
240 | void (*free)(struct kvm_vcpu *vcpu); | 243 | void (*free)(struct kvm_vcpu *vcpu); |
241 | gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t gva, u32 access, | 244 | gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t gva, u32 access, |
242 | u32 *error); | 245 | u32 *error); |
246 | gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access); | ||
243 | void (*prefetch_page)(struct kvm_vcpu *vcpu, | 247 | void (*prefetch_page)(struct kvm_vcpu *vcpu, |
244 | struct kvm_mmu_page *page); | 248 | struct kvm_mmu_page *page); |
245 | int (*sync_page)(struct kvm_vcpu *vcpu, | 249 | int (*sync_page)(struct kvm_vcpu *vcpu, |
@@ -249,13 +253,18 @@ struct kvm_mmu { | |||
249 | int root_level; | 253 | int root_level; |
250 | int shadow_root_level; | 254 | int shadow_root_level; |
251 | union kvm_mmu_page_role base_role; | 255 | union kvm_mmu_page_role base_role; |
256 | bool direct_map; | ||
252 | 257 | ||
253 | u64 *pae_root; | 258 | u64 *pae_root; |
259 | u64 *lm_root; | ||
254 | u64 rsvd_bits_mask[2][4]; | 260 | u64 rsvd_bits_mask[2][4]; |
261 | |||
262 | bool nx; | ||
263 | |||
264 | u64 pdptrs[4]; /* pae */ | ||
255 | }; | 265 | }; |
256 | 266 | ||
257 | struct kvm_vcpu_arch { | 267 | struct kvm_vcpu_arch { |
258 | u64 host_tsc; | ||
259 | /* | 268 | /* |
260 | * rip and regs accesses must go through | 269 | * rip and regs accesses must go through |
261 | * kvm_{register,rip}_{read,write} functions. | 270 | * kvm_{register,rip}_{read,write} functions. |
@@ -272,7 +281,6 @@ struct kvm_vcpu_arch { | |||
272 | unsigned long cr4_guest_owned_bits; | 281 | unsigned long cr4_guest_owned_bits; |
273 | unsigned long cr8; | 282 | unsigned long cr8; |
274 | u32 hflags; | 283 | u32 hflags; |
275 | u64 pdptrs[4]; /* pae */ | ||
276 | u64 efer; | 284 | u64 efer; |
277 | u64 apic_base; | 285 | u64 apic_base; |
278 | struct kvm_lapic *apic; /* kernel irqchip context */ | 286 | struct kvm_lapic *apic; /* kernel irqchip context */ |
@@ -282,7 +290,41 @@ struct kvm_vcpu_arch { | |||
282 | u64 ia32_misc_enable_msr; | 290 | u64 ia32_misc_enable_msr; |
283 | bool tpr_access_reporting; | 291 | bool tpr_access_reporting; |
284 | 292 | ||
293 | /* | ||
294 | * Paging state of the vcpu | ||
295 | * | ||
296 | * If the vcpu runs in guest mode with two level paging this still saves | ||
297 | * the paging mode of the l1 guest. This context is always used to | ||
298 | * handle faults. | ||
299 | */ | ||
285 | struct kvm_mmu mmu; | 300 | struct kvm_mmu mmu; |
301 | |||
302 | /* | ||
303 | * Paging state of an L2 guest (used for nested npt) | ||
304 | * | ||
305 | * This context will save all necessary information to walk page tables | ||
306 | * of the an L2 guest. This context is only initialized for page table | ||
307 | * walking and not for faulting since we never handle l2 page faults on | ||
308 | * the host. | ||
309 | */ | ||
310 | struct kvm_mmu nested_mmu; | ||
311 | |||
312 | /* | ||
313 | * Pointer to the mmu context currently used for | ||
314 | * gva_to_gpa translations. | ||
315 | */ | ||
316 | struct kvm_mmu *walk_mmu; | ||
317 | |||
318 | /* | ||
319 | * This struct is filled with the necessary information to propagate a | ||
320 | * page fault into the guest | ||
321 | */ | ||
322 | struct { | ||
323 | u64 address; | ||
324 | unsigned error_code; | ||
325 | bool nested; | ||
326 | } fault; | ||
327 | |||
286 | /* only needed in kvm_pv_mmu_op() path, but it's hot so | 328 | /* only needed in kvm_pv_mmu_op() path, but it's hot so |
287 | * put it here to avoid allocation */ | 329 | * put it here to avoid allocation */ |
288 | struct kvm_pv_mmu_op_buffer mmu_op_buffer; | 330 | struct kvm_pv_mmu_op_buffer mmu_op_buffer; |
@@ -336,9 +378,15 @@ struct kvm_vcpu_arch { | |||
336 | 378 | ||
337 | gpa_t time; | 379 | gpa_t time; |
338 | struct pvclock_vcpu_time_info hv_clock; | 380 | struct pvclock_vcpu_time_info hv_clock; |
339 | unsigned int hv_clock_tsc_khz; | 381 | unsigned int hw_tsc_khz; |
340 | unsigned int time_offset; | 382 | unsigned int time_offset; |
341 | struct page *time_page; | 383 | struct page *time_page; |
384 | u64 last_host_tsc; | ||
385 | u64 last_guest_tsc; | ||
386 | u64 last_kernel_ns; | ||
387 | u64 last_tsc_nsec; | ||
388 | u64 last_tsc_write; | ||
389 | bool tsc_catchup; | ||
342 | 390 | ||
343 | bool nmi_pending; | 391 | bool nmi_pending; |
344 | bool nmi_injected; | 392 | bool nmi_injected; |
@@ -367,9 +415,9 @@ struct kvm_vcpu_arch { | |||
367 | }; | 415 | }; |
368 | 416 | ||
369 | struct kvm_arch { | 417 | struct kvm_arch { |
370 | unsigned int n_free_mmu_pages; | 418 | unsigned int n_used_mmu_pages; |
371 | unsigned int n_requested_mmu_pages; | 419 | unsigned int n_requested_mmu_pages; |
372 | unsigned int n_alloc_mmu_pages; | 420 | unsigned int n_max_mmu_pages; |
373 | atomic_t invlpg_counter; | 421 | atomic_t invlpg_counter; |
374 | struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; | 422 | struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; |
375 | /* | 423 | /* |
@@ -394,8 +442,14 @@ struct kvm_arch { | |||
394 | gpa_t ept_identity_map_addr; | 442 | gpa_t ept_identity_map_addr; |
395 | 443 | ||
396 | unsigned long irq_sources_bitmap; | 444 | unsigned long irq_sources_bitmap; |
397 | u64 vm_init_tsc; | ||
398 | s64 kvmclock_offset; | 445 | s64 kvmclock_offset; |
446 | spinlock_t tsc_write_lock; | ||
447 | u64 last_tsc_nsec; | ||
448 | u64 last_tsc_offset; | ||
449 | u64 last_tsc_write; | ||
450 | u32 virtual_tsc_khz; | ||
451 | u32 virtual_tsc_mult; | ||
452 | s8 virtual_tsc_shift; | ||
399 | 453 | ||
400 | struct kvm_xen_hvm_config xen_hvm_config; | 454 | struct kvm_xen_hvm_config xen_hvm_config; |
401 | 455 | ||
@@ -505,6 +559,7 @@ struct kvm_x86_ops { | |||
505 | void (*queue_exception)(struct kvm_vcpu *vcpu, unsigned nr, | 559 | void (*queue_exception)(struct kvm_vcpu *vcpu, unsigned nr, |
506 | bool has_error_code, u32 error_code, | 560 | bool has_error_code, u32 error_code, |
507 | bool reinject); | 561 | bool reinject); |
562 | void (*cancel_injection)(struct kvm_vcpu *vcpu); | ||
508 | int (*interrupt_allowed)(struct kvm_vcpu *vcpu); | 563 | int (*interrupt_allowed)(struct kvm_vcpu *vcpu); |
509 | int (*nmi_allowed)(struct kvm_vcpu *vcpu); | 564 | int (*nmi_allowed)(struct kvm_vcpu *vcpu); |
510 | bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); | 565 | bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); |
@@ -517,11 +572,16 @@ struct kvm_x86_ops { | |||
517 | u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); | 572 | u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); |
518 | int (*get_lpage_level)(void); | 573 | int (*get_lpage_level)(void); |
519 | bool (*rdtscp_supported)(void); | 574 | bool (*rdtscp_supported)(void); |
575 | void (*adjust_tsc_offset)(struct kvm_vcpu *vcpu, s64 adjustment); | ||
576 | |||
577 | void (*set_tdp_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); | ||
520 | 578 | ||
521 | void (*set_supported_cpuid)(u32 func, struct kvm_cpuid_entry2 *entry); | 579 | void (*set_supported_cpuid)(u32 func, struct kvm_cpuid_entry2 *entry); |
522 | 580 | ||
523 | bool (*has_wbinvd_exit)(void); | 581 | bool (*has_wbinvd_exit)(void); |
524 | 582 | ||
583 | void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset); | ||
584 | |||
525 | const struct trace_print_flags *exit_reasons_str; | 585 | const struct trace_print_flags *exit_reasons_str; |
526 | }; | 586 | }; |
527 | 587 | ||
@@ -544,7 +604,7 @@ void kvm_mmu_zap_all(struct kvm *kvm); | |||
544 | unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm); | 604 | unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm); |
545 | void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages); | 605 | void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages); |
546 | 606 | ||
547 | int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); | 607 | int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3); |
548 | 608 | ||
549 | int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, | 609 | int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, |
550 | const void *val, int bytes); | 610 | const void *val, int bytes); |
@@ -608,8 +668,11 @@ void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); | |||
608 | void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); | 668 | void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); |
609 | void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); | 669 | void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); |
610 | void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); | 670 | void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); |
611 | void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long cr2, | 671 | void kvm_inject_page_fault(struct kvm_vcpu *vcpu); |
612 | u32 error_code); | 672 | int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, |
673 | gfn_t gfn, void *data, int offset, int len, | ||
674 | u32 access); | ||
675 | void kvm_propagate_fault(struct kvm_vcpu *vcpu); | ||
613 | bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); | 676 | bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); |
614 | 677 | ||
615 | int kvm_pic_set_irq(void *opaque, int irq, int level); | 678 | int kvm_pic_set_irq(void *opaque, int irq, int level); |
diff --git a/arch/x86/include/asm/kvm_para.h b/arch/x86/include/asm/kvm_para.h index 05eba5e9a8e8..7b562b6184bc 100644 --- a/arch/x86/include/asm/kvm_para.h +++ b/arch/x86/include/asm/kvm_para.h | |||
@@ -158,6 +158,12 @@ static inline unsigned int kvm_arch_para_features(void) | |||
158 | return cpuid_eax(KVM_CPUID_FEATURES); | 158 | return cpuid_eax(KVM_CPUID_FEATURES); |
159 | } | 159 | } |
160 | 160 | ||
161 | #ifdef CONFIG_KVM_GUEST | ||
162 | void __init kvm_guest_init(void); | ||
163 | #else | ||
164 | #define kvm_guest_init() do { } while (0) | ||
161 | #endif | 165 | #endif |
162 | 166 | ||
167 | #endif /* __KERNEL__ */ | ||
168 | |||
163 | #endif /* _ASM_X86_KVM_PARA_H */ | 169 | #endif /* _ASM_X86_KVM_PARA_H */ |
diff --git a/arch/x86/include/asm/msr-index.h b/arch/x86/include/asm/msr-index.h index 986f7790fdb2..83c4bb1d917d 100644 --- a/arch/x86/include/asm/msr-index.h +++ b/arch/x86/include/asm/msr-index.h | |||
@@ -198,6 +198,7 @@ | |||
198 | #define MSR_IA32_TSC 0x00000010 | 198 | #define MSR_IA32_TSC 0x00000010 |
199 | #define MSR_IA32_PLATFORM_ID 0x00000017 | 199 | #define MSR_IA32_PLATFORM_ID 0x00000017 |
200 | #define MSR_IA32_EBL_CR_POWERON 0x0000002a | 200 | #define MSR_IA32_EBL_CR_POWERON 0x0000002a |
201 | #define MSR_EBC_FREQUENCY_ID 0x0000002c | ||
201 | #define MSR_IA32_FEATURE_CONTROL 0x0000003a | 202 | #define MSR_IA32_FEATURE_CONTROL 0x0000003a |
202 | 203 | ||
203 | #define FEATURE_CONTROL_LOCKED (1<<0) | 204 | #define FEATURE_CONTROL_LOCKED (1<<0) |
diff --git a/arch/x86/include/asm/pvclock.h b/arch/x86/include/asm/pvclock.h index cd02f324aa6b..7f7e577a0e39 100644 --- a/arch/x86/include/asm/pvclock.h +++ b/arch/x86/include/asm/pvclock.h | |||
@@ -12,4 +12,42 @@ void pvclock_read_wallclock(struct pvclock_wall_clock *wall, | |||
12 | struct pvclock_vcpu_time_info *vcpu, | 12 | struct pvclock_vcpu_time_info *vcpu, |
13 | struct timespec *ts); | 13 | struct timespec *ts); |
14 | 14 | ||
15 | /* | ||
16 | * Scale a 64-bit delta by scaling and multiplying by a 32-bit fraction, | ||
17 | * yielding a 64-bit result. | ||
18 | */ | ||
19 | static inline u64 pvclock_scale_delta(u64 delta, u32 mul_frac, int shift) | ||
20 | { | ||
21 | u64 product; | ||
22 | #ifdef __i386__ | ||
23 | u32 tmp1, tmp2; | ||
24 | #endif | ||
25 | |||
26 | if (shift < 0) | ||
27 | delta >>= -shift; | ||
28 | else | ||
29 | delta <<= shift; | ||
30 | |||
31 | #ifdef __i386__ | ||
32 | __asm__ ( | ||
33 | "mul %5 ; " | ||
34 | "mov %4,%%eax ; " | ||
35 | "mov %%edx,%4 ; " | ||
36 | "mul %5 ; " | ||
37 | "xor %5,%5 ; " | ||
38 | "add %4,%%eax ; " | ||
39 | "adc %5,%%edx ; " | ||
40 | : "=A" (product), "=r" (tmp1), "=r" (tmp2) | ||
41 | : "a" ((u32)delta), "1" ((u32)(delta >> 32)), "2" (mul_frac) ); | ||
42 | #elif defined(__x86_64__) | ||
43 | __asm__ ( | ||
44 | "mul %%rdx ; shrd $32,%%rdx,%%rax" | ||
45 | : "=a" (product) : "0" (delta), "d" ((u64)mul_frac) ); | ||
46 | #else | ||
47 | #error implement me! | ||
48 | #endif | ||
49 | |||
50 | return product; | ||
51 | } | ||
52 | |||
15 | #endif /* _ASM_X86_PVCLOCK_H */ | 53 | #endif /* _ASM_X86_PVCLOCK_H */ |
diff --git a/arch/x86/kernel/kvmclock.c b/arch/x86/kernel/kvmclock.c index eb9b76c716c2..ca43ce31a19c 100644 --- a/arch/x86/kernel/kvmclock.c +++ b/arch/x86/kernel/kvmclock.c | |||
@@ -128,13 +128,15 @@ static struct clocksource kvm_clock = { | |||
128 | static int kvm_register_clock(char *txt) | 128 | static int kvm_register_clock(char *txt) |
129 | { | 129 | { |
130 | int cpu = smp_processor_id(); | 130 | int cpu = smp_processor_id(); |
131 | int low, high; | 131 | int low, high, ret; |
132 | |||
132 | low = (int)__pa(&per_cpu(hv_clock, cpu)) | 1; | 133 | low = (int)__pa(&per_cpu(hv_clock, cpu)) | 1; |
133 | high = ((u64)__pa(&per_cpu(hv_clock, cpu)) >> 32); | 134 | high = ((u64)__pa(&per_cpu(hv_clock, cpu)) >> 32); |
135 | ret = native_write_msr_safe(msr_kvm_system_time, low, high); | ||
134 | printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n", | 136 | printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n", |
135 | cpu, high, low, txt); | 137 | cpu, high, low, txt); |
136 | 138 | ||
137 | return native_write_msr_safe(msr_kvm_system_time, low, high); | 139 | return ret; |
138 | } | 140 | } |
139 | 141 | ||
140 | #ifdef CONFIG_X86_LOCAL_APIC | 142 | #ifdef CONFIG_X86_LOCAL_APIC |
diff --git a/arch/x86/kernel/pvclock.c b/arch/x86/kernel/pvclock.c index 239427ca02af..bab3b9e6f66d 100644 --- a/arch/x86/kernel/pvclock.c +++ b/arch/x86/kernel/pvclock.c | |||
@@ -82,7 +82,8 @@ static inline u64 scale_delta(u64 delta, u32 mul_frac, int shift) | |||
82 | static u64 pvclock_get_nsec_offset(struct pvclock_shadow_time *shadow) | 82 | static u64 pvclock_get_nsec_offset(struct pvclock_shadow_time *shadow) |
83 | { | 83 | { |
84 | u64 delta = native_read_tsc() - shadow->tsc_timestamp; | 84 | u64 delta = native_read_tsc() - shadow->tsc_timestamp; |
85 | return scale_delta(delta, shadow->tsc_to_nsec_mul, shadow->tsc_shift); | 85 | return pvclock_scale_delta(delta, shadow->tsc_to_nsec_mul, |
86 | shadow->tsc_shift); | ||
86 | } | 87 | } |
87 | 88 | ||
88 | /* | 89 | /* |
diff --git a/arch/x86/kvm/Kconfig b/arch/x86/kvm/Kconfig index 970bbd479516..ddc131ff438f 100644 --- a/arch/x86/kvm/Kconfig +++ b/arch/x86/kvm/Kconfig | |||
@@ -64,6 +64,13 @@ config KVM_AMD | |||
64 | To compile this as a module, choose M here: the module | 64 | To compile this as a module, choose M here: the module |
65 | will be called kvm-amd. | 65 | will be called kvm-amd. |
66 | 66 | ||
67 | config KVM_MMU_AUDIT | ||
68 | bool "Audit KVM MMU" | ||
69 | depends on KVM && TRACEPOINTS | ||
70 | ---help--- | ||
71 | This option adds a R/W kVM module parameter 'mmu_audit', which allows | ||
72 | audit KVM MMU at runtime. | ||
73 | |||
67 | # OK, it's a little counter-intuitive to do this, but it puts it neatly under | 74 | # OK, it's a little counter-intuitive to do this, but it puts it neatly under |
68 | # the virtualization menu. | 75 | # the virtualization menu. |
69 | source drivers/vhost/Kconfig | 76 | source drivers/vhost/Kconfig |
diff --git a/arch/x86/kvm/emulate.c b/arch/x86/kvm/emulate.c index 66ca98aafdd6..38b6e8dafaff 100644 --- a/arch/x86/kvm/emulate.c +++ b/arch/x86/kvm/emulate.c | |||
@@ -9,7 +9,7 @@ | |||
9 | * privileged instructions: | 9 | * privileged instructions: |
10 | * | 10 | * |
11 | * Copyright (C) 2006 Qumranet | 11 | * Copyright (C) 2006 Qumranet |
12 | * Copyright 2010 Red Hat, Inc. and/or its affilates. | 12 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
13 | * | 13 | * |
14 | * Avi Kivity <avi@qumranet.com> | 14 | * Avi Kivity <avi@qumranet.com> |
15 | * Yaniv Kamay <yaniv@qumranet.com> | 15 | * Yaniv Kamay <yaniv@qumranet.com> |
@@ -51,13 +51,13 @@ | |||
51 | #define ImplicitOps (1<<1) /* Implicit in opcode. No generic decode. */ | 51 | #define ImplicitOps (1<<1) /* Implicit in opcode. No generic decode. */ |
52 | #define DstReg (2<<1) /* Register operand. */ | 52 | #define DstReg (2<<1) /* Register operand. */ |
53 | #define DstMem (3<<1) /* Memory operand. */ | 53 | #define DstMem (3<<1) /* Memory operand. */ |
54 | #define DstAcc (4<<1) /* Destination Accumulator */ | 54 | #define DstAcc (4<<1) /* Destination Accumulator */ |
55 | #define DstDI (5<<1) /* Destination is in ES:(E)DI */ | 55 | #define DstDI (5<<1) /* Destination is in ES:(E)DI */ |
56 | #define DstMem64 (6<<1) /* 64bit memory operand */ | 56 | #define DstMem64 (6<<1) /* 64bit memory operand */ |
57 | #define DstImmUByte (7<<1) /* 8-bit unsigned immediate operand */ | ||
57 | #define DstMask (7<<1) | 58 | #define DstMask (7<<1) |
58 | /* Source operand type. */ | 59 | /* Source operand type. */ |
59 | #define SrcNone (0<<4) /* No source operand. */ | 60 | #define SrcNone (0<<4) /* No source operand. */ |
60 | #define SrcImplicit (0<<4) /* Source operand is implicit in the opcode. */ | ||
61 | #define SrcReg (1<<4) /* Register operand. */ | 61 | #define SrcReg (1<<4) /* Register operand. */ |
62 | #define SrcMem (2<<4) /* Memory operand. */ | 62 | #define SrcMem (2<<4) /* Memory operand. */ |
63 | #define SrcMem16 (3<<4) /* Memory operand (16-bit). */ | 63 | #define SrcMem16 (3<<4) /* Memory operand (16-bit). */ |
@@ -71,6 +71,7 @@ | |||
71 | #define SrcImmFAddr (0xb<<4) /* Source is immediate far address */ | 71 | #define SrcImmFAddr (0xb<<4) /* Source is immediate far address */ |
72 | #define SrcMemFAddr (0xc<<4) /* Source is far address in memory */ | 72 | #define SrcMemFAddr (0xc<<4) /* Source is far address in memory */ |
73 | #define SrcAcc (0xd<<4) /* Source Accumulator */ | 73 | #define SrcAcc (0xd<<4) /* Source Accumulator */ |
74 | #define SrcImmU16 (0xe<<4) /* Immediate operand, unsigned, 16 bits */ | ||
74 | #define SrcMask (0xf<<4) | 75 | #define SrcMask (0xf<<4) |
75 | /* Generic ModRM decode. */ | 76 | /* Generic ModRM decode. */ |
76 | #define ModRM (1<<8) | 77 | #define ModRM (1<<8) |
@@ -82,8 +83,10 @@ | |||
82 | #define Stack (1<<13) /* Stack instruction (push/pop) */ | 83 | #define Stack (1<<13) /* Stack instruction (push/pop) */ |
83 | #define Group (1<<14) /* Bits 3:5 of modrm byte extend opcode */ | 84 | #define Group (1<<14) /* Bits 3:5 of modrm byte extend opcode */ |
84 | #define GroupDual (1<<15) /* Alternate decoding of mod == 3 */ | 85 | #define GroupDual (1<<15) /* Alternate decoding of mod == 3 */ |
85 | #define GroupMask 0xff /* Group number stored in bits 0:7 */ | ||
86 | /* Misc flags */ | 86 | /* Misc flags */ |
87 | #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */ | ||
88 | #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */ | ||
89 | #define Undefined (1<<25) /* No Such Instruction */ | ||
87 | #define Lock (1<<26) /* lock prefix is allowed for the instruction */ | 90 | #define Lock (1<<26) /* lock prefix is allowed for the instruction */ |
88 | #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */ | 91 | #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */ |
89 | #define No64 (1<<28) | 92 | #define No64 (1<<28) |
@@ -92,285 +95,30 @@ | |||
92 | #define Src2CL (1<<29) | 95 | #define Src2CL (1<<29) |
93 | #define Src2ImmByte (2<<29) | 96 | #define Src2ImmByte (2<<29) |
94 | #define Src2One (3<<29) | 97 | #define Src2One (3<<29) |
98 | #define Src2Imm (4<<29) | ||
95 | #define Src2Mask (7<<29) | 99 | #define Src2Mask (7<<29) |
96 | 100 | ||
97 | enum { | 101 | #define X2(x...) x, x |
98 | Group1_80, Group1_81, Group1_82, Group1_83, | 102 | #define X3(x...) X2(x), x |
99 | Group1A, Group3_Byte, Group3, Group4, Group5, Group7, | 103 | #define X4(x...) X2(x), X2(x) |
100 | Group8, Group9, | 104 | #define X5(x...) X4(x), x |
105 | #define X6(x...) X4(x), X2(x) | ||
106 | #define X7(x...) X4(x), X3(x) | ||
107 | #define X8(x...) X4(x), X4(x) | ||
108 | #define X16(x...) X8(x), X8(x) | ||
109 | |||
110 | struct opcode { | ||
111 | u32 flags; | ||
112 | union { | ||
113 | int (*execute)(struct x86_emulate_ctxt *ctxt); | ||
114 | struct opcode *group; | ||
115 | struct group_dual *gdual; | ||
116 | } u; | ||
101 | }; | 117 | }; |
102 | 118 | ||
103 | static u32 opcode_table[256] = { | 119 | struct group_dual { |
104 | /* 0x00 - 0x07 */ | 120 | struct opcode mod012[8]; |
105 | ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock, | 121 | struct opcode mod3[8]; |
106 | ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM, | ||
107 | ByteOp | DstAcc | SrcImm, DstAcc | SrcImm, | ||
108 | ImplicitOps | Stack | No64, ImplicitOps | Stack | No64, | ||
109 | /* 0x08 - 0x0F */ | ||
110 | ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock, | ||
111 | ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM, | ||
112 | ByteOp | DstAcc | SrcImm, DstAcc | SrcImm, | ||
113 | ImplicitOps | Stack | No64, 0, | ||
114 | /* 0x10 - 0x17 */ | ||
115 | ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock, | ||
116 | ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM, | ||
117 | ByteOp | DstAcc | SrcImm, DstAcc | SrcImm, | ||
118 | ImplicitOps | Stack | No64, ImplicitOps | Stack | No64, | ||
119 | /* 0x18 - 0x1F */ | ||
120 | ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock, | ||
121 | ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM, | ||
122 | ByteOp | DstAcc | SrcImm, DstAcc | SrcImm, | ||
123 | ImplicitOps | Stack | No64, ImplicitOps | Stack | No64, | ||
124 | /* 0x20 - 0x27 */ | ||
125 | ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock, | ||
126 | ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM, | ||
127 | ByteOp | DstAcc | SrcImmByte, DstAcc | SrcImm, 0, 0, | ||
128 | /* 0x28 - 0x2F */ | ||
129 | ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock, | ||
130 | ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM, | ||
131 | ByteOp | DstAcc | SrcImmByte, DstAcc | SrcImm, 0, 0, | ||
132 | /* 0x30 - 0x37 */ | ||
133 | ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock, | ||
134 | ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM, | ||
135 | ByteOp | DstAcc | SrcImmByte, DstAcc | SrcImm, 0, 0, | ||
136 | /* 0x38 - 0x3F */ | ||
137 | ByteOp | DstMem | SrcReg | ModRM, DstMem | SrcReg | ModRM, | ||
138 | ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM, | ||
139 | ByteOp | DstAcc | SrcImm, DstAcc | SrcImm, | ||
140 | 0, 0, | ||
141 | /* 0x40 - 0x47 */ | ||
142 | DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, | ||
143 | /* 0x48 - 0x4F */ | ||
144 | DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, | ||
145 | /* 0x50 - 0x57 */ | ||
146 | SrcReg | Stack, SrcReg | Stack, SrcReg | Stack, SrcReg | Stack, | ||
147 | SrcReg | Stack, SrcReg | Stack, SrcReg | Stack, SrcReg | Stack, | ||
148 | /* 0x58 - 0x5F */ | ||
149 | DstReg | Stack, DstReg | Stack, DstReg | Stack, DstReg | Stack, | ||
150 | DstReg | Stack, DstReg | Stack, DstReg | Stack, DstReg | Stack, | ||
151 | /* 0x60 - 0x67 */ | ||
152 | ImplicitOps | Stack | No64, ImplicitOps | Stack | No64, | ||
153 | 0, DstReg | SrcMem32 | ModRM | Mov /* movsxd (x86/64) */ , | ||
154 | 0, 0, 0, 0, | ||
155 | /* 0x68 - 0x6F */ | ||
156 | SrcImm | Mov | Stack, 0, SrcImmByte | Mov | Stack, 0, | ||
157 | DstDI | ByteOp | Mov | String, DstDI | Mov | String, /* insb, insw/insd */ | ||
158 | SrcSI | ByteOp | ImplicitOps | String, SrcSI | ImplicitOps | String, /* outsb, outsw/outsd */ | ||
159 | /* 0x70 - 0x77 */ | ||
160 | SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte, | ||
161 | SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte, | ||
162 | /* 0x78 - 0x7F */ | ||
163 | SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte, | ||
164 | SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte, | ||
165 | /* 0x80 - 0x87 */ | ||
166 | Group | Group1_80, Group | Group1_81, | ||
167 | Group | Group1_82, Group | Group1_83, | ||
168 | ByteOp | DstMem | SrcReg | ModRM, DstMem | SrcReg | ModRM, | ||
169 | ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock, | ||
170 | /* 0x88 - 0x8F */ | ||
171 | ByteOp | DstMem | SrcReg | ModRM | Mov, DstMem | SrcReg | ModRM | Mov, | ||
172 | ByteOp | DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, | ||
173 | DstMem | SrcNone | ModRM | Mov, ModRM | DstReg, | ||
174 | ImplicitOps | SrcMem16 | ModRM, Group | Group1A, | ||
175 | /* 0x90 - 0x97 */ | ||
176 | DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, | ||
177 | /* 0x98 - 0x9F */ | ||
178 | 0, 0, SrcImmFAddr | No64, 0, | ||
179 | ImplicitOps | Stack, ImplicitOps | Stack, 0, 0, | ||
180 | /* 0xA0 - 0xA7 */ | ||
181 | ByteOp | DstAcc | SrcMem | Mov | MemAbs, DstAcc | SrcMem | Mov | MemAbs, | ||
182 | ByteOp | DstMem | SrcAcc | Mov | MemAbs, DstMem | SrcAcc | Mov | MemAbs, | ||
183 | ByteOp | SrcSI | DstDI | Mov | String, SrcSI | DstDI | Mov | String, | ||
184 | ByteOp | SrcSI | DstDI | String, SrcSI | DstDI | String, | ||
185 | /* 0xA8 - 0xAF */ | ||
186 | DstAcc | SrcImmByte | ByteOp, DstAcc | SrcImm, ByteOp | DstDI | Mov | String, DstDI | Mov | String, | ||
187 | ByteOp | SrcSI | DstAcc | Mov | String, SrcSI | DstAcc | Mov | String, | ||
188 | ByteOp | DstDI | String, DstDI | String, | ||
189 | /* 0xB0 - 0xB7 */ | ||
190 | ByteOp | DstReg | SrcImm | Mov, ByteOp | DstReg | SrcImm | Mov, | ||
191 | ByteOp | DstReg | SrcImm | Mov, ByteOp | DstReg | SrcImm | Mov, | ||
192 | ByteOp | DstReg | SrcImm | Mov, ByteOp | DstReg | SrcImm | Mov, | ||
193 | ByteOp | DstReg | SrcImm | Mov, ByteOp | DstReg | SrcImm | Mov, | ||
194 | /* 0xB8 - 0xBF */ | ||
195 | DstReg | SrcImm | Mov, DstReg | SrcImm | Mov, | ||
196 | DstReg | SrcImm | Mov, DstReg | SrcImm | Mov, | ||
197 | DstReg | SrcImm | Mov, DstReg | SrcImm | Mov, | ||
198 | DstReg | SrcImm | Mov, DstReg | SrcImm | Mov, | ||
199 | /* 0xC0 - 0xC7 */ | ||
200 | ByteOp | DstMem | SrcImm | ModRM, DstMem | SrcImmByte | ModRM, | ||
201 | 0, ImplicitOps | Stack, 0, 0, | ||
202 | ByteOp | DstMem | SrcImm | ModRM | Mov, DstMem | SrcImm | ModRM | Mov, | ||
203 | /* 0xC8 - 0xCF */ | ||
204 | 0, 0, 0, ImplicitOps | Stack, | ||
205 | ImplicitOps, SrcImmByte, ImplicitOps | No64, ImplicitOps, | ||
206 | /* 0xD0 - 0xD7 */ | ||
207 | ByteOp | DstMem | SrcImplicit | ModRM, DstMem | SrcImplicit | ModRM, | ||
208 | ByteOp | DstMem | SrcImplicit | ModRM, DstMem | SrcImplicit | ModRM, | ||
209 | 0, 0, 0, 0, | ||
210 | /* 0xD8 - 0xDF */ | ||
211 | 0, 0, 0, 0, 0, 0, 0, 0, | ||
212 | /* 0xE0 - 0xE7 */ | ||
213 | 0, 0, 0, 0, | ||
214 | ByteOp | SrcImmUByte | DstAcc, SrcImmUByte | DstAcc, | ||
215 | ByteOp | SrcImmUByte | DstAcc, SrcImmUByte | DstAcc, | ||
216 | /* 0xE8 - 0xEF */ | ||
217 | SrcImm | Stack, SrcImm | ImplicitOps, | ||
218 | SrcImmFAddr | No64, SrcImmByte | ImplicitOps, | ||
219 | SrcNone | ByteOp | DstAcc, SrcNone | DstAcc, | ||
220 | SrcNone | ByteOp | DstAcc, SrcNone | DstAcc, | ||
221 | /* 0xF0 - 0xF7 */ | ||
222 | 0, 0, 0, 0, | ||
223 | ImplicitOps | Priv, ImplicitOps, Group | Group3_Byte, Group | Group3, | ||
224 | /* 0xF8 - 0xFF */ | ||
225 | ImplicitOps, 0, ImplicitOps, ImplicitOps, | ||
226 | ImplicitOps, ImplicitOps, Group | Group4, Group | Group5, | ||
227 | }; | ||
228 | |||
229 | static u32 twobyte_table[256] = { | ||
230 | /* 0x00 - 0x0F */ | ||
231 | 0, Group | GroupDual | Group7, 0, 0, | ||
232 | 0, ImplicitOps, ImplicitOps | Priv, 0, | ||
233 | ImplicitOps | Priv, ImplicitOps | Priv, 0, 0, | ||
234 | 0, ImplicitOps | ModRM, 0, 0, | ||
235 | /* 0x10 - 0x1F */ | ||
236 | 0, 0, 0, 0, 0, 0, 0, 0, ImplicitOps | ModRM, 0, 0, 0, 0, 0, 0, 0, | ||
237 | /* 0x20 - 0x2F */ | ||
238 | ModRM | ImplicitOps | Priv, ModRM | Priv, | ||
239 | ModRM | ImplicitOps | Priv, ModRM | Priv, | ||
240 | 0, 0, 0, 0, | ||
241 | 0, 0, 0, 0, 0, 0, 0, 0, | ||
242 | /* 0x30 - 0x3F */ | ||
243 | ImplicitOps | Priv, 0, ImplicitOps | Priv, 0, | ||
244 | ImplicitOps, ImplicitOps | Priv, 0, 0, | ||
245 | 0, 0, 0, 0, 0, 0, 0, 0, | ||
246 | /* 0x40 - 0x47 */ | ||
247 | DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, | ||
248 | DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, | ||
249 | DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, | ||
250 | DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, | ||
251 | /* 0x48 - 0x4F */ | ||
252 | DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, | ||
253 | DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, | ||
254 | DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, | ||
255 | DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, | ||
256 | /* 0x50 - 0x5F */ | ||
257 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
258 | /* 0x60 - 0x6F */ | ||
259 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
260 | /* 0x70 - 0x7F */ | ||
261 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
262 | /* 0x80 - 0x8F */ | ||
263 | SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, | ||
264 | SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, | ||
265 | /* 0x90 - 0x9F */ | ||
266 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
267 | /* 0xA0 - 0xA7 */ | ||
268 | ImplicitOps | Stack, ImplicitOps | Stack, | ||
269 | 0, DstMem | SrcReg | ModRM | BitOp, | ||
270 | DstMem | SrcReg | Src2ImmByte | ModRM, | ||
271 | DstMem | SrcReg | Src2CL | ModRM, 0, 0, | ||
272 | /* 0xA8 - 0xAF */ | ||
273 | ImplicitOps | Stack, ImplicitOps | Stack, | ||
274 | 0, DstMem | SrcReg | ModRM | BitOp | Lock, | ||
275 | DstMem | SrcReg | Src2ImmByte | ModRM, | ||
276 | DstMem | SrcReg | Src2CL | ModRM, | ||
277 | ModRM, 0, | ||
278 | /* 0xB0 - 0xB7 */ | ||
279 | ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock, | ||
280 | 0, DstMem | SrcReg | ModRM | BitOp | Lock, | ||
281 | 0, 0, ByteOp | DstReg | SrcMem | ModRM | Mov, | ||
282 | DstReg | SrcMem16 | ModRM | Mov, | ||
283 | /* 0xB8 - 0xBF */ | ||
284 | 0, 0, | ||
285 | Group | Group8, DstMem | SrcReg | ModRM | BitOp | Lock, | ||
286 | 0, 0, ByteOp | DstReg | SrcMem | ModRM | Mov, | ||
287 | DstReg | SrcMem16 | ModRM | Mov, | ||
288 | /* 0xC0 - 0xCF */ | ||
289 | 0, 0, 0, DstMem | SrcReg | ModRM | Mov, | ||
290 | 0, 0, 0, Group | GroupDual | Group9, | ||
291 | 0, 0, 0, 0, 0, 0, 0, 0, | ||
292 | /* 0xD0 - 0xDF */ | ||
293 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
294 | /* 0xE0 - 0xEF */ | ||
295 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
296 | /* 0xF0 - 0xFF */ | ||
297 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 | ||
298 | }; | ||
299 | |||
300 | static u32 group_table[] = { | ||
301 | [Group1_80*8] = | ||
302 | ByteOp | DstMem | SrcImm | ModRM | Lock, | ||
303 | ByteOp | DstMem | SrcImm | ModRM | Lock, | ||
304 | ByteOp | DstMem | SrcImm | ModRM | Lock, | ||
305 | ByteOp | DstMem | SrcImm | ModRM | Lock, | ||
306 | ByteOp | DstMem | SrcImm | ModRM | Lock, | ||
307 | ByteOp | DstMem | SrcImm | ModRM | Lock, | ||
308 | ByteOp | DstMem | SrcImm | ModRM | Lock, | ||
309 | ByteOp | DstMem | SrcImm | ModRM, | ||
310 | [Group1_81*8] = | ||
311 | DstMem | SrcImm | ModRM | Lock, | ||
312 | DstMem | SrcImm | ModRM | Lock, | ||
313 | DstMem | SrcImm | ModRM | Lock, | ||
314 | DstMem | SrcImm | ModRM | Lock, | ||
315 | DstMem | SrcImm | ModRM | Lock, | ||
316 | DstMem | SrcImm | ModRM | Lock, | ||
317 | DstMem | SrcImm | ModRM | Lock, | ||
318 | DstMem | SrcImm | ModRM, | ||
319 | [Group1_82*8] = | ||
320 | ByteOp | DstMem | SrcImm | ModRM | No64 | Lock, | ||
321 | ByteOp | DstMem | SrcImm | ModRM | No64 | Lock, | ||
322 | ByteOp | DstMem | SrcImm | ModRM | No64 | Lock, | ||
323 | ByteOp | DstMem | SrcImm | ModRM | No64 | Lock, | ||
324 | ByteOp | DstMem | SrcImm | ModRM | No64 | Lock, | ||
325 | ByteOp | DstMem | SrcImm | ModRM | No64 | Lock, | ||
326 | ByteOp | DstMem | SrcImm | ModRM | No64 | Lock, | ||
327 | ByteOp | DstMem | SrcImm | ModRM | No64, | ||
328 | [Group1_83*8] = | ||
329 | DstMem | SrcImmByte | ModRM | Lock, | ||
330 | DstMem | SrcImmByte | ModRM | Lock, | ||
331 | DstMem | SrcImmByte | ModRM | Lock, | ||
332 | DstMem | SrcImmByte | ModRM | Lock, | ||
333 | DstMem | SrcImmByte | ModRM | Lock, | ||
334 | DstMem | SrcImmByte | ModRM | Lock, | ||
335 | DstMem | SrcImmByte | ModRM | Lock, | ||
336 | DstMem | SrcImmByte | ModRM, | ||
337 | [Group1A*8] = | ||
338 | DstMem | SrcNone | ModRM | Mov | Stack, 0, 0, 0, 0, 0, 0, 0, | ||
339 | [Group3_Byte*8] = | ||
340 | ByteOp | SrcImm | DstMem | ModRM, ByteOp | SrcImm | DstMem | ModRM, | ||
341 | ByteOp | DstMem | SrcNone | ModRM, ByteOp | DstMem | SrcNone | ModRM, | ||
342 | 0, 0, 0, 0, | ||
343 | [Group3*8] = | ||
344 | DstMem | SrcImm | ModRM, DstMem | SrcImm | ModRM, | ||
345 | DstMem | SrcNone | ModRM, DstMem | SrcNone | ModRM, | ||
346 | 0, 0, 0, 0, | ||
347 | [Group4*8] = | ||
348 | ByteOp | DstMem | SrcNone | ModRM | Lock, ByteOp | DstMem | SrcNone | ModRM | Lock, | ||
349 | 0, 0, 0, 0, 0, 0, | ||
350 | [Group5*8] = | ||
351 | DstMem | SrcNone | ModRM | Lock, DstMem | SrcNone | ModRM | Lock, | ||
352 | SrcMem | ModRM | Stack, 0, | ||
353 | SrcMem | ModRM | Stack, SrcMemFAddr | ModRM | ImplicitOps, | ||
354 | SrcMem | ModRM | Stack, 0, | ||
355 | [Group7*8] = | ||
356 | 0, 0, ModRM | SrcMem | Priv, ModRM | SrcMem | Priv, | ||
357 | SrcNone | ModRM | DstMem | Mov, 0, | ||
358 | SrcMem16 | ModRM | Mov | Priv, SrcMem | ModRM | ByteOp | Priv, | ||
359 | [Group8*8] = | ||
360 | 0, 0, 0, 0, | ||
361 | DstMem | SrcImmByte | ModRM, DstMem | SrcImmByte | ModRM | Lock, | ||
362 | DstMem | SrcImmByte | ModRM | Lock, DstMem | SrcImmByte | ModRM | Lock, | ||
363 | [Group9*8] = | ||
364 | 0, DstMem64 | ModRM | Lock, 0, 0, 0, 0, 0, 0, | ||
365 | }; | ||
366 | |||
367 | static u32 group2_table[] = { | ||
368 | [Group7*8] = | ||
369 | SrcNone | ModRM | Priv, 0, 0, SrcNone | ModRM | Priv, | ||
370 | SrcNone | ModRM | DstMem | Mov, 0, | ||
371 | SrcMem16 | ModRM | Mov | Priv, 0, | ||
372 | [Group9*8] = | ||
373 | 0, 0, 0, 0, 0, 0, 0, 0, | ||
374 | }; | 122 | }; |
375 | 123 | ||
376 | /* EFLAGS bit definitions. */ | 124 | /* EFLAGS bit definitions. */ |
@@ -392,6 +140,9 @@ static u32 group2_table[] = { | |||
392 | #define EFLG_PF (1<<2) | 140 | #define EFLG_PF (1<<2) |
393 | #define EFLG_CF (1<<0) | 141 | #define EFLG_CF (1<<0) |
394 | 142 | ||
143 | #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a | ||
144 | #define EFLG_RESERVED_ONE_MASK 2 | ||
145 | |||
395 | /* | 146 | /* |
396 | * Instruction emulation: | 147 | * Instruction emulation: |
397 | * Most instructions are emulated directly via a fragment of inline assembly | 148 | * Most instructions are emulated directly via a fragment of inline assembly |
@@ -444,13 +195,13 @@ static u32 group2_table[] = { | |||
444 | #define ON64(x) | 195 | #define ON64(x) |
445 | #endif | 196 | #endif |
446 | 197 | ||
447 | #define ____emulate_2op(_op, _src, _dst, _eflags, _x, _y, _suffix) \ | 198 | #define ____emulate_2op(_op, _src, _dst, _eflags, _x, _y, _suffix, _dsttype) \ |
448 | do { \ | 199 | do { \ |
449 | __asm__ __volatile__ ( \ | 200 | __asm__ __volatile__ ( \ |
450 | _PRE_EFLAGS("0", "4", "2") \ | 201 | _PRE_EFLAGS("0", "4", "2") \ |
451 | _op _suffix " %"_x"3,%1; " \ | 202 | _op _suffix " %"_x"3,%1; " \ |
452 | _POST_EFLAGS("0", "4", "2") \ | 203 | _POST_EFLAGS("0", "4", "2") \ |
453 | : "=m" (_eflags), "=m" ((_dst).val), \ | 204 | : "=m" (_eflags), "+q" (*(_dsttype*)&(_dst).val),\ |
454 | "=&r" (_tmp) \ | 205 | "=&r" (_tmp) \ |
455 | : _y ((_src).val), "i" (EFLAGS_MASK)); \ | 206 | : _y ((_src).val), "i" (EFLAGS_MASK)); \ |
456 | } while (0) | 207 | } while (0) |
@@ -463,13 +214,13 @@ static u32 group2_table[] = { | |||
463 | \ | 214 | \ |
464 | switch ((_dst).bytes) { \ | 215 | switch ((_dst).bytes) { \ |
465 | case 2: \ | 216 | case 2: \ |
466 | ____emulate_2op(_op,_src,_dst,_eflags,_wx,_wy,"w"); \ | 217 | ____emulate_2op(_op,_src,_dst,_eflags,_wx,_wy,"w",u16);\ |
467 | break; \ | 218 | break; \ |
468 | case 4: \ | 219 | case 4: \ |
469 | ____emulate_2op(_op,_src,_dst,_eflags,_lx,_ly,"l"); \ | 220 | ____emulate_2op(_op,_src,_dst,_eflags,_lx,_ly,"l",u32);\ |
470 | break; \ | 221 | break; \ |
471 | case 8: \ | 222 | case 8: \ |
472 | ON64(____emulate_2op(_op,_src,_dst,_eflags,_qx,_qy,"q")); \ | 223 | ON64(____emulate_2op(_op,_src,_dst,_eflags,_qx,_qy,"q",u64)); \ |
473 | break; \ | 224 | break; \ |
474 | } \ | 225 | } \ |
475 | } while (0) | 226 | } while (0) |
@@ -479,7 +230,7 @@ static u32 group2_table[] = { | |||
479 | unsigned long _tmp; \ | 230 | unsigned long _tmp; \ |
480 | switch ((_dst).bytes) { \ | 231 | switch ((_dst).bytes) { \ |
481 | case 1: \ | 232 | case 1: \ |
482 | ____emulate_2op(_op,_src,_dst,_eflags,_bx,_by,"b"); \ | 233 | ____emulate_2op(_op,_src,_dst,_eflags,_bx,_by,"b",u8); \ |
483 | break; \ | 234 | break; \ |
484 | default: \ | 235 | default: \ |
485 | __emulate_2op_nobyte(_op, _src, _dst, _eflags, \ | 236 | __emulate_2op_nobyte(_op, _src, _dst, _eflags, \ |
@@ -566,6 +317,74 @@ static u32 group2_table[] = { | |||
566 | } \ | 317 | } \ |
567 | } while (0) | 318 | } while (0) |
568 | 319 | ||
320 | #define __emulate_1op_rax_rdx(_op, _src, _rax, _rdx, _eflags, _suffix) \ | ||
321 | do { \ | ||
322 | unsigned long _tmp; \ | ||
323 | \ | ||
324 | __asm__ __volatile__ ( \ | ||
325 | _PRE_EFLAGS("0", "4", "1") \ | ||
326 | _op _suffix " %5; " \ | ||
327 | _POST_EFLAGS("0", "4", "1") \ | ||
328 | : "=m" (_eflags), "=&r" (_tmp), \ | ||
329 | "+a" (_rax), "+d" (_rdx) \ | ||
330 | : "i" (EFLAGS_MASK), "m" ((_src).val), \ | ||
331 | "a" (_rax), "d" (_rdx)); \ | ||
332 | } while (0) | ||
333 | |||
334 | #define __emulate_1op_rax_rdx_ex(_op, _src, _rax, _rdx, _eflags, _suffix, _ex) \ | ||
335 | do { \ | ||
336 | unsigned long _tmp; \ | ||
337 | \ | ||
338 | __asm__ __volatile__ ( \ | ||
339 | _PRE_EFLAGS("0", "5", "1") \ | ||
340 | "1: \n\t" \ | ||
341 | _op _suffix " %6; " \ | ||
342 | "2: \n\t" \ | ||
343 | _POST_EFLAGS("0", "5", "1") \ | ||
344 | ".pushsection .fixup,\"ax\" \n\t" \ | ||
345 | "3: movb $1, %4 \n\t" \ | ||
346 | "jmp 2b \n\t" \ | ||
347 | ".popsection \n\t" \ | ||
348 | _ASM_EXTABLE(1b, 3b) \ | ||
349 | : "=m" (_eflags), "=&r" (_tmp), \ | ||
350 | "+a" (_rax), "+d" (_rdx), "+qm"(_ex) \ | ||
351 | : "i" (EFLAGS_MASK), "m" ((_src).val), \ | ||
352 | "a" (_rax), "d" (_rdx)); \ | ||
353 | } while (0) | ||
354 | |||
355 | /* instruction has only one source operand, destination is implicit (e.g. mul, div, imul, idiv) */ | ||
356 | #define emulate_1op_rax_rdx(_op, _src, _rax, _rdx, _eflags) \ | ||
357 | do { \ | ||
358 | switch((_src).bytes) { \ | ||
359 | case 1: __emulate_1op_rax_rdx(_op, _src, _rax, _rdx, _eflags, "b"); break; \ | ||
360 | case 2: __emulate_1op_rax_rdx(_op, _src, _rax, _rdx, _eflags, "w"); break; \ | ||
361 | case 4: __emulate_1op_rax_rdx(_op, _src, _rax, _rdx, _eflags, "l"); break; \ | ||
362 | case 8: ON64(__emulate_1op_rax_rdx(_op, _src, _rax, _rdx, _eflags, "q")); break; \ | ||
363 | } \ | ||
364 | } while (0) | ||
365 | |||
366 | #define emulate_1op_rax_rdx_ex(_op, _src, _rax, _rdx, _eflags, _ex) \ | ||
367 | do { \ | ||
368 | switch((_src).bytes) { \ | ||
369 | case 1: \ | ||
370 | __emulate_1op_rax_rdx_ex(_op, _src, _rax, _rdx, \ | ||
371 | _eflags, "b", _ex); \ | ||
372 | break; \ | ||
373 | case 2: \ | ||
374 | __emulate_1op_rax_rdx_ex(_op, _src, _rax, _rdx, \ | ||
375 | _eflags, "w", _ex); \ | ||
376 | break; \ | ||
377 | case 4: \ | ||
378 | __emulate_1op_rax_rdx_ex(_op, _src, _rax, _rdx, \ | ||
379 | _eflags, "l", _ex); \ | ||
380 | break; \ | ||
381 | case 8: ON64( \ | ||
382 | __emulate_1op_rax_rdx_ex(_op, _src, _rax, _rdx, \ | ||
383 | _eflags, "q", _ex)); \ | ||
384 | break; \ | ||
385 | } \ | ||
386 | } while (0) | ||
387 | |||
569 | /* Fetch next part of the instruction being emulated. */ | 388 | /* Fetch next part of the instruction being emulated. */ |
570 | #define insn_fetch(_type, _size, _eip) \ | 389 | #define insn_fetch(_type, _size, _eip) \ |
571 | ({ unsigned long _x; \ | 390 | ({ unsigned long _x; \ |
@@ -661,7 +480,6 @@ static void emulate_exception(struct x86_emulate_ctxt *ctxt, int vec, | |||
661 | ctxt->exception = vec; | 480 | ctxt->exception = vec; |
662 | ctxt->error_code = error; | 481 | ctxt->error_code = error; |
663 | ctxt->error_code_valid = valid; | 482 | ctxt->error_code_valid = valid; |
664 | ctxt->restart = false; | ||
665 | } | 483 | } |
666 | 484 | ||
667 | static void emulate_gp(struct x86_emulate_ctxt *ctxt, int err) | 485 | static void emulate_gp(struct x86_emulate_ctxt *ctxt, int err) |
@@ -669,11 +487,9 @@ static void emulate_gp(struct x86_emulate_ctxt *ctxt, int err) | |||
669 | emulate_exception(ctxt, GP_VECTOR, err, true); | 487 | emulate_exception(ctxt, GP_VECTOR, err, true); |
670 | } | 488 | } |
671 | 489 | ||
672 | static void emulate_pf(struct x86_emulate_ctxt *ctxt, unsigned long addr, | 490 | static void emulate_pf(struct x86_emulate_ctxt *ctxt) |
673 | int err) | ||
674 | { | 491 | { |
675 | ctxt->cr2 = addr; | 492 | emulate_exception(ctxt, PF_VECTOR, 0, true); |
676 | emulate_exception(ctxt, PF_VECTOR, err, true); | ||
677 | } | 493 | } |
678 | 494 | ||
679 | static void emulate_ud(struct x86_emulate_ctxt *ctxt) | 495 | static void emulate_ud(struct x86_emulate_ctxt *ctxt) |
@@ -686,6 +502,12 @@ static void emulate_ts(struct x86_emulate_ctxt *ctxt, int err) | |||
686 | emulate_exception(ctxt, TS_VECTOR, err, true); | 502 | emulate_exception(ctxt, TS_VECTOR, err, true); |
687 | } | 503 | } |
688 | 504 | ||
505 | static int emulate_de(struct x86_emulate_ctxt *ctxt) | ||
506 | { | ||
507 | emulate_exception(ctxt, DE_VECTOR, 0, false); | ||
508 | return X86EMUL_PROPAGATE_FAULT; | ||
509 | } | ||
510 | |||
689 | static int do_fetch_insn_byte(struct x86_emulate_ctxt *ctxt, | 511 | static int do_fetch_insn_byte(struct x86_emulate_ctxt *ctxt, |
690 | struct x86_emulate_ops *ops, | 512 | struct x86_emulate_ops *ops, |
691 | unsigned long eip, u8 *dest) | 513 | unsigned long eip, u8 *dest) |
@@ -742,7 +564,7 @@ static void *decode_register(u8 modrm_reg, unsigned long *regs, | |||
742 | 564 | ||
743 | static int read_descriptor(struct x86_emulate_ctxt *ctxt, | 565 | static int read_descriptor(struct x86_emulate_ctxt *ctxt, |
744 | struct x86_emulate_ops *ops, | 566 | struct x86_emulate_ops *ops, |
745 | void *ptr, | 567 | ulong addr, |
746 | u16 *size, unsigned long *address, int op_bytes) | 568 | u16 *size, unsigned long *address, int op_bytes) |
747 | { | 569 | { |
748 | int rc; | 570 | int rc; |
@@ -750,12 +572,10 @@ static int read_descriptor(struct x86_emulate_ctxt *ctxt, | |||
750 | if (op_bytes == 2) | 572 | if (op_bytes == 2) |
751 | op_bytes = 3; | 573 | op_bytes = 3; |
752 | *address = 0; | 574 | *address = 0; |
753 | rc = ops->read_std((unsigned long)ptr, (unsigned long *)size, 2, | 575 | rc = ops->read_std(addr, (unsigned long *)size, 2, ctxt->vcpu, NULL); |
754 | ctxt->vcpu, NULL); | ||
755 | if (rc != X86EMUL_CONTINUE) | 576 | if (rc != X86EMUL_CONTINUE) |
756 | return rc; | 577 | return rc; |
757 | rc = ops->read_std((unsigned long)ptr + 2, address, op_bytes, | 578 | rc = ops->read_std(addr + 2, address, op_bytes, ctxt->vcpu, NULL); |
758 | ctxt->vcpu, NULL); | ||
759 | return rc; | 579 | return rc; |
760 | } | 580 | } |
761 | 581 | ||
@@ -794,6 +614,24 @@ static int test_cc(unsigned int condition, unsigned int flags) | |||
794 | return (!!rc ^ (condition & 1)); | 614 | return (!!rc ^ (condition & 1)); |
795 | } | 615 | } |
796 | 616 | ||
617 | static void fetch_register_operand(struct operand *op) | ||
618 | { | ||
619 | switch (op->bytes) { | ||
620 | case 1: | ||
621 | op->val = *(u8 *)op->addr.reg; | ||
622 | break; | ||
623 | case 2: | ||
624 | op->val = *(u16 *)op->addr.reg; | ||
625 | break; | ||
626 | case 4: | ||
627 | op->val = *(u32 *)op->addr.reg; | ||
628 | break; | ||
629 | case 8: | ||
630 | op->val = *(u64 *)op->addr.reg; | ||
631 | break; | ||
632 | } | ||
633 | } | ||
634 | |||
797 | static void decode_register_operand(struct operand *op, | 635 | static void decode_register_operand(struct operand *op, |
798 | struct decode_cache *c, | 636 | struct decode_cache *c, |
799 | int inhibit_bytereg) | 637 | int inhibit_bytereg) |
@@ -805,34 +643,25 @@ static void decode_register_operand(struct operand *op, | |||
805 | reg = (c->b & 7) | ((c->rex_prefix & 1) << 3); | 643 | reg = (c->b & 7) | ((c->rex_prefix & 1) << 3); |
806 | op->type = OP_REG; | 644 | op->type = OP_REG; |
807 | if ((c->d & ByteOp) && !inhibit_bytereg) { | 645 | if ((c->d & ByteOp) && !inhibit_bytereg) { |
808 | op->ptr = decode_register(reg, c->regs, highbyte_regs); | 646 | op->addr.reg = decode_register(reg, c->regs, highbyte_regs); |
809 | op->val = *(u8 *)op->ptr; | ||
810 | op->bytes = 1; | 647 | op->bytes = 1; |
811 | } else { | 648 | } else { |
812 | op->ptr = decode_register(reg, c->regs, 0); | 649 | op->addr.reg = decode_register(reg, c->regs, 0); |
813 | op->bytes = c->op_bytes; | 650 | op->bytes = c->op_bytes; |
814 | switch (op->bytes) { | ||
815 | case 2: | ||
816 | op->val = *(u16 *)op->ptr; | ||
817 | break; | ||
818 | case 4: | ||
819 | op->val = *(u32 *)op->ptr; | ||
820 | break; | ||
821 | case 8: | ||
822 | op->val = *(u64 *) op->ptr; | ||
823 | break; | ||
824 | } | ||
825 | } | 651 | } |
652 | fetch_register_operand(op); | ||
826 | op->orig_val = op->val; | 653 | op->orig_val = op->val; |
827 | } | 654 | } |
828 | 655 | ||
829 | static int decode_modrm(struct x86_emulate_ctxt *ctxt, | 656 | static int decode_modrm(struct x86_emulate_ctxt *ctxt, |
830 | struct x86_emulate_ops *ops) | 657 | struct x86_emulate_ops *ops, |
658 | struct operand *op) | ||
831 | { | 659 | { |
832 | struct decode_cache *c = &ctxt->decode; | 660 | struct decode_cache *c = &ctxt->decode; |
833 | u8 sib; | 661 | u8 sib; |
834 | int index_reg = 0, base_reg = 0, scale; | 662 | int index_reg = 0, base_reg = 0, scale; |
835 | int rc = X86EMUL_CONTINUE; | 663 | int rc = X86EMUL_CONTINUE; |
664 | ulong modrm_ea = 0; | ||
836 | 665 | ||
837 | if (c->rex_prefix) { | 666 | if (c->rex_prefix) { |
838 | c->modrm_reg = (c->rex_prefix & 4) << 1; /* REX.R */ | 667 | c->modrm_reg = (c->rex_prefix & 4) << 1; /* REX.R */ |
@@ -844,16 +673,19 @@ static int decode_modrm(struct x86_emulate_ctxt *ctxt, | |||
844 | c->modrm_mod |= (c->modrm & 0xc0) >> 6; | 673 | c->modrm_mod |= (c->modrm & 0xc0) >> 6; |
845 | c->modrm_reg |= (c->modrm & 0x38) >> 3; | 674 | c->modrm_reg |= (c->modrm & 0x38) >> 3; |
846 | c->modrm_rm |= (c->modrm & 0x07); | 675 | c->modrm_rm |= (c->modrm & 0x07); |
847 | c->modrm_ea = 0; | 676 | c->modrm_seg = VCPU_SREG_DS; |
848 | c->use_modrm_ea = 1; | ||
849 | 677 | ||
850 | if (c->modrm_mod == 3) { | 678 | if (c->modrm_mod == 3) { |
851 | c->modrm_ptr = decode_register(c->modrm_rm, | 679 | op->type = OP_REG; |
680 | op->bytes = (c->d & ByteOp) ? 1 : c->op_bytes; | ||
681 | op->addr.reg = decode_register(c->modrm_rm, | ||
852 | c->regs, c->d & ByteOp); | 682 | c->regs, c->d & ByteOp); |
853 | c->modrm_val = *(unsigned long *)c->modrm_ptr; | 683 | fetch_register_operand(op); |
854 | return rc; | 684 | return rc; |
855 | } | 685 | } |
856 | 686 | ||
687 | op->type = OP_MEM; | ||
688 | |||
857 | if (c->ad_bytes == 2) { | 689 | if (c->ad_bytes == 2) { |
858 | unsigned bx = c->regs[VCPU_REGS_RBX]; | 690 | unsigned bx = c->regs[VCPU_REGS_RBX]; |
859 | unsigned bp = c->regs[VCPU_REGS_RBP]; | 691 | unsigned bp = c->regs[VCPU_REGS_RBP]; |
@@ -864,47 +696,46 @@ static int decode_modrm(struct x86_emulate_ctxt *ctxt, | |||
864 | switch (c->modrm_mod) { | 696 | switch (c->modrm_mod) { |
865 | case 0: | 697 | case 0: |
866 | if (c->modrm_rm == 6) | 698 | if (c->modrm_rm == 6) |
867 | c->modrm_ea += insn_fetch(u16, 2, c->eip); | 699 | modrm_ea += insn_fetch(u16, 2, c->eip); |
868 | break; | 700 | break; |
869 | case 1: | 701 | case 1: |
870 | c->modrm_ea += insn_fetch(s8, 1, c->eip); | 702 | modrm_ea += insn_fetch(s8, 1, c->eip); |
871 | break; | 703 | break; |
872 | case 2: | 704 | case 2: |
873 | c->modrm_ea += insn_fetch(u16, 2, c->eip); | 705 | modrm_ea += insn_fetch(u16, 2, c->eip); |
874 | break; | 706 | break; |
875 | } | 707 | } |
876 | switch (c->modrm_rm) { | 708 | switch (c->modrm_rm) { |
877 | case 0: | 709 | case 0: |
878 | c->modrm_ea += bx + si; | 710 | modrm_ea += bx + si; |
879 | break; | 711 | break; |
880 | case 1: | 712 | case 1: |
881 | c->modrm_ea += bx + di; | 713 | modrm_ea += bx + di; |
882 | break; | 714 | break; |
883 | case 2: | 715 | case 2: |
884 | c->modrm_ea += bp + si; | 716 | modrm_ea += bp + si; |
885 | break; | 717 | break; |
886 | case 3: | 718 | case 3: |
887 | c->modrm_ea += bp + di; | 719 | modrm_ea += bp + di; |
888 | break; | 720 | break; |
889 | case 4: | 721 | case 4: |
890 | c->modrm_ea += si; | 722 | modrm_ea += si; |
891 | break; | 723 | break; |
892 | case 5: | 724 | case 5: |
893 | c->modrm_ea += di; | 725 | modrm_ea += di; |
894 | break; | 726 | break; |
895 | case 6: | 727 | case 6: |
896 | if (c->modrm_mod != 0) | 728 | if (c->modrm_mod != 0) |
897 | c->modrm_ea += bp; | 729 | modrm_ea += bp; |
898 | break; | 730 | break; |
899 | case 7: | 731 | case 7: |
900 | c->modrm_ea += bx; | 732 | modrm_ea += bx; |
901 | break; | 733 | break; |
902 | } | 734 | } |
903 | if (c->modrm_rm == 2 || c->modrm_rm == 3 || | 735 | if (c->modrm_rm == 2 || c->modrm_rm == 3 || |
904 | (c->modrm_rm == 6 && c->modrm_mod != 0)) | 736 | (c->modrm_rm == 6 && c->modrm_mod != 0)) |
905 | if (!c->has_seg_override) | 737 | c->modrm_seg = VCPU_SREG_SS; |
906 | set_seg_override(c, VCPU_SREG_SS); | 738 | modrm_ea = (u16)modrm_ea; |
907 | c->modrm_ea = (u16)c->modrm_ea; | ||
908 | } else { | 739 | } else { |
909 | /* 32/64-bit ModR/M decode. */ | 740 | /* 32/64-bit ModR/M decode. */ |
910 | if ((c->modrm_rm & 7) == 4) { | 741 | if ((c->modrm_rm & 7) == 4) { |
@@ -914,410 +745,74 @@ static int decode_modrm(struct x86_emulate_ctxt *ctxt, | |||
914 | scale = sib >> 6; | 745 | scale = sib >> 6; |
915 | 746 | ||
916 | if ((base_reg & 7) == 5 && c->modrm_mod == 0) | 747 | if ((base_reg & 7) == 5 && c->modrm_mod == 0) |
917 | c->modrm_ea += insn_fetch(s32, 4, c->eip); | 748 | modrm_ea += insn_fetch(s32, 4, c->eip); |
918 | else | 749 | else |
919 | c->modrm_ea += c->regs[base_reg]; | 750 | modrm_ea += c->regs[base_reg]; |
920 | if (index_reg != 4) | 751 | if (index_reg != 4) |
921 | c->modrm_ea += c->regs[index_reg] << scale; | 752 | modrm_ea += c->regs[index_reg] << scale; |
922 | } else if ((c->modrm_rm & 7) == 5 && c->modrm_mod == 0) { | 753 | } else if ((c->modrm_rm & 7) == 5 && c->modrm_mod == 0) { |
923 | if (ctxt->mode == X86EMUL_MODE_PROT64) | 754 | if (ctxt->mode == X86EMUL_MODE_PROT64) |
924 | c->rip_relative = 1; | 755 | c->rip_relative = 1; |
925 | } else | 756 | } else |
926 | c->modrm_ea += c->regs[c->modrm_rm]; | 757 | modrm_ea += c->regs[c->modrm_rm]; |
927 | switch (c->modrm_mod) { | 758 | switch (c->modrm_mod) { |
928 | case 0: | 759 | case 0: |
929 | if (c->modrm_rm == 5) | 760 | if (c->modrm_rm == 5) |
930 | c->modrm_ea += insn_fetch(s32, 4, c->eip); | 761 | modrm_ea += insn_fetch(s32, 4, c->eip); |
931 | break; | 762 | break; |
932 | case 1: | 763 | case 1: |
933 | c->modrm_ea += insn_fetch(s8, 1, c->eip); | 764 | modrm_ea += insn_fetch(s8, 1, c->eip); |
934 | break; | 765 | break; |
935 | case 2: | 766 | case 2: |
936 | c->modrm_ea += insn_fetch(s32, 4, c->eip); | 767 | modrm_ea += insn_fetch(s32, 4, c->eip); |
937 | break; | 768 | break; |
938 | } | 769 | } |
939 | } | 770 | } |
771 | op->addr.mem = modrm_ea; | ||
940 | done: | 772 | done: |
941 | return rc; | 773 | return rc; |
942 | } | 774 | } |
943 | 775 | ||
944 | static int decode_abs(struct x86_emulate_ctxt *ctxt, | 776 | static int decode_abs(struct x86_emulate_ctxt *ctxt, |
945 | struct x86_emulate_ops *ops) | 777 | struct x86_emulate_ops *ops, |
778 | struct operand *op) | ||
946 | { | 779 | { |
947 | struct decode_cache *c = &ctxt->decode; | 780 | struct decode_cache *c = &ctxt->decode; |
948 | int rc = X86EMUL_CONTINUE; | 781 | int rc = X86EMUL_CONTINUE; |
949 | 782 | ||
783 | op->type = OP_MEM; | ||
950 | switch (c->ad_bytes) { | 784 | switch (c->ad_bytes) { |
951 | case 2: | 785 | case 2: |
952 | c->modrm_ea = insn_fetch(u16, 2, c->eip); | 786 | op->addr.mem = insn_fetch(u16, 2, c->eip); |
953 | break; | 787 | break; |
954 | case 4: | 788 | case 4: |
955 | c->modrm_ea = insn_fetch(u32, 4, c->eip); | 789 | op->addr.mem = insn_fetch(u32, 4, c->eip); |
956 | break; | 790 | break; |
957 | case 8: | 791 | case 8: |
958 | c->modrm_ea = insn_fetch(u64, 8, c->eip); | 792 | op->addr.mem = insn_fetch(u64, 8, c->eip); |
959 | break; | 793 | break; |
960 | } | 794 | } |
961 | done: | 795 | done: |
962 | return rc; | 796 | return rc; |
963 | } | 797 | } |
964 | 798 | ||
965 | int | 799 | static void fetch_bit_operand(struct decode_cache *c) |
966 | x86_decode_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) | ||
967 | { | 800 | { |
968 | struct decode_cache *c = &ctxt->decode; | 801 | long sv = 0, mask; |
969 | int rc = X86EMUL_CONTINUE; | ||
970 | int mode = ctxt->mode; | ||
971 | int def_op_bytes, def_ad_bytes, group; | ||
972 | |||
973 | |||
974 | /* we cannot decode insn before we complete previous rep insn */ | ||
975 | WARN_ON(ctxt->restart); | ||
976 | |||
977 | c->eip = ctxt->eip; | ||
978 | c->fetch.start = c->fetch.end = c->eip; | ||
979 | ctxt->cs_base = seg_base(ctxt, ops, VCPU_SREG_CS); | ||
980 | |||
981 | switch (mode) { | ||
982 | case X86EMUL_MODE_REAL: | ||
983 | case X86EMUL_MODE_VM86: | ||
984 | case X86EMUL_MODE_PROT16: | ||
985 | def_op_bytes = def_ad_bytes = 2; | ||
986 | break; | ||
987 | case X86EMUL_MODE_PROT32: | ||
988 | def_op_bytes = def_ad_bytes = 4; | ||
989 | break; | ||
990 | #ifdef CONFIG_X86_64 | ||
991 | case X86EMUL_MODE_PROT64: | ||
992 | def_op_bytes = 4; | ||
993 | def_ad_bytes = 8; | ||
994 | break; | ||
995 | #endif | ||
996 | default: | ||
997 | return -1; | ||
998 | } | ||
999 | |||
1000 | c->op_bytes = def_op_bytes; | ||
1001 | c->ad_bytes = def_ad_bytes; | ||
1002 | |||
1003 | /* Legacy prefixes. */ | ||
1004 | for (;;) { | ||
1005 | switch (c->b = insn_fetch(u8, 1, c->eip)) { | ||
1006 | case 0x66: /* operand-size override */ | ||
1007 | /* switch between 2/4 bytes */ | ||
1008 | c->op_bytes = def_op_bytes ^ 6; | ||
1009 | break; | ||
1010 | case 0x67: /* address-size override */ | ||
1011 | if (mode == X86EMUL_MODE_PROT64) | ||
1012 | /* switch between 4/8 bytes */ | ||
1013 | c->ad_bytes = def_ad_bytes ^ 12; | ||
1014 | else | ||
1015 | /* switch between 2/4 bytes */ | ||
1016 | c->ad_bytes = def_ad_bytes ^ 6; | ||
1017 | break; | ||
1018 | case 0x26: /* ES override */ | ||
1019 | case 0x2e: /* CS override */ | ||
1020 | case 0x36: /* SS override */ | ||
1021 | case 0x3e: /* DS override */ | ||
1022 | set_seg_override(c, (c->b >> 3) & 3); | ||
1023 | break; | ||
1024 | case 0x64: /* FS override */ | ||
1025 | case 0x65: /* GS override */ | ||
1026 | set_seg_override(c, c->b & 7); | ||
1027 | break; | ||
1028 | case 0x40 ... 0x4f: /* REX */ | ||
1029 | if (mode != X86EMUL_MODE_PROT64) | ||
1030 | goto done_prefixes; | ||
1031 | c->rex_prefix = c->b; | ||
1032 | continue; | ||
1033 | case 0xf0: /* LOCK */ | ||
1034 | c->lock_prefix = 1; | ||
1035 | break; | ||
1036 | case 0xf2: /* REPNE/REPNZ */ | ||
1037 | c->rep_prefix = REPNE_PREFIX; | ||
1038 | break; | ||
1039 | case 0xf3: /* REP/REPE/REPZ */ | ||
1040 | c->rep_prefix = REPE_PREFIX; | ||
1041 | break; | ||
1042 | default: | ||
1043 | goto done_prefixes; | ||
1044 | } | ||
1045 | |||
1046 | /* Any legacy prefix after a REX prefix nullifies its effect. */ | ||
1047 | |||
1048 | c->rex_prefix = 0; | ||
1049 | } | ||
1050 | |||
1051 | done_prefixes: | ||
1052 | |||
1053 | /* REX prefix. */ | ||
1054 | if (c->rex_prefix) | ||
1055 | if (c->rex_prefix & 8) | ||
1056 | c->op_bytes = 8; /* REX.W */ | ||
1057 | |||
1058 | /* Opcode byte(s). */ | ||
1059 | c->d = opcode_table[c->b]; | ||
1060 | if (c->d == 0) { | ||
1061 | /* Two-byte opcode? */ | ||
1062 | if (c->b == 0x0f) { | ||
1063 | c->twobyte = 1; | ||
1064 | c->b = insn_fetch(u8, 1, c->eip); | ||
1065 | c->d = twobyte_table[c->b]; | ||
1066 | } | ||
1067 | } | ||
1068 | |||
1069 | if (c->d & Group) { | ||
1070 | group = c->d & GroupMask; | ||
1071 | c->modrm = insn_fetch(u8, 1, c->eip); | ||
1072 | --c->eip; | ||
1073 | |||
1074 | group = (group << 3) + ((c->modrm >> 3) & 7); | ||
1075 | if ((c->d & GroupDual) && (c->modrm >> 6) == 3) | ||
1076 | c->d = group2_table[group]; | ||
1077 | else | ||
1078 | c->d = group_table[group]; | ||
1079 | } | ||
1080 | |||
1081 | /* Unrecognised? */ | ||
1082 | if (c->d == 0) { | ||
1083 | DPRINTF("Cannot emulate %02x\n", c->b); | ||
1084 | return -1; | ||
1085 | } | ||
1086 | |||
1087 | if (mode == X86EMUL_MODE_PROT64 && (c->d & Stack)) | ||
1088 | c->op_bytes = 8; | ||
1089 | |||
1090 | /* ModRM and SIB bytes. */ | ||
1091 | if (c->d & ModRM) | ||
1092 | rc = decode_modrm(ctxt, ops); | ||
1093 | else if (c->d & MemAbs) | ||
1094 | rc = decode_abs(ctxt, ops); | ||
1095 | if (rc != X86EMUL_CONTINUE) | ||
1096 | goto done; | ||
1097 | |||
1098 | if (!c->has_seg_override) | ||
1099 | set_seg_override(c, VCPU_SREG_DS); | ||
1100 | |||
1101 | if (!(!c->twobyte && c->b == 0x8d)) | ||
1102 | c->modrm_ea += seg_override_base(ctxt, ops, c); | ||
1103 | |||
1104 | if (c->ad_bytes != 8) | ||
1105 | c->modrm_ea = (u32)c->modrm_ea; | ||
1106 | |||
1107 | if (c->rip_relative) | ||
1108 | c->modrm_ea += c->eip; | ||
1109 | |||
1110 | /* | ||
1111 | * Decode and fetch the source operand: register, memory | ||
1112 | * or immediate. | ||
1113 | */ | ||
1114 | switch (c->d & SrcMask) { | ||
1115 | case SrcNone: | ||
1116 | break; | ||
1117 | case SrcReg: | ||
1118 | decode_register_operand(&c->src, c, 0); | ||
1119 | break; | ||
1120 | case SrcMem16: | ||
1121 | c->src.bytes = 2; | ||
1122 | goto srcmem_common; | ||
1123 | case SrcMem32: | ||
1124 | c->src.bytes = 4; | ||
1125 | goto srcmem_common; | ||
1126 | case SrcMem: | ||
1127 | c->src.bytes = (c->d & ByteOp) ? 1 : | ||
1128 | c->op_bytes; | ||
1129 | /* Don't fetch the address for invlpg: it could be unmapped. */ | ||
1130 | if (c->twobyte && c->b == 0x01 && c->modrm_reg == 7) | ||
1131 | break; | ||
1132 | srcmem_common: | ||
1133 | /* | ||
1134 | * For instructions with a ModR/M byte, switch to register | ||
1135 | * access if Mod = 3. | ||
1136 | */ | ||
1137 | if ((c->d & ModRM) && c->modrm_mod == 3) { | ||
1138 | c->src.type = OP_REG; | ||
1139 | c->src.val = c->modrm_val; | ||
1140 | c->src.ptr = c->modrm_ptr; | ||
1141 | break; | ||
1142 | } | ||
1143 | c->src.type = OP_MEM; | ||
1144 | c->src.ptr = (unsigned long *)c->modrm_ea; | ||
1145 | c->src.val = 0; | ||
1146 | break; | ||
1147 | case SrcImm: | ||
1148 | case SrcImmU: | ||
1149 | c->src.type = OP_IMM; | ||
1150 | c->src.ptr = (unsigned long *)c->eip; | ||
1151 | c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; | ||
1152 | if (c->src.bytes == 8) | ||
1153 | c->src.bytes = 4; | ||
1154 | /* NB. Immediates are sign-extended as necessary. */ | ||
1155 | switch (c->src.bytes) { | ||
1156 | case 1: | ||
1157 | c->src.val = insn_fetch(s8, 1, c->eip); | ||
1158 | break; | ||
1159 | case 2: | ||
1160 | c->src.val = insn_fetch(s16, 2, c->eip); | ||
1161 | break; | ||
1162 | case 4: | ||
1163 | c->src.val = insn_fetch(s32, 4, c->eip); | ||
1164 | break; | ||
1165 | } | ||
1166 | if ((c->d & SrcMask) == SrcImmU) { | ||
1167 | switch (c->src.bytes) { | ||
1168 | case 1: | ||
1169 | c->src.val &= 0xff; | ||
1170 | break; | ||
1171 | case 2: | ||
1172 | c->src.val &= 0xffff; | ||
1173 | break; | ||
1174 | case 4: | ||
1175 | c->src.val &= 0xffffffff; | ||
1176 | break; | ||
1177 | } | ||
1178 | } | ||
1179 | break; | ||
1180 | case SrcImmByte: | ||
1181 | case SrcImmUByte: | ||
1182 | c->src.type = OP_IMM; | ||
1183 | c->src.ptr = (unsigned long *)c->eip; | ||
1184 | c->src.bytes = 1; | ||
1185 | if ((c->d & SrcMask) == SrcImmByte) | ||
1186 | c->src.val = insn_fetch(s8, 1, c->eip); | ||
1187 | else | ||
1188 | c->src.val = insn_fetch(u8, 1, c->eip); | ||
1189 | break; | ||
1190 | case SrcAcc: | ||
1191 | c->src.type = OP_REG; | ||
1192 | c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; | ||
1193 | c->src.ptr = &c->regs[VCPU_REGS_RAX]; | ||
1194 | switch (c->src.bytes) { | ||
1195 | case 1: | ||
1196 | c->src.val = *(u8 *)c->src.ptr; | ||
1197 | break; | ||
1198 | case 2: | ||
1199 | c->src.val = *(u16 *)c->src.ptr; | ||
1200 | break; | ||
1201 | case 4: | ||
1202 | c->src.val = *(u32 *)c->src.ptr; | ||
1203 | break; | ||
1204 | case 8: | ||
1205 | c->src.val = *(u64 *)c->src.ptr; | ||
1206 | break; | ||
1207 | } | ||
1208 | break; | ||
1209 | case SrcOne: | ||
1210 | c->src.bytes = 1; | ||
1211 | c->src.val = 1; | ||
1212 | break; | ||
1213 | case SrcSI: | ||
1214 | c->src.type = OP_MEM; | ||
1215 | c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; | ||
1216 | c->src.ptr = (unsigned long *) | ||
1217 | register_address(c, seg_override_base(ctxt, ops, c), | ||
1218 | c->regs[VCPU_REGS_RSI]); | ||
1219 | c->src.val = 0; | ||
1220 | break; | ||
1221 | case SrcImmFAddr: | ||
1222 | c->src.type = OP_IMM; | ||
1223 | c->src.ptr = (unsigned long *)c->eip; | ||
1224 | c->src.bytes = c->op_bytes + 2; | ||
1225 | insn_fetch_arr(c->src.valptr, c->src.bytes, c->eip); | ||
1226 | break; | ||
1227 | case SrcMemFAddr: | ||
1228 | c->src.type = OP_MEM; | ||
1229 | c->src.ptr = (unsigned long *)c->modrm_ea; | ||
1230 | c->src.bytes = c->op_bytes + 2; | ||
1231 | break; | ||
1232 | } | ||
1233 | 802 | ||
1234 | /* | 803 | if (c->dst.type == OP_MEM && c->src.type == OP_REG) { |
1235 | * Decode and fetch the second source operand: register, memory | 804 | mask = ~(c->dst.bytes * 8 - 1); |
1236 | * or immediate. | ||
1237 | */ | ||
1238 | switch (c->d & Src2Mask) { | ||
1239 | case Src2None: | ||
1240 | break; | ||
1241 | case Src2CL: | ||
1242 | c->src2.bytes = 1; | ||
1243 | c->src2.val = c->regs[VCPU_REGS_RCX] & 0x8; | ||
1244 | break; | ||
1245 | case Src2ImmByte: | ||
1246 | c->src2.type = OP_IMM; | ||
1247 | c->src2.ptr = (unsigned long *)c->eip; | ||
1248 | c->src2.bytes = 1; | ||
1249 | c->src2.val = insn_fetch(u8, 1, c->eip); | ||
1250 | break; | ||
1251 | case Src2One: | ||
1252 | c->src2.bytes = 1; | ||
1253 | c->src2.val = 1; | ||
1254 | break; | ||
1255 | } | ||
1256 | 805 | ||
1257 | /* Decode and fetch the destination operand: register or memory. */ | 806 | if (c->src.bytes == 2) |
1258 | switch (c->d & DstMask) { | 807 | sv = (s16)c->src.val & (s16)mask; |
1259 | case ImplicitOps: | 808 | else if (c->src.bytes == 4) |
1260 | /* Special instructions do their own operand decoding. */ | 809 | sv = (s32)c->src.val & (s32)mask; |
1261 | return 0; | ||
1262 | case DstReg: | ||
1263 | decode_register_operand(&c->dst, c, | ||
1264 | c->twobyte && (c->b == 0xb6 || c->b == 0xb7)); | ||
1265 | break; | ||
1266 | case DstMem: | ||
1267 | case DstMem64: | ||
1268 | if ((c->d & ModRM) && c->modrm_mod == 3) { | ||
1269 | c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; | ||
1270 | c->dst.type = OP_REG; | ||
1271 | c->dst.val = c->dst.orig_val = c->modrm_val; | ||
1272 | c->dst.ptr = c->modrm_ptr; | ||
1273 | break; | ||
1274 | } | ||
1275 | c->dst.type = OP_MEM; | ||
1276 | c->dst.ptr = (unsigned long *)c->modrm_ea; | ||
1277 | if ((c->d & DstMask) == DstMem64) | ||
1278 | c->dst.bytes = 8; | ||
1279 | else | ||
1280 | c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; | ||
1281 | c->dst.val = 0; | ||
1282 | if (c->d & BitOp) { | ||
1283 | unsigned long mask = ~(c->dst.bytes * 8 - 1); | ||
1284 | 810 | ||
1285 | c->dst.ptr = (void *)c->dst.ptr + | 811 | c->dst.addr.mem += (sv >> 3); |
1286 | (c->src.val & mask) / 8; | ||
1287 | } | ||
1288 | break; | ||
1289 | case DstAcc: | ||
1290 | c->dst.type = OP_REG; | ||
1291 | c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; | ||
1292 | c->dst.ptr = &c->regs[VCPU_REGS_RAX]; | ||
1293 | switch (c->dst.bytes) { | ||
1294 | case 1: | ||
1295 | c->dst.val = *(u8 *)c->dst.ptr; | ||
1296 | break; | ||
1297 | case 2: | ||
1298 | c->dst.val = *(u16 *)c->dst.ptr; | ||
1299 | break; | ||
1300 | case 4: | ||
1301 | c->dst.val = *(u32 *)c->dst.ptr; | ||
1302 | break; | ||
1303 | case 8: | ||
1304 | c->dst.val = *(u64 *)c->dst.ptr; | ||
1305 | break; | ||
1306 | } | ||
1307 | c->dst.orig_val = c->dst.val; | ||
1308 | break; | ||
1309 | case DstDI: | ||
1310 | c->dst.type = OP_MEM; | ||
1311 | c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; | ||
1312 | c->dst.ptr = (unsigned long *) | ||
1313 | register_address(c, es_base(ctxt, ops), | ||
1314 | c->regs[VCPU_REGS_RDI]); | ||
1315 | c->dst.val = 0; | ||
1316 | break; | ||
1317 | } | 812 | } |
1318 | 813 | ||
1319 | done: | 814 | /* only subword offset */ |
1320 | return (rc == X86EMUL_UNHANDLEABLE) ? -1 : 0; | 815 | c->src.val &= (c->dst.bytes << 3) - 1; |
1321 | } | 816 | } |
1322 | 817 | ||
1323 | static int read_emulated(struct x86_emulate_ctxt *ctxt, | 818 | static int read_emulated(struct x86_emulate_ctxt *ctxt, |
@@ -1337,7 +832,7 @@ static int read_emulated(struct x86_emulate_ctxt *ctxt, | |||
1337 | rc = ops->read_emulated(addr, mc->data + mc->end, n, &err, | 832 | rc = ops->read_emulated(addr, mc->data + mc->end, n, &err, |
1338 | ctxt->vcpu); | 833 | ctxt->vcpu); |
1339 | if (rc == X86EMUL_PROPAGATE_FAULT) | 834 | if (rc == X86EMUL_PROPAGATE_FAULT) |
1340 | emulate_pf(ctxt, addr, err); | 835 | emulate_pf(ctxt); |
1341 | if (rc != X86EMUL_CONTINUE) | 836 | if (rc != X86EMUL_CONTINUE) |
1342 | return rc; | 837 | return rc; |
1343 | mc->end += n; | 838 | mc->end += n; |
@@ -1424,7 +919,7 @@ static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt, | |||
1424 | addr = dt.address + index * 8; | 919 | addr = dt.address + index * 8; |
1425 | ret = ops->read_std(addr, desc, sizeof *desc, ctxt->vcpu, &err); | 920 | ret = ops->read_std(addr, desc, sizeof *desc, ctxt->vcpu, &err); |
1426 | if (ret == X86EMUL_PROPAGATE_FAULT) | 921 | if (ret == X86EMUL_PROPAGATE_FAULT) |
1427 | emulate_pf(ctxt, addr, err); | 922 | emulate_pf(ctxt); |
1428 | 923 | ||
1429 | return ret; | 924 | return ret; |
1430 | } | 925 | } |
@@ -1450,7 +945,7 @@ static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt, | |||
1450 | addr = dt.address + index * 8; | 945 | addr = dt.address + index * 8; |
1451 | ret = ops->write_std(addr, desc, sizeof *desc, ctxt->vcpu, &err); | 946 | ret = ops->write_std(addr, desc, sizeof *desc, ctxt->vcpu, &err); |
1452 | if (ret == X86EMUL_PROPAGATE_FAULT) | 947 | if (ret == X86EMUL_PROPAGATE_FAULT) |
1453 | emulate_pf(ctxt, addr, err); | 948 | emulate_pf(ctxt); |
1454 | 949 | ||
1455 | return ret; | 950 | return ret; |
1456 | } | 951 | } |
@@ -1573,6 +1068,25 @@ exception: | |||
1573 | return X86EMUL_PROPAGATE_FAULT; | 1068 | return X86EMUL_PROPAGATE_FAULT; |
1574 | } | 1069 | } |
1575 | 1070 | ||
1071 | static void write_register_operand(struct operand *op) | ||
1072 | { | ||
1073 | /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */ | ||
1074 | switch (op->bytes) { | ||
1075 | case 1: | ||
1076 | *(u8 *)op->addr.reg = (u8)op->val; | ||
1077 | break; | ||
1078 | case 2: | ||
1079 | *(u16 *)op->addr.reg = (u16)op->val; | ||
1080 | break; | ||
1081 | case 4: | ||
1082 | *op->addr.reg = (u32)op->val; | ||
1083 | break; /* 64b: zero-extend */ | ||
1084 | case 8: | ||
1085 | *op->addr.reg = op->val; | ||
1086 | break; | ||
1087 | } | ||
1088 | } | ||
1089 | |||
1576 | static inline int writeback(struct x86_emulate_ctxt *ctxt, | 1090 | static inline int writeback(struct x86_emulate_ctxt *ctxt, |
1577 | struct x86_emulate_ops *ops) | 1091 | struct x86_emulate_ops *ops) |
1578 | { | 1092 | { |
@@ -1582,28 +1096,12 @@ static inline int writeback(struct x86_emulate_ctxt *ctxt, | |||
1582 | 1096 | ||
1583 | switch (c->dst.type) { | 1097 | switch (c->dst.type) { |
1584 | case OP_REG: | 1098 | case OP_REG: |
1585 | /* The 4-byte case *is* correct: | 1099 | write_register_operand(&c->dst); |
1586 | * in 64-bit mode we zero-extend. | ||
1587 | */ | ||
1588 | switch (c->dst.bytes) { | ||
1589 | case 1: | ||
1590 | *(u8 *)c->dst.ptr = (u8)c->dst.val; | ||
1591 | break; | ||
1592 | case 2: | ||
1593 | *(u16 *)c->dst.ptr = (u16)c->dst.val; | ||
1594 | break; | ||
1595 | case 4: | ||
1596 | *c->dst.ptr = (u32)c->dst.val; | ||
1597 | break; /* 64b: zero-ext */ | ||
1598 | case 8: | ||
1599 | *c->dst.ptr = c->dst.val; | ||
1600 | break; | ||
1601 | } | ||
1602 | break; | 1100 | break; |
1603 | case OP_MEM: | 1101 | case OP_MEM: |
1604 | if (c->lock_prefix) | 1102 | if (c->lock_prefix) |
1605 | rc = ops->cmpxchg_emulated( | 1103 | rc = ops->cmpxchg_emulated( |
1606 | (unsigned long)c->dst.ptr, | 1104 | c->dst.addr.mem, |
1607 | &c->dst.orig_val, | 1105 | &c->dst.orig_val, |
1608 | &c->dst.val, | 1106 | &c->dst.val, |
1609 | c->dst.bytes, | 1107 | c->dst.bytes, |
@@ -1611,14 +1109,13 @@ static inline int writeback(struct x86_emulate_ctxt *ctxt, | |||
1611 | ctxt->vcpu); | 1109 | ctxt->vcpu); |
1612 | else | 1110 | else |
1613 | rc = ops->write_emulated( | 1111 | rc = ops->write_emulated( |
1614 | (unsigned long)c->dst.ptr, | 1112 | c->dst.addr.mem, |
1615 | &c->dst.val, | 1113 | &c->dst.val, |
1616 | c->dst.bytes, | 1114 | c->dst.bytes, |
1617 | &err, | 1115 | &err, |
1618 | ctxt->vcpu); | 1116 | ctxt->vcpu); |
1619 | if (rc == X86EMUL_PROPAGATE_FAULT) | 1117 | if (rc == X86EMUL_PROPAGATE_FAULT) |
1620 | emulate_pf(ctxt, | 1118 | emulate_pf(ctxt); |
1621 | (unsigned long)c->dst.ptr, err); | ||
1622 | if (rc != X86EMUL_CONTINUE) | 1119 | if (rc != X86EMUL_CONTINUE) |
1623 | return rc; | 1120 | return rc; |
1624 | break; | 1121 | break; |
@@ -1640,8 +1137,8 @@ static inline void emulate_push(struct x86_emulate_ctxt *ctxt, | |||
1640 | c->dst.bytes = c->op_bytes; | 1137 | c->dst.bytes = c->op_bytes; |
1641 | c->dst.val = c->src.val; | 1138 | c->dst.val = c->src.val; |
1642 | register_address_increment(c, &c->regs[VCPU_REGS_RSP], -c->op_bytes); | 1139 | register_address_increment(c, &c->regs[VCPU_REGS_RSP], -c->op_bytes); |
1643 | c->dst.ptr = (void *) register_address(c, ss_base(ctxt, ops), | 1140 | c->dst.addr.mem = register_address(c, ss_base(ctxt, ops), |
1644 | c->regs[VCPU_REGS_RSP]); | 1141 | c->regs[VCPU_REGS_RSP]); |
1645 | } | 1142 | } |
1646 | 1143 | ||
1647 | static int emulate_pop(struct x86_emulate_ctxt *ctxt, | 1144 | static int emulate_pop(struct x86_emulate_ctxt *ctxt, |
@@ -1701,6 +1198,9 @@ static int emulate_popf(struct x86_emulate_ctxt *ctxt, | |||
1701 | *(unsigned long *)dest = | 1198 | *(unsigned long *)dest = |
1702 | (ctxt->eflags & ~change_mask) | (val & change_mask); | 1199 | (ctxt->eflags & ~change_mask) | (val & change_mask); |
1703 | 1200 | ||
1201 | if (rc == X86EMUL_PROPAGATE_FAULT) | ||
1202 | emulate_pf(ctxt); | ||
1203 | |||
1704 | return rc; | 1204 | return rc; |
1705 | } | 1205 | } |
1706 | 1206 | ||
@@ -1778,6 +1278,150 @@ static int emulate_popa(struct x86_emulate_ctxt *ctxt, | |||
1778 | return rc; | 1278 | return rc; |
1779 | } | 1279 | } |
1780 | 1280 | ||
1281 | int emulate_int_real(struct x86_emulate_ctxt *ctxt, | ||
1282 | struct x86_emulate_ops *ops, int irq) | ||
1283 | { | ||
1284 | struct decode_cache *c = &ctxt->decode; | ||
1285 | int rc; | ||
1286 | struct desc_ptr dt; | ||
1287 | gva_t cs_addr; | ||
1288 | gva_t eip_addr; | ||
1289 | u16 cs, eip; | ||
1290 | u32 err; | ||
1291 | |||
1292 | /* TODO: Add limit checks */ | ||
1293 | c->src.val = ctxt->eflags; | ||
1294 | emulate_push(ctxt, ops); | ||
1295 | rc = writeback(ctxt, ops); | ||
1296 | if (rc != X86EMUL_CONTINUE) | ||
1297 | return rc; | ||
1298 | |||
1299 | ctxt->eflags &= ~(EFLG_IF | EFLG_TF | EFLG_AC); | ||
1300 | |||
1301 | c->src.val = ops->get_segment_selector(VCPU_SREG_CS, ctxt->vcpu); | ||
1302 | emulate_push(ctxt, ops); | ||
1303 | rc = writeback(ctxt, ops); | ||
1304 | if (rc != X86EMUL_CONTINUE) | ||
1305 | return rc; | ||
1306 | |||
1307 | c->src.val = c->eip; | ||
1308 | emulate_push(ctxt, ops); | ||
1309 | rc = writeback(ctxt, ops); | ||
1310 | if (rc != X86EMUL_CONTINUE) | ||
1311 | return rc; | ||
1312 | |||
1313 | c->dst.type = OP_NONE; | ||
1314 | |||
1315 | ops->get_idt(&dt, ctxt->vcpu); | ||
1316 | |||
1317 | eip_addr = dt.address + (irq << 2); | ||
1318 | cs_addr = dt.address + (irq << 2) + 2; | ||
1319 | |||
1320 | rc = ops->read_std(cs_addr, &cs, 2, ctxt->vcpu, &err); | ||
1321 | if (rc != X86EMUL_CONTINUE) | ||
1322 | return rc; | ||
1323 | |||
1324 | rc = ops->read_std(eip_addr, &eip, 2, ctxt->vcpu, &err); | ||
1325 | if (rc != X86EMUL_CONTINUE) | ||
1326 | return rc; | ||
1327 | |||
1328 | rc = load_segment_descriptor(ctxt, ops, cs, VCPU_SREG_CS); | ||
1329 | if (rc != X86EMUL_CONTINUE) | ||
1330 | return rc; | ||
1331 | |||
1332 | c->eip = eip; | ||
1333 | |||
1334 | return rc; | ||
1335 | } | ||
1336 | |||
1337 | static int emulate_int(struct x86_emulate_ctxt *ctxt, | ||
1338 | struct x86_emulate_ops *ops, int irq) | ||
1339 | { | ||
1340 | switch(ctxt->mode) { | ||
1341 | case X86EMUL_MODE_REAL: | ||
1342 | return emulate_int_real(ctxt, ops, irq); | ||
1343 | case X86EMUL_MODE_VM86: | ||
1344 | case X86EMUL_MODE_PROT16: | ||
1345 | case X86EMUL_MODE_PROT32: | ||
1346 | case X86EMUL_MODE_PROT64: | ||
1347 | default: | ||
1348 | /* Protected mode interrupts unimplemented yet */ | ||
1349 | return X86EMUL_UNHANDLEABLE; | ||
1350 | } | ||
1351 | } | ||
1352 | |||
1353 | static int emulate_iret_real(struct x86_emulate_ctxt *ctxt, | ||
1354 | struct x86_emulate_ops *ops) | ||
1355 | { | ||
1356 | struct decode_cache *c = &ctxt->decode; | ||
1357 | int rc = X86EMUL_CONTINUE; | ||
1358 | unsigned long temp_eip = 0; | ||
1359 | unsigned long temp_eflags = 0; | ||
1360 | unsigned long cs = 0; | ||
1361 | unsigned long mask = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF | EFLG_TF | | ||
1362 | EFLG_IF | EFLG_DF | EFLG_OF | EFLG_IOPL | EFLG_NT | EFLG_RF | | ||
1363 | EFLG_AC | EFLG_ID | (1 << 1); /* Last one is the reserved bit */ | ||
1364 | unsigned long vm86_mask = EFLG_VM | EFLG_VIF | EFLG_VIP; | ||
1365 | |||
1366 | /* TODO: Add stack limit check */ | ||
1367 | |||
1368 | rc = emulate_pop(ctxt, ops, &temp_eip, c->op_bytes); | ||
1369 | |||
1370 | if (rc != X86EMUL_CONTINUE) | ||
1371 | return rc; | ||
1372 | |||
1373 | if (temp_eip & ~0xffff) { | ||
1374 | emulate_gp(ctxt, 0); | ||
1375 | return X86EMUL_PROPAGATE_FAULT; | ||
1376 | } | ||
1377 | |||
1378 | rc = emulate_pop(ctxt, ops, &cs, c->op_bytes); | ||
1379 | |||
1380 | if (rc != X86EMUL_CONTINUE) | ||
1381 | return rc; | ||
1382 | |||
1383 | rc = emulate_pop(ctxt, ops, &temp_eflags, c->op_bytes); | ||
1384 | |||
1385 | if (rc != X86EMUL_CONTINUE) | ||
1386 | return rc; | ||
1387 | |||
1388 | rc = load_segment_descriptor(ctxt, ops, (u16)cs, VCPU_SREG_CS); | ||
1389 | |||
1390 | if (rc != X86EMUL_CONTINUE) | ||
1391 | return rc; | ||
1392 | |||
1393 | c->eip = temp_eip; | ||
1394 | |||
1395 | |||
1396 | if (c->op_bytes == 4) | ||
1397 | ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask)); | ||
1398 | else if (c->op_bytes == 2) { | ||
1399 | ctxt->eflags &= ~0xffff; | ||
1400 | ctxt->eflags |= temp_eflags; | ||
1401 | } | ||
1402 | |||
1403 | ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */ | ||
1404 | ctxt->eflags |= EFLG_RESERVED_ONE_MASK; | ||
1405 | |||
1406 | return rc; | ||
1407 | } | ||
1408 | |||
1409 | static inline int emulate_iret(struct x86_emulate_ctxt *ctxt, | ||
1410 | struct x86_emulate_ops* ops) | ||
1411 | { | ||
1412 | switch(ctxt->mode) { | ||
1413 | case X86EMUL_MODE_REAL: | ||
1414 | return emulate_iret_real(ctxt, ops); | ||
1415 | case X86EMUL_MODE_VM86: | ||
1416 | case X86EMUL_MODE_PROT16: | ||
1417 | case X86EMUL_MODE_PROT32: | ||
1418 | case X86EMUL_MODE_PROT64: | ||
1419 | default: | ||
1420 | /* iret from protected mode unimplemented yet */ | ||
1421 | return X86EMUL_UNHANDLEABLE; | ||
1422 | } | ||
1423 | } | ||
1424 | |||
1781 | static inline int emulate_grp1a(struct x86_emulate_ctxt *ctxt, | 1425 | static inline int emulate_grp1a(struct x86_emulate_ctxt *ctxt, |
1782 | struct x86_emulate_ops *ops) | 1426 | struct x86_emulate_ops *ops) |
1783 | { | 1427 | { |
@@ -1819,6 +1463,9 @@ static inline int emulate_grp3(struct x86_emulate_ctxt *ctxt, | |||
1819 | struct x86_emulate_ops *ops) | 1463 | struct x86_emulate_ops *ops) |
1820 | { | 1464 | { |
1821 | struct decode_cache *c = &ctxt->decode; | 1465 | struct decode_cache *c = &ctxt->decode; |
1466 | unsigned long *rax = &c->regs[VCPU_REGS_RAX]; | ||
1467 | unsigned long *rdx = &c->regs[VCPU_REGS_RDX]; | ||
1468 | u8 de = 0; | ||
1822 | 1469 | ||
1823 | switch (c->modrm_reg) { | 1470 | switch (c->modrm_reg) { |
1824 | case 0 ... 1: /* test */ | 1471 | case 0 ... 1: /* test */ |
@@ -1830,10 +1477,26 @@ static inline int emulate_grp3(struct x86_emulate_ctxt *ctxt, | |||
1830 | case 3: /* neg */ | 1477 | case 3: /* neg */ |
1831 | emulate_1op("neg", c->dst, ctxt->eflags); | 1478 | emulate_1op("neg", c->dst, ctxt->eflags); |
1832 | break; | 1479 | break; |
1480 | case 4: /* mul */ | ||
1481 | emulate_1op_rax_rdx("mul", c->src, *rax, *rdx, ctxt->eflags); | ||
1482 | break; | ||
1483 | case 5: /* imul */ | ||
1484 | emulate_1op_rax_rdx("imul", c->src, *rax, *rdx, ctxt->eflags); | ||
1485 | break; | ||
1486 | case 6: /* div */ | ||
1487 | emulate_1op_rax_rdx_ex("div", c->src, *rax, *rdx, | ||
1488 | ctxt->eflags, de); | ||
1489 | break; | ||
1490 | case 7: /* idiv */ | ||
1491 | emulate_1op_rax_rdx_ex("idiv", c->src, *rax, *rdx, | ||
1492 | ctxt->eflags, de); | ||
1493 | break; | ||
1833 | default: | 1494 | default: |
1834 | return 0; | 1495 | return X86EMUL_UNHANDLEABLE; |
1835 | } | 1496 | } |
1836 | return 1; | 1497 | if (de) |
1498 | return emulate_de(ctxt); | ||
1499 | return X86EMUL_CONTINUE; | ||
1837 | } | 1500 | } |
1838 | 1501 | ||
1839 | static inline int emulate_grp45(struct x86_emulate_ctxt *ctxt, | 1502 | static inline int emulate_grp45(struct x86_emulate_ctxt *ctxt, |
@@ -1905,6 +1568,23 @@ static int emulate_ret_far(struct x86_emulate_ctxt *ctxt, | |||
1905 | return rc; | 1568 | return rc; |
1906 | } | 1569 | } |
1907 | 1570 | ||
1571 | static int emulate_load_segment(struct x86_emulate_ctxt *ctxt, | ||
1572 | struct x86_emulate_ops *ops, int seg) | ||
1573 | { | ||
1574 | struct decode_cache *c = &ctxt->decode; | ||
1575 | unsigned short sel; | ||
1576 | int rc; | ||
1577 | |||
1578 | memcpy(&sel, c->src.valptr + c->op_bytes, 2); | ||
1579 | |||
1580 | rc = load_segment_descriptor(ctxt, ops, sel, seg); | ||
1581 | if (rc != X86EMUL_CONTINUE) | ||
1582 | return rc; | ||
1583 | |||
1584 | c->dst.val = c->src.val; | ||
1585 | return rc; | ||
1586 | } | ||
1587 | |||
1908 | static inline void | 1588 | static inline void |
1909 | setup_syscalls_segments(struct x86_emulate_ctxt *ctxt, | 1589 | setup_syscalls_segments(struct x86_emulate_ctxt *ctxt, |
1910 | struct x86_emulate_ops *ops, struct desc_struct *cs, | 1590 | struct x86_emulate_ops *ops, struct desc_struct *cs, |
@@ -2160,9 +1840,15 @@ static bool emulator_io_permited(struct x86_emulate_ctxt *ctxt, | |||
2160 | struct x86_emulate_ops *ops, | 1840 | struct x86_emulate_ops *ops, |
2161 | u16 port, u16 len) | 1841 | u16 port, u16 len) |
2162 | { | 1842 | { |
1843 | if (ctxt->perm_ok) | ||
1844 | return true; | ||
1845 | |||
2163 | if (emulator_bad_iopl(ctxt, ops)) | 1846 | if (emulator_bad_iopl(ctxt, ops)) |
2164 | if (!emulator_io_port_access_allowed(ctxt, ops, port, len)) | 1847 | if (!emulator_io_port_access_allowed(ctxt, ops, port, len)) |
2165 | return false; | 1848 | return false; |
1849 | |||
1850 | ctxt->perm_ok = true; | ||
1851 | |||
2166 | return true; | 1852 | return true; |
2167 | } | 1853 | } |
2168 | 1854 | ||
@@ -2254,7 +1940,7 @@ static int task_switch_16(struct x86_emulate_ctxt *ctxt, | |||
2254 | &err); | 1940 | &err); |
2255 | if (ret == X86EMUL_PROPAGATE_FAULT) { | 1941 | if (ret == X86EMUL_PROPAGATE_FAULT) { |
2256 | /* FIXME: need to provide precise fault address */ | 1942 | /* FIXME: need to provide precise fault address */ |
2257 | emulate_pf(ctxt, old_tss_base, err); | 1943 | emulate_pf(ctxt); |
2258 | return ret; | 1944 | return ret; |
2259 | } | 1945 | } |
2260 | 1946 | ||
@@ -2264,7 +1950,7 @@ static int task_switch_16(struct x86_emulate_ctxt *ctxt, | |||
2264 | &err); | 1950 | &err); |
2265 | if (ret == X86EMUL_PROPAGATE_FAULT) { | 1951 | if (ret == X86EMUL_PROPAGATE_FAULT) { |
2266 | /* FIXME: need to provide precise fault address */ | 1952 | /* FIXME: need to provide precise fault address */ |
2267 | emulate_pf(ctxt, old_tss_base, err); | 1953 | emulate_pf(ctxt); |
2268 | return ret; | 1954 | return ret; |
2269 | } | 1955 | } |
2270 | 1956 | ||
@@ -2272,7 +1958,7 @@ static int task_switch_16(struct x86_emulate_ctxt *ctxt, | |||
2272 | &err); | 1958 | &err); |
2273 | if (ret == X86EMUL_PROPAGATE_FAULT) { | 1959 | if (ret == X86EMUL_PROPAGATE_FAULT) { |
2274 | /* FIXME: need to provide precise fault address */ | 1960 | /* FIXME: need to provide precise fault address */ |
2275 | emulate_pf(ctxt, new_tss_base, err); | 1961 | emulate_pf(ctxt); |
2276 | return ret; | 1962 | return ret; |
2277 | } | 1963 | } |
2278 | 1964 | ||
@@ -2285,7 +1971,7 @@ static int task_switch_16(struct x86_emulate_ctxt *ctxt, | |||
2285 | ctxt->vcpu, &err); | 1971 | ctxt->vcpu, &err); |
2286 | if (ret == X86EMUL_PROPAGATE_FAULT) { | 1972 | if (ret == X86EMUL_PROPAGATE_FAULT) { |
2287 | /* FIXME: need to provide precise fault address */ | 1973 | /* FIXME: need to provide precise fault address */ |
2288 | emulate_pf(ctxt, new_tss_base, err); | 1974 | emulate_pf(ctxt); |
2289 | return ret; | 1975 | return ret; |
2290 | } | 1976 | } |
2291 | } | 1977 | } |
@@ -2396,7 +2082,7 @@ static int task_switch_32(struct x86_emulate_ctxt *ctxt, | |||
2396 | &err); | 2082 | &err); |
2397 | if (ret == X86EMUL_PROPAGATE_FAULT) { | 2083 | if (ret == X86EMUL_PROPAGATE_FAULT) { |
2398 | /* FIXME: need to provide precise fault address */ | 2084 | /* FIXME: need to provide precise fault address */ |
2399 | emulate_pf(ctxt, old_tss_base, err); | 2085 | emulate_pf(ctxt); |
2400 | return ret; | 2086 | return ret; |
2401 | } | 2087 | } |
2402 | 2088 | ||
@@ -2406,7 +2092,7 @@ static int task_switch_32(struct x86_emulate_ctxt *ctxt, | |||
2406 | &err); | 2092 | &err); |
2407 | if (ret == X86EMUL_PROPAGATE_FAULT) { | 2093 | if (ret == X86EMUL_PROPAGATE_FAULT) { |
2408 | /* FIXME: need to provide precise fault address */ | 2094 | /* FIXME: need to provide precise fault address */ |
2409 | emulate_pf(ctxt, old_tss_base, err); | 2095 | emulate_pf(ctxt); |
2410 | return ret; | 2096 | return ret; |
2411 | } | 2097 | } |
2412 | 2098 | ||
@@ -2414,7 +2100,7 @@ static int task_switch_32(struct x86_emulate_ctxt *ctxt, | |||
2414 | &err); | 2100 | &err); |
2415 | if (ret == X86EMUL_PROPAGATE_FAULT) { | 2101 | if (ret == X86EMUL_PROPAGATE_FAULT) { |
2416 | /* FIXME: need to provide precise fault address */ | 2102 | /* FIXME: need to provide precise fault address */ |
2417 | emulate_pf(ctxt, new_tss_base, err); | 2103 | emulate_pf(ctxt); |
2418 | return ret; | 2104 | return ret; |
2419 | } | 2105 | } |
2420 | 2106 | ||
@@ -2427,7 +2113,7 @@ static int task_switch_32(struct x86_emulate_ctxt *ctxt, | |||
2427 | ctxt->vcpu, &err); | 2113 | ctxt->vcpu, &err); |
2428 | if (ret == X86EMUL_PROPAGATE_FAULT) { | 2114 | if (ret == X86EMUL_PROPAGATE_FAULT) { |
2429 | /* FIXME: need to provide precise fault address */ | 2115 | /* FIXME: need to provide precise fault address */ |
2430 | emulate_pf(ctxt, new_tss_base, err); | 2116 | emulate_pf(ctxt); |
2431 | return ret; | 2117 | return ret; |
2432 | } | 2118 | } |
2433 | } | 2119 | } |
@@ -2523,10 +2209,10 @@ static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt, | |||
2523 | } | 2209 | } |
2524 | 2210 | ||
2525 | int emulator_task_switch(struct x86_emulate_ctxt *ctxt, | 2211 | int emulator_task_switch(struct x86_emulate_ctxt *ctxt, |
2526 | struct x86_emulate_ops *ops, | ||
2527 | u16 tss_selector, int reason, | 2212 | u16 tss_selector, int reason, |
2528 | bool has_error_code, u32 error_code) | 2213 | bool has_error_code, u32 error_code) |
2529 | { | 2214 | { |
2215 | struct x86_emulate_ops *ops = ctxt->ops; | ||
2530 | struct decode_cache *c = &ctxt->decode; | 2216 | struct decode_cache *c = &ctxt->decode; |
2531 | int rc; | 2217 | int rc; |
2532 | 2218 | ||
@@ -2552,16 +2238,784 @@ static void string_addr_inc(struct x86_emulate_ctxt *ctxt, unsigned long base, | |||
2552 | int df = (ctxt->eflags & EFLG_DF) ? -1 : 1; | 2238 | int df = (ctxt->eflags & EFLG_DF) ? -1 : 1; |
2553 | 2239 | ||
2554 | register_address_increment(c, &c->regs[reg], df * op->bytes); | 2240 | register_address_increment(c, &c->regs[reg], df * op->bytes); |
2555 | op->ptr = (unsigned long *)register_address(c, base, c->regs[reg]); | 2241 | op->addr.mem = register_address(c, base, c->regs[reg]); |
2242 | } | ||
2243 | |||
2244 | static int em_push(struct x86_emulate_ctxt *ctxt) | ||
2245 | { | ||
2246 | emulate_push(ctxt, ctxt->ops); | ||
2247 | return X86EMUL_CONTINUE; | ||
2248 | } | ||
2249 | |||
2250 | static int em_das(struct x86_emulate_ctxt *ctxt) | ||
2251 | { | ||
2252 | struct decode_cache *c = &ctxt->decode; | ||
2253 | u8 al, old_al; | ||
2254 | bool af, cf, old_cf; | ||
2255 | |||
2256 | cf = ctxt->eflags & X86_EFLAGS_CF; | ||
2257 | al = c->dst.val; | ||
2258 | |||
2259 | old_al = al; | ||
2260 | old_cf = cf; | ||
2261 | cf = false; | ||
2262 | af = ctxt->eflags & X86_EFLAGS_AF; | ||
2263 | if ((al & 0x0f) > 9 || af) { | ||
2264 | al -= 6; | ||
2265 | cf = old_cf | (al >= 250); | ||
2266 | af = true; | ||
2267 | } else { | ||
2268 | af = false; | ||
2269 | } | ||
2270 | if (old_al > 0x99 || old_cf) { | ||
2271 | al -= 0x60; | ||
2272 | cf = true; | ||
2273 | } | ||
2274 | |||
2275 | c->dst.val = al; | ||
2276 | /* Set PF, ZF, SF */ | ||
2277 | c->src.type = OP_IMM; | ||
2278 | c->src.val = 0; | ||
2279 | c->src.bytes = 1; | ||
2280 | emulate_2op_SrcV("or", c->src, c->dst, ctxt->eflags); | ||
2281 | ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF); | ||
2282 | if (cf) | ||
2283 | ctxt->eflags |= X86_EFLAGS_CF; | ||
2284 | if (af) | ||
2285 | ctxt->eflags |= X86_EFLAGS_AF; | ||
2286 | return X86EMUL_CONTINUE; | ||
2287 | } | ||
2288 | |||
2289 | static int em_call_far(struct x86_emulate_ctxt *ctxt) | ||
2290 | { | ||
2291 | struct decode_cache *c = &ctxt->decode; | ||
2292 | u16 sel, old_cs; | ||
2293 | ulong old_eip; | ||
2294 | int rc; | ||
2295 | |||
2296 | old_cs = ctxt->ops->get_segment_selector(VCPU_SREG_CS, ctxt->vcpu); | ||
2297 | old_eip = c->eip; | ||
2298 | |||
2299 | memcpy(&sel, c->src.valptr + c->op_bytes, 2); | ||
2300 | if (load_segment_descriptor(ctxt, ctxt->ops, sel, VCPU_SREG_CS)) | ||
2301 | return X86EMUL_CONTINUE; | ||
2302 | |||
2303 | c->eip = 0; | ||
2304 | memcpy(&c->eip, c->src.valptr, c->op_bytes); | ||
2305 | |||
2306 | c->src.val = old_cs; | ||
2307 | emulate_push(ctxt, ctxt->ops); | ||
2308 | rc = writeback(ctxt, ctxt->ops); | ||
2309 | if (rc != X86EMUL_CONTINUE) | ||
2310 | return rc; | ||
2311 | |||
2312 | c->src.val = old_eip; | ||
2313 | emulate_push(ctxt, ctxt->ops); | ||
2314 | rc = writeback(ctxt, ctxt->ops); | ||
2315 | if (rc != X86EMUL_CONTINUE) | ||
2316 | return rc; | ||
2317 | |||
2318 | c->dst.type = OP_NONE; | ||
2319 | |||
2320 | return X86EMUL_CONTINUE; | ||
2321 | } | ||
2322 | |||
2323 | static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt) | ||
2324 | { | ||
2325 | struct decode_cache *c = &ctxt->decode; | ||
2326 | int rc; | ||
2327 | |||
2328 | c->dst.type = OP_REG; | ||
2329 | c->dst.addr.reg = &c->eip; | ||
2330 | c->dst.bytes = c->op_bytes; | ||
2331 | rc = emulate_pop(ctxt, ctxt->ops, &c->dst.val, c->op_bytes); | ||
2332 | if (rc != X86EMUL_CONTINUE) | ||
2333 | return rc; | ||
2334 | register_address_increment(c, &c->regs[VCPU_REGS_RSP], c->src.val); | ||
2335 | return X86EMUL_CONTINUE; | ||
2336 | } | ||
2337 | |||
2338 | static int em_imul(struct x86_emulate_ctxt *ctxt) | ||
2339 | { | ||
2340 | struct decode_cache *c = &ctxt->decode; | ||
2341 | |||
2342 | emulate_2op_SrcV_nobyte("imul", c->src, c->dst, ctxt->eflags); | ||
2343 | return X86EMUL_CONTINUE; | ||
2344 | } | ||
2345 | |||
2346 | static int em_imul_3op(struct x86_emulate_ctxt *ctxt) | ||
2347 | { | ||
2348 | struct decode_cache *c = &ctxt->decode; | ||
2349 | |||
2350 | c->dst.val = c->src2.val; | ||
2351 | return em_imul(ctxt); | ||
2352 | } | ||
2353 | |||
2354 | static int em_cwd(struct x86_emulate_ctxt *ctxt) | ||
2355 | { | ||
2356 | struct decode_cache *c = &ctxt->decode; | ||
2357 | |||
2358 | c->dst.type = OP_REG; | ||
2359 | c->dst.bytes = c->src.bytes; | ||
2360 | c->dst.addr.reg = &c->regs[VCPU_REGS_RDX]; | ||
2361 | c->dst.val = ~((c->src.val >> (c->src.bytes * 8 - 1)) - 1); | ||
2362 | |||
2363 | return X86EMUL_CONTINUE; | ||
2364 | } | ||
2365 | |||
2366 | static int em_rdtsc(struct x86_emulate_ctxt *ctxt) | ||
2367 | { | ||
2368 | unsigned cpl = ctxt->ops->cpl(ctxt->vcpu); | ||
2369 | struct decode_cache *c = &ctxt->decode; | ||
2370 | u64 tsc = 0; | ||
2371 | |||
2372 | if (cpl > 0 && (ctxt->ops->get_cr(4, ctxt->vcpu) & X86_CR4_TSD)) { | ||
2373 | emulate_gp(ctxt, 0); | ||
2374 | return X86EMUL_PROPAGATE_FAULT; | ||
2375 | } | ||
2376 | ctxt->ops->get_msr(ctxt->vcpu, MSR_IA32_TSC, &tsc); | ||
2377 | c->regs[VCPU_REGS_RAX] = (u32)tsc; | ||
2378 | c->regs[VCPU_REGS_RDX] = tsc >> 32; | ||
2379 | return X86EMUL_CONTINUE; | ||
2380 | } | ||
2381 | |||
2382 | static int em_mov(struct x86_emulate_ctxt *ctxt) | ||
2383 | { | ||
2384 | struct decode_cache *c = &ctxt->decode; | ||
2385 | c->dst.val = c->src.val; | ||
2386 | return X86EMUL_CONTINUE; | ||
2387 | } | ||
2388 | |||
2389 | #define D(_y) { .flags = (_y) } | ||
2390 | #define N D(0) | ||
2391 | #define G(_f, _g) { .flags = ((_f) | Group), .u.group = (_g) } | ||
2392 | #define GD(_f, _g) { .flags = ((_f) | Group | GroupDual), .u.gdual = (_g) } | ||
2393 | #define I(_f, _e) { .flags = (_f), .u.execute = (_e) } | ||
2394 | |||
2395 | #define D2bv(_f) D((_f) | ByteOp), D(_f) | ||
2396 | #define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e) | ||
2397 | |||
2398 | #define D6ALU(_f) D2bv((_f) | DstMem | SrcReg | ModRM), \ | ||
2399 | D2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock), \ | ||
2400 | D2bv(((_f) & ~Lock) | DstAcc | SrcImm) | ||
2401 | |||
2402 | |||
2403 | static struct opcode group1[] = { | ||
2404 | X7(D(Lock)), N | ||
2405 | }; | ||
2406 | |||
2407 | static struct opcode group1A[] = { | ||
2408 | D(DstMem | SrcNone | ModRM | Mov | Stack), N, N, N, N, N, N, N, | ||
2409 | }; | ||
2410 | |||
2411 | static struct opcode group3[] = { | ||
2412 | D(DstMem | SrcImm | ModRM), D(DstMem | SrcImm | ModRM), | ||
2413 | D(DstMem | SrcNone | ModRM | Lock), D(DstMem | SrcNone | ModRM | Lock), | ||
2414 | X4(D(SrcMem | ModRM)), | ||
2415 | }; | ||
2416 | |||
2417 | static struct opcode group4[] = { | ||
2418 | D(ByteOp | DstMem | SrcNone | ModRM | Lock), D(ByteOp | DstMem | SrcNone | ModRM | Lock), | ||
2419 | N, N, N, N, N, N, | ||
2420 | }; | ||
2421 | |||
2422 | static struct opcode group5[] = { | ||
2423 | D(DstMem | SrcNone | ModRM | Lock), D(DstMem | SrcNone | ModRM | Lock), | ||
2424 | D(SrcMem | ModRM | Stack), | ||
2425 | I(SrcMemFAddr | ModRM | ImplicitOps | Stack, em_call_far), | ||
2426 | D(SrcMem | ModRM | Stack), D(SrcMemFAddr | ModRM | ImplicitOps), | ||
2427 | D(SrcMem | ModRM | Stack), N, | ||
2428 | }; | ||
2429 | |||
2430 | static struct group_dual group7 = { { | ||
2431 | N, N, D(ModRM | SrcMem | Priv), D(ModRM | SrcMem | Priv), | ||
2432 | D(SrcNone | ModRM | DstMem | Mov), N, | ||
2433 | D(SrcMem16 | ModRM | Mov | Priv), | ||
2434 | D(SrcMem | ModRM | ByteOp | Priv | NoAccess), | ||
2435 | }, { | ||
2436 | D(SrcNone | ModRM | Priv), N, N, D(SrcNone | ModRM | Priv), | ||
2437 | D(SrcNone | ModRM | DstMem | Mov), N, | ||
2438 | D(SrcMem16 | ModRM | Mov | Priv), N, | ||
2439 | } }; | ||
2440 | |||
2441 | static struct opcode group8[] = { | ||
2442 | N, N, N, N, | ||
2443 | D(DstMem | SrcImmByte | ModRM), D(DstMem | SrcImmByte | ModRM | Lock), | ||
2444 | D(DstMem | SrcImmByte | ModRM | Lock), D(DstMem | SrcImmByte | ModRM | Lock), | ||
2445 | }; | ||
2446 | |||
2447 | static struct group_dual group9 = { { | ||
2448 | N, D(DstMem64 | ModRM | Lock), N, N, N, N, N, N, | ||
2449 | }, { | ||
2450 | N, N, N, N, N, N, N, N, | ||
2451 | } }; | ||
2452 | |||
2453 | static struct opcode group11[] = { | ||
2454 | I(DstMem | SrcImm | ModRM | Mov, em_mov), X7(D(Undefined)), | ||
2455 | }; | ||
2456 | |||
2457 | static struct opcode opcode_table[256] = { | ||
2458 | /* 0x00 - 0x07 */ | ||
2459 | D6ALU(Lock), | ||
2460 | D(ImplicitOps | Stack | No64), D(ImplicitOps | Stack | No64), | ||
2461 | /* 0x08 - 0x0F */ | ||
2462 | D6ALU(Lock), | ||
2463 | D(ImplicitOps | Stack | No64), N, | ||
2464 | /* 0x10 - 0x17 */ | ||
2465 | D6ALU(Lock), | ||
2466 | D(ImplicitOps | Stack | No64), D(ImplicitOps | Stack | No64), | ||
2467 | /* 0x18 - 0x1F */ | ||
2468 | D6ALU(Lock), | ||
2469 | D(ImplicitOps | Stack | No64), D(ImplicitOps | Stack | No64), | ||
2470 | /* 0x20 - 0x27 */ | ||
2471 | D6ALU(Lock), N, N, | ||
2472 | /* 0x28 - 0x2F */ | ||
2473 | D6ALU(Lock), N, I(ByteOp | DstAcc | No64, em_das), | ||
2474 | /* 0x30 - 0x37 */ | ||
2475 | D6ALU(Lock), N, N, | ||
2476 | /* 0x38 - 0x3F */ | ||
2477 | D6ALU(0), N, N, | ||
2478 | /* 0x40 - 0x4F */ | ||
2479 | X16(D(DstReg)), | ||
2480 | /* 0x50 - 0x57 */ | ||
2481 | X8(I(SrcReg | Stack, em_push)), | ||
2482 | /* 0x58 - 0x5F */ | ||
2483 | X8(D(DstReg | Stack)), | ||
2484 | /* 0x60 - 0x67 */ | ||
2485 | D(ImplicitOps | Stack | No64), D(ImplicitOps | Stack | No64), | ||
2486 | N, D(DstReg | SrcMem32 | ModRM | Mov) /* movsxd (x86/64) */ , | ||
2487 | N, N, N, N, | ||
2488 | /* 0x68 - 0x6F */ | ||
2489 | I(SrcImm | Mov | Stack, em_push), | ||
2490 | I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op), | ||
2491 | I(SrcImmByte | Mov | Stack, em_push), | ||
2492 | I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op), | ||
2493 | D2bv(DstDI | Mov | String), /* insb, insw/insd */ | ||
2494 | D2bv(SrcSI | ImplicitOps | String), /* outsb, outsw/outsd */ | ||
2495 | /* 0x70 - 0x7F */ | ||
2496 | X16(D(SrcImmByte)), | ||
2497 | /* 0x80 - 0x87 */ | ||
2498 | G(ByteOp | DstMem | SrcImm | ModRM | Group, group1), | ||
2499 | G(DstMem | SrcImm | ModRM | Group, group1), | ||
2500 | G(ByteOp | DstMem | SrcImm | ModRM | No64 | Group, group1), | ||
2501 | G(DstMem | SrcImmByte | ModRM | Group, group1), | ||
2502 | D2bv(DstMem | SrcReg | ModRM), D2bv(DstMem | SrcReg | ModRM | Lock), | ||
2503 | /* 0x88 - 0x8F */ | ||
2504 | I2bv(DstMem | SrcReg | ModRM | Mov, em_mov), | ||
2505 | I2bv(DstReg | SrcMem | ModRM | Mov, em_mov), | ||
2506 | D(DstMem | SrcNone | ModRM | Mov), D(ModRM | SrcMem | NoAccess | DstReg), | ||
2507 | D(ImplicitOps | SrcMem16 | ModRM), G(0, group1A), | ||
2508 | /* 0x90 - 0x97 */ | ||
2509 | X8(D(SrcAcc | DstReg)), | ||
2510 | /* 0x98 - 0x9F */ | ||
2511 | D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd), | ||
2512 | I(SrcImmFAddr | No64, em_call_far), N, | ||
2513 | D(ImplicitOps | Stack), D(ImplicitOps | Stack), N, N, | ||
2514 | /* 0xA0 - 0xA7 */ | ||
2515 | I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov), | ||
2516 | I2bv(DstMem | SrcAcc | Mov | MemAbs, em_mov), | ||
2517 | I2bv(SrcSI | DstDI | Mov | String, em_mov), | ||
2518 | D2bv(SrcSI | DstDI | String), | ||
2519 | /* 0xA8 - 0xAF */ | ||
2520 | D2bv(DstAcc | SrcImm), | ||
2521 | I2bv(SrcAcc | DstDI | Mov | String, em_mov), | ||
2522 | I2bv(SrcSI | DstAcc | Mov | String, em_mov), | ||
2523 | D2bv(SrcAcc | DstDI | String), | ||
2524 | /* 0xB0 - 0xB7 */ | ||
2525 | X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)), | ||
2526 | /* 0xB8 - 0xBF */ | ||
2527 | X8(I(DstReg | SrcImm | Mov, em_mov)), | ||
2528 | /* 0xC0 - 0xC7 */ | ||
2529 | D2bv(DstMem | SrcImmByte | ModRM), | ||
2530 | I(ImplicitOps | Stack | SrcImmU16, em_ret_near_imm), | ||
2531 | D(ImplicitOps | Stack), | ||
2532 | D(DstReg | SrcMemFAddr | ModRM | No64), D(DstReg | SrcMemFAddr | ModRM | No64), | ||
2533 | G(ByteOp, group11), G(0, group11), | ||
2534 | /* 0xC8 - 0xCF */ | ||
2535 | N, N, N, D(ImplicitOps | Stack), | ||
2536 | D(ImplicitOps), D(SrcImmByte), D(ImplicitOps | No64), D(ImplicitOps), | ||
2537 | /* 0xD0 - 0xD7 */ | ||
2538 | D2bv(DstMem | SrcOne | ModRM), D2bv(DstMem | ModRM), | ||
2539 | N, N, N, N, | ||
2540 | /* 0xD8 - 0xDF */ | ||
2541 | N, N, N, N, N, N, N, N, | ||
2542 | /* 0xE0 - 0xE7 */ | ||
2543 | X4(D(SrcImmByte)), | ||
2544 | D2bv(SrcImmUByte | DstAcc), D2bv(SrcAcc | DstImmUByte), | ||
2545 | /* 0xE8 - 0xEF */ | ||
2546 | D(SrcImm | Stack), D(SrcImm | ImplicitOps), | ||
2547 | D(SrcImmFAddr | No64), D(SrcImmByte | ImplicitOps), | ||
2548 | D2bv(SrcNone | DstAcc), D2bv(SrcAcc | ImplicitOps), | ||
2549 | /* 0xF0 - 0xF7 */ | ||
2550 | N, N, N, N, | ||
2551 | D(ImplicitOps | Priv), D(ImplicitOps), G(ByteOp, group3), G(0, group3), | ||
2552 | /* 0xF8 - 0xFF */ | ||
2553 | D(ImplicitOps), D(ImplicitOps), D(ImplicitOps), D(ImplicitOps), | ||
2554 | D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5), | ||
2555 | }; | ||
2556 | |||
2557 | static struct opcode twobyte_table[256] = { | ||
2558 | /* 0x00 - 0x0F */ | ||
2559 | N, GD(0, &group7), N, N, | ||
2560 | N, D(ImplicitOps), D(ImplicitOps | Priv), N, | ||
2561 | D(ImplicitOps | Priv), D(ImplicitOps | Priv), N, N, | ||
2562 | N, D(ImplicitOps | ModRM), N, N, | ||
2563 | /* 0x10 - 0x1F */ | ||
2564 | N, N, N, N, N, N, N, N, D(ImplicitOps | ModRM), N, N, N, N, N, N, N, | ||
2565 | /* 0x20 - 0x2F */ | ||
2566 | D(ModRM | DstMem | Priv | Op3264), D(ModRM | DstMem | Priv | Op3264), | ||
2567 | D(ModRM | SrcMem | Priv | Op3264), D(ModRM | SrcMem | Priv | Op3264), | ||
2568 | N, N, N, N, | ||
2569 | N, N, N, N, N, N, N, N, | ||
2570 | /* 0x30 - 0x3F */ | ||
2571 | D(ImplicitOps | Priv), I(ImplicitOps, em_rdtsc), | ||
2572 | D(ImplicitOps | Priv), N, | ||
2573 | D(ImplicitOps), D(ImplicitOps | Priv), N, N, | ||
2574 | N, N, N, N, N, N, N, N, | ||
2575 | /* 0x40 - 0x4F */ | ||
2576 | X16(D(DstReg | SrcMem | ModRM | Mov)), | ||
2577 | /* 0x50 - 0x5F */ | ||
2578 | N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, | ||
2579 | /* 0x60 - 0x6F */ | ||
2580 | N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, | ||
2581 | /* 0x70 - 0x7F */ | ||
2582 | N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, | ||
2583 | /* 0x80 - 0x8F */ | ||
2584 | X16(D(SrcImm)), | ||
2585 | /* 0x90 - 0x9F */ | ||
2586 | X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)), | ||
2587 | /* 0xA0 - 0xA7 */ | ||
2588 | D(ImplicitOps | Stack), D(ImplicitOps | Stack), | ||
2589 | N, D(DstMem | SrcReg | ModRM | BitOp), | ||
2590 | D(DstMem | SrcReg | Src2ImmByte | ModRM), | ||
2591 | D(DstMem | SrcReg | Src2CL | ModRM), N, N, | ||
2592 | /* 0xA8 - 0xAF */ | ||
2593 | D(ImplicitOps | Stack), D(ImplicitOps | Stack), | ||
2594 | N, D(DstMem | SrcReg | ModRM | BitOp | Lock), | ||
2595 | D(DstMem | SrcReg | Src2ImmByte | ModRM), | ||
2596 | D(DstMem | SrcReg | Src2CL | ModRM), | ||
2597 | D(ModRM), I(DstReg | SrcMem | ModRM, em_imul), | ||
2598 | /* 0xB0 - 0xB7 */ | ||
2599 | D2bv(DstMem | SrcReg | ModRM | Lock), | ||
2600 | D(DstReg | SrcMemFAddr | ModRM), D(DstMem | SrcReg | ModRM | BitOp | Lock), | ||
2601 | D(DstReg | SrcMemFAddr | ModRM), D(DstReg | SrcMemFAddr | ModRM), | ||
2602 | D(ByteOp | DstReg | SrcMem | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov), | ||
2603 | /* 0xB8 - 0xBF */ | ||
2604 | N, N, | ||
2605 | G(BitOp, group8), D(DstMem | SrcReg | ModRM | BitOp | Lock), | ||
2606 | D(DstReg | SrcMem | ModRM), D(DstReg | SrcMem | ModRM), | ||
2607 | D(ByteOp | DstReg | SrcMem | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov), | ||
2608 | /* 0xC0 - 0xCF */ | ||
2609 | D2bv(DstMem | SrcReg | ModRM | Lock), | ||
2610 | N, D(DstMem | SrcReg | ModRM | Mov), | ||
2611 | N, N, N, GD(0, &group9), | ||
2612 | N, N, N, N, N, N, N, N, | ||
2613 | /* 0xD0 - 0xDF */ | ||
2614 | N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, | ||
2615 | /* 0xE0 - 0xEF */ | ||
2616 | N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, | ||
2617 | /* 0xF0 - 0xFF */ | ||
2618 | N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N | ||
2619 | }; | ||
2620 | |||
2621 | #undef D | ||
2622 | #undef N | ||
2623 | #undef G | ||
2624 | #undef GD | ||
2625 | #undef I | ||
2626 | |||
2627 | #undef D2bv | ||
2628 | #undef I2bv | ||
2629 | #undef D6ALU | ||
2630 | |||
2631 | static unsigned imm_size(struct decode_cache *c) | ||
2632 | { | ||
2633 | unsigned size; | ||
2634 | |||
2635 | size = (c->d & ByteOp) ? 1 : c->op_bytes; | ||
2636 | if (size == 8) | ||
2637 | size = 4; | ||
2638 | return size; | ||
2639 | } | ||
2640 | |||
2641 | static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op, | ||
2642 | unsigned size, bool sign_extension) | ||
2643 | { | ||
2644 | struct decode_cache *c = &ctxt->decode; | ||
2645 | struct x86_emulate_ops *ops = ctxt->ops; | ||
2646 | int rc = X86EMUL_CONTINUE; | ||
2647 | |||
2648 | op->type = OP_IMM; | ||
2649 | op->bytes = size; | ||
2650 | op->addr.mem = c->eip; | ||
2651 | /* NB. Immediates are sign-extended as necessary. */ | ||
2652 | switch (op->bytes) { | ||
2653 | case 1: | ||
2654 | op->val = insn_fetch(s8, 1, c->eip); | ||
2655 | break; | ||
2656 | case 2: | ||
2657 | op->val = insn_fetch(s16, 2, c->eip); | ||
2658 | break; | ||
2659 | case 4: | ||
2660 | op->val = insn_fetch(s32, 4, c->eip); | ||
2661 | break; | ||
2662 | } | ||
2663 | if (!sign_extension) { | ||
2664 | switch (op->bytes) { | ||
2665 | case 1: | ||
2666 | op->val &= 0xff; | ||
2667 | break; | ||
2668 | case 2: | ||
2669 | op->val &= 0xffff; | ||
2670 | break; | ||
2671 | case 4: | ||
2672 | op->val &= 0xffffffff; | ||
2673 | break; | ||
2674 | } | ||
2675 | } | ||
2676 | done: | ||
2677 | return rc; | ||
2556 | } | 2678 | } |
2557 | 2679 | ||
2558 | int | 2680 | int |
2559 | x86_emulate_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) | 2681 | x86_decode_insn(struct x86_emulate_ctxt *ctxt) |
2560 | { | 2682 | { |
2683 | struct x86_emulate_ops *ops = ctxt->ops; | ||
2684 | struct decode_cache *c = &ctxt->decode; | ||
2685 | int rc = X86EMUL_CONTINUE; | ||
2686 | int mode = ctxt->mode; | ||
2687 | int def_op_bytes, def_ad_bytes, dual, goffset; | ||
2688 | struct opcode opcode, *g_mod012, *g_mod3; | ||
2689 | struct operand memop = { .type = OP_NONE }; | ||
2690 | |||
2691 | c->eip = ctxt->eip; | ||
2692 | c->fetch.start = c->fetch.end = c->eip; | ||
2693 | ctxt->cs_base = seg_base(ctxt, ops, VCPU_SREG_CS); | ||
2694 | |||
2695 | switch (mode) { | ||
2696 | case X86EMUL_MODE_REAL: | ||
2697 | case X86EMUL_MODE_VM86: | ||
2698 | case X86EMUL_MODE_PROT16: | ||
2699 | def_op_bytes = def_ad_bytes = 2; | ||
2700 | break; | ||
2701 | case X86EMUL_MODE_PROT32: | ||
2702 | def_op_bytes = def_ad_bytes = 4; | ||
2703 | break; | ||
2704 | #ifdef CONFIG_X86_64 | ||
2705 | case X86EMUL_MODE_PROT64: | ||
2706 | def_op_bytes = 4; | ||
2707 | def_ad_bytes = 8; | ||
2708 | break; | ||
2709 | #endif | ||
2710 | default: | ||
2711 | return -1; | ||
2712 | } | ||
2713 | |||
2714 | c->op_bytes = def_op_bytes; | ||
2715 | c->ad_bytes = def_ad_bytes; | ||
2716 | |||
2717 | /* Legacy prefixes. */ | ||
2718 | for (;;) { | ||
2719 | switch (c->b = insn_fetch(u8, 1, c->eip)) { | ||
2720 | case 0x66: /* operand-size override */ | ||
2721 | /* switch between 2/4 bytes */ | ||
2722 | c->op_bytes = def_op_bytes ^ 6; | ||
2723 | break; | ||
2724 | case 0x67: /* address-size override */ | ||
2725 | if (mode == X86EMUL_MODE_PROT64) | ||
2726 | /* switch between 4/8 bytes */ | ||
2727 | c->ad_bytes = def_ad_bytes ^ 12; | ||
2728 | else | ||
2729 | /* switch between 2/4 bytes */ | ||
2730 | c->ad_bytes = def_ad_bytes ^ 6; | ||
2731 | break; | ||
2732 | case 0x26: /* ES override */ | ||
2733 | case 0x2e: /* CS override */ | ||
2734 | case 0x36: /* SS override */ | ||
2735 | case 0x3e: /* DS override */ | ||
2736 | set_seg_override(c, (c->b >> 3) & 3); | ||
2737 | break; | ||
2738 | case 0x64: /* FS override */ | ||
2739 | case 0x65: /* GS override */ | ||
2740 | set_seg_override(c, c->b & 7); | ||
2741 | break; | ||
2742 | case 0x40 ... 0x4f: /* REX */ | ||
2743 | if (mode != X86EMUL_MODE_PROT64) | ||
2744 | goto done_prefixes; | ||
2745 | c->rex_prefix = c->b; | ||
2746 | continue; | ||
2747 | case 0xf0: /* LOCK */ | ||
2748 | c->lock_prefix = 1; | ||
2749 | break; | ||
2750 | case 0xf2: /* REPNE/REPNZ */ | ||
2751 | c->rep_prefix = REPNE_PREFIX; | ||
2752 | break; | ||
2753 | case 0xf3: /* REP/REPE/REPZ */ | ||
2754 | c->rep_prefix = REPE_PREFIX; | ||
2755 | break; | ||
2756 | default: | ||
2757 | goto done_prefixes; | ||
2758 | } | ||
2759 | |||
2760 | /* Any legacy prefix after a REX prefix nullifies its effect. */ | ||
2761 | |||
2762 | c->rex_prefix = 0; | ||
2763 | } | ||
2764 | |||
2765 | done_prefixes: | ||
2766 | |||
2767 | /* REX prefix. */ | ||
2768 | if (c->rex_prefix & 8) | ||
2769 | c->op_bytes = 8; /* REX.W */ | ||
2770 | |||
2771 | /* Opcode byte(s). */ | ||
2772 | opcode = opcode_table[c->b]; | ||
2773 | /* Two-byte opcode? */ | ||
2774 | if (c->b == 0x0f) { | ||
2775 | c->twobyte = 1; | ||
2776 | c->b = insn_fetch(u8, 1, c->eip); | ||
2777 | opcode = twobyte_table[c->b]; | ||
2778 | } | ||
2779 | c->d = opcode.flags; | ||
2780 | |||
2781 | if (c->d & Group) { | ||
2782 | dual = c->d & GroupDual; | ||
2783 | c->modrm = insn_fetch(u8, 1, c->eip); | ||
2784 | --c->eip; | ||
2785 | |||
2786 | if (c->d & GroupDual) { | ||
2787 | g_mod012 = opcode.u.gdual->mod012; | ||
2788 | g_mod3 = opcode.u.gdual->mod3; | ||
2789 | } else | ||
2790 | g_mod012 = g_mod3 = opcode.u.group; | ||
2791 | |||
2792 | c->d &= ~(Group | GroupDual); | ||
2793 | |||
2794 | goffset = (c->modrm >> 3) & 7; | ||
2795 | |||
2796 | if ((c->modrm >> 6) == 3) | ||
2797 | opcode = g_mod3[goffset]; | ||
2798 | else | ||
2799 | opcode = g_mod012[goffset]; | ||
2800 | c->d |= opcode.flags; | ||
2801 | } | ||
2802 | |||
2803 | c->execute = opcode.u.execute; | ||
2804 | |||
2805 | /* Unrecognised? */ | ||
2806 | if (c->d == 0 || (c->d & Undefined)) { | ||
2807 | DPRINTF("Cannot emulate %02x\n", c->b); | ||
2808 | return -1; | ||
2809 | } | ||
2810 | |||
2811 | if (mode == X86EMUL_MODE_PROT64 && (c->d & Stack)) | ||
2812 | c->op_bytes = 8; | ||
2813 | |||
2814 | if (c->d & Op3264) { | ||
2815 | if (mode == X86EMUL_MODE_PROT64) | ||
2816 | c->op_bytes = 8; | ||
2817 | else | ||
2818 | c->op_bytes = 4; | ||
2819 | } | ||
2820 | |||
2821 | /* ModRM and SIB bytes. */ | ||
2822 | if (c->d & ModRM) { | ||
2823 | rc = decode_modrm(ctxt, ops, &memop); | ||
2824 | if (!c->has_seg_override) | ||
2825 | set_seg_override(c, c->modrm_seg); | ||
2826 | } else if (c->d & MemAbs) | ||
2827 | rc = decode_abs(ctxt, ops, &memop); | ||
2828 | if (rc != X86EMUL_CONTINUE) | ||
2829 | goto done; | ||
2830 | |||
2831 | if (!c->has_seg_override) | ||
2832 | set_seg_override(c, VCPU_SREG_DS); | ||
2833 | |||
2834 | if (memop.type == OP_MEM && !(!c->twobyte && c->b == 0x8d)) | ||
2835 | memop.addr.mem += seg_override_base(ctxt, ops, c); | ||
2836 | |||
2837 | if (memop.type == OP_MEM && c->ad_bytes != 8) | ||
2838 | memop.addr.mem = (u32)memop.addr.mem; | ||
2839 | |||
2840 | if (memop.type == OP_MEM && c->rip_relative) | ||
2841 | memop.addr.mem += c->eip; | ||
2842 | |||
2843 | /* | ||
2844 | * Decode and fetch the source operand: register, memory | ||
2845 | * or immediate. | ||
2846 | */ | ||
2847 | switch (c->d & SrcMask) { | ||
2848 | case SrcNone: | ||
2849 | break; | ||
2850 | case SrcReg: | ||
2851 | decode_register_operand(&c->src, c, 0); | ||
2852 | break; | ||
2853 | case SrcMem16: | ||
2854 | memop.bytes = 2; | ||
2855 | goto srcmem_common; | ||
2856 | case SrcMem32: | ||
2857 | memop.bytes = 4; | ||
2858 | goto srcmem_common; | ||
2859 | case SrcMem: | ||
2860 | memop.bytes = (c->d & ByteOp) ? 1 : | ||
2861 | c->op_bytes; | ||
2862 | srcmem_common: | ||
2863 | c->src = memop; | ||
2864 | break; | ||
2865 | case SrcImmU16: | ||
2866 | rc = decode_imm(ctxt, &c->src, 2, false); | ||
2867 | break; | ||
2868 | case SrcImm: | ||
2869 | rc = decode_imm(ctxt, &c->src, imm_size(c), true); | ||
2870 | break; | ||
2871 | case SrcImmU: | ||
2872 | rc = decode_imm(ctxt, &c->src, imm_size(c), false); | ||
2873 | break; | ||
2874 | case SrcImmByte: | ||
2875 | rc = decode_imm(ctxt, &c->src, 1, true); | ||
2876 | break; | ||
2877 | case SrcImmUByte: | ||
2878 | rc = decode_imm(ctxt, &c->src, 1, false); | ||
2879 | break; | ||
2880 | case SrcAcc: | ||
2881 | c->src.type = OP_REG; | ||
2882 | c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; | ||
2883 | c->src.addr.reg = &c->regs[VCPU_REGS_RAX]; | ||
2884 | fetch_register_operand(&c->src); | ||
2885 | break; | ||
2886 | case SrcOne: | ||
2887 | c->src.bytes = 1; | ||
2888 | c->src.val = 1; | ||
2889 | break; | ||
2890 | case SrcSI: | ||
2891 | c->src.type = OP_MEM; | ||
2892 | c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; | ||
2893 | c->src.addr.mem = | ||
2894 | register_address(c, seg_override_base(ctxt, ops, c), | ||
2895 | c->regs[VCPU_REGS_RSI]); | ||
2896 | c->src.val = 0; | ||
2897 | break; | ||
2898 | case SrcImmFAddr: | ||
2899 | c->src.type = OP_IMM; | ||
2900 | c->src.addr.mem = c->eip; | ||
2901 | c->src.bytes = c->op_bytes + 2; | ||
2902 | insn_fetch_arr(c->src.valptr, c->src.bytes, c->eip); | ||
2903 | break; | ||
2904 | case SrcMemFAddr: | ||
2905 | memop.bytes = c->op_bytes + 2; | ||
2906 | goto srcmem_common; | ||
2907 | break; | ||
2908 | } | ||
2909 | |||
2910 | if (rc != X86EMUL_CONTINUE) | ||
2911 | goto done; | ||
2912 | |||
2913 | /* | ||
2914 | * Decode and fetch the second source operand: register, memory | ||
2915 | * or immediate. | ||
2916 | */ | ||
2917 | switch (c->d & Src2Mask) { | ||
2918 | case Src2None: | ||
2919 | break; | ||
2920 | case Src2CL: | ||
2921 | c->src2.bytes = 1; | ||
2922 | c->src2.val = c->regs[VCPU_REGS_RCX] & 0x8; | ||
2923 | break; | ||
2924 | case Src2ImmByte: | ||
2925 | rc = decode_imm(ctxt, &c->src2, 1, true); | ||
2926 | break; | ||
2927 | case Src2One: | ||
2928 | c->src2.bytes = 1; | ||
2929 | c->src2.val = 1; | ||
2930 | break; | ||
2931 | case Src2Imm: | ||
2932 | rc = decode_imm(ctxt, &c->src2, imm_size(c), true); | ||
2933 | break; | ||
2934 | } | ||
2935 | |||
2936 | if (rc != X86EMUL_CONTINUE) | ||
2937 | goto done; | ||
2938 | |||
2939 | /* Decode and fetch the destination operand: register or memory. */ | ||
2940 | switch (c->d & DstMask) { | ||
2941 | case DstReg: | ||
2942 | decode_register_operand(&c->dst, c, | ||
2943 | c->twobyte && (c->b == 0xb6 || c->b == 0xb7)); | ||
2944 | break; | ||
2945 | case DstImmUByte: | ||
2946 | c->dst.type = OP_IMM; | ||
2947 | c->dst.addr.mem = c->eip; | ||
2948 | c->dst.bytes = 1; | ||
2949 | c->dst.val = insn_fetch(u8, 1, c->eip); | ||
2950 | break; | ||
2951 | case DstMem: | ||
2952 | case DstMem64: | ||
2953 | c->dst = memop; | ||
2954 | if ((c->d & DstMask) == DstMem64) | ||
2955 | c->dst.bytes = 8; | ||
2956 | else | ||
2957 | c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; | ||
2958 | if (c->d & BitOp) | ||
2959 | fetch_bit_operand(c); | ||
2960 | c->dst.orig_val = c->dst.val; | ||
2961 | break; | ||
2962 | case DstAcc: | ||
2963 | c->dst.type = OP_REG; | ||
2964 | c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; | ||
2965 | c->dst.addr.reg = &c->regs[VCPU_REGS_RAX]; | ||
2966 | fetch_register_operand(&c->dst); | ||
2967 | c->dst.orig_val = c->dst.val; | ||
2968 | break; | ||
2969 | case DstDI: | ||
2970 | c->dst.type = OP_MEM; | ||
2971 | c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; | ||
2972 | c->dst.addr.mem = | ||
2973 | register_address(c, es_base(ctxt, ops), | ||
2974 | c->regs[VCPU_REGS_RDI]); | ||
2975 | c->dst.val = 0; | ||
2976 | break; | ||
2977 | case ImplicitOps: | ||
2978 | /* Special instructions do their own operand decoding. */ | ||
2979 | default: | ||
2980 | c->dst.type = OP_NONE; /* Disable writeback. */ | ||
2981 | return 0; | ||
2982 | } | ||
2983 | |||
2984 | done: | ||
2985 | return (rc == X86EMUL_UNHANDLEABLE) ? -1 : 0; | ||
2986 | } | ||
2987 | |||
2988 | static bool string_insn_completed(struct x86_emulate_ctxt *ctxt) | ||
2989 | { | ||
2990 | struct decode_cache *c = &ctxt->decode; | ||
2991 | |||
2992 | /* The second termination condition only applies for REPE | ||
2993 | * and REPNE. Test if the repeat string operation prefix is | ||
2994 | * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the | ||
2995 | * corresponding termination condition according to: | ||
2996 | * - if REPE/REPZ and ZF = 0 then done | ||
2997 | * - if REPNE/REPNZ and ZF = 1 then done | ||
2998 | */ | ||
2999 | if (((c->b == 0xa6) || (c->b == 0xa7) || | ||
3000 | (c->b == 0xae) || (c->b == 0xaf)) | ||
3001 | && (((c->rep_prefix == REPE_PREFIX) && | ||
3002 | ((ctxt->eflags & EFLG_ZF) == 0)) | ||
3003 | || ((c->rep_prefix == REPNE_PREFIX) && | ||
3004 | ((ctxt->eflags & EFLG_ZF) == EFLG_ZF)))) | ||
3005 | return true; | ||
3006 | |||
3007 | return false; | ||
3008 | } | ||
3009 | |||
3010 | int | ||
3011 | x86_emulate_insn(struct x86_emulate_ctxt *ctxt) | ||
3012 | { | ||
3013 | struct x86_emulate_ops *ops = ctxt->ops; | ||
2561 | u64 msr_data; | 3014 | u64 msr_data; |
2562 | struct decode_cache *c = &ctxt->decode; | 3015 | struct decode_cache *c = &ctxt->decode; |
2563 | int rc = X86EMUL_CONTINUE; | 3016 | int rc = X86EMUL_CONTINUE; |
2564 | int saved_dst_type = c->dst.type; | 3017 | int saved_dst_type = c->dst.type; |
3018 | int irq; /* Used for int 3, int, and into */ | ||
2565 | 3019 | ||
2566 | ctxt->decode.mem_read.pos = 0; | 3020 | ctxt->decode.mem_read.pos = 0; |
2567 | 3021 | ||
@@ -2576,6 +3030,11 @@ x86_emulate_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) | |||
2576 | goto done; | 3030 | goto done; |
2577 | } | 3031 | } |
2578 | 3032 | ||
3033 | if ((c->d & SrcMask) == SrcMemFAddr && c->src.type != OP_MEM) { | ||
3034 | emulate_ud(ctxt); | ||
3035 | goto done; | ||
3036 | } | ||
3037 | |||
2579 | /* Privileged instruction can be executed only in CPL=0 */ | 3038 | /* Privileged instruction can be executed only in CPL=0 */ |
2580 | if ((c->d & Priv) && ops->cpl(ctxt->vcpu)) { | 3039 | if ((c->d & Priv) && ops->cpl(ctxt->vcpu)) { |
2581 | emulate_gp(ctxt, 0); | 3040 | emulate_gp(ctxt, 0); |
@@ -2583,35 +3042,15 @@ x86_emulate_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) | |||
2583 | } | 3042 | } |
2584 | 3043 | ||
2585 | if (c->rep_prefix && (c->d & String)) { | 3044 | if (c->rep_prefix && (c->d & String)) { |
2586 | ctxt->restart = true; | ||
2587 | /* All REP prefixes have the same first termination condition */ | 3045 | /* All REP prefixes have the same first termination condition */ |
2588 | if (address_mask(c, c->regs[VCPU_REGS_RCX]) == 0) { | 3046 | if (address_mask(c, c->regs[VCPU_REGS_RCX]) == 0) { |
2589 | string_done: | ||
2590 | ctxt->restart = false; | ||
2591 | ctxt->eip = c->eip; | 3047 | ctxt->eip = c->eip; |
2592 | goto done; | 3048 | goto done; |
2593 | } | 3049 | } |
2594 | /* The second termination condition only applies for REPE | ||
2595 | * and REPNE. Test if the repeat string operation prefix is | ||
2596 | * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the | ||
2597 | * corresponding termination condition according to: | ||
2598 | * - if REPE/REPZ and ZF = 0 then done | ||
2599 | * - if REPNE/REPNZ and ZF = 1 then done | ||
2600 | */ | ||
2601 | if ((c->b == 0xa6) || (c->b == 0xa7) || | ||
2602 | (c->b == 0xae) || (c->b == 0xaf)) { | ||
2603 | if ((c->rep_prefix == REPE_PREFIX) && | ||
2604 | ((ctxt->eflags & EFLG_ZF) == 0)) | ||
2605 | goto string_done; | ||
2606 | if ((c->rep_prefix == REPNE_PREFIX) && | ||
2607 | ((ctxt->eflags & EFLG_ZF) == EFLG_ZF)) | ||
2608 | goto string_done; | ||
2609 | } | ||
2610 | c->eip = ctxt->eip; | ||
2611 | } | 3050 | } |
2612 | 3051 | ||
2613 | if (c->src.type == OP_MEM) { | 3052 | if ((c->src.type == OP_MEM) && !(c->d & NoAccess)) { |
2614 | rc = read_emulated(ctxt, ops, (unsigned long)c->src.ptr, | 3053 | rc = read_emulated(ctxt, ops, c->src.addr.mem, |
2615 | c->src.valptr, c->src.bytes); | 3054 | c->src.valptr, c->src.bytes); |
2616 | if (rc != X86EMUL_CONTINUE) | 3055 | if (rc != X86EMUL_CONTINUE) |
2617 | goto done; | 3056 | goto done; |
@@ -2619,7 +3058,7 @@ x86_emulate_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) | |||
2619 | } | 3058 | } |
2620 | 3059 | ||
2621 | if (c->src2.type == OP_MEM) { | 3060 | if (c->src2.type == OP_MEM) { |
2622 | rc = read_emulated(ctxt, ops, (unsigned long)c->src2.ptr, | 3061 | rc = read_emulated(ctxt, ops, c->src2.addr.mem, |
2623 | &c->src2.val, c->src2.bytes); | 3062 | &c->src2.val, c->src2.bytes); |
2624 | if (rc != X86EMUL_CONTINUE) | 3063 | if (rc != X86EMUL_CONTINUE) |
2625 | goto done; | 3064 | goto done; |
@@ -2631,7 +3070,7 @@ x86_emulate_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) | |||
2631 | 3070 | ||
2632 | if ((c->dst.type == OP_MEM) && !(c->d & Mov)) { | 3071 | if ((c->dst.type == OP_MEM) && !(c->d & Mov)) { |
2633 | /* optimisation - avoid slow emulated read if Mov */ | 3072 | /* optimisation - avoid slow emulated read if Mov */ |
2634 | rc = read_emulated(ctxt, ops, (unsigned long)c->dst.ptr, | 3073 | rc = read_emulated(ctxt, ops, c->dst.addr.mem, |
2635 | &c->dst.val, c->dst.bytes); | 3074 | &c->dst.val, c->dst.bytes); |
2636 | if (rc != X86EMUL_CONTINUE) | 3075 | if (rc != X86EMUL_CONTINUE) |
2637 | goto done; | 3076 | goto done; |
@@ -2640,6 +3079,13 @@ x86_emulate_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) | |||
2640 | 3079 | ||
2641 | special_insn: | 3080 | special_insn: |
2642 | 3081 | ||
3082 | if (c->execute) { | ||
3083 | rc = c->execute(ctxt); | ||
3084 | if (rc != X86EMUL_CONTINUE) | ||
3085 | goto done; | ||
3086 | goto writeback; | ||
3087 | } | ||
3088 | |||
2643 | if (c->twobyte) | 3089 | if (c->twobyte) |
2644 | goto twobyte_insn; | 3090 | goto twobyte_insn; |
2645 | 3091 | ||
@@ -2653,8 +3099,6 @@ special_insn: | |||
2653 | break; | 3099 | break; |
2654 | case 0x07: /* pop es */ | 3100 | case 0x07: /* pop es */ |
2655 | rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_ES); | 3101 | rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_ES); |
2656 | if (rc != X86EMUL_CONTINUE) | ||
2657 | goto done; | ||
2658 | break; | 3102 | break; |
2659 | case 0x08 ... 0x0d: | 3103 | case 0x08 ... 0x0d: |
2660 | or: /* or */ | 3104 | or: /* or */ |
@@ -2672,8 +3116,6 @@ special_insn: | |||
2672 | break; | 3116 | break; |
2673 | case 0x17: /* pop ss */ | 3117 | case 0x17: /* pop ss */ |
2674 | rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_SS); | 3118 | rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_SS); |
2675 | if (rc != X86EMUL_CONTINUE) | ||
2676 | goto done; | ||
2677 | break; | 3119 | break; |
2678 | case 0x18 ... 0x1d: | 3120 | case 0x18 ... 0x1d: |
2679 | sbb: /* sbb */ | 3121 | sbb: /* sbb */ |
@@ -2684,8 +3126,6 @@ special_insn: | |||
2684 | break; | 3126 | break; |
2685 | case 0x1f: /* pop ds */ | 3127 | case 0x1f: /* pop ds */ |
2686 | rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_DS); | 3128 | rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_DS); |
2687 | if (rc != X86EMUL_CONTINUE) | ||
2688 | goto done; | ||
2689 | break; | 3129 | break; |
2690 | case 0x20 ... 0x25: | 3130 | case 0x20 ... 0x25: |
2691 | and: /* and */ | 3131 | and: /* and */ |
@@ -2709,58 +3149,29 @@ special_insn: | |||
2709 | case 0x48 ... 0x4f: /* dec r16/r32 */ | 3149 | case 0x48 ... 0x4f: /* dec r16/r32 */ |
2710 | emulate_1op("dec", c->dst, ctxt->eflags); | 3150 | emulate_1op("dec", c->dst, ctxt->eflags); |
2711 | break; | 3151 | break; |
2712 | case 0x50 ... 0x57: /* push reg */ | ||
2713 | emulate_push(ctxt, ops); | ||
2714 | break; | ||
2715 | case 0x58 ... 0x5f: /* pop reg */ | 3152 | case 0x58 ... 0x5f: /* pop reg */ |
2716 | pop_instruction: | 3153 | pop_instruction: |
2717 | rc = emulate_pop(ctxt, ops, &c->dst.val, c->op_bytes); | 3154 | rc = emulate_pop(ctxt, ops, &c->dst.val, c->op_bytes); |
2718 | if (rc != X86EMUL_CONTINUE) | ||
2719 | goto done; | ||
2720 | break; | 3155 | break; |
2721 | case 0x60: /* pusha */ | 3156 | case 0x60: /* pusha */ |
2722 | rc = emulate_pusha(ctxt, ops); | 3157 | rc = emulate_pusha(ctxt, ops); |
2723 | if (rc != X86EMUL_CONTINUE) | ||
2724 | goto done; | ||
2725 | break; | 3158 | break; |
2726 | case 0x61: /* popa */ | 3159 | case 0x61: /* popa */ |
2727 | rc = emulate_popa(ctxt, ops); | 3160 | rc = emulate_popa(ctxt, ops); |
2728 | if (rc != X86EMUL_CONTINUE) | ||
2729 | goto done; | ||
2730 | break; | 3161 | break; |
2731 | case 0x63: /* movsxd */ | 3162 | case 0x63: /* movsxd */ |
2732 | if (ctxt->mode != X86EMUL_MODE_PROT64) | 3163 | if (ctxt->mode != X86EMUL_MODE_PROT64) |
2733 | goto cannot_emulate; | 3164 | goto cannot_emulate; |
2734 | c->dst.val = (s32) c->src.val; | 3165 | c->dst.val = (s32) c->src.val; |
2735 | break; | 3166 | break; |
2736 | case 0x68: /* push imm */ | ||
2737 | case 0x6a: /* push imm8 */ | ||
2738 | emulate_push(ctxt, ops); | ||
2739 | break; | ||
2740 | case 0x6c: /* insb */ | 3167 | case 0x6c: /* insb */ |
2741 | case 0x6d: /* insw/insd */ | 3168 | case 0x6d: /* insw/insd */ |
2742 | c->dst.bytes = min(c->dst.bytes, 4u); | 3169 | c->src.val = c->regs[VCPU_REGS_RDX]; |
2743 | if (!emulator_io_permited(ctxt, ops, c->regs[VCPU_REGS_RDX], | 3170 | goto do_io_in; |
2744 | c->dst.bytes)) { | ||
2745 | emulate_gp(ctxt, 0); | ||
2746 | goto done; | ||
2747 | } | ||
2748 | if (!pio_in_emulated(ctxt, ops, c->dst.bytes, | ||
2749 | c->regs[VCPU_REGS_RDX], &c->dst.val)) | ||
2750 | goto done; /* IO is needed, skip writeback */ | ||
2751 | break; | ||
2752 | case 0x6e: /* outsb */ | 3171 | case 0x6e: /* outsb */ |
2753 | case 0x6f: /* outsw/outsd */ | 3172 | case 0x6f: /* outsw/outsd */ |
2754 | c->src.bytes = min(c->src.bytes, 4u); | 3173 | c->dst.val = c->regs[VCPU_REGS_RDX]; |
2755 | if (!emulator_io_permited(ctxt, ops, c->regs[VCPU_REGS_RDX], | 3174 | goto do_io_out; |
2756 | c->src.bytes)) { | ||
2757 | emulate_gp(ctxt, 0); | ||
2758 | goto done; | ||
2759 | } | ||
2760 | ops->pio_out_emulated(c->src.bytes, c->regs[VCPU_REGS_RDX], | ||
2761 | &c->src.val, 1, ctxt->vcpu); | ||
2762 | |||
2763 | c->dst.type = OP_NONE; /* nothing to writeback */ | ||
2764 | break; | 3175 | break; |
2765 | case 0x70 ... 0x7f: /* jcc (short) */ | 3176 | case 0x70 ... 0x7f: /* jcc (short) */ |
2766 | if (test_cc(c->b, ctxt->eflags)) | 3177 | if (test_cc(c->b, ctxt->eflags)) |
@@ -2793,29 +3204,15 @@ special_insn: | |||
2793 | case 0x86 ... 0x87: /* xchg */ | 3204 | case 0x86 ... 0x87: /* xchg */ |
2794 | xchg: | 3205 | xchg: |
2795 | /* Write back the register source. */ | 3206 | /* Write back the register source. */ |
2796 | switch (c->dst.bytes) { | 3207 | c->src.val = c->dst.val; |
2797 | case 1: | 3208 | write_register_operand(&c->src); |
2798 | *(u8 *) c->src.ptr = (u8) c->dst.val; | ||
2799 | break; | ||
2800 | case 2: | ||
2801 | *(u16 *) c->src.ptr = (u16) c->dst.val; | ||
2802 | break; | ||
2803 | case 4: | ||
2804 | *c->src.ptr = (u32) c->dst.val; | ||
2805 | break; /* 64b reg: zero-extend */ | ||
2806 | case 8: | ||
2807 | *c->src.ptr = c->dst.val; | ||
2808 | break; | ||
2809 | } | ||
2810 | /* | 3209 | /* |
2811 | * Write back the memory destination with implicit LOCK | 3210 | * Write back the memory destination with implicit LOCK |
2812 | * prefix. | 3211 | * prefix. |
2813 | */ | 3212 | */ |
2814 | c->dst.val = c->src.val; | 3213 | c->dst.val = c->src.orig_val; |
2815 | c->lock_prefix = 1; | 3214 | c->lock_prefix = 1; |
2816 | break; | 3215 | break; |
2817 | case 0x88 ... 0x8b: /* mov */ | ||
2818 | goto mov; | ||
2819 | case 0x8c: /* mov r/m, sreg */ | 3216 | case 0x8c: /* mov r/m, sreg */ |
2820 | if (c->modrm_reg > VCPU_SREG_GS) { | 3217 | if (c->modrm_reg > VCPU_SREG_GS) { |
2821 | emulate_ud(ctxt); | 3218 | emulate_ud(ctxt); |
@@ -2824,7 +3221,7 @@ special_insn: | |||
2824 | c->dst.val = ops->get_segment_selector(c->modrm_reg, ctxt->vcpu); | 3221 | c->dst.val = ops->get_segment_selector(c->modrm_reg, ctxt->vcpu); |
2825 | break; | 3222 | break; |
2826 | case 0x8d: /* lea r16/r32, m */ | 3223 | case 0x8d: /* lea r16/r32, m */ |
2827 | c->dst.val = c->modrm_ea; | 3224 | c->dst.val = c->src.addr.mem; |
2828 | break; | 3225 | break; |
2829 | case 0x8e: { /* mov seg, r/m16 */ | 3226 | case 0x8e: { /* mov seg, r/m16 */ |
2830 | uint16_t sel; | 3227 | uint16_t sel; |
@@ -2847,76 +3244,87 @@ special_insn: | |||
2847 | } | 3244 | } |
2848 | case 0x8f: /* pop (sole member of Grp1a) */ | 3245 | case 0x8f: /* pop (sole member of Grp1a) */ |
2849 | rc = emulate_grp1a(ctxt, ops); | 3246 | rc = emulate_grp1a(ctxt, ops); |
2850 | if (rc != X86EMUL_CONTINUE) | ||
2851 | goto done; | ||
2852 | break; | 3247 | break; |
2853 | case 0x90: /* nop / xchg r8,rax */ | 3248 | case 0x90 ... 0x97: /* nop / xchg reg, rax */ |
2854 | if (c->dst.ptr == (unsigned long *)&c->regs[VCPU_REGS_RAX]) { | 3249 | if (c->dst.addr.reg == &c->regs[VCPU_REGS_RAX]) |
2855 | c->dst.type = OP_NONE; /* nop */ | ||
2856 | break; | 3250 | break; |
2857 | } | ||
2858 | case 0x91 ... 0x97: /* xchg reg,rax */ | ||
2859 | c->src.type = OP_REG; | ||
2860 | c->src.bytes = c->op_bytes; | ||
2861 | c->src.ptr = (unsigned long *) &c->regs[VCPU_REGS_RAX]; | ||
2862 | c->src.val = *(c->src.ptr); | ||
2863 | goto xchg; | 3251 | goto xchg; |
3252 | case 0x98: /* cbw/cwde/cdqe */ | ||
3253 | switch (c->op_bytes) { | ||
3254 | case 2: c->dst.val = (s8)c->dst.val; break; | ||
3255 | case 4: c->dst.val = (s16)c->dst.val; break; | ||
3256 | case 8: c->dst.val = (s32)c->dst.val; break; | ||
3257 | } | ||
3258 | break; | ||
2864 | case 0x9c: /* pushf */ | 3259 | case 0x9c: /* pushf */ |
2865 | c->src.val = (unsigned long) ctxt->eflags; | 3260 | c->src.val = (unsigned long) ctxt->eflags; |
2866 | emulate_push(ctxt, ops); | 3261 | emulate_push(ctxt, ops); |
2867 | break; | 3262 | break; |
2868 | case 0x9d: /* popf */ | 3263 | case 0x9d: /* popf */ |
2869 | c->dst.type = OP_REG; | 3264 | c->dst.type = OP_REG; |
2870 | c->dst.ptr = (unsigned long *) &ctxt->eflags; | 3265 | c->dst.addr.reg = &ctxt->eflags; |
2871 | c->dst.bytes = c->op_bytes; | 3266 | c->dst.bytes = c->op_bytes; |
2872 | rc = emulate_popf(ctxt, ops, &c->dst.val, c->op_bytes); | 3267 | rc = emulate_popf(ctxt, ops, &c->dst.val, c->op_bytes); |
2873 | if (rc != X86EMUL_CONTINUE) | ||
2874 | goto done; | ||
2875 | break; | 3268 | break; |
2876 | case 0xa0 ... 0xa3: /* mov */ | ||
2877 | case 0xa4 ... 0xa5: /* movs */ | ||
2878 | goto mov; | ||
2879 | case 0xa6 ... 0xa7: /* cmps */ | 3269 | case 0xa6 ... 0xa7: /* cmps */ |
2880 | c->dst.type = OP_NONE; /* Disable writeback. */ | 3270 | c->dst.type = OP_NONE; /* Disable writeback. */ |
2881 | DPRINTF("cmps: mem1=0x%p mem2=0x%p\n", c->src.ptr, c->dst.ptr); | 3271 | DPRINTF("cmps: mem1=0x%p mem2=0x%p\n", c->src.addr.mem, c->dst.addr.mem); |
2882 | goto cmp; | 3272 | goto cmp; |
2883 | case 0xa8 ... 0xa9: /* test ax, imm */ | 3273 | case 0xa8 ... 0xa9: /* test ax, imm */ |
2884 | goto test; | 3274 | goto test; |
2885 | case 0xaa ... 0xab: /* stos */ | ||
2886 | c->dst.val = c->regs[VCPU_REGS_RAX]; | ||
2887 | break; | ||
2888 | case 0xac ... 0xad: /* lods */ | ||
2889 | goto mov; | ||
2890 | case 0xae ... 0xaf: /* scas */ | 3275 | case 0xae ... 0xaf: /* scas */ |
2891 | DPRINTF("Urk! I don't handle SCAS.\n"); | 3276 | goto cmp; |
2892 | goto cannot_emulate; | ||
2893 | case 0xb0 ... 0xbf: /* mov r, imm */ | ||
2894 | goto mov; | ||
2895 | case 0xc0 ... 0xc1: | 3277 | case 0xc0 ... 0xc1: |
2896 | emulate_grp2(ctxt); | 3278 | emulate_grp2(ctxt); |
2897 | break; | 3279 | break; |
2898 | case 0xc3: /* ret */ | 3280 | case 0xc3: /* ret */ |
2899 | c->dst.type = OP_REG; | 3281 | c->dst.type = OP_REG; |
2900 | c->dst.ptr = &c->eip; | 3282 | c->dst.addr.reg = &c->eip; |
2901 | c->dst.bytes = c->op_bytes; | 3283 | c->dst.bytes = c->op_bytes; |
2902 | goto pop_instruction; | 3284 | goto pop_instruction; |
2903 | case 0xc6 ... 0xc7: /* mov (sole member of Grp11) */ | 3285 | case 0xc4: /* les */ |
2904 | mov: | 3286 | rc = emulate_load_segment(ctxt, ops, VCPU_SREG_ES); |
2905 | c->dst.val = c->src.val; | 3287 | break; |
3288 | case 0xc5: /* lds */ | ||
3289 | rc = emulate_load_segment(ctxt, ops, VCPU_SREG_DS); | ||
2906 | break; | 3290 | break; |
2907 | case 0xcb: /* ret far */ | 3291 | case 0xcb: /* ret far */ |
2908 | rc = emulate_ret_far(ctxt, ops); | 3292 | rc = emulate_ret_far(ctxt, ops); |
2909 | if (rc != X86EMUL_CONTINUE) | 3293 | break; |
2910 | goto done; | 3294 | case 0xcc: /* int3 */ |
3295 | irq = 3; | ||
3296 | goto do_interrupt; | ||
3297 | case 0xcd: /* int n */ | ||
3298 | irq = c->src.val; | ||
3299 | do_interrupt: | ||
3300 | rc = emulate_int(ctxt, ops, irq); | ||
3301 | break; | ||
3302 | case 0xce: /* into */ | ||
3303 | if (ctxt->eflags & EFLG_OF) { | ||
3304 | irq = 4; | ||
3305 | goto do_interrupt; | ||
3306 | } | ||
3307 | break; | ||
3308 | case 0xcf: /* iret */ | ||
3309 | rc = emulate_iret(ctxt, ops); | ||
2911 | break; | 3310 | break; |
2912 | case 0xd0 ... 0xd1: /* Grp2 */ | 3311 | case 0xd0 ... 0xd1: /* Grp2 */ |
2913 | c->src.val = 1; | ||
2914 | emulate_grp2(ctxt); | 3312 | emulate_grp2(ctxt); |
2915 | break; | 3313 | break; |
2916 | case 0xd2 ... 0xd3: /* Grp2 */ | 3314 | case 0xd2 ... 0xd3: /* Grp2 */ |
2917 | c->src.val = c->regs[VCPU_REGS_RCX]; | 3315 | c->src.val = c->regs[VCPU_REGS_RCX]; |
2918 | emulate_grp2(ctxt); | 3316 | emulate_grp2(ctxt); |
2919 | break; | 3317 | break; |
3318 | case 0xe0 ... 0xe2: /* loop/loopz/loopnz */ | ||
3319 | register_address_increment(c, &c->regs[VCPU_REGS_RCX], -1); | ||
3320 | if (address_mask(c, c->regs[VCPU_REGS_RCX]) != 0 && | ||
3321 | (c->b == 0xe2 || test_cc(c->b ^ 0x5, ctxt->eflags))) | ||
3322 | jmp_rel(c, c->src.val); | ||
3323 | break; | ||
3324 | case 0xe3: /* jcxz/jecxz/jrcxz */ | ||
3325 | if (address_mask(c, c->regs[VCPU_REGS_RCX]) == 0) | ||
3326 | jmp_rel(c, c->src.val); | ||
3327 | break; | ||
2920 | case 0xe4: /* inb */ | 3328 | case 0xe4: /* inb */ |
2921 | case 0xe5: /* in */ | 3329 | case 0xe5: /* in */ |
2922 | goto do_io_in; | 3330 | goto do_io_in; |
@@ -2964,15 +3372,16 @@ special_insn: | |||
2964 | break; | 3372 | break; |
2965 | case 0xee: /* out dx,al */ | 3373 | case 0xee: /* out dx,al */ |
2966 | case 0xef: /* out dx,(e/r)ax */ | 3374 | case 0xef: /* out dx,(e/r)ax */ |
2967 | c->src.val = c->regs[VCPU_REGS_RDX]; | 3375 | c->dst.val = c->regs[VCPU_REGS_RDX]; |
2968 | do_io_out: | 3376 | do_io_out: |
2969 | c->dst.bytes = min(c->dst.bytes, 4u); | 3377 | c->src.bytes = min(c->src.bytes, 4u); |
2970 | if (!emulator_io_permited(ctxt, ops, c->src.val, c->dst.bytes)) { | 3378 | if (!emulator_io_permited(ctxt, ops, c->dst.val, |
3379 | c->src.bytes)) { | ||
2971 | emulate_gp(ctxt, 0); | 3380 | emulate_gp(ctxt, 0); |
2972 | goto done; | 3381 | goto done; |
2973 | } | 3382 | } |
2974 | ops->pio_out_emulated(c->dst.bytes, c->src.val, &c->dst.val, 1, | 3383 | ops->pio_out_emulated(c->src.bytes, c->dst.val, |
2975 | ctxt->vcpu); | 3384 | &c->src.val, 1, ctxt->vcpu); |
2976 | c->dst.type = OP_NONE; /* Disable writeback. */ | 3385 | c->dst.type = OP_NONE; /* Disable writeback. */ |
2977 | break; | 3386 | break; |
2978 | case 0xf4: /* hlt */ | 3387 | case 0xf4: /* hlt */ |
@@ -2981,24 +3390,22 @@ special_insn: | |||
2981 | case 0xf5: /* cmc */ | 3390 | case 0xf5: /* cmc */ |
2982 | /* complement carry flag from eflags reg */ | 3391 | /* complement carry flag from eflags reg */ |
2983 | ctxt->eflags ^= EFLG_CF; | 3392 | ctxt->eflags ^= EFLG_CF; |
2984 | c->dst.type = OP_NONE; /* Disable writeback. */ | ||
2985 | break; | 3393 | break; |
2986 | case 0xf6 ... 0xf7: /* Grp3 */ | 3394 | case 0xf6 ... 0xf7: /* Grp3 */ |
2987 | if (!emulate_grp3(ctxt, ops)) | 3395 | rc = emulate_grp3(ctxt, ops); |
2988 | goto cannot_emulate; | ||
2989 | break; | 3396 | break; |
2990 | case 0xf8: /* clc */ | 3397 | case 0xf8: /* clc */ |
2991 | ctxt->eflags &= ~EFLG_CF; | 3398 | ctxt->eflags &= ~EFLG_CF; |
2992 | c->dst.type = OP_NONE; /* Disable writeback. */ | 3399 | break; |
3400 | case 0xf9: /* stc */ | ||
3401 | ctxt->eflags |= EFLG_CF; | ||
2993 | break; | 3402 | break; |
2994 | case 0xfa: /* cli */ | 3403 | case 0xfa: /* cli */ |
2995 | if (emulator_bad_iopl(ctxt, ops)) { | 3404 | if (emulator_bad_iopl(ctxt, ops)) { |
2996 | emulate_gp(ctxt, 0); | 3405 | emulate_gp(ctxt, 0); |
2997 | goto done; | 3406 | goto done; |
2998 | } else { | 3407 | } else |
2999 | ctxt->eflags &= ~X86_EFLAGS_IF; | 3408 | ctxt->eflags &= ~X86_EFLAGS_IF; |
3000 | c->dst.type = OP_NONE; /* Disable writeback. */ | ||
3001 | } | ||
3002 | break; | 3409 | break; |
3003 | case 0xfb: /* sti */ | 3410 | case 0xfb: /* sti */ |
3004 | if (emulator_bad_iopl(ctxt, ops)) { | 3411 | if (emulator_bad_iopl(ctxt, ops)) { |
@@ -3007,29 +3414,29 @@ special_insn: | |||
3007 | } else { | 3414 | } else { |
3008 | ctxt->interruptibility = KVM_X86_SHADOW_INT_STI; | 3415 | ctxt->interruptibility = KVM_X86_SHADOW_INT_STI; |
3009 | ctxt->eflags |= X86_EFLAGS_IF; | 3416 | ctxt->eflags |= X86_EFLAGS_IF; |
3010 | c->dst.type = OP_NONE; /* Disable writeback. */ | ||
3011 | } | 3417 | } |
3012 | break; | 3418 | break; |
3013 | case 0xfc: /* cld */ | 3419 | case 0xfc: /* cld */ |
3014 | ctxt->eflags &= ~EFLG_DF; | 3420 | ctxt->eflags &= ~EFLG_DF; |
3015 | c->dst.type = OP_NONE; /* Disable writeback. */ | ||
3016 | break; | 3421 | break; |
3017 | case 0xfd: /* std */ | 3422 | case 0xfd: /* std */ |
3018 | ctxt->eflags |= EFLG_DF; | 3423 | ctxt->eflags |= EFLG_DF; |
3019 | c->dst.type = OP_NONE; /* Disable writeback. */ | ||
3020 | break; | 3424 | break; |
3021 | case 0xfe: /* Grp4 */ | 3425 | case 0xfe: /* Grp4 */ |
3022 | grp45: | 3426 | grp45: |
3023 | rc = emulate_grp45(ctxt, ops); | 3427 | rc = emulate_grp45(ctxt, ops); |
3024 | if (rc != X86EMUL_CONTINUE) | ||
3025 | goto done; | ||
3026 | break; | 3428 | break; |
3027 | case 0xff: /* Grp5 */ | 3429 | case 0xff: /* Grp5 */ |
3028 | if (c->modrm_reg == 5) | 3430 | if (c->modrm_reg == 5) |
3029 | goto jump_far; | 3431 | goto jump_far; |
3030 | goto grp45; | 3432 | goto grp45; |
3433 | default: | ||
3434 | goto cannot_emulate; | ||
3031 | } | 3435 | } |
3032 | 3436 | ||
3437 | if (rc != X86EMUL_CONTINUE) | ||
3438 | goto done; | ||
3439 | |||
3033 | writeback: | 3440 | writeback: |
3034 | rc = writeback(ctxt, ops); | 3441 | rc = writeback(ctxt, ops); |
3035 | if (rc != X86EMUL_CONTINUE) | 3442 | if (rc != X86EMUL_CONTINUE) |
@@ -3050,25 +3457,32 @@ writeback: | |||
3050 | &c->dst); | 3457 | &c->dst); |
3051 | 3458 | ||
3052 | if (c->rep_prefix && (c->d & String)) { | 3459 | if (c->rep_prefix && (c->d & String)) { |
3053 | struct read_cache *rc = &ctxt->decode.io_read; | 3460 | struct read_cache *r = &ctxt->decode.io_read; |
3054 | register_address_increment(c, &c->regs[VCPU_REGS_RCX], -1); | 3461 | register_address_increment(c, &c->regs[VCPU_REGS_RCX], -1); |
3055 | /* | 3462 | |
3056 | * Re-enter guest when pio read ahead buffer is empty or, | 3463 | if (!string_insn_completed(ctxt)) { |
3057 | * if it is not used, after each 1024 iteration. | 3464 | /* |
3058 | */ | 3465 | * Re-enter guest when pio read ahead buffer is empty |
3059 | if ((rc->end == 0 && !(c->regs[VCPU_REGS_RCX] & 0x3ff)) || | 3466 | * or, if it is not used, after each 1024 iteration. |
3060 | (rc->end != 0 && rc->end == rc->pos)) | 3467 | */ |
3061 | ctxt->restart = false; | 3468 | if ((r->end != 0 || c->regs[VCPU_REGS_RCX] & 0x3ff) && |
3469 | (r->end == 0 || r->end != r->pos)) { | ||
3470 | /* | ||
3471 | * Reset read cache. Usually happens before | ||
3472 | * decode, but since instruction is restarted | ||
3473 | * we have to do it here. | ||
3474 | */ | ||
3475 | ctxt->decode.mem_read.end = 0; | ||
3476 | return EMULATION_RESTART; | ||
3477 | } | ||
3478 | goto done; /* skip rip writeback */ | ||
3479 | } | ||
3062 | } | 3480 | } |
3063 | /* | 3481 | |
3064 | * reset read cache here in case string instruction is restared | ||
3065 | * without decoding | ||
3066 | */ | ||
3067 | ctxt->decode.mem_read.end = 0; | ||
3068 | ctxt->eip = c->eip; | 3482 | ctxt->eip = c->eip; |
3069 | 3483 | ||
3070 | done: | 3484 | done: |
3071 | return (rc == X86EMUL_UNHANDLEABLE) ? -1 : 0; | 3485 | return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK; |
3072 | 3486 | ||
3073 | twobyte_insn: | 3487 | twobyte_insn: |
3074 | switch (c->b) { | 3488 | switch (c->b) { |
@@ -3091,7 +3505,7 @@ twobyte_insn: | |||
3091 | c->dst.type = OP_NONE; | 3505 | c->dst.type = OP_NONE; |
3092 | break; | 3506 | break; |
3093 | case 2: /* lgdt */ | 3507 | case 2: /* lgdt */ |
3094 | rc = read_descriptor(ctxt, ops, c->src.ptr, | 3508 | rc = read_descriptor(ctxt, ops, c->src.addr.mem, |
3095 | &size, &address, c->op_bytes); | 3509 | &size, &address, c->op_bytes); |
3096 | if (rc != X86EMUL_CONTINUE) | 3510 | if (rc != X86EMUL_CONTINUE) |
3097 | goto done; | 3511 | goto done; |
@@ -3104,14 +3518,12 @@ twobyte_insn: | |||
3104 | switch (c->modrm_rm) { | 3518 | switch (c->modrm_rm) { |
3105 | case 1: | 3519 | case 1: |
3106 | rc = kvm_fix_hypercall(ctxt->vcpu); | 3520 | rc = kvm_fix_hypercall(ctxt->vcpu); |
3107 | if (rc != X86EMUL_CONTINUE) | ||
3108 | goto done; | ||
3109 | break; | 3521 | break; |
3110 | default: | 3522 | default: |
3111 | goto cannot_emulate; | 3523 | goto cannot_emulate; |
3112 | } | 3524 | } |
3113 | } else { | 3525 | } else { |
3114 | rc = read_descriptor(ctxt, ops, c->src.ptr, | 3526 | rc = read_descriptor(ctxt, ops, c->src.addr.mem, |
3115 | &size, &address, | 3527 | &size, &address, |
3116 | c->op_bytes); | 3528 | c->op_bytes); |
3117 | if (rc != X86EMUL_CONTINUE) | 3529 | if (rc != X86EMUL_CONTINUE) |
@@ -3126,7 +3538,7 @@ twobyte_insn: | |||
3126 | c->dst.val = ops->get_cr(0, ctxt->vcpu); | 3538 | c->dst.val = ops->get_cr(0, ctxt->vcpu); |
3127 | break; | 3539 | break; |
3128 | case 6: /* lmsw */ | 3540 | case 6: /* lmsw */ |
3129 | ops->set_cr(0, (ops->get_cr(0, ctxt->vcpu) & ~0x0ful) | | 3541 | ops->set_cr(0, (ops->get_cr(0, ctxt->vcpu) & ~0x0eul) | |
3130 | (c->src.val & 0x0f), ctxt->vcpu); | 3542 | (c->src.val & 0x0f), ctxt->vcpu); |
3131 | c->dst.type = OP_NONE; | 3543 | c->dst.type = OP_NONE; |
3132 | break; | 3544 | break; |
@@ -3134,7 +3546,7 @@ twobyte_insn: | |||
3134 | emulate_ud(ctxt); | 3546 | emulate_ud(ctxt); |
3135 | goto done; | 3547 | goto done; |
3136 | case 7: /* invlpg*/ | 3548 | case 7: /* invlpg*/ |
3137 | emulate_invlpg(ctxt->vcpu, c->modrm_ea); | 3549 | emulate_invlpg(ctxt->vcpu, c->src.addr.mem); |
3138 | /* Disable writeback. */ | 3550 | /* Disable writeback. */ |
3139 | c->dst.type = OP_NONE; | 3551 | c->dst.type = OP_NONE; |
3140 | break; | 3552 | break; |
@@ -3144,23 +3556,16 @@ twobyte_insn: | |||
3144 | break; | 3556 | break; |
3145 | case 0x05: /* syscall */ | 3557 | case 0x05: /* syscall */ |
3146 | rc = emulate_syscall(ctxt, ops); | 3558 | rc = emulate_syscall(ctxt, ops); |
3147 | if (rc != X86EMUL_CONTINUE) | ||
3148 | goto done; | ||
3149 | else | ||
3150 | goto writeback; | ||
3151 | break; | 3559 | break; |
3152 | case 0x06: | 3560 | case 0x06: |
3153 | emulate_clts(ctxt->vcpu); | 3561 | emulate_clts(ctxt->vcpu); |
3154 | c->dst.type = OP_NONE; | ||
3155 | break; | 3562 | break; |
3156 | case 0x09: /* wbinvd */ | 3563 | case 0x09: /* wbinvd */ |
3157 | kvm_emulate_wbinvd(ctxt->vcpu); | 3564 | kvm_emulate_wbinvd(ctxt->vcpu); |
3158 | c->dst.type = OP_NONE; | ||
3159 | break; | 3565 | break; |
3160 | case 0x08: /* invd */ | 3566 | case 0x08: /* invd */ |
3161 | case 0x0d: /* GrpP (prefetch) */ | 3567 | case 0x0d: /* GrpP (prefetch) */ |
3162 | case 0x18: /* Grp16 (prefetch/nop) */ | 3568 | case 0x18: /* Grp16 (prefetch/nop) */ |
3163 | c->dst.type = OP_NONE; | ||
3164 | break; | 3569 | break; |
3165 | case 0x20: /* mov cr, reg */ | 3570 | case 0x20: /* mov cr, reg */ |
3166 | switch (c->modrm_reg) { | 3571 | switch (c->modrm_reg) { |
@@ -3170,8 +3575,7 @@ twobyte_insn: | |||
3170 | emulate_ud(ctxt); | 3575 | emulate_ud(ctxt); |
3171 | goto done; | 3576 | goto done; |
3172 | } | 3577 | } |
3173 | c->regs[c->modrm_rm] = ops->get_cr(c->modrm_reg, ctxt->vcpu); | 3578 | c->dst.val = ops->get_cr(c->modrm_reg, ctxt->vcpu); |
3174 | c->dst.type = OP_NONE; /* no writeback */ | ||
3175 | break; | 3579 | break; |
3176 | case 0x21: /* mov from dr to reg */ | 3580 | case 0x21: /* mov from dr to reg */ |
3177 | if ((ops->get_cr(4, ctxt->vcpu) & X86_CR4_DE) && | 3581 | if ((ops->get_cr(4, ctxt->vcpu) & X86_CR4_DE) && |
@@ -3179,11 +3583,10 @@ twobyte_insn: | |||
3179 | emulate_ud(ctxt); | 3583 | emulate_ud(ctxt); |
3180 | goto done; | 3584 | goto done; |
3181 | } | 3585 | } |
3182 | ops->get_dr(c->modrm_reg, &c->regs[c->modrm_rm], ctxt->vcpu); | 3586 | ops->get_dr(c->modrm_reg, &c->dst.val, ctxt->vcpu); |
3183 | c->dst.type = OP_NONE; /* no writeback */ | ||
3184 | break; | 3587 | break; |
3185 | case 0x22: /* mov reg, cr */ | 3588 | case 0x22: /* mov reg, cr */ |
3186 | if (ops->set_cr(c->modrm_reg, c->modrm_val, ctxt->vcpu)) { | 3589 | if (ops->set_cr(c->modrm_reg, c->src.val, ctxt->vcpu)) { |
3187 | emulate_gp(ctxt, 0); | 3590 | emulate_gp(ctxt, 0); |
3188 | goto done; | 3591 | goto done; |
3189 | } | 3592 | } |
@@ -3196,7 +3599,7 @@ twobyte_insn: | |||
3196 | goto done; | 3599 | goto done; |
3197 | } | 3600 | } |
3198 | 3601 | ||
3199 | if (ops->set_dr(c->modrm_reg, c->regs[c->modrm_rm] & | 3602 | if (ops->set_dr(c->modrm_reg, c->src.val & |
3200 | ((ctxt->mode == X86EMUL_MODE_PROT64) ? | 3603 | ((ctxt->mode == X86EMUL_MODE_PROT64) ? |
3201 | ~0ULL : ~0U), ctxt->vcpu) < 0) { | 3604 | ~0ULL : ~0U), ctxt->vcpu) < 0) { |
3202 | /* #UD condition is already handled by the code above */ | 3605 | /* #UD condition is already handled by the code above */ |
@@ -3215,7 +3618,6 @@ twobyte_insn: | |||
3215 | goto done; | 3618 | goto done; |
3216 | } | 3619 | } |
3217 | rc = X86EMUL_CONTINUE; | 3620 | rc = X86EMUL_CONTINUE; |
3218 | c->dst.type = OP_NONE; | ||
3219 | break; | 3621 | break; |
3220 | case 0x32: | 3622 | case 0x32: |
3221 | /* rdmsr */ | 3623 | /* rdmsr */ |
@@ -3227,21 +3629,12 @@ twobyte_insn: | |||
3227 | c->regs[VCPU_REGS_RDX] = msr_data >> 32; | 3629 | c->regs[VCPU_REGS_RDX] = msr_data >> 32; |
3228 | } | 3630 | } |
3229 | rc = X86EMUL_CONTINUE; | 3631 | rc = X86EMUL_CONTINUE; |
3230 | c->dst.type = OP_NONE; | ||
3231 | break; | 3632 | break; |
3232 | case 0x34: /* sysenter */ | 3633 | case 0x34: /* sysenter */ |
3233 | rc = emulate_sysenter(ctxt, ops); | 3634 | rc = emulate_sysenter(ctxt, ops); |
3234 | if (rc != X86EMUL_CONTINUE) | ||
3235 | goto done; | ||
3236 | else | ||
3237 | goto writeback; | ||
3238 | break; | 3635 | break; |
3239 | case 0x35: /* sysexit */ | 3636 | case 0x35: /* sysexit */ |
3240 | rc = emulate_sysexit(ctxt, ops); | 3637 | rc = emulate_sysexit(ctxt, ops); |
3241 | if (rc != X86EMUL_CONTINUE) | ||
3242 | goto done; | ||
3243 | else | ||
3244 | goto writeback; | ||
3245 | break; | 3638 | break; |
3246 | case 0x40 ... 0x4f: /* cmov */ | 3639 | case 0x40 ... 0x4f: /* cmov */ |
3247 | c->dst.val = c->dst.orig_val = c->src.val; | 3640 | c->dst.val = c->dst.orig_val = c->src.val; |
@@ -3251,15 +3644,15 @@ twobyte_insn: | |||
3251 | case 0x80 ... 0x8f: /* jnz rel, etc*/ | 3644 | case 0x80 ... 0x8f: /* jnz rel, etc*/ |
3252 | if (test_cc(c->b, ctxt->eflags)) | 3645 | if (test_cc(c->b, ctxt->eflags)) |
3253 | jmp_rel(c, c->src.val); | 3646 | jmp_rel(c, c->src.val); |
3254 | c->dst.type = OP_NONE; | 3647 | break; |
3648 | case 0x90 ... 0x9f: /* setcc r/m8 */ | ||
3649 | c->dst.val = test_cc(c->b, ctxt->eflags); | ||
3255 | break; | 3650 | break; |
3256 | case 0xa0: /* push fs */ | 3651 | case 0xa0: /* push fs */ |
3257 | emulate_push_sreg(ctxt, ops, VCPU_SREG_FS); | 3652 | emulate_push_sreg(ctxt, ops, VCPU_SREG_FS); |
3258 | break; | 3653 | break; |
3259 | case 0xa1: /* pop fs */ | 3654 | case 0xa1: /* pop fs */ |
3260 | rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_FS); | 3655 | rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_FS); |
3261 | if (rc != X86EMUL_CONTINUE) | ||
3262 | goto done; | ||
3263 | break; | 3656 | break; |
3264 | case 0xa3: | 3657 | case 0xa3: |
3265 | bt: /* bt */ | 3658 | bt: /* bt */ |
@@ -3277,13 +3670,9 @@ twobyte_insn: | |||
3277 | break; | 3670 | break; |
3278 | case 0xa9: /* pop gs */ | 3671 | case 0xa9: /* pop gs */ |
3279 | rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_GS); | 3672 | rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_GS); |
3280 | if (rc != X86EMUL_CONTINUE) | ||
3281 | goto done; | ||
3282 | break; | 3673 | break; |
3283 | case 0xab: | 3674 | case 0xab: |
3284 | bts: /* bts */ | 3675 | bts: /* bts */ |
3285 | /* only subword offset */ | ||
3286 | c->src.val &= (c->dst.bytes << 3) - 1; | ||
3287 | emulate_2op_SrcV_nobyte("bts", c->src, c->dst, ctxt->eflags); | 3676 | emulate_2op_SrcV_nobyte("bts", c->src, c->dst, ctxt->eflags); |
3288 | break; | 3677 | break; |
3289 | case 0xac: /* shrd imm8, r, r/m */ | 3678 | case 0xac: /* shrd imm8, r, r/m */ |
@@ -3306,15 +3695,22 @@ twobyte_insn: | |||
3306 | } else { | 3695 | } else { |
3307 | /* Failure: write the value we saw to EAX. */ | 3696 | /* Failure: write the value we saw to EAX. */ |
3308 | c->dst.type = OP_REG; | 3697 | c->dst.type = OP_REG; |
3309 | c->dst.ptr = (unsigned long *)&c->regs[VCPU_REGS_RAX]; | 3698 | c->dst.addr.reg = (unsigned long *)&c->regs[VCPU_REGS_RAX]; |
3310 | } | 3699 | } |
3311 | break; | 3700 | break; |
3701 | case 0xb2: /* lss */ | ||
3702 | rc = emulate_load_segment(ctxt, ops, VCPU_SREG_SS); | ||
3703 | break; | ||
3312 | case 0xb3: | 3704 | case 0xb3: |
3313 | btr: /* btr */ | 3705 | btr: /* btr */ |
3314 | /* only subword offset */ | ||
3315 | c->src.val &= (c->dst.bytes << 3) - 1; | ||
3316 | emulate_2op_SrcV_nobyte("btr", c->src, c->dst, ctxt->eflags); | 3706 | emulate_2op_SrcV_nobyte("btr", c->src, c->dst, ctxt->eflags); |
3317 | break; | 3707 | break; |
3708 | case 0xb4: /* lfs */ | ||
3709 | rc = emulate_load_segment(ctxt, ops, VCPU_SREG_FS); | ||
3710 | break; | ||
3711 | case 0xb5: /* lgs */ | ||
3712 | rc = emulate_load_segment(ctxt, ops, VCPU_SREG_GS); | ||
3713 | break; | ||
3318 | case 0xb6 ... 0xb7: /* movzx */ | 3714 | case 0xb6 ... 0xb7: /* movzx */ |
3319 | c->dst.bytes = c->op_bytes; | 3715 | c->dst.bytes = c->op_bytes; |
3320 | c->dst.val = (c->d & ByteOp) ? (u8) c->src.val | 3716 | c->dst.val = (c->d & ByteOp) ? (u8) c->src.val |
@@ -3334,15 +3730,43 @@ twobyte_insn: | |||
3334 | break; | 3730 | break; |
3335 | case 0xbb: | 3731 | case 0xbb: |
3336 | btc: /* btc */ | 3732 | btc: /* btc */ |
3337 | /* only subword offset */ | ||
3338 | c->src.val &= (c->dst.bytes << 3) - 1; | ||
3339 | emulate_2op_SrcV_nobyte("btc", c->src, c->dst, ctxt->eflags); | 3733 | emulate_2op_SrcV_nobyte("btc", c->src, c->dst, ctxt->eflags); |
3340 | break; | 3734 | break; |
3735 | case 0xbc: { /* bsf */ | ||
3736 | u8 zf; | ||
3737 | __asm__ ("bsf %2, %0; setz %1" | ||
3738 | : "=r"(c->dst.val), "=q"(zf) | ||
3739 | : "r"(c->src.val)); | ||
3740 | ctxt->eflags &= ~X86_EFLAGS_ZF; | ||
3741 | if (zf) { | ||
3742 | ctxt->eflags |= X86_EFLAGS_ZF; | ||
3743 | c->dst.type = OP_NONE; /* Disable writeback. */ | ||
3744 | } | ||
3745 | break; | ||
3746 | } | ||
3747 | case 0xbd: { /* bsr */ | ||
3748 | u8 zf; | ||
3749 | __asm__ ("bsr %2, %0; setz %1" | ||
3750 | : "=r"(c->dst.val), "=q"(zf) | ||
3751 | : "r"(c->src.val)); | ||
3752 | ctxt->eflags &= ~X86_EFLAGS_ZF; | ||
3753 | if (zf) { | ||
3754 | ctxt->eflags |= X86_EFLAGS_ZF; | ||
3755 | c->dst.type = OP_NONE; /* Disable writeback. */ | ||
3756 | } | ||
3757 | break; | ||
3758 | } | ||
3341 | case 0xbe ... 0xbf: /* movsx */ | 3759 | case 0xbe ... 0xbf: /* movsx */ |
3342 | c->dst.bytes = c->op_bytes; | 3760 | c->dst.bytes = c->op_bytes; |
3343 | c->dst.val = (c->d & ByteOp) ? (s8) c->src.val : | 3761 | c->dst.val = (c->d & ByteOp) ? (s8) c->src.val : |
3344 | (s16) c->src.val; | 3762 | (s16) c->src.val; |
3345 | break; | 3763 | break; |
3764 | case 0xc0 ... 0xc1: /* xadd */ | ||
3765 | emulate_2op_SrcV("add", c->src, c->dst, ctxt->eflags); | ||
3766 | /* Write back the register source. */ | ||
3767 | c->src.val = c->dst.orig_val; | ||
3768 | write_register_operand(&c->src); | ||
3769 | break; | ||
3346 | case 0xc3: /* movnti */ | 3770 | case 0xc3: /* movnti */ |
3347 | c->dst.bytes = c->op_bytes; | 3771 | c->dst.bytes = c->op_bytes; |
3348 | c->dst.val = (c->op_bytes == 4) ? (u32) c->src.val : | 3772 | c->dst.val = (c->op_bytes == 4) ? (u32) c->src.val : |
@@ -3350,10 +3774,14 @@ twobyte_insn: | |||
3350 | break; | 3774 | break; |
3351 | case 0xc7: /* Grp9 (cmpxchg8b) */ | 3775 | case 0xc7: /* Grp9 (cmpxchg8b) */ |
3352 | rc = emulate_grp9(ctxt, ops); | 3776 | rc = emulate_grp9(ctxt, ops); |
3353 | if (rc != X86EMUL_CONTINUE) | ||
3354 | goto done; | ||
3355 | break; | 3777 | break; |
3778 | default: | ||
3779 | goto cannot_emulate; | ||
3356 | } | 3780 | } |
3781 | |||
3782 | if (rc != X86EMUL_CONTINUE) | ||
3783 | goto done; | ||
3784 | |||
3357 | goto writeback; | 3785 | goto writeback; |
3358 | 3786 | ||
3359 | cannot_emulate: | 3787 | cannot_emulate: |
diff --git a/arch/x86/kvm/i8254.c b/arch/x86/kvm/i8254.c index ddeb2314b522..efad72385058 100644 --- a/arch/x86/kvm/i8254.c +++ b/arch/x86/kvm/i8254.c | |||
@@ -5,7 +5,7 @@ | |||
5 | * Copyright (c) 2006 Intel Corporation | 5 | * Copyright (c) 2006 Intel Corporation |
6 | * Copyright (c) 2007 Keir Fraser, XenSource Inc | 6 | * Copyright (c) 2007 Keir Fraser, XenSource Inc |
7 | * Copyright (c) 2008 Intel Corporation | 7 | * Copyright (c) 2008 Intel Corporation |
8 | * Copyright 2009 Red Hat, Inc. and/or its affilates. | 8 | * Copyright 2009 Red Hat, Inc. and/or its affiliates. |
9 | * | 9 | * |
10 | * Permission is hereby granted, free of charge, to any person obtaining a copy | 10 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
11 | * of this software and associated documentation files (the "Software"), to deal | 11 | * of this software and associated documentation files (the "Software"), to deal |
@@ -232,15 +232,6 @@ static void pit_latch_status(struct kvm *kvm, int channel) | |||
232 | } | 232 | } |
233 | } | 233 | } |
234 | 234 | ||
235 | int pit_has_pending_timer(struct kvm_vcpu *vcpu) | ||
236 | { | ||
237 | struct kvm_pit *pit = vcpu->kvm->arch.vpit; | ||
238 | |||
239 | if (pit && kvm_vcpu_is_bsp(vcpu) && pit->pit_state.irq_ack) | ||
240 | return atomic_read(&pit->pit_state.pit_timer.pending); | ||
241 | return 0; | ||
242 | } | ||
243 | |||
244 | static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian) | 235 | static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian) |
245 | { | 236 | { |
246 | struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state, | 237 | struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state, |
diff --git a/arch/x86/kvm/i8259.c b/arch/x86/kvm/i8259.c index 4b7b73ce2098..f628234fbeca 100644 --- a/arch/x86/kvm/i8259.c +++ b/arch/x86/kvm/i8259.c | |||
@@ -3,7 +3,7 @@ | |||
3 | * | 3 | * |
4 | * Copyright (c) 2003-2004 Fabrice Bellard | 4 | * Copyright (c) 2003-2004 Fabrice Bellard |
5 | * Copyright (c) 2007 Intel Corporation | 5 | * Copyright (c) 2007 Intel Corporation |
6 | * Copyright 2009 Red Hat, Inc. and/or its affilates. | 6 | * Copyright 2009 Red Hat, Inc. and/or its affiliates. |
7 | * | 7 | * |
8 | * Permission is hereby granted, free of charge, to any person obtaining a copy | 8 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
9 | * of this software and associated documentation files (the "Software"), to deal | 9 | * of this software and associated documentation files (the "Software"), to deal |
@@ -39,7 +39,7 @@ static void pic_irq_request(struct kvm *kvm, int level); | |||
39 | static void pic_lock(struct kvm_pic *s) | 39 | static void pic_lock(struct kvm_pic *s) |
40 | __acquires(&s->lock) | 40 | __acquires(&s->lock) |
41 | { | 41 | { |
42 | raw_spin_lock(&s->lock); | 42 | spin_lock(&s->lock); |
43 | } | 43 | } |
44 | 44 | ||
45 | static void pic_unlock(struct kvm_pic *s) | 45 | static void pic_unlock(struct kvm_pic *s) |
@@ -51,7 +51,7 @@ static void pic_unlock(struct kvm_pic *s) | |||
51 | 51 | ||
52 | s->wakeup_needed = false; | 52 | s->wakeup_needed = false; |
53 | 53 | ||
54 | raw_spin_unlock(&s->lock); | 54 | spin_unlock(&s->lock); |
55 | 55 | ||
56 | if (wakeup) { | 56 | if (wakeup) { |
57 | kvm_for_each_vcpu(i, vcpu, s->kvm) { | 57 | kvm_for_each_vcpu(i, vcpu, s->kvm) { |
@@ -67,6 +67,7 @@ static void pic_unlock(struct kvm_pic *s) | |||
67 | if (!found) | 67 | if (!found) |
68 | return; | 68 | return; |
69 | 69 | ||
70 | kvm_make_request(KVM_REQ_EVENT, found); | ||
70 | kvm_vcpu_kick(found); | 71 | kvm_vcpu_kick(found); |
71 | } | 72 | } |
72 | } | 73 | } |
@@ -308,13 +309,17 @@ static void pic_ioport_write(void *opaque, u32 addr, u32 val) | |||
308 | addr &= 1; | 309 | addr &= 1; |
309 | if (addr == 0) { | 310 | if (addr == 0) { |
310 | if (val & 0x10) { | 311 | if (val & 0x10) { |
311 | kvm_pic_reset(s); /* init */ | ||
312 | /* | ||
313 | * deassert a pending interrupt | ||
314 | */ | ||
315 | pic_irq_request(s->pics_state->kvm, 0); | ||
316 | s->init_state = 1; | ||
317 | s->init4 = val & 1; | 312 | s->init4 = val & 1; |
313 | s->last_irr = 0; | ||
314 | s->imr = 0; | ||
315 | s->priority_add = 0; | ||
316 | s->special_mask = 0; | ||
317 | s->read_reg_select = 0; | ||
318 | if (!s->init4) { | ||
319 | s->special_fully_nested_mode = 0; | ||
320 | s->auto_eoi = 0; | ||
321 | } | ||
322 | s->init_state = 1; | ||
318 | if (val & 0x02) | 323 | if (val & 0x02) |
319 | printk(KERN_ERR "single mode not supported"); | 324 | printk(KERN_ERR "single mode not supported"); |
320 | if (val & 0x08) | 325 | if (val & 0x08) |
@@ -564,7 +569,7 @@ struct kvm_pic *kvm_create_pic(struct kvm *kvm) | |||
564 | s = kzalloc(sizeof(struct kvm_pic), GFP_KERNEL); | 569 | s = kzalloc(sizeof(struct kvm_pic), GFP_KERNEL); |
565 | if (!s) | 570 | if (!s) |
566 | return NULL; | 571 | return NULL; |
567 | raw_spin_lock_init(&s->lock); | 572 | spin_lock_init(&s->lock); |
568 | s->kvm = kvm; | 573 | s->kvm = kvm; |
569 | s->pics[0].elcr_mask = 0xf8; | 574 | s->pics[0].elcr_mask = 0xf8; |
570 | s->pics[1].elcr_mask = 0xde; | 575 | s->pics[1].elcr_mask = 0xde; |
diff --git a/arch/x86/kvm/irq.c b/arch/x86/kvm/irq.c index 2095a049835e..7e06ba1618bd 100644 --- a/arch/x86/kvm/irq.c +++ b/arch/x86/kvm/irq.c | |||
@@ -1,7 +1,7 @@ | |||
1 | /* | 1 | /* |
2 | * irq.c: API for in kernel interrupt controller | 2 | * irq.c: API for in kernel interrupt controller |
3 | * Copyright (c) 2007, Intel Corporation. | 3 | * Copyright (c) 2007, Intel Corporation. |
4 | * Copyright 2009 Red Hat, Inc. and/or its affilates. | 4 | * Copyright 2009 Red Hat, Inc. and/or its affiliates. |
5 | * | 5 | * |
6 | * This program is free software; you can redistribute it and/or modify it | 6 | * This program is free software; you can redistribute it and/or modify it |
7 | * under the terms and conditions of the GNU General Public License, | 7 | * under the terms and conditions of the GNU General Public License, |
@@ -33,12 +33,7 @@ | |||
33 | */ | 33 | */ |
34 | int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) | 34 | int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) |
35 | { | 35 | { |
36 | int ret; | 36 | return apic_has_pending_timer(vcpu); |
37 | |||
38 | ret = pit_has_pending_timer(vcpu); | ||
39 | ret |= apic_has_pending_timer(vcpu); | ||
40 | |||
41 | return ret; | ||
42 | } | 37 | } |
43 | EXPORT_SYMBOL(kvm_cpu_has_pending_timer); | 38 | EXPORT_SYMBOL(kvm_cpu_has_pending_timer); |
44 | 39 | ||
diff --git a/arch/x86/kvm/irq.h b/arch/x86/kvm/irq.h index 63c314502993..ba910d149410 100644 --- a/arch/x86/kvm/irq.h +++ b/arch/x86/kvm/irq.h | |||
@@ -60,7 +60,7 @@ struct kvm_kpic_state { | |||
60 | }; | 60 | }; |
61 | 61 | ||
62 | struct kvm_pic { | 62 | struct kvm_pic { |
63 | raw_spinlock_t lock; | 63 | spinlock_t lock; |
64 | bool wakeup_needed; | 64 | bool wakeup_needed; |
65 | unsigned pending_acks; | 65 | unsigned pending_acks; |
66 | struct kvm *kvm; | 66 | struct kvm *kvm; |
diff --git a/arch/x86/kvm/kvm_cache_regs.h b/arch/x86/kvm/kvm_cache_regs.h index 6491ac8e755b..975bb45329a1 100644 --- a/arch/x86/kvm/kvm_cache_regs.h +++ b/arch/x86/kvm/kvm_cache_regs.h | |||
@@ -42,7 +42,14 @@ static inline u64 kvm_pdptr_read(struct kvm_vcpu *vcpu, int index) | |||
42 | (unsigned long *)&vcpu->arch.regs_avail)) | 42 | (unsigned long *)&vcpu->arch.regs_avail)) |
43 | kvm_x86_ops->cache_reg(vcpu, VCPU_EXREG_PDPTR); | 43 | kvm_x86_ops->cache_reg(vcpu, VCPU_EXREG_PDPTR); |
44 | 44 | ||
45 | return vcpu->arch.pdptrs[index]; | 45 | return vcpu->arch.walk_mmu->pdptrs[index]; |
46 | } | ||
47 | |||
48 | static inline u64 kvm_pdptr_read_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, int index) | ||
49 | { | ||
50 | load_pdptrs(vcpu, mmu, mmu->get_cr3(vcpu)); | ||
51 | |||
52 | return mmu->pdptrs[index]; | ||
46 | } | 53 | } |
47 | 54 | ||
48 | static inline ulong kvm_read_cr0_bits(struct kvm_vcpu *vcpu, ulong mask) | 55 | static inline ulong kvm_read_cr0_bits(struct kvm_vcpu *vcpu, ulong mask) |
diff --git a/arch/x86/kvm/lapic.c b/arch/x86/kvm/lapic.c index 22b06f7660f4..413f8973a855 100644 --- a/arch/x86/kvm/lapic.c +++ b/arch/x86/kvm/lapic.c | |||
@@ -5,7 +5,7 @@ | |||
5 | * Copyright (C) 2006 Qumranet, Inc. | 5 | * Copyright (C) 2006 Qumranet, Inc. |
6 | * Copyright (C) 2007 Novell | 6 | * Copyright (C) 2007 Novell |
7 | * Copyright (C) 2007 Intel | 7 | * Copyright (C) 2007 Intel |
8 | * Copyright 2009 Red Hat, Inc. and/or its affilates. | 8 | * Copyright 2009 Red Hat, Inc. and/or its affiliates. |
9 | * | 9 | * |
10 | * Authors: | 10 | * Authors: |
11 | * Dor Laor <dor.laor@qumranet.com> | 11 | * Dor Laor <dor.laor@qumranet.com> |
@@ -259,9 +259,10 @@ static inline int apic_find_highest_isr(struct kvm_lapic *apic) | |||
259 | 259 | ||
260 | static void apic_update_ppr(struct kvm_lapic *apic) | 260 | static void apic_update_ppr(struct kvm_lapic *apic) |
261 | { | 261 | { |
262 | u32 tpr, isrv, ppr; | 262 | u32 tpr, isrv, ppr, old_ppr; |
263 | int isr; | 263 | int isr; |
264 | 264 | ||
265 | old_ppr = apic_get_reg(apic, APIC_PROCPRI); | ||
265 | tpr = apic_get_reg(apic, APIC_TASKPRI); | 266 | tpr = apic_get_reg(apic, APIC_TASKPRI); |
266 | isr = apic_find_highest_isr(apic); | 267 | isr = apic_find_highest_isr(apic); |
267 | isrv = (isr != -1) ? isr : 0; | 268 | isrv = (isr != -1) ? isr : 0; |
@@ -274,7 +275,10 @@ static void apic_update_ppr(struct kvm_lapic *apic) | |||
274 | apic_debug("vlapic %p, ppr 0x%x, isr 0x%x, isrv 0x%x", | 275 | apic_debug("vlapic %p, ppr 0x%x, isr 0x%x, isrv 0x%x", |
275 | apic, ppr, isr, isrv); | 276 | apic, ppr, isr, isrv); |
276 | 277 | ||
277 | apic_set_reg(apic, APIC_PROCPRI, ppr); | 278 | if (old_ppr != ppr) { |
279 | apic_set_reg(apic, APIC_PROCPRI, ppr); | ||
280 | kvm_make_request(KVM_REQ_EVENT, apic->vcpu); | ||
281 | } | ||
278 | } | 282 | } |
279 | 283 | ||
280 | static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) | 284 | static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) |
@@ -391,6 +395,7 @@ static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, | |||
391 | break; | 395 | break; |
392 | } | 396 | } |
393 | 397 | ||
398 | kvm_make_request(KVM_REQ_EVENT, vcpu); | ||
394 | kvm_vcpu_kick(vcpu); | 399 | kvm_vcpu_kick(vcpu); |
395 | break; | 400 | break; |
396 | 401 | ||
@@ -416,6 +421,7 @@ static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, | |||
416 | "INIT on a runnable vcpu %d\n", | 421 | "INIT on a runnable vcpu %d\n", |
417 | vcpu->vcpu_id); | 422 | vcpu->vcpu_id); |
418 | vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; | 423 | vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; |
424 | kvm_make_request(KVM_REQ_EVENT, vcpu); | ||
419 | kvm_vcpu_kick(vcpu); | 425 | kvm_vcpu_kick(vcpu); |
420 | } else { | 426 | } else { |
421 | apic_debug("Ignoring de-assert INIT to vcpu %d\n", | 427 | apic_debug("Ignoring de-assert INIT to vcpu %d\n", |
@@ -430,6 +436,7 @@ static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, | |||
430 | result = 1; | 436 | result = 1; |
431 | vcpu->arch.sipi_vector = vector; | 437 | vcpu->arch.sipi_vector = vector; |
432 | vcpu->arch.mp_state = KVM_MP_STATE_SIPI_RECEIVED; | 438 | vcpu->arch.mp_state = KVM_MP_STATE_SIPI_RECEIVED; |
439 | kvm_make_request(KVM_REQ_EVENT, vcpu); | ||
433 | kvm_vcpu_kick(vcpu); | 440 | kvm_vcpu_kick(vcpu); |
434 | } | 441 | } |
435 | break; | 442 | break; |
@@ -475,6 +482,7 @@ static void apic_set_eoi(struct kvm_lapic *apic) | |||
475 | trigger_mode = IOAPIC_EDGE_TRIG; | 482 | trigger_mode = IOAPIC_EDGE_TRIG; |
476 | if (!(apic_get_reg(apic, APIC_SPIV) & APIC_SPIV_DIRECTED_EOI)) | 483 | if (!(apic_get_reg(apic, APIC_SPIV) & APIC_SPIV_DIRECTED_EOI)) |
477 | kvm_ioapic_update_eoi(apic->vcpu->kvm, vector, trigger_mode); | 484 | kvm_ioapic_update_eoi(apic->vcpu->kvm, vector, trigger_mode); |
485 | kvm_make_request(KVM_REQ_EVENT, apic->vcpu); | ||
478 | } | 486 | } |
479 | 487 | ||
480 | static void apic_send_ipi(struct kvm_lapic *apic) | 488 | static void apic_send_ipi(struct kvm_lapic *apic) |
@@ -1151,6 +1159,7 @@ void kvm_apic_post_state_restore(struct kvm_vcpu *vcpu) | |||
1151 | update_divide_count(apic); | 1159 | update_divide_count(apic); |
1152 | start_apic_timer(apic); | 1160 | start_apic_timer(apic); |
1153 | apic->irr_pending = true; | 1161 | apic->irr_pending = true; |
1162 | kvm_make_request(KVM_REQ_EVENT, vcpu); | ||
1154 | } | 1163 | } |
1155 | 1164 | ||
1156 | void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) | 1165 | void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) |
diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c index 311f6dad8951..908ea5464a51 100644 --- a/arch/x86/kvm/mmu.c +++ b/arch/x86/kvm/mmu.c | |||
@@ -7,7 +7,7 @@ | |||
7 | * MMU support | 7 | * MMU support |
8 | * | 8 | * |
9 | * Copyright (C) 2006 Qumranet, Inc. | 9 | * Copyright (C) 2006 Qumranet, Inc. |
10 | * Copyright 2010 Red Hat, Inc. and/or its affilates. | 10 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
11 | * | 11 | * |
12 | * Authors: | 12 | * Authors: |
13 | * Yaniv Kamay <yaniv@qumranet.com> | 13 | * Yaniv Kamay <yaniv@qumranet.com> |
@@ -49,15 +49,25 @@ | |||
49 | */ | 49 | */ |
50 | bool tdp_enabled = false; | 50 | bool tdp_enabled = false; |
51 | 51 | ||
52 | #undef MMU_DEBUG | 52 | enum { |
53 | AUDIT_PRE_PAGE_FAULT, | ||
54 | AUDIT_POST_PAGE_FAULT, | ||
55 | AUDIT_PRE_PTE_WRITE, | ||
56 | AUDIT_POST_PTE_WRITE, | ||
57 | AUDIT_PRE_SYNC, | ||
58 | AUDIT_POST_SYNC | ||
59 | }; | ||
53 | 60 | ||
54 | #undef AUDIT | 61 | char *audit_point_name[] = { |
62 | "pre page fault", | ||
63 | "post page fault", | ||
64 | "pre pte write", | ||
65 | "post pte write", | ||
66 | "pre sync", | ||
67 | "post sync" | ||
68 | }; | ||
55 | 69 | ||
56 | #ifdef AUDIT | 70 | #undef MMU_DEBUG |
57 | static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg); | ||
58 | #else | ||
59 | static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {} | ||
60 | #endif | ||
61 | 71 | ||
62 | #ifdef MMU_DEBUG | 72 | #ifdef MMU_DEBUG |
63 | 73 | ||
@@ -71,7 +81,7 @@ static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {} | |||
71 | 81 | ||
72 | #endif | 82 | #endif |
73 | 83 | ||
74 | #if defined(MMU_DEBUG) || defined(AUDIT) | 84 | #ifdef MMU_DEBUG |
75 | static int dbg = 0; | 85 | static int dbg = 0; |
76 | module_param(dbg, bool, 0644); | 86 | module_param(dbg, bool, 0644); |
77 | #endif | 87 | #endif |
@@ -89,6 +99,8 @@ module_param(oos_shadow, bool, 0644); | |||
89 | } | 99 | } |
90 | #endif | 100 | #endif |
91 | 101 | ||
102 | #define PTE_PREFETCH_NUM 8 | ||
103 | |||
92 | #define PT_FIRST_AVAIL_BITS_SHIFT 9 | 104 | #define PT_FIRST_AVAIL_BITS_SHIFT 9 |
93 | #define PT64_SECOND_AVAIL_BITS_SHIFT 52 | 105 | #define PT64_SECOND_AVAIL_BITS_SHIFT 52 |
94 | 106 | ||
@@ -178,6 +190,7 @@ typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte); | |||
178 | static struct kmem_cache *pte_chain_cache; | 190 | static struct kmem_cache *pte_chain_cache; |
179 | static struct kmem_cache *rmap_desc_cache; | 191 | static struct kmem_cache *rmap_desc_cache; |
180 | static struct kmem_cache *mmu_page_header_cache; | 192 | static struct kmem_cache *mmu_page_header_cache; |
193 | static struct percpu_counter kvm_total_used_mmu_pages; | ||
181 | 194 | ||
182 | static u64 __read_mostly shadow_trap_nonpresent_pte; | 195 | static u64 __read_mostly shadow_trap_nonpresent_pte; |
183 | static u64 __read_mostly shadow_notrap_nonpresent_pte; | 196 | static u64 __read_mostly shadow_notrap_nonpresent_pte; |
@@ -299,18 +312,50 @@ static u64 __xchg_spte(u64 *sptep, u64 new_spte) | |||
299 | #endif | 312 | #endif |
300 | } | 313 | } |
301 | 314 | ||
315 | static bool spte_has_volatile_bits(u64 spte) | ||
316 | { | ||
317 | if (!shadow_accessed_mask) | ||
318 | return false; | ||
319 | |||
320 | if (!is_shadow_present_pte(spte)) | ||
321 | return false; | ||
322 | |||
323 | if ((spte & shadow_accessed_mask) && | ||
324 | (!is_writable_pte(spte) || (spte & shadow_dirty_mask))) | ||
325 | return false; | ||
326 | |||
327 | return true; | ||
328 | } | ||
329 | |||
330 | static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask) | ||
331 | { | ||
332 | return (old_spte & bit_mask) && !(new_spte & bit_mask); | ||
333 | } | ||
334 | |||
302 | static void update_spte(u64 *sptep, u64 new_spte) | 335 | static void update_spte(u64 *sptep, u64 new_spte) |
303 | { | 336 | { |
304 | u64 old_spte; | 337 | u64 mask, old_spte = *sptep; |
338 | |||
339 | WARN_ON(!is_rmap_spte(new_spte)); | ||
340 | |||
341 | new_spte |= old_spte & shadow_dirty_mask; | ||
305 | 342 | ||
306 | if (!shadow_accessed_mask || (new_spte & shadow_accessed_mask) || | 343 | mask = shadow_accessed_mask; |
307 | !is_rmap_spte(*sptep)) | 344 | if (is_writable_pte(old_spte)) |
345 | mask |= shadow_dirty_mask; | ||
346 | |||
347 | if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask) | ||
308 | __set_spte(sptep, new_spte); | 348 | __set_spte(sptep, new_spte); |
309 | else { | 349 | else |
310 | old_spte = __xchg_spte(sptep, new_spte); | 350 | old_spte = __xchg_spte(sptep, new_spte); |
311 | if (old_spte & shadow_accessed_mask) | 351 | |
312 | mark_page_accessed(pfn_to_page(spte_to_pfn(old_spte))); | 352 | if (!shadow_accessed_mask) |
313 | } | 353 | return; |
354 | |||
355 | if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask)) | ||
356 | kvm_set_pfn_accessed(spte_to_pfn(old_spte)); | ||
357 | if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask)) | ||
358 | kvm_set_pfn_dirty(spte_to_pfn(old_spte)); | ||
314 | } | 359 | } |
315 | 360 | ||
316 | static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, | 361 | static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, |
@@ -367,7 +412,7 @@ static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu) | |||
367 | if (r) | 412 | if (r) |
368 | goto out; | 413 | goto out; |
369 | r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, | 414 | r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, |
370 | rmap_desc_cache, 4); | 415 | rmap_desc_cache, 4 + PTE_PREFETCH_NUM); |
371 | if (r) | 416 | if (r) |
372 | goto out; | 417 | goto out; |
373 | r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8); | 418 | r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8); |
@@ -591,6 +636,7 @@ static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) | |||
591 | desc->sptes[0] = (u64 *)*rmapp; | 636 | desc->sptes[0] = (u64 *)*rmapp; |
592 | desc->sptes[1] = spte; | 637 | desc->sptes[1] = spte; |
593 | *rmapp = (unsigned long)desc | 1; | 638 | *rmapp = (unsigned long)desc | 1; |
639 | ++count; | ||
594 | } else { | 640 | } else { |
595 | rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte); | 641 | rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte); |
596 | desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul); | 642 | desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul); |
@@ -603,7 +649,7 @@ static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) | |||
603 | desc = desc->more; | 649 | desc = desc->more; |
604 | } | 650 | } |
605 | for (i = 0; desc->sptes[i]; ++i) | 651 | for (i = 0; desc->sptes[i]; ++i) |
606 | ; | 652 | ++count; |
607 | desc->sptes[i] = spte; | 653 | desc->sptes[i] = spte; |
608 | } | 654 | } |
609 | return count; | 655 | return count; |
@@ -645,18 +691,17 @@ static void rmap_remove(struct kvm *kvm, u64 *spte) | |||
645 | gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); | 691 | gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); |
646 | rmapp = gfn_to_rmap(kvm, gfn, sp->role.level); | 692 | rmapp = gfn_to_rmap(kvm, gfn, sp->role.level); |
647 | if (!*rmapp) { | 693 | if (!*rmapp) { |
648 | printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte); | 694 | printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte); |
649 | BUG(); | 695 | BUG(); |
650 | } else if (!(*rmapp & 1)) { | 696 | } else if (!(*rmapp & 1)) { |
651 | rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte); | 697 | rmap_printk("rmap_remove: %p 1->0\n", spte); |
652 | if ((u64 *)*rmapp != spte) { | 698 | if ((u64 *)*rmapp != spte) { |
653 | printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n", | 699 | printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte); |
654 | spte, *spte); | ||
655 | BUG(); | 700 | BUG(); |
656 | } | 701 | } |
657 | *rmapp = 0; | 702 | *rmapp = 0; |
658 | } else { | 703 | } else { |
659 | rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte); | 704 | rmap_printk("rmap_remove: %p many->many\n", spte); |
660 | desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul); | 705 | desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul); |
661 | prev_desc = NULL; | 706 | prev_desc = NULL; |
662 | while (desc) { | 707 | while (desc) { |
@@ -670,7 +715,7 @@ static void rmap_remove(struct kvm *kvm, u64 *spte) | |||
670 | prev_desc = desc; | 715 | prev_desc = desc; |
671 | desc = desc->more; | 716 | desc = desc->more; |
672 | } | 717 | } |
673 | pr_err("rmap_remove: %p %llx many->many\n", spte, *spte); | 718 | pr_err("rmap_remove: %p many->many\n", spte); |
674 | BUG(); | 719 | BUG(); |
675 | } | 720 | } |
676 | } | 721 | } |
@@ -680,18 +725,18 @@ static void set_spte_track_bits(u64 *sptep, u64 new_spte) | |||
680 | pfn_t pfn; | 725 | pfn_t pfn; |
681 | u64 old_spte = *sptep; | 726 | u64 old_spte = *sptep; |
682 | 727 | ||
683 | if (!shadow_accessed_mask || !is_shadow_present_pte(old_spte) || | 728 | if (!spte_has_volatile_bits(old_spte)) |
684 | old_spte & shadow_accessed_mask) { | ||
685 | __set_spte(sptep, new_spte); | 729 | __set_spte(sptep, new_spte); |
686 | } else | 730 | else |
687 | old_spte = __xchg_spte(sptep, new_spte); | 731 | old_spte = __xchg_spte(sptep, new_spte); |
688 | 732 | ||
689 | if (!is_rmap_spte(old_spte)) | 733 | if (!is_rmap_spte(old_spte)) |
690 | return; | 734 | return; |
735 | |||
691 | pfn = spte_to_pfn(old_spte); | 736 | pfn = spte_to_pfn(old_spte); |
692 | if (!shadow_accessed_mask || old_spte & shadow_accessed_mask) | 737 | if (!shadow_accessed_mask || old_spte & shadow_accessed_mask) |
693 | kvm_set_pfn_accessed(pfn); | 738 | kvm_set_pfn_accessed(pfn); |
694 | if (is_writable_pte(old_spte)) | 739 | if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask)) |
695 | kvm_set_pfn_dirty(pfn); | 740 | kvm_set_pfn_dirty(pfn); |
696 | } | 741 | } |
697 | 742 | ||
@@ -746,13 +791,6 @@ static int rmap_write_protect(struct kvm *kvm, u64 gfn) | |||
746 | } | 791 | } |
747 | spte = rmap_next(kvm, rmapp, spte); | 792 | spte = rmap_next(kvm, rmapp, spte); |
748 | } | 793 | } |
749 | if (write_protected) { | ||
750 | pfn_t pfn; | ||
751 | |||
752 | spte = rmap_next(kvm, rmapp, NULL); | ||
753 | pfn = spte_to_pfn(*spte); | ||
754 | kvm_set_pfn_dirty(pfn); | ||
755 | } | ||
756 | 794 | ||
757 | /* check for huge page mappings */ | 795 | /* check for huge page mappings */ |
758 | for (i = PT_DIRECTORY_LEVEL; | 796 | for (i = PT_DIRECTORY_LEVEL; |
@@ -947,6 +985,18 @@ static int is_empty_shadow_page(u64 *spt) | |||
947 | } | 985 | } |
948 | #endif | 986 | #endif |
949 | 987 | ||
988 | /* | ||
989 | * This value is the sum of all of the kvm instances's | ||
990 | * kvm->arch.n_used_mmu_pages values. We need a global, | ||
991 | * aggregate version in order to make the slab shrinker | ||
992 | * faster | ||
993 | */ | ||
994 | static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr) | ||
995 | { | ||
996 | kvm->arch.n_used_mmu_pages += nr; | ||
997 | percpu_counter_add(&kvm_total_used_mmu_pages, nr); | ||
998 | } | ||
999 | |||
950 | static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp) | 1000 | static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp) |
951 | { | 1001 | { |
952 | ASSERT(is_empty_shadow_page(sp->spt)); | 1002 | ASSERT(is_empty_shadow_page(sp->spt)); |
@@ -956,7 +1006,7 @@ static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp) | |||
956 | if (!sp->role.direct) | 1006 | if (!sp->role.direct) |
957 | __free_page(virt_to_page(sp->gfns)); | 1007 | __free_page(virt_to_page(sp->gfns)); |
958 | kmem_cache_free(mmu_page_header_cache, sp); | 1008 | kmem_cache_free(mmu_page_header_cache, sp); |
959 | ++kvm->arch.n_free_mmu_pages; | 1009 | kvm_mod_used_mmu_pages(kvm, -1); |
960 | } | 1010 | } |
961 | 1011 | ||
962 | static unsigned kvm_page_table_hashfn(gfn_t gfn) | 1012 | static unsigned kvm_page_table_hashfn(gfn_t gfn) |
@@ -979,7 +1029,7 @@ static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, | |||
979 | bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS); | 1029 | bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS); |
980 | sp->multimapped = 0; | 1030 | sp->multimapped = 0; |
981 | sp->parent_pte = parent_pte; | 1031 | sp->parent_pte = parent_pte; |
982 | --vcpu->kvm->arch.n_free_mmu_pages; | 1032 | kvm_mod_used_mmu_pages(vcpu->kvm, +1); |
983 | return sp; | 1033 | return sp; |
984 | } | 1034 | } |
985 | 1035 | ||
@@ -1403,7 +1453,8 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, | |||
1403 | if (role.direct) | 1453 | if (role.direct) |
1404 | role.cr4_pae = 0; | 1454 | role.cr4_pae = 0; |
1405 | role.access = access; | 1455 | role.access = access; |
1406 | if (!tdp_enabled && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) { | 1456 | if (!vcpu->arch.mmu.direct_map |
1457 | && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) { | ||
1407 | quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); | 1458 | quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); |
1408 | quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; | 1459 | quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; |
1409 | role.quadrant = quadrant; | 1460 | role.quadrant = quadrant; |
@@ -1458,6 +1509,12 @@ static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, | |||
1458 | iterator->addr = addr; | 1509 | iterator->addr = addr; |
1459 | iterator->shadow_addr = vcpu->arch.mmu.root_hpa; | 1510 | iterator->shadow_addr = vcpu->arch.mmu.root_hpa; |
1460 | iterator->level = vcpu->arch.mmu.shadow_root_level; | 1511 | iterator->level = vcpu->arch.mmu.shadow_root_level; |
1512 | |||
1513 | if (iterator->level == PT64_ROOT_LEVEL && | ||
1514 | vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL && | ||
1515 | !vcpu->arch.mmu.direct_map) | ||
1516 | --iterator->level; | ||
1517 | |||
1461 | if (iterator->level == PT32E_ROOT_LEVEL) { | 1518 | if (iterator->level == PT32E_ROOT_LEVEL) { |
1462 | iterator->shadow_addr | 1519 | iterator->shadow_addr |
1463 | = vcpu->arch.mmu.pae_root[(addr >> 30) & 3]; | 1520 | = vcpu->arch.mmu.pae_root[(addr >> 30) & 3]; |
@@ -1665,41 +1722,31 @@ static void kvm_mmu_commit_zap_page(struct kvm *kvm, | |||
1665 | 1722 | ||
1666 | /* | 1723 | /* |
1667 | * Changing the number of mmu pages allocated to the vm | 1724 | * Changing the number of mmu pages allocated to the vm |
1668 | * Note: if kvm_nr_mmu_pages is too small, you will get dead lock | 1725 | * Note: if goal_nr_mmu_pages is too small, you will get dead lock |
1669 | */ | 1726 | */ |
1670 | void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages) | 1727 | void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages) |
1671 | { | 1728 | { |
1672 | int used_pages; | ||
1673 | LIST_HEAD(invalid_list); | 1729 | LIST_HEAD(invalid_list); |
1674 | |||
1675 | used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages; | ||
1676 | used_pages = max(0, used_pages); | ||
1677 | |||
1678 | /* | 1730 | /* |
1679 | * If we set the number of mmu pages to be smaller be than the | 1731 | * If we set the number of mmu pages to be smaller be than the |
1680 | * number of actived pages , we must to free some mmu pages before we | 1732 | * number of actived pages , we must to free some mmu pages before we |
1681 | * change the value | 1733 | * change the value |
1682 | */ | 1734 | */ |
1683 | 1735 | ||
1684 | if (used_pages > kvm_nr_mmu_pages) { | 1736 | if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { |
1685 | while (used_pages > kvm_nr_mmu_pages && | 1737 | while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages && |
1686 | !list_empty(&kvm->arch.active_mmu_pages)) { | 1738 | !list_empty(&kvm->arch.active_mmu_pages)) { |
1687 | struct kvm_mmu_page *page; | 1739 | struct kvm_mmu_page *page; |
1688 | 1740 | ||
1689 | page = container_of(kvm->arch.active_mmu_pages.prev, | 1741 | page = container_of(kvm->arch.active_mmu_pages.prev, |
1690 | struct kvm_mmu_page, link); | 1742 | struct kvm_mmu_page, link); |
1691 | used_pages -= kvm_mmu_prepare_zap_page(kvm, page, | 1743 | kvm_mmu_prepare_zap_page(kvm, page, &invalid_list); |
1692 | &invalid_list); | 1744 | kvm_mmu_commit_zap_page(kvm, &invalid_list); |
1693 | } | 1745 | } |
1694 | kvm_mmu_commit_zap_page(kvm, &invalid_list); | 1746 | goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; |
1695 | kvm_nr_mmu_pages = used_pages; | ||
1696 | kvm->arch.n_free_mmu_pages = 0; | ||
1697 | } | 1747 | } |
1698 | else | ||
1699 | kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages | ||
1700 | - kvm->arch.n_alloc_mmu_pages; | ||
1701 | 1748 | ||
1702 | kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages; | 1749 | kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; |
1703 | } | 1750 | } |
1704 | 1751 | ||
1705 | static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) | 1752 | static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) |
@@ -1709,11 +1756,11 @@ static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) | |||
1709 | LIST_HEAD(invalid_list); | 1756 | LIST_HEAD(invalid_list); |
1710 | int r; | 1757 | int r; |
1711 | 1758 | ||
1712 | pgprintk("%s: looking for gfn %lx\n", __func__, gfn); | 1759 | pgprintk("%s: looking for gfn %llx\n", __func__, gfn); |
1713 | r = 0; | 1760 | r = 0; |
1714 | 1761 | ||
1715 | for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) { | 1762 | for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) { |
1716 | pgprintk("%s: gfn %lx role %x\n", __func__, gfn, | 1763 | pgprintk("%s: gfn %llx role %x\n", __func__, gfn, |
1717 | sp->role.word); | 1764 | sp->role.word); |
1718 | r = 1; | 1765 | r = 1; |
1719 | kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); | 1766 | kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); |
@@ -1729,7 +1776,7 @@ static void mmu_unshadow(struct kvm *kvm, gfn_t gfn) | |||
1729 | LIST_HEAD(invalid_list); | 1776 | LIST_HEAD(invalid_list); |
1730 | 1777 | ||
1731 | for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) { | 1778 | for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) { |
1732 | pgprintk("%s: zap %lx %x\n", | 1779 | pgprintk("%s: zap %llx %x\n", |
1733 | __func__, gfn, sp->role.word); | 1780 | __func__, gfn, sp->role.word); |
1734 | kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); | 1781 | kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); |
1735 | } | 1782 | } |
@@ -1925,7 +1972,7 @@ static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, | |||
1925 | * whether the guest actually used the pte (in order to detect | 1972 | * whether the guest actually used the pte (in order to detect |
1926 | * demand paging). | 1973 | * demand paging). |
1927 | */ | 1974 | */ |
1928 | spte = shadow_base_present_pte | shadow_dirty_mask; | 1975 | spte = shadow_base_present_pte; |
1929 | if (!speculative) | 1976 | if (!speculative) |
1930 | spte |= shadow_accessed_mask; | 1977 | spte |= shadow_accessed_mask; |
1931 | if (!dirty) | 1978 | if (!dirty) |
@@ -1948,8 +1995,8 @@ static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, | |||
1948 | spte |= (u64)pfn << PAGE_SHIFT; | 1995 | spte |= (u64)pfn << PAGE_SHIFT; |
1949 | 1996 | ||
1950 | if ((pte_access & ACC_WRITE_MASK) | 1997 | if ((pte_access & ACC_WRITE_MASK) |
1951 | || (!tdp_enabled && write_fault && !is_write_protection(vcpu) | 1998 | || (!vcpu->arch.mmu.direct_map && write_fault |
1952 | && !user_fault)) { | 1999 | && !is_write_protection(vcpu) && !user_fault)) { |
1953 | 2000 | ||
1954 | if (level > PT_PAGE_TABLE_LEVEL && | 2001 | if (level > PT_PAGE_TABLE_LEVEL && |
1955 | has_wrprotected_page(vcpu->kvm, gfn, level)) { | 2002 | has_wrprotected_page(vcpu->kvm, gfn, level)) { |
@@ -1960,7 +2007,8 @@ static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, | |||
1960 | 2007 | ||
1961 | spte |= PT_WRITABLE_MASK; | 2008 | spte |= PT_WRITABLE_MASK; |
1962 | 2009 | ||
1963 | if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK)) | 2010 | if (!vcpu->arch.mmu.direct_map |
2011 | && !(pte_access & ACC_WRITE_MASK)) | ||
1964 | spte &= ~PT_USER_MASK; | 2012 | spte &= ~PT_USER_MASK; |
1965 | 2013 | ||
1966 | /* | 2014 | /* |
@@ -1973,7 +2021,7 @@ static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, | |||
1973 | goto set_pte; | 2021 | goto set_pte; |
1974 | 2022 | ||
1975 | if (mmu_need_write_protect(vcpu, gfn, can_unsync)) { | 2023 | if (mmu_need_write_protect(vcpu, gfn, can_unsync)) { |
1976 | pgprintk("%s: found shadow page for %lx, marking ro\n", | 2024 | pgprintk("%s: found shadow page for %llx, marking ro\n", |
1977 | __func__, gfn); | 2025 | __func__, gfn); |
1978 | ret = 1; | 2026 | ret = 1; |
1979 | pte_access &= ~ACC_WRITE_MASK; | 2027 | pte_access &= ~ACC_WRITE_MASK; |
@@ -1986,8 +2034,6 @@ static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, | |||
1986 | mark_page_dirty(vcpu->kvm, gfn); | 2034 | mark_page_dirty(vcpu->kvm, gfn); |
1987 | 2035 | ||
1988 | set_pte: | 2036 | set_pte: |
1989 | if (is_writable_pte(*sptep) && !is_writable_pte(spte)) | ||
1990 | kvm_set_pfn_dirty(pfn); | ||
1991 | update_spte(sptep, spte); | 2037 | update_spte(sptep, spte); |
1992 | done: | 2038 | done: |
1993 | return ret; | 2039 | return ret; |
@@ -2004,7 +2050,7 @@ static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, | |||
2004 | int rmap_count; | 2050 | int rmap_count; |
2005 | 2051 | ||
2006 | pgprintk("%s: spte %llx access %x write_fault %d" | 2052 | pgprintk("%s: spte %llx access %x write_fault %d" |
2007 | " user_fault %d gfn %lx\n", | 2053 | " user_fault %d gfn %llx\n", |
2008 | __func__, *sptep, pt_access, | 2054 | __func__, *sptep, pt_access, |
2009 | write_fault, user_fault, gfn); | 2055 | write_fault, user_fault, gfn); |
2010 | 2056 | ||
@@ -2023,7 +2069,7 @@ static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, | |||
2023 | __set_spte(sptep, shadow_trap_nonpresent_pte); | 2069 | __set_spte(sptep, shadow_trap_nonpresent_pte); |
2024 | kvm_flush_remote_tlbs(vcpu->kvm); | 2070 | kvm_flush_remote_tlbs(vcpu->kvm); |
2025 | } else if (pfn != spte_to_pfn(*sptep)) { | 2071 | } else if (pfn != spte_to_pfn(*sptep)) { |
2026 | pgprintk("hfn old %lx new %lx\n", | 2072 | pgprintk("hfn old %llx new %llx\n", |
2027 | spte_to_pfn(*sptep), pfn); | 2073 | spte_to_pfn(*sptep), pfn); |
2028 | drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte); | 2074 | drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte); |
2029 | kvm_flush_remote_tlbs(vcpu->kvm); | 2075 | kvm_flush_remote_tlbs(vcpu->kvm); |
@@ -2040,7 +2086,7 @@ static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, | |||
2040 | } | 2086 | } |
2041 | 2087 | ||
2042 | pgprintk("%s: setting spte %llx\n", __func__, *sptep); | 2088 | pgprintk("%s: setting spte %llx\n", __func__, *sptep); |
2043 | pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n", | 2089 | pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n", |
2044 | is_large_pte(*sptep)? "2MB" : "4kB", | 2090 | is_large_pte(*sptep)? "2MB" : "4kB", |
2045 | *sptep & PT_PRESENT_MASK ?"RW":"R", gfn, | 2091 | *sptep & PT_PRESENT_MASK ?"RW":"R", gfn, |
2046 | *sptep, sptep); | 2092 | *sptep, sptep); |
@@ -2064,6 +2110,105 @@ static void nonpaging_new_cr3(struct kvm_vcpu *vcpu) | |||
2064 | { | 2110 | { |
2065 | } | 2111 | } |
2066 | 2112 | ||
2113 | static struct kvm_memory_slot * | ||
2114 | pte_prefetch_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn, bool no_dirty_log) | ||
2115 | { | ||
2116 | struct kvm_memory_slot *slot; | ||
2117 | |||
2118 | slot = gfn_to_memslot(vcpu->kvm, gfn); | ||
2119 | if (!slot || slot->flags & KVM_MEMSLOT_INVALID || | ||
2120 | (no_dirty_log && slot->dirty_bitmap)) | ||
2121 | slot = NULL; | ||
2122 | |||
2123 | return slot; | ||
2124 | } | ||
2125 | |||
2126 | static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, | ||
2127 | bool no_dirty_log) | ||
2128 | { | ||
2129 | struct kvm_memory_slot *slot; | ||
2130 | unsigned long hva; | ||
2131 | |||
2132 | slot = pte_prefetch_gfn_to_memslot(vcpu, gfn, no_dirty_log); | ||
2133 | if (!slot) { | ||
2134 | get_page(bad_page); | ||
2135 | return page_to_pfn(bad_page); | ||
2136 | } | ||
2137 | |||
2138 | hva = gfn_to_hva_memslot(slot, gfn); | ||
2139 | |||
2140 | return hva_to_pfn_atomic(vcpu->kvm, hva); | ||
2141 | } | ||
2142 | |||
2143 | static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, | ||
2144 | struct kvm_mmu_page *sp, | ||
2145 | u64 *start, u64 *end) | ||
2146 | { | ||
2147 | struct page *pages[PTE_PREFETCH_NUM]; | ||
2148 | unsigned access = sp->role.access; | ||
2149 | int i, ret; | ||
2150 | gfn_t gfn; | ||
2151 | |||
2152 | gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); | ||
2153 | if (!pte_prefetch_gfn_to_memslot(vcpu, gfn, access & ACC_WRITE_MASK)) | ||
2154 | return -1; | ||
2155 | |||
2156 | ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start); | ||
2157 | if (ret <= 0) | ||
2158 | return -1; | ||
2159 | |||
2160 | for (i = 0; i < ret; i++, gfn++, start++) | ||
2161 | mmu_set_spte(vcpu, start, ACC_ALL, | ||
2162 | access, 0, 0, 1, NULL, | ||
2163 | sp->role.level, gfn, | ||
2164 | page_to_pfn(pages[i]), true, true); | ||
2165 | |||
2166 | return 0; | ||
2167 | } | ||
2168 | |||
2169 | static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, | ||
2170 | struct kvm_mmu_page *sp, u64 *sptep) | ||
2171 | { | ||
2172 | u64 *spte, *start = NULL; | ||
2173 | int i; | ||
2174 | |||
2175 | WARN_ON(!sp->role.direct); | ||
2176 | |||
2177 | i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); | ||
2178 | spte = sp->spt + i; | ||
2179 | |||
2180 | for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { | ||
2181 | if (*spte != shadow_trap_nonpresent_pte || spte == sptep) { | ||
2182 | if (!start) | ||
2183 | continue; | ||
2184 | if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) | ||
2185 | break; | ||
2186 | start = NULL; | ||
2187 | } else if (!start) | ||
2188 | start = spte; | ||
2189 | } | ||
2190 | } | ||
2191 | |||
2192 | static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) | ||
2193 | { | ||
2194 | struct kvm_mmu_page *sp; | ||
2195 | |||
2196 | /* | ||
2197 | * Since it's no accessed bit on EPT, it's no way to | ||
2198 | * distinguish between actually accessed translations | ||
2199 | * and prefetched, so disable pte prefetch if EPT is | ||
2200 | * enabled. | ||
2201 | */ | ||
2202 | if (!shadow_accessed_mask) | ||
2203 | return; | ||
2204 | |||
2205 | sp = page_header(__pa(sptep)); | ||
2206 | if (sp->role.level > PT_PAGE_TABLE_LEVEL) | ||
2207 | return; | ||
2208 | |||
2209 | __direct_pte_prefetch(vcpu, sp, sptep); | ||
2210 | } | ||
2211 | |||
2067 | static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write, | 2212 | static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write, |
2068 | int level, gfn_t gfn, pfn_t pfn) | 2213 | int level, gfn_t gfn, pfn_t pfn) |
2069 | { | 2214 | { |
@@ -2077,6 +2222,7 @@ static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write, | |||
2077 | mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL, | 2222 | mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL, |
2078 | 0, write, 1, &pt_write, | 2223 | 0, write, 1, &pt_write, |
2079 | level, gfn, pfn, false, true); | 2224 | level, gfn, pfn, false, true); |
2225 | direct_pte_prefetch(vcpu, iterator.sptep); | ||
2080 | ++vcpu->stat.pf_fixed; | 2226 | ++vcpu->stat.pf_fixed; |
2081 | break; | 2227 | break; |
2082 | } | 2228 | } |
@@ -2098,28 +2244,31 @@ static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write, | |||
2098 | __set_spte(iterator.sptep, | 2244 | __set_spte(iterator.sptep, |
2099 | __pa(sp->spt) | 2245 | __pa(sp->spt) |
2100 | | PT_PRESENT_MASK | PT_WRITABLE_MASK | 2246 | | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2101 | | shadow_user_mask | shadow_x_mask); | 2247 | | shadow_user_mask | shadow_x_mask |
2248 | | shadow_accessed_mask); | ||
2102 | } | 2249 | } |
2103 | } | 2250 | } |
2104 | return pt_write; | 2251 | return pt_write; |
2105 | } | 2252 | } |
2106 | 2253 | ||
2107 | static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn) | 2254 | static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) |
2108 | { | 2255 | { |
2109 | char buf[1]; | 2256 | siginfo_t info; |
2110 | void __user *hva; | 2257 | |
2111 | int r; | 2258 | info.si_signo = SIGBUS; |
2259 | info.si_errno = 0; | ||
2260 | info.si_code = BUS_MCEERR_AR; | ||
2261 | info.si_addr = (void __user *)address; | ||
2262 | info.si_addr_lsb = PAGE_SHIFT; | ||
2112 | 2263 | ||
2113 | /* Touch the page, so send SIGBUS */ | 2264 | send_sig_info(SIGBUS, &info, tsk); |
2114 | hva = (void __user *)gfn_to_hva(kvm, gfn); | ||
2115 | r = copy_from_user(buf, hva, 1); | ||
2116 | } | 2265 | } |
2117 | 2266 | ||
2118 | static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn) | 2267 | static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn) |
2119 | { | 2268 | { |
2120 | kvm_release_pfn_clean(pfn); | 2269 | kvm_release_pfn_clean(pfn); |
2121 | if (is_hwpoison_pfn(pfn)) { | 2270 | if (is_hwpoison_pfn(pfn)) { |
2122 | kvm_send_hwpoison_signal(kvm, gfn); | 2271 | kvm_send_hwpoison_signal(gfn_to_hva(kvm, gfn), current); |
2123 | return 0; | 2272 | return 0; |
2124 | } else if (is_fault_pfn(pfn)) | 2273 | } else if (is_fault_pfn(pfn)) |
2125 | return -EFAULT; | 2274 | return -EFAULT; |
@@ -2179,7 +2328,9 @@ static void mmu_free_roots(struct kvm_vcpu *vcpu) | |||
2179 | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) | 2328 | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) |
2180 | return; | 2329 | return; |
2181 | spin_lock(&vcpu->kvm->mmu_lock); | 2330 | spin_lock(&vcpu->kvm->mmu_lock); |
2182 | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) { | 2331 | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL && |
2332 | (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL || | ||
2333 | vcpu->arch.mmu.direct_map)) { | ||
2183 | hpa_t root = vcpu->arch.mmu.root_hpa; | 2334 | hpa_t root = vcpu->arch.mmu.root_hpa; |
2184 | 2335 | ||
2185 | sp = page_header(root); | 2336 | sp = page_header(root); |
@@ -2222,80 +2373,158 @@ static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) | |||
2222 | return ret; | 2373 | return ret; |
2223 | } | 2374 | } |
2224 | 2375 | ||
2225 | static int mmu_alloc_roots(struct kvm_vcpu *vcpu) | 2376 | static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) |
2226 | { | 2377 | { |
2227 | int i; | ||
2228 | gfn_t root_gfn; | ||
2229 | struct kvm_mmu_page *sp; | 2378 | struct kvm_mmu_page *sp; |
2230 | int direct = 0; | 2379 | unsigned i; |
2231 | u64 pdptr; | ||
2232 | |||
2233 | root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT; | ||
2234 | 2380 | ||
2235 | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) { | 2381 | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) { |
2382 | spin_lock(&vcpu->kvm->mmu_lock); | ||
2383 | kvm_mmu_free_some_pages(vcpu); | ||
2384 | sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, | ||
2385 | 1, ACC_ALL, NULL); | ||
2386 | ++sp->root_count; | ||
2387 | spin_unlock(&vcpu->kvm->mmu_lock); | ||
2388 | vcpu->arch.mmu.root_hpa = __pa(sp->spt); | ||
2389 | } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) { | ||
2390 | for (i = 0; i < 4; ++i) { | ||
2391 | hpa_t root = vcpu->arch.mmu.pae_root[i]; | ||
2392 | |||
2393 | ASSERT(!VALID_PAGE(root)); | ||
2394 | spin_lock(&vcpu->kvm->mmu_lock); | ||
2395 | kvm_mmu_free_some_pages(vcpu); | ||
2396 | sp = kvm_mmu_get_page(vcpu, i << 30, i << 30, | ||
2397 | PT32_ROOT_LEVEL, 1, ACC_ALL, | ||
2398 | NULL); | ||
2399 | root = __pa(sp->spt); | ||
2400 | ++sp->root_count; | ||
2401 | spin_unlock(&vcpu->kvm->mmu_lock); | ||
2402 | vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK; | ||
2403 | } | ||
2404 | vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root); | ||
2405 | } else | ||
2406 | BUG(); | ||
2407 | |||
2408 | return 0; | ||
2409 | } | ||
2410 | |||
2411 | static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) | ||
2412 | { | ||
2413 | struct kvm_mmu_page *sp; | ||
2414 | u64 pdptr, pm_mask; | ||
2415 | gfn_t root_gfn; | ||
2416 | int i; | ||
2417 | |||
2418 | root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT; | ||
2419 | |||
2420 | if (mmu_check_root(vcpu, root_gfn)) | ||
2421 | return 1; | ||
2422 | |||
2423 | /* | ||
2424 | * Do we shadow a long mode page table? If so we need to | ||
2425 | * write-protect the guests page table root. | ||
2426 | */ | ||
2427 | if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) { | ||
2236 | hpa_t root = vcpu->arch.mmu.root_hpa; | 2428 | hpa_t root = vcpu->arch.mmu.root_hpa; |
2237 | 2429 | ||
2238 | ASSERT(!VALID_PAGE(root)); | 2430 | ASSERT(!VALID_PAGE(root)); |
2239 | if (mmu_check_root(vcpu, root_gfn)) | 2431 | |
2240 | return 1; | ||
2241 | if (tdp_enabled) { | ||
2242 | direct = 1; | ||
2243 | root_gfn = 0; | ||
2244 | } | ||
2245 | spin_lock(&vcpu->kvm->mmu_lock); | 2432 | spin_lock(&vcpu->kvm->mmu_lock); |
2246 | kvm_mmu_free_some_pages(vcpu); | 2433 | kvm_mmu_free_some_pages(vcpu); |
2247 | sp = kvm_mmu_get_page(vcpu, root_gfn, 0, | 2434 | sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL, |
2248 | PT64_ROOT_LEVEL, direct, | 2435 | 0, ACC_ALL, NULL); |
2249 | ACC_ALL, NULL); | ||
2250 | root = __pa(sp->spt); | 2436 | root = __pa(sp->spt); |
2251 | ++sp->root_count; | 2437 | ++sp->root_count; |
2252 | spin_unlock(&vcpu->kvm->mmu_lock); | 2438 | spin_unlock(&vcpu->kvm->mmu_lock); |
2253 | vcpu->arch.mmu.root_hpa = root; | 2439 | vcpu->arch.mmu.root_hpa = root; |
2254 | return 0; | 2440 | return 0; |
2255 | } | 2441 | } |
2256 | direct = !is_paging(vcpu); | 2442 | |
2443 | /* | ||
2444 | * We shadow a 32 bit page table. This may be a legacy 2-level | ||
2445 | * or a PAE 3-level page table. In either case we need to be aware that | ||
2446 | * the shadow page table may be a PAE or a long mode page table. | ||
2447 | */ | ||
2448 | pm_mask = PT_PRESENT_MASK; | ||
2449 | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) | ||
2450 | pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; | ||
2451 | |||
2257 | for (i = 0; i < 4; ++i) { | 2452 | for (i = 0; i < 4; ++i) { |
2258 | hpa_t root = vcpu->arch.mmu.pae_root[i]; | 2453 | hpa_t root = vcpu->arch.mmu.pae_root[i]; |
2259 | 2454 | ||
2260 | ASSERT(!VALID_PAGE(root)); | 2455 | ASSERT(!VALID_PAGE(root)); |
2261 | if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) { | 2456 | if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) { |
2262 | pdptr = kvm_pdptr_read(vcpu, i); | 2457 | pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i); |
2263 | if (!is_present_gpte(pdptr)) { | 2458 | if (!is_present_gpte(pdptr)) { |
2264 | vcpu->arch.mmu.pae_root[i] = 0; | 2459 | vcpu->arch.mmu.pae_root[i] = 0; |
2265 | continue; | 2460 | continue; |
2266 | } | 2461 | } |
2267 | root_gfn = pdptr >> PAGE_SHIFT; | 2462 | root_gfn = pdptr >> PAGE_SHIFT; |
2268 | } else if (vcpu->arch.mmu.root_level == 0) | 2463 | if (mmu_check_root(vcpu, root_gfn)) |
2269 | root_gfn = 0; | 2464 | return 1; |
2270 | if (mmu_check_root(vcpu, root_gfn)) | ||
2271 | return 1; | ||
2272 | if (tdp_enabled) { | ||
2273 | direct = 1; | ||
2274 | root_gfn = i << 30; | ||
2275 | } | 2465 | } |
2276 | spin_lock(&vcpu->kvm->mmu_lock); | 2466 | spin_lock(&vcpu->kvm->mmu_lock); |
2277 | kvm_mmu_free_some_pages(vcpu); | 2467 | kvm_mmu_free_some_pages(vcpu); |
2278 | sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, | 2468 | sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, |
2279 | PT32_ROOT_LEVEL, direct, | 2469 | PT32_ROOT_LEVEL, 0, |
2280 | ACC_ALL, NULL); | 2470 | ACC_ALL, NULL); |
2281 | root = __pa(sp->spt); | 2471 | root = __pa(sp->spt); |
2282 | ++sp->root_count; | 2472 | ++sp->root_count; |
2283 | spin_unlock(&vcpu->kvm->mmu_lock); | 2473 | spin_unlock(&vcpu->kvm->mmu_lock); |
2284 | 2474 | ||
2285 | vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK; | 2475 | vcpu->arch.mmu.pae_root[i] = root | pm_mask; |
2286 | } | 2476 | } |
2287 | vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root); | 2477 | vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root); |
2478 | |||
2479 | /* | ||
2480 | * If we shadow a 32 bit page table with a long mode page | ||
2481 | * table we enter this path. | ||
2482 | */ | ||
2483 | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) { | ||
2484 | if (vcpu->arch.mmu.lm_root == NULL) { | ||
2485 | /* | ||
2486 | * The additional page necessary for this is only | ||
2487 | * allocated on demand. | ||
2488 | */ | ||
2489 | |||
2490 | u64 *lm_root; | ||
2491 | |||
2492 | lm_root = (void*)get_zeroed_page(GFP_KERNEL); | ||
2493 | if (lm_root == NULL) | ||
2494 | return 1; | ||
2495 | |||
2496 | lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask; | ||
2497 | |||
2498 | vcpu->arch.mmu.lm_root = lm_root; | ||
2499 | } | ||
2500 | |||
2501 | vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root); | ||
2502 | } | ||
2503 | |||
2288 | return 0; | 2504 | return 0; |
2289 | } | 2505 | } |
2290 | 2506 | ||
2507 | static int mmu_alloc_roots(struct kvm_vcpu *vcpu) | ||
2508 | { | ||
2509 | if (vcpu->arch.mmu.direct_map) | ||
2510 | return mmu_alloc_direct_roots(vcpu); | ||
2511 | else | ||
2512 | return mmu_alloc_shadow_roots(vcpu); | ||
2513 | } | ||
2514 | |||
2291 | static void mmu_sync_roots(struct kvm_vcpu *vcpu) | 2515 | static void mmu_sync_roots(struct kvm_vcpu *vcpu) |
2292 | { | 2516 | { |
2293 | int i; | 2517 | int i; |
2294 | struct kvm_mmu_page *sp; | 2518 | struct kvm_mmu_page *sp; |
2295 | 2519 | ||
2520 | if (vcpu->arch.mmu.direct_map) | ||
2521 | return; | ||
2522 | |||
2296 | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) | 2523 | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) |
2297 | return; | 2524 | return; |
2298 | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) { | 2525 | |
2526 | trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); | ||
2527 | if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) { | ||
2299 | hpa_t root = vcpu->arch.mmu.root_hpa; | 2528 | hpa_t root = vcpu->arch.mmu.root_hpa; |
2300 | sp = page_header(root); | 2529 | sp = page_header(root); |
2301 | mmu_sync_children(vcpu, sp); | 2530 | mmu_sync_children(vcpu, sp); |
@@ -2310,6 +2539,7 @@ static void mmu_sync_roots(struct kvm_vcpu *vcpu) | |||
2310 | mmu_sync_children(vcpu, sp); | 2539 | mmu_sync_children(vcpu, sp); |
2311 | } | 2540 | } |
2312 | } | 2541 | } |
2542 | trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); | ||
2313 | } | 2543 | } |
2314 | 2544 | ||
2315 | void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) | 2545 | void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) |
@@ -2327,6 +2557,14 @@ static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr, | |||
2327 | return vaddr; | 2557 | return vaddr; |
2328 | } | 2558 | } |
2329 | 2559 | ||
2560 | static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr, | ||
2561 | u32 access, u32 *error) | ||
2562 | { | ||
2563 | if (error) | ||
2564 | *error = 0; | ||
2565 | return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access); | ||
2566 | } | ||
2567 | |||
2330 | static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva, | 2568 | static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva, |
2331 | u32 error_code) | 2569 | u32 error_code) |
2332 | { | 2570 | { |
@@ -2393,10 +2631,9 @@ static void nonpaging_free(struct kvm_vcpu *vcpu) | |||
2393 | mmu_free_roots(vcpu); | 2631 | mmu_free_roots(vcpu); |
2394 | } | 2632 | } |
2395 | 2633 | ||
2396 | static int nonpaging_init_context(struct kvm_vcpu *vcpu) | 2634 | static int nonpaging_init_context(struct kvm_vcpu *vcpu, |
2635 | struct kvm_mmu *context) | ||
2397 | { | 2636 | { |
2398 | struct kvm_mmu *context = &vcpu->arch.mmu; | ||
2399 | |||
2400 | context->new_cr3 = nonpaging_new_cr3; | 2637 | context->new_cr3 = nonpaging_new_cr3; |
2401 | context->page_fault = nonpaging_page_fault; | 2638 | context->page_fault = nonpaging_page_fault; |
2402 | context->gva_to_gpa = nonpaging_gva_to_gpa; | 2639 | context->gva_to_gpa = nonpaging_gva_to_gpa; |
@@ -2407,6 +2644,8 @@ static int nonpaging_init_context(struct kvm_vcpu *vcpu) | |||
2407 | context->root_level = 0; | 2644 | context->root_level = 0; |
2408 | context->shadow_root_level = PT32E_ROOT_LEVEL; | 2645 | context->shadow_root_level = PT32E_ROOT_LEVEL; |
2409 | context->root_hpa = INVALID_PAGE; | 2646 | context->root_hpa = INVALID_PAGE; |
2647 | context->direct_map = true; | ||
2648 | context->nx = false; | ||
2410 | return 0; | 2649 | return 0; |
2411 | } | 2650 | } |
2412 | 2651 | ||
@@ -2422,11 +2661,14 @@ static void paging_new_cr3(struct kvm_vcpu *vcpu) | |||
2422 | mmu_free_roots(vcpu); | 2661 | mmu_free_roots(vcpu); |
2423 | } | 2662 | } |
2424 | 2663 | ||
2425 | static void inject_page_fault(struct kvm_vcpu *vcpu, | 2664 | static unsigned long get_cr3(struct kvm_vcpu *vcpu) |
2426 | u64 addr, | 2665 | { |
2427 | u32 err_code) | 2666 | return vcpu->arch.cr3; |
2667 | } | ||
2668 | |||
2669 | static void inject_page_fault(struct kvm_vcpu *vcpu) | ||
2428 | { | 2670 | { |
2429 | kvm_inject_page_fault(vcpu, addr, err_code); | 2671 | vcpu->arch.mmu.inject_page_fault(vcpu); |
2430 | } | 2672 | } |
2431 | 2673 | ||
2432 | static void paging_free(struct kvm_vcpu *vcpu) | 2674 | static void paging_free(struct kvm_vcpu *vcpu) |
@@ -2434,12 +2676,12 @@ static void paging_free(struct kvm_vcpu *vcpu) | |||
2434 | nonpaging_free(vcpu); | 2676 | nonpaging_free(vcpu); |
2435 | } | 2677 | } |
2436 | 2678 | ||
2437 | static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level) | 2679 | static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level) |
2438 | { | 2680 | { |
2439 | int bit7; | 2681 | int bit7; |
2440 | 2682 | ||
2441 | bit7 = (gpte >> 7) & 1; | 2683 | bit7 = (gpte >> 7) & 1; |
2442 | return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0; | 2684 | return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0; |
2443 | } | 2685 | } |
2444 | 2686 | ||
2445 | #define PTTYPE 64 | 2687 | #define PTTYPE 64 |
@@ -2450,13 +2692,14 @@ static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level) | |||
2450 | #include "paging_tmpl.h" | 2692 | #include "paging_tmpl.h" |
2451 | #undef PTTYPE | 2693 | #undef PTTYPE |
2452 | 2694 | ||
2453 | static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level) | 2695 | static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, |
2696 | struct kvm_mmu *context, | ||
2697 | int level) | ||
2454 | { | 2698 | { |
2455 | struct kvm_mmu *context = &vcpu->arch.mmu; | ||
2456 | int maxphyaddr = cpuid_maxphyaddr(vcpu); | 2699 | int maxphyaddr = cpuid_maxphyaddr(vcpu); |
2457 | u64 exb_bit_rsvd = 0; | 2700 | u64 exb_bit_rsvd = 0; |
2458 | 2701 | ||
2459 | if (!is_nx(vcpu)) | 2702 | if (!context->nx) |
2460 | exb_bit_rsvd = rsvd_bits(63, 63); | 2703 | exb_bit_rsvd = rsvd_bits(63, 63); |
2461 | switch (level) { | 2704 | switch (level) { |
2462 | case PT32_ROOT_LEVEL: | 2705 | case PT32_ROOT_LEVEL: |
@@ -2511,9 +2754,13 @@ static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level) | |||
2511 | } | 2754 | } |
2512 | } | 2755 | } |
2513 | 2756 | ||
2514 | static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level) | 2757 | static int paging64_init_context_common(struct kvm_vcpu *vcpu, |
2758 | struct kvm_mmu *context, | ||
2759 | int level) | ||
2515 | { | 2760 | { |
2516 | struct kvm_mmu *context = &vcpu->arch.mmu; | 2761 | context->nx = is_nx(vcpu); |
2762 | |||
2763 | reset_rsvds_bits_mask(vcpu, context, level); | ||
2517 | 2764 | ||
2518 | ASSERT(is_pae(vcpu)); | 2765 | ASSERT(is_pae(vcpu)); |
2519 | context->new_cr3 = paging_new_cr3; | 2766 | context->new_cr3 = paging_new_cr3; |
@@ -2526,20 +2773,23 @@ static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level) | |||
2526 | context->root_level = level; | 2773 | context->root_level = level; |
2527 | context->shadow_root_level = level; | 2774 | context->shadow_root_level = level; |
2528 | context->root_hpa = INVALID_PAGE; | 2775 | context->root_hpa = INVALID_PAGE; |
2776 | context->direct_map = false; | ||
2529 | return 0; | 2777 | return 0; |
2530 | } | 2778 | } |
2531 | 2779 | ||
2532 | static int paging64_init_context(struct kvm_vcpu *vcpu) | 2780 | static int paging64_init_context(struct kvm_vcpu *vcpu, |
2781 | struct kvm_mmu *context) | ||
2533 | { | 2782 | { |
2534 | reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL); | 2783 | return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL); |
2535 | return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL); | ||
2536 | } | 2784 | } |
2537 | 2785 | ||
2538 | static int paging32_init_context(struct kvm_vcpu *vcpu) | 2786 | static int paging32_init_context(struct kvm_vcpu *vcpu, |
2787 | struct kvm_mmu *context) | ||
2539 | { | 2788 | { |
2540 | struct kvm_mmu *context = &vcpu->arch.mmu; | 2789 | context->nx = false; |
2790 | |||
2791 | reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL); | ||
2541 | 2792 | ||
2542 | reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL); | ||
2543 | context->new_cr3 = paging_new_cr3; | 2793 | context->new_cr3 = paging_new_cr3; |
2544 | context->page_fault = paging32_page_fault; | 2794 | context->page_fault = paging32_page_fault; |
2545 | context->gva_to_gpa = paging32_gva_to_gpa; | 2795 | context->gva_to_gpa = paging32_gva_to_gpa; |
@@ -2550,18 +2800,19 @@ static int paging32_init_context(struct kvm_vcpu *vcpu) | |||
2550 | context->root_level = PT32_ROOT_LEVEL; | 2800 | context->root_level = PT32_ROOT_LEVEL; |
2551 | context->shadow_root_level = PT32E_ROOT_LEVEL; | 2801 | context->shadow_root_level = PT32E_ROOT_LEVEL; |
2552 | context->root_hpa = INVALID_PAGE; | 2802 | context->root_hpa = INVALID_PAGE; |
2803 | context->direct_map = false; | ||
2553 | return 0; | 2804 | return 0; |
2554 | } | 2805 | } |
2555 | 2806 | ||
2556 | static int paging32E_init_context(struct kvm_vcpu *vcpu) | 2807 | static int paging32E_init_context(struct kvm_vcpu *vcpu, |
2808 | struct kvm_mmu *context) | ||
2557 | { | 2809 | { |
2558 | reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL); | 2810 | return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); |
2559 | return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL); | ||
2560 | } | 2811 | } |
2561 | 2812 | ||
2562 | static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) | 2813 | static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) |
2563 | { | 2814 | { |
2564 | struct kvm_mmu *context = &vcpu->arch.mmu; | 2815 | struct kvm_mmu *context = vcpu->arch.walk_mmu; |
2565 | 2816 | ||
2566 | context->new_cr3 = nonpaging_new_cr3; | 2817 | context->new_cr3 = nonpaging_new_cr3; |
2567 | context->page_fault = tdp_page_fault; | 2818 | context->page_fault = tdp_page_fault; |
@@ -2571,20 +2822,29 @@ static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) | |||
2571 | context->invlpg = nonpaging_invlpg; | 2822 | context->invlpg = nonpaging_invlpg; |
2572 | context->shadow_root_level = kvm_x86_ops->get_tdp_level(); | 2823 | context->shadow_root_level = kvm_x86_ops->get_tdp_level(); |
2573 | context->root_hpa = INVALID_PAGE; | 2824 | context->root_hpa = INVALID_PAGE; |
2825 | context->direct_map = true; | ||
2826 | context->set_cr3 = kvm_x86_ops->set_tdp_cr3; | ||
2827 | context->get_cr3 = get_cr3; | ||
2828 | context->inject_page_fault = kvm_inject_page_fault; | ||
2829 | context->nx = is_nx(vcpu); | ||
2574 | 2830 | ||
2575 | if (!is_paging(vcpu)) { | 2831 | if (!is_paging(vcpu)) { |
2832 | context->nx = false; | ||
2576 | context->gva_to_gpa = nonpaging_gva_to_gpa; | 2833 | context->gva_to_gpa = nonpaging_gva_to_gpa; |
2577 | context->root_level = 0; | 2834 | context->root_level = 0; |
2578 | } else if (is_long_mode(vcpu)) { | 2835 | } else if (is_long_mode(vcpu)) { |
2579 | reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL); | 2836 | context->nx = is_nx(vcpu); |
2837 | reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL); | ||
2580 | context->gva_to_gpa = paging64_gva_to_gpa; | 2838 | context->gva_to_gpa = paging64_gva_to_gpa; |
2581 | context->root_level = PT64_ROOT_LEVEL; | 2839 | context->root_level = PT64_ROOT_LEVEL; |
2582 | } else if (is_pae(vcpu)) { | 2840 | } else if (is_pae(vcpu)) { |
2583 | reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL); | 2841 | context->nx = is_nx(vcpu); |
2842 | reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL); | ||
2584 | context->gva_to_gpa = paging64_gva_to_gpa; | 2843 | context->gva_to_gpa = paging64_gva_to_gpa; |
2585 | context->root_level = PT32E_ROOT_LEVEL; | 2844 | context->root_level = PT32E_ROOT_LEVEL; |
2586 | } else { | 2845 | } else { |
2587 | reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL); | 2846 | context->nx = false; |
2847 | reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL); | ||
2588 | context->gva_to_gpa = paging32_gva_to_gpa; | 2848 | context->gva_to_gpa = paging32_gva_to_gpa; |
2589 | context->root_level = PT32_ROOT_LEVEL; | 2849 | context->root_level = PT32_ROOT_LEVEL; |
2590 | } | 2850 | } |
@@ -2592,33 +2852,83 @@ static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) | |||
2592 | return 0; | 2852 | return 0; |
2593 | } | 2853 | } |
2594 | 2854 | ||
2595 | static int init_kvm_softmmu(struct kvm_vcpu *vcpu) | 2855 | int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context) |
2596 | { | 2856 | { |
2597 | int r; | 2857 | int r; |
2598 | |||
2599 | ASSERT(vcpu); | 2858 | ASSERT(vcpu); |
2600 | ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); | 2859 | ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); |
2601 | 2860 | ||
2602 | if (!is_paging(vcpu)) | 2861 | if (!is_paging(vcpu)) |
2603 | r = nonpaging_init_context(vcpu); | 2862 | r = nonpaging_init_context(vcpu, context); |
2604 | else if (is_long_mode(vcpu)) | 2863 | else if (is_long_mode(vcpu)) |
2605 | r = paging64_init_context(vcpu); | 2864 | r = paging64_init_context(vcpu, context); |
2606 | else if (is_pae(vcpu)) | 2865 | else if (is_pae(vcpu)) |
2607 | r = paging32E_init_context(vcpu); | 2866 | r = paging32E_init_context(vcpu, context); |
2608 | else | 2867 | else |
2609 | r = paging32_init_context(vcpu); | 2868 | r = paging32_init_context(vcpu, context); |
2610 | 2869 | ||
2611 | vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu); | 2870 | vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu); |
2612 | vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu); | 2871 | vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu); |
2613 | 2872 | ||
2614 | return r; | 2873 | return r; |
2615 | } | 2874 | } |
2875 | EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu); | ||
2876 | |||
2877 | static int init_kvm_softmmu(struct kvm_vcpu *vcpu) | ||
2878 | { | ||
2879 | int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu); | ||
2880 | |||
2881 | vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3; | ||
2882 | vcpu->arch.walk_mmu->get_cr3 = get_cr3; | ||
2883 | vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault; | ||
2884 | |||
2885 | return r; | ||
2886 | } | ||
2887 | |||
2888 | static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu) | ||
2889 | { | ||
2890 | struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; | ||
2891 | |||
2892 | g_context->get_cr3 = get_cr3; | ||
2893 | g_context->inject_page_fault = kvm_inject_page_fault; | ||
2894 | |||
2895 | /* | ||
2896 | * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The | ||
2897 | * translation of l2_gpa to l1_gpa addresses is done using the | ||
2898 | * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa | ||
2899 | * functions between mmu and nested_mmu are swapped. | ||
2900 | */ | ||
2901 | if (!is_paging(vcpu)) { | ||
2902 | g_context->nx = false; | ||
2903 | g_context->root_level = 0; | ||
2904 | g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; | ||
2905 | } else if (is_long_mode(vcpu)) { | ||
2906 | g_context->nx = is_nx(vcpu); | ||
2907 | reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL); | ||
2908 | g_context->root_level = PT64_ROOT_LEVEL; | ||
2909 | g_context->gva_to_gpa = paging64_gva_to_gpa_nested; | ||
2910 | } else if (is_pae(vcpu)) { | ||
2911 | g_context->nx = is_nx(vcpu); | ||
2912 | reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL); | ||
2913 | g_context->root_level = PT32E_ROOT_LEVEL; | ||
2914 | g_context->gva_to_gpa = paging64_gva_to_gpa_nested; | ||
2915 | } else { | ||
2916 | g_context->nx = false; | ||
2917 | reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL); | ||
2918 | g_context->root_level = PT32_ROOT_LEVEL; | ||
2919 | g_context->gva_to_gpa = paging32_gva_to_gpa_nested; | ||
2920 | } | ||
2921 | |||
2922 | return 0; | ||
2923 | } | ||
2616 | 2924 | ||
2617 | static int init_kvm_mmu(struct kvm_vcpu *vcpu) | 2925 | static int init_kvm_mmu(struct kvm_vcpu *vcpu) |
2618 | { | 2926 | { |
2619 | vcpu->arch.update_pte.pfn = bad_pfn; | 2927 | vcpu->arch.update_pte.pfn = bad_pfn; |
2620 | 2928 | ||
2621 | if (tdp_enabled) | 2929 | if (mmu_is_nested(vcpu)) |
2930 | return init_kvm_nested_mmu(vcpu); | ||
2931 | else if (tdp_enabled) | ||
2622 | return init_kvm_tdp_mmu(vcpu); | 2932 | return init_kvm_tdp_mmu(vcpu); |
2623 | else | 2933 | else |
2624 | return init_kvm_softmmu(vcpu); | 2934 | return init_kvm_softmmu(vcpu); |
@@ -2653,7 +2963,7 @@ int kvm_mmu_load(struct kvm_vcpu *vcpu) | |||
2653 | if (r) | 2963 | if (r) |
2654 | goto out; | 2964 | goto out; |
2655 | /* set_cr3() should ensure TLB has been flushed */ | 2965 | /* set_cr3() should ensure TLB has been flushed */ |
2656 | kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa); | 2966 | vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa); |
2657 | out: | 2967 | out: |
2658 | return r; | 2968 | return r; |
2659 | } | 2969 | } |
@@ -2663,6 +2973,7 @@ void kvm_mmu_unload(struct kvm_vcpu *vcpu) | |||
2663 | { | 2973 | { |
2664 | mmu_free_roots(vcpu); | 2974 | mmu_free_roots(vcpu); |
2665 | } | 2975 | } |
2976 | EXPORT_SYMBOL_GPL(kvm_mmu_unload); | ||
2666 | 2977 | ||
2667 | static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu, | 2978 | static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu, |
2668 | struct kvm_mmu_page *sp, | 2979 | struct kvm_mmu_page *sp, |
@@ -2695,7 +3006,7 @@ static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu, | |||
2695 | return; | 3006 | return; |
2696 | } | 3007 | } |
2697 | 3008 | ||
2698 | if (is_rsvd_bits_set(vcpu, *(u64 *)new, PT_PAGE_TABLE_LEVEL)) | 3009 | if (is_rsvd_bits_set(&vcpu->arch.mmu, *(u64 *)new, PT_PAGE_TABLE_LEVEL)) |
2699 | return; | 3010 | return; |
2700 | 3011 | ||
2701 | ++vcpu->kvm->stat.mmu_pte_updated; | 3012 | ++vcpu->kvm->stat.mmu_pte_updated; |
@@ -2837,7 +3148,7 @@ void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, | |||
2837 | kvm_mmu_access_page(vcpu, gfn); | 3148 | kvm_mmu_access_page(vcpu, gfn); |
2838 | kvm_mmu_free_some_pages(vcpu); | 3149 | kvm_mmu_free_some_pages(vcpu); |
2839 | ++vcpu->kvm->stat.mmu_pte_write; | 3150 | ++vcpu->kvm->stat.mmu_pte_write; |
2840 | kvm_mmu_audit(vcpu, "pre pte write"); | 3151 | trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); |
2841 | if (guest_initiated) { | 3152 | if (guest_initiated) { |
2842 | if (gfn == vcpu->arch.last_pt_write_gfn | 3153 | if (gfn == vcpu->arch.last_pt_write_gfn |
2843 | && !last_updated_pte_accessed(vcpu)) { | 3154 | && !last_updated_pte_accessed(vcpu)) { |
@@ -2910,7 +3221,7 @@ void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, | |||
2910 | } | 3221 | } |
2911 | mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush); | 3222 | mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush); |
2912 | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 3223 | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); |
2913 | kvm_mmu_audit(vcpu, "post pte write"); | 3224 | trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); |
2914 | spin_unlock(&vcpu->kvm->mmu_lock); | 3225 | spin_unlock(&vcpu->kvm->mmu_lock); |
2915 | if (!is_error_pfn(vcpu->arch.update_pte.pfn)) { | 3226 | if (!is_error_pfn(vcpu->arch.update_pte.pfn)) { |
2916 | kvm_release_pfn_clean(vcpu->arch.update_pte.pfn); | 3227 | kvm_release_pfn_clean(vcpu->arch.update_pte.pfn); |
@@ -2923,7 +3234,7 @@ int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) | |||
2923 | gpa_t gpa; | 3234 | gpa_t gpa; |
2924 | int r; | 3235 | int r; |
2925 | 3236 | ||
2926 | if (tdp_enabled) | 3237 | if (vcpu->arch.mmu.direct_map) |
2927 | return 0; | 3238 | return 0; |
2928 | 3239 | ||
2929 | gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); | 3240 | gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); |
@@ -2937,21 +3248,18 @@ EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); | |||
2937 | 3248 | ||
2938 | void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu) | 3249 | void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu) |
2939 | { | 3250 | { |
2940 | int free_pages; | ||
2941 | LIST_HEAD(invalid_list); | 3251 | LIST_HEAD(invalid_list); |
2942 | 3252 | ||
2943 | free_pages = vcpu->kvm->arch.n_free_mmu_pages; | 3253 | while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES && |
2944 | while (free_pages < KVM_REFILL_PAGES && | ||
2945 | !list_empty(&vcpu->kvm->arch.active_mmu_pages)) { | 3254 | !list_empty(&vcpu->kvm->arch.active_mmu_pages)) { |
2946 | struct kvm_mmu_page *sp; | 3255 | struct kvm_mmu_page *sp; |
2947 | 3256 | ||
2948 | sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev, | 3257 | sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev, |
2949 | struct kvm_mmu_page, link); | 3258 | struct kvm_mmu_page, link); |
2950 | free_pages += kvm_mmu_prepare_zap_page(vcpu->kvm, sp, | 3259 | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); |
2951 | &invalid_list); | 3260 | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); |
2952 | ++vcpu->kvm->stat.mmu_recycled; | 3261 | ++vcpu->kvm->stat.mmu_recycled; |
2953 | } | 3262 | } |
2954 | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | ||
2955 | } | 3263 | } |
2956 | 3264 | ||
2957 | int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code) | 3265 | int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code) |
@@ -3013,6 +3321,8 @@ EXPORT_SYMBOL_GPL(kvm_disable_tdp); | |||
3013 | static void free_mmu_pages(struct kvm_vcpu *vcpu) | 3321 | static void free_mmu_pages(struct kvm_vcpu *vcpu) |
3014 | { | 3322 | { |
3015 | free_page((unsigned long)vcpu->arch.mmu.pae_root); | 3323 | free_page((unsigned long)vcpu->arch.mmu.pae_root); |
3324 | if (vcpu->arch.mmu.lm_root != NULL) | ||
3325 | free_page((unsigned long)vcpu->arch.mmu.lm_root); | ||
3016 | } | 3326 | } |
3017 | 3327 | ||
3018 | static int alloc_mmu_pages(struct kvm_vcpu *vcpu) | 3328 | static int alloc_mmu_pages(struct kvm_vcpu *vcpu) |
@@ -3054,15 +3364,6 @@ int kvm_mmu_setup(struct kvm_vcpu *vcpu) | |||
3054 | return init_kvm_mmu(vcpu); | 3364 | return init_kvm_mmu(vcpu); |
3055 | } | 3365 | } |
3056 | 3366 | ||
3057 | void kvm_mmu_destroy(struct kvm_vcpu *vcpu) | ||
3058 | { | ||
3059 | ASSERT(vcpu); | ||
3060 | |||
3061 | destroy_kvm_mmu(vcpu); | ||
3062 | free_mmu_pages(vcpu); | ||
3063 | mmu_free_memory_caches(vcpu); | ||
3064 | } | ||
3065 | |||
3066 | void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot) | 3367 | void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot) |
3067 | { | 3368 | { |
3068 | struct kvm_mmu_page *sp; | 3369 | struct kvm_mmu_page *sp; |
@@ -3112,23 +3413,22 @@ static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask) | |||
3112 | { | 3413 | { |
3113 | struct kvm *kvm; | 3414 | struct kvm *kvm; |
3114 | struct kvm *kvm_freed = NULL; | 3415 | struct kvm *kvm_freed = NULL; |
3115 | int cache_count = 0; | 3416 | |
3417 | if (nr_to_scan == 0) | ||
3418 | goto out; | ||
3116 | 3419 | ||
3117 | spin_lock(&kvm_lock); | 3420 | spin_lock(&kvm_lock); |
3118 | 3421 | ||
3119 | list_for_each_entry(kvm, &vm_list, vm_list) { | 3422 | list_for_each_entry(kvm, &vm_list, vm_list) { |
3120 | int npages, idx, freed_pages; | 3423 | int idx, freed_pages; |
3121 | LIST_HEAD(invalid_list); | 3424 | LIST_HEAD(invalid_list); |
3122 | 3425 | ||
3123 | idx = srcu_read_lock(&kvm->srcu); | 3426 | idx = srcu_read_lock(&kvm->srcu); |
3124 | spin_lock(&kvm->mmu_lock); | 3427 | spin_lock(&kvm->mmu_lock); |
3125 | npages = kvm->arch.n_alloc_mmu_pages - | 3428 | if (!kvm_freed && nr_to_scan > 0 && |
3126 | kvm->arch.n_free_mmu_pages; | 3429 | kvm->arch.n_used_mmu_pages > 0) { |
3127 | cache_count += npages; | ||
3128 | if (!kvm_freed && nr_to_scan > 0 && npages > 0) { | ||
3129 | freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm, | 3430 | freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm, |
3130 | &invalid_list); | 3431 | &invalid_list); |
3131 | cache_count -= freed_pages; | ||
3132 | kvm_freed = kvm; | 3432 | kvm_freed = kvm; |
3133 | } | 3433 | } |
3134 | nr_to_scan--; | 3434 | nr_to_scan--; |
@@ -3142,7 +3442,8 @@ static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask) | |||
3142 | 3442 | ||
3143 | spin_unlock(&kvm_lock); | 3443 | spin_unlock(&kvm_lock); |
3144 | 3444 | ||
3145 | return cache_count; | 3445 | out: |
3446 | return percpu_counter_read_positive(&kvm_total_used_mmu_pages); | ||
3146 | } | 3447 | } |
3147 | 3448 | ||
3148 | static struct shrinker mmu_shrinker = { | 3449 | static struct shrinker mmu_shrinker = { |
@@ -3163,6 +3464,7 @@ static void mmu_destroy_caches(void) | |||
3163 | void kvm_mmu_module_exit(void) | 3464 | void kvm_mmu_module_exit(void) |
3164 | { | 3465 | { |
3165 | mmu_destroy_caches(); | 3466 | mmu_destroy_caches(); |
3467 | percpu_counter_destroy(&kvm_total_used_mmu_pages); | ||
3166 | unregister_shrinker(&mmu_shrinker); | 3468 | unregister_shrinker(&mmu_shrinker); |
3167 | } | 3469 | } |
3168 | 3470 | ||
@@ -3185,6 +3487,9 @@ int kvm_mmu_module_init(void) | |||
3185 | if (!mmu_page_header_cache) | 3487 | if (!mmu_page_header_cache) |
3186 | goto nomem; | 3488 | goto nomem; |
3187 | 3489 | ||
3490 | if (percpu_counter_init(&kvm_total_used_mmu_pages, 0)) | ||
3491 | goto nomem; | ||
3492 | |||
3188 | register_shrinker(&mmu_shrinker); | 3493 | register_shrinker(&mmu_shrinker); |
3189 | 3494 | ||
3190 | return 0; | 3495 | return 0; |
@@ -3355,271 +3660,18 @@ int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]) | |||
3355 | } | 3660 | } |
3356 | EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy); | 3661 | EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy); |
3357 | 3662 | ||
3358 | #ifdef AUDIT | 3663 | #ifdef CONFIG_KVM_MMU_AUDIT |
3359 | 3664 | #include "mmu_audit.c" | |
3360 | static const char *audit_msg; | 3665 | #else |
3361 | 3666 | static void mmu_audit_disable(void) { } | |
3362 | static gva_t canonicalize(gva_t gva) | ||
3363 | { | ||
3364 | #ifdef CONFIG_X86_64 | ||
3365 | gva = (long long)(gva << 16) >> 16; | ||
3366 | #endif | 3667 | #endif |
3367 | return gva; | ||
3368 | } | ||
3369 | |||
3370 | |||
3371 | typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep); | ||
3372 | |||
3373 | static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp, | ||
3374 | inspect_spte_fn fn) | ||
3375 | { | ||
3376 | int i; | ||
3377 | |||
3378 | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { | ||
3379 | u64 ent = sp->spt[i]; | ||
3380 | |||
3381 | if (is_shadow_present_pte(ent)) { | ||
3382 | if (!is_last_spte(ent, sp->role.level)) { | ||
3383 | struct kvm_mmu_page *child; | ||
3384 | child = page_header(ent & PT64_BASE_ADDR_MASK); | ||
3385 | __mmu_spte_walk(kvm, child, fn); | ||
3386 | } else | ||
3387 | fn(kvm, &sp->spt[i]); | ||
3388 | } | ||
3389 | } | ||
3390 | } | ||
3391 | |||
3392 | static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn) | ||
3393 | { | ||
3394 | int i; | ||
3395 | struct kvm_mmu_page *sp; | ||
3396 | |||
3397 | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) | ||
3398 | return; | ||
3399 | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) { | ||
3400 | hpa_t root = vcpu->arch.mmu.root_hpa; | ||
3401 | sp = page_header(root); | ||
3402 | __mmu_spte_walk(vcpu->kvm, sp, fn); | ||
3403 | return; | ||
3404 | } | ||
3405 | for (i = 0; i < 4; ++i) { | ||
3406 | hpa_t root = vcpu->arch.mmu.pae_root[i]; | ||
3407 | |||
3408 | if (root && VALID_PAGE(root)) { | ||
3409 | root &= PT64_BASE_ADDR_MASK; | ||
3410 | sp = page_header(root); | ||
3411 | __mmu_spte_walk(vcpu->kvm, sp, fn); | ||
3412 | } | ||
3413 | } | ||
3414 | return; | ||
3415 | } | ||
3416 | |||
3417 | static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte, | ||
3418 | gva_t va, int level) | ||
3419 | { | ||
3420 | u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK); | ||
3421 | int i; | ||
3422 | gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1)); | ||
3423 | |||
3424 | for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) { | ||
3425 | u64 ent = pt[i]; | ||
3426 | |||
3427 | if (ent == shadow_trap_nonpresent_pte) | ||
3428 | continue; | ||
3429 | |||
3430 | va = canonicalize(va); | ||
3431 | if (is_shadow_present_pte(ent) && !is_last_spte(ent, level)) | ||
3432 | audit_mappings_page(vcpu, ent, va, level - 1); | ||
3433 | else { | ||
3434 | gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL); | ||
3435 | gfn_t gfn = gpa >> PAGE_SHIFT; | ||
3436 | pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn); | ||
3437 | hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT; | ||
3438 | 3668 | ||
3439 | if (is_error_pfn(pfn)) { | 3669 | void kvm_mmu_destroy(struct kvm_vcpu *vcpu) |
3440 | kvm_release_pfn_clean(pfn); | ||
3441 | continue; | ||
3442 | } | ||
3443 | |||
3444 | if (is_shadow_present_pte(ent) | ||
3445 | && (ent & PT64_BASE_ADDR_MASK) != hpa) | ||
3446 | printk(KERN_ERR "xx audit error: (%s) levels %d" | ||
3447 | " gva %lx gpa %llx hpa %llx ent %llx %d\n", | ||
3448 | audit_msg, vcpu->arch.mmu.root_level, | ||
3449 | va, gpa, hpa, ent, | ||
3450 | is_shadow_present_pte(ent)); | ||
3451 | else if (ent == shadow_notrap_nonpresent_pte | ||
3452 | && !is_error_hpa(hpa)) | ||
3453 | printk(KERN_ERR "audit: (%s) notrap shadow," | ||
3454 | " valid guest gva %lx\n", audit_msg, va); | ||
3455 | kvm_release_pfn_clean(pfn); | ||
3456 | |||
3457 | } | ||
3458 | } | ||
3459 | } | ||
3460 | |||
3461 | static void audit_mappings(struct kvm_vcpu *vcpu) | ||
3462 | { | ||
3463 | unsigned i; | ||
3464 | |||
3465 | if (vcpu->arch.mmu.root_level == 4) | ||
3466 | audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4); | ||
3467 | else | ||
3468 | for (i = 0; i < 4; ++i) | ||
3469 | if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK) | ||
3470 | audit_mappings_page(vcpu, | ||
3471 | vcpu->arch.mmu.pae_root[i], | ||
3472 | i << 30, | ||
3473 | 2); | ||
3474 | } | ||
3475 | |||
3476 | static int count_rmaps(struct kvm_vcpu *vcpu) | ||
3477 | { | ||
3478 | struct kvm *kvm = vcpu->kvm; | ||
3479 | struct kvm_memslots *slots; | ||
3480 | int nmaps = 0; | ||
3481 | int i, j, k, idx; | ||
3482 | |||
3483 | idx = srcu_read_lock(&kvm->srcu); | ||
3484 | slots = kvm_memslots(kvm); | ||
3485 | for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { | ||
3486 | struct kvm_memory_slot *m = &slots->memslots[i]; | ||
3487 | struct kvm_rmap_desc *d; | ||
3488 | |||
3489 | for (j = 0; j < m->npages; ++j) { | ||
3490 | unsigned long *rmapp = &m->rmap[j]; | ||
3491 | |||
3492 | if (!*rmapp) | ||
3493 | continue; | ||
3494 | if (!(*rmapp & 1)) { | ||
3495 | ++nmaps; | ||
3496 | continue; | ||
3497 | } | ||
3498 | d = (struct kvm_rmap_desc *)(*rmapp & ~1ul); | ||
3499 | while (d) { | ||
3500 | for (k = 0; k < RMAP_EXT; ++k) | ||
3501 | if (d->sptes[k]) | ||
3502 | ++nmaps; | ||
3503 | else | ||
3504 | break; | ||
3505 | d = d->more; | ||
3506 | } | ||
3507 | } | ||
3508 | } | ||
3509 | srcu_read_unlock(&kvm->srcu, idx); | ||
3510 | return nmaps; | ||
3511 | } | ||
3512 | |||
3513 | void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep) | ||
3514 | { | ||
3515 | unsigned long *rmapp; | ||
3516 | struct kvm_mmu_page *rev_sp; | ||
3517 | gfn_t gfn; | ||
3518 | |||
3519 | if (is_writable_pte(*sptep)) { | ||
3520 | rev_sp = page_header(__pa(sptep)); | ||
3521 | gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt); | ||
3522 | |||
3523 | if (!gfn_to_memslot(kvm, gfn)) { | ||
3524 | if (!printk_ratelimit()) | ||
3525 | return; | ||
3526 | printk(KERN_ERR "%s: no memslot for gfn %ld\n", | ||
3527 | audit_msg, gfn); | ||
3528 | printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n", | ||
3529 | audit_msg, (long int)(sptep - rev_sp->spt), | ||
3530 | rev_sp->gfn); | ||
3531 | dump_stack(); | ||
3532 | return; | ||
3533 | } | ||
3534 | |||
3535 | rmapp = gfn_to_rmap(kvm, gfn, rev_sp->role.level); | ||
3536 | if (!*rmapp) { | ||
3537 | if (!printk_ratelimit()) | ||
3538 | return; | ||
3539 | printk(KERN_ERR "%s: no rmap for writable spte %llx\n", | ||
3540 | audit_msg, *sptep); | ||
3541 | dump_stack(); | ||
3542 | } | ||
3543 | } | ||
3544 | |||
3545 | } | ||
3546 | |||
3547 | void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu) | ||
3548 | { | ||
3549 | mmu_spte_walk(vcpu, inspect_spte_has_rmap); | ||
3550 | } | ||
3551 | |||
3552 | static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu) | ||
3553 | { | ||
3554 | struct kvm_mmu_page *sp; | ||
3555 | int i; | ||
3556 | |||
3557 | list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) { | ||
3558 | u64 *pt = sp->spt; | ||
3559 | |||
3560 | if (sp->role.level != PT_PAGE_TABLE_LEVEL) | ||
3561 | continue; | ||
3562 | |||
3563 | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { | ||
3564 | u64 ent = pt[i]; | ||
3565 | |||
3566 | if (!(ent & PT_PRESENT_MASK)) | ||
3567 | continue; | ||
3568 | if (!is_writable_pte(ent)) | ||
3569 | continue; | ||
3570 | inspect_spte_has_rmap(vcpu->kvm, &pt[i]); | ||
3571 | } | ||
3572 | } | ||
3573 | return; | ||
3574 | } | ||
3575 | |||
3576 | static void audit_rmap(struct kvm_vcpu *vcpu) | ||
3577 | { | ||
3578 | check_writable_mappings_rmap(vcpu); | ||
3579 | count_rmaps(vcpu); | ||
3580 | } | ||
3581 | |||
3582 | static void audit_write_protection(struct kvm_vcpu *vcpu) | ||
3583 | { | ||
3584 | struct kvm_mmu_page *sp; | ||
3585 | struct kvm_memory_slot *slot; | ||
3586 | unsigned long *rmapp; | ||
3587 | u64 *spte; | ||
3588 | gfn_t gfn; | ||
3589 | |||
3590 | list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) { | ||
3591 | if (sp->role.direct) | ||
3592 | continue; | ||
3593 | if (sp->unsync) | ||
3594 | continue; | ||
3595 | |||
3596 | slot = gfn_to_memslot(vcpu->kvm, sp->gfn); | ||
3597 | rmapp = &slot->rmap[gfn - slot->base_gfn]; | ||
3598 | |||
3599 | spte = rmap_next(vcpu->kvm, rmapp, NULL); | ||
3600 | while (spte) { | ||
3601 | if (is_writable_pte(*spte)) | ||
3602 | printk(KERN_ERR "%s: (%s) shadow page has " | ||
3603 | "writable mappings: gfn %lx role %x\n", | ||
3604 | __func__, audit_msg, sp->gfn, | ||
3605 | sp->role.word); | ||
3606 | spte = rmap_next(vcpu->kvm, rmapp, spte); | ||
3607 | } | ||
3608 | } | ||
3609 | } | ||
3610 | |||
3611 | static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) | ||
3612 | { | 3670 | { |
3613 | int olddbg = dbg; | 3671 | ASSERT(vcpu); |
3614 | 3672 | ||
3615 | dbg = 0; | 3673 | destroy_kvm_mmu(vcpu); |
3616 | audit_msg = msg; | 3674 | free_mmu_pages(vcpu); |
3617 | audit_rmap(vcpu); | 3675 | mmu_free_memory_caches(vcpu); |
3618 | audit_write_protection(vcpu); | 3676 | mmu_audit_disable(); |
3619 | if (strcmp("pre pte write", audit_msg) != 0) | ||
3620 | audit_mappings(vcpu); | ||
3621 | audit_writable_sptes_have_rmaps(vcpu); | ||
3622 | dbg = olddbg; | ||
3623 | } | 3677 | } |
3624 | |||
3625 | #endif | ||
diff --git a/arch/x86/kvm/mmu.h b/arch/x86/kvm/mmu.h index be66759321a5..7086ca85d3e7 100644 --- a/arch/x86/kvm/mmu.h +++ b/arch/x86/kvm/mmu.h | |||
@@ -49,10 +49,17 @@ | |||
49 | #define PFERR_FETCH_MASK (1U << 4) | 49 | #define PFERR_FETCH_MASK (1U << 4) |
50 | 50 | ||
51 | int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]); | 51 | int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]); |
52 | int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context); | ||
53 | |||
54 | static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm) | ||
55 | { | ||
56 | return kvm->arch.n_max_mmu_pages - | ||
57 | kvm->arch.n_used_mmu_pages; | ||
58 | } | ||
52 | 59 | ||
53 | static inline void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu) | 60 | static inline void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu) |
54 | { | 61 | { |
55 | if (unlikely(vcpu->kvm->arch.n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES)) | 62 | if (unlikely(kvm_mmu_available_pages(vcpu->kvm)< KVM_MIN_FREE_MMU_PAGES)) |
56 | __kvm_mmu_free_some_pages(vcpu); | 63 | __kvm_mmu_free_some_pages(vcpu); |
57 | } | 64 | } |
58 | 65 | ||
diff --git a/arch/x86/kvm/mmu_audit.c b/arch/x86/kvm/mmu_audit.c new file mode 100644 index 000000000000..ba2bcdde6221 --- /dev/null +++ b/arch/x86/kvm/mmu_audit.c | |||
@@ -0,0 +1,299 @@ | |||
1 | /* | ||
2 | * mmu_audit.c: | ||
3 | * | ||
4 | * Audit code for KVM MMU | ||
5 | * | ||
6 | * Copyright (C) 2006 Qumranet, Inc. | ||
7 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. | ||
8 | * | ||
9 | * Authors: | ||
10 | * Yaniv Kamay <yaniv@qumranet.com> | ||
11 | * Avi Kivity <avi@qumranet.com> | ||
12 | * Marcelo Tosatti <mtosatti@redhat.com> | ||
13 | * Xiao Guangrong <xiaoguangrong@cn.fujitsu.com> | ||
14 | * | ||
15 | * This work is licensed under the terms of the GNU GPL, version 2. See | ||
16 | * the COPYING file in the top-level directory. | ||
17 | * | ||
18 | */ | ||
19 | |||
20 | #include <linux/ratelimit.h> | ||
21 | |||
22 | static int audit_point; | ||
23 | |||
24 | #define audit_printk(fmt, args...) \ | ||
25 | printk(KERN_ERR "audit: (%s) error: " \ | ||
26 | fmt, audit_point_name[audit_point], ##args) | ||
27 | |||
28 | typedef void (*inspect_spte_fn) (struct kvm_vcpu *vcpu, u64 *sptep, int level); | ||
29 | |||
30 | static void __mmu_spte_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, | ||
31 | inspect_spte_fn fn, int level) | ||
32 | { | ||
33 | int i; | ||
34 | |||
35 | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { | ||
36 | u64 *ent = sp->spt; | ||
37 | |||
38 | fn(vcpu, ent + i, level); | ||
39 | |||
40 | if (is_shadow_present_pte(ent[i]) && | ||
41 | !is_last_spte(ent[i], level)) { | ||
42 | struct kvm_mmu_page *child; | ||
43 | |||
44 | child = page_header(ent[i] & PT64_BASE_ADDR_MASK); | ||
45 | __mmu_spte_walk(vcpu, child, fn, level - 1); | ||
46 | } | ||
47 | } | ||
48 | } | ||
49 | |||
50 | static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn) | ||
51 | { | ||
52 | int i; | ||
53 | struct kvm_mmu_page *sp; | ||
54 | |||
55 | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) | ||
56 | return; | ||
57 | |||
58 | if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) { | ||
59 | hpa_t root = vcpu->arch.mmu.root_hpa; | ||
60 | |||
61 | sp = page_header(root); | ||
62 | __mmu_spte_walk(vcpu, sp, fn, PT64_ROOT_LEVEL); | ||
63 | return; | ||
64 | } | ||
65 | |||
66 | for (i = 0; i < 4; ++i) { | ||
67 | hpa_t root = vcpu->arch.mmu.pae_root[i]; | ||
68 | |||
69 | if (root && VALID_PAGE(root)) { | ||
70 | root &= PT64_BASE_ADDR_MASK; | ||
71 | sp = page_header(root); | ||
72 | __mmu_spte_walk(vcpu, sp, fn, 2); | ||
73 | } | ||
74 | } | ||
75 | |||
76 | return; | ||
77 | } | ||
78 | |||
79 | typedef void (*sp_handler) (struct kvm *kvm, struct kvm_mmu_page *sp); | ||
80 | |||
81 | static void walk_all_active_sps(struct kvm *kvm, sp_handler fn) | ||
82 | { | ||
83 | struct kvm_mmu_page *sp; | ||
84 | |||
85 | list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) | ||
86 | fn(kvm, sp); | ||
87 | } | ||
88 | |||
89 | static void audit_mappings(struct kvm_vcpu *vcpu, u64 *sptep, int level) | ||
90 | { | ||
91 | struct kvm_mmu_page *sp; | ||
92 | gfn_t gfn; | ||
93 | pfn_t pfn; | ||
94 | hpa_t hpa; | ||
95 | |||
96 | sp = page_header(__pa(sptep)); | ||
97 | |||
98 | if (sp->unsync) { | ||
99 | if (level != PT_PAGE_TABLE_LEVEL) { | ||
100 | audit_printk("unsync sp: %p level = %d\n", sp, level); | ||
101 | return; | ||
102 | } | ||
103 | |||
104 | if (*sptep == shadow_notrap_nonpresent_pte) { | ||
105 | audit_printk("notrap spte in unsync sp: %p\n", sp); | ||
106 | return; | ||
107 | } | ||
108 | } | ||
109 | |||
110 | if (sp->role.direct && *sptep == shadow_notrap_nonpresent_pte) { | ||
111 | audit_printk("notrap spte in direct sp: %p\n", sp); | ||
112 | return; | ||
113 | } | ||
114 | |||
115 | if (!is_shadow_present_pte(*sptep) || !is_last_spte(*sptep, level)) | ||
116 | return; | ||
117 | |||
118 | gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); | ||
119 | pfn = gfn_to_pfn_atomic(vcpu->kvm, gfn); | ||
120 | |||
121 | if (is_error_pfn(pfn)) { | ||
122 | kvm_release_pfn_clean(pfn); | ||
123 | return; | ||
124 | } | ||
125 | |||
126 | hpa = pfn << PAGE_SHIFT; | ||
127 | if ((*sptep & PT64_BASE_ADDR_MASK) != hpa) | ||
128 | audit_printk("levels %d pfn %llx hpa %llx ent %llxn", | ||
129 | vcpu->arch.mmu.root_level, pfn, hpa, *sptep); | ||
130 | } | ||
131 | |||
132 | static void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep) | ||
133 | { | ||
134 | unsigned long *rmapp; | ||
135 | struct kvm_mmu_page *rev_sp; | ||
136 | gfn_t gfn; | ||
137 | |||
138 | |||
139 | rev_sp = page_header(__pa(sptep)); | ||
140 | gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt); | ||
141 | |||
142 | if (!gfn_to_memslot(kvm, gfn)) { | ||
143 | if (!printk_ratelimit()) | ||
144 | return; | ||
145 | audit_printk("no memslot for gfn %llx\n", gfn); | ||
146 | audit_printk("index %ld of sp (gfn=%llx)\n", | ||
147 | (long int)(sptep - rev_sp->spt), rev_sp->gfn); | ||
148 | dump_stack(); | ||
149 | return; | ||
150 | } | ||
151 | |||
152 | rmapp = gfn_to_rmap(kvm, gfn, rev_sp->role.level); | ||
153 | if (!*rmapp) { | ||
154 | if (!printk_ratelimit()) | ||
155 | return; | ||
156 | audit_printk("no rmap for writable spte %llx\n", *sptep); | ||
157 | dump_stack(); | ||
158 | } | ||
159 | } | ||
160 | |||
161 | static void audit_sptes_have_rmaps(struct kvm_vcpu *vcpu, u64 *sptep, int level) | ||
162 | { | ||
163 | if (is_shadow_present_pte(*sptep) && is_last_spte(*sptep, level)) | ||
164 | inspect_spte_has_rmap(vcpu->kvm, sptep); | ||
165 | } | ||
166 | |||
167 | static void audit_spte_after_sync(struct kvm_vcpu *vcpu, u64 *sptep, int level) | ||
168 | { | ||
169 | struct kvm_mmu_page *sp = page_header(__pa(sptep)); | ||
170 | |||
171 | if (audit_point == AUDIT_POST_SYNC && sp->unsync) | ||
172 | audit_printk("meet unsync sp(%p) after sync root.\n", sp); | ||
173 | } | ||
174 | |||
175 | static void check_mappings_rmap(struct kvm *kvm, struct kvm_mmu_page *sp) | ||
176 | { | ||
177 | int i; | ||
178 | |||
179 | if (sp->role.level != PT_PAGE_TABLE_LEVEL) | ||
180 | return; | ||
181 | |||
182 | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { | ||
183 | if (!is_rmap_spte(sp->spt[i])) | ||
184 | continue; | ||
185 | |||
186 | inspect_spte_has_rmap(kvm, sp->spt + i); | ||
187 | } | ||
188 | } | ||
189 | |||
190 | static void audit_write_protection(struct kvm *kvm, struct kvm_mmu_page *sp) | ||
191 | { | ||
192 | struct kvm_memory_slot *slot; | ||
193 | unsigned long *rmapp; | ||
194 | u64 *spte; | ||
195 | |||
196 | if (sp->role.direct || sp->unsync || sp->role.invalid) | ||
197 | return; | ||
198 | |||
199 | slot = gfn_to_memslot(kvm, sp->gfn); | ||
200 | rmapp = &slot->rmap[sp->gfn - slot->base_gfn]; | ||
201 | |||
202 | spte = rmap_next(kvm, rmapp, NULL); | ||
203 | while (spte) { | ||
204 | if (is_writable_pte(*spte)) | ||
205 | audit_printk("shadow page has writable mappings: gfn " | ||
206 | "%llx role %x\n", sp->gfn, sp->role.word); | ||
207 | spte = rmap_next(kvm, rmapp, spte); | ||
208 | } | ||
209 | } | ||
210 | |||
211 | static void audit_sp(struct kvm *kvm, struct kvm_mmu_page *sp) | ||
212 | { | ||
213 | check_mappings_rmap(kvm, sp); | ||
214 | audit_write_protection(kvm, sp); | ||
215 | } | ||
216 | |||
217 | static void audit_all_active_sps(struct kvm *kvm) | ||
218 | { | ||
219 | walk_all_active_sps(kvm, audit_sp); | ||
220 | } | ||
221 | |||
222 | static void audit_spte(struct kvm_vcpu *vcpu, u64 *sptep, int level) | ||
223 | { | ||
224 | audit_sptes_have_rmaps(vcpu, sptep, level); | ||
225 | audit_mappings(vcpu, sptep, level); | ||
226 | audit_spte_after_sync(vcpu, sptep, level); | ||
227 | } | ||
228 | |||
229 | static void audit_vcpu_spte(struct kvm_vcpu *vcpu) | ||
230 | { | ||
231 | mmu_spte_walk(vcpu, audit_spte); | ||
232 | } | ||
233 | |||
234 | static void kvm_mmu_audit(void *ignore, struct kvm_vcpu *vcpu, int point) | ||
235 | { | ||
236 | static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); | ||
237 | |||
238 | if (!__ratelimit(&ratelimit_state)) | ||
239 | return; | ||
240 | |||
241 | audit_point = point; | ||
242 | audit_all_active_sps(vcpu->kvm); | ||
243 | audit_vcpu_spte(vcpu); | ||
244 | } | ||
245 | |||
246 | static bool mmu_audit; | ||
247 | |||
248 | static void mmu_audit_enable(void) | ||
249 | { | ||
250 | int ret; | ||
251 | |||
252 | if (mmu_audit) | ||
253 | return; | ||
254 | |||
255 | ret = register_trace_kvm_mmu_audit(kvm_mmu_audit, NULL); | ||
256 | WARN_ON(ret); | ||
257 | |||
258 | mmu_audit = true; | ||
259 | } | ||
260 | |||
261 | static void mmu_audit_disable(void) | ||
262 | { | ||
263 | if (!mmu_audit) | ||
264 | return; | ||
265 | |||
266 | unregister_trace_kvm_mmu_audit(kvm_mmu_audit, NULL); | ||
267 | tracepoint_synchronize_unregister(); | ||
268 | mmu_audit = false; | ||
269 | } | ||
270 | |||
271 | static int mmu_audit_set(const char *val, const struct kernel_param *kp) | ||
272 | { | ||
273 | int ret; | ||
274 | unsigned long enable; | ||
275 | |||
276 | ret = strict_strtoul(val, 10, &enable); | ||
277 | if (ret < 0) | ||
278 | return -EINVAL; | ||
279 | |||
280 | switch (enable) { | ||
281 | case 0: | ||
282 | mmu_audit_disable(); | ||
283 | break; | ||
284 | case 1: | ||
285 | mmu_audit_enable(); | ||
286 | break; | ||
287 | default: | ||
288 | return -EINVAL; | ||
289 | } | ||
290 | |||
291 | return 0; | ||
292 | } | ||
293 | |||
294 | static struct kernel_param_ops audit_param_ops = { | ||
295 | .set = mmu_audit_set, | ||
296 | .get = param_get_bool, | ||
297 | }; | ||
298 | |||
299 | module_param_cb(mmu_audit, &audit_param_ops, &mmu_audit, 0644); | ||
diff --git a/arch/x86/kvm/mmutrace.h b/arch/x86/kvm/mmutrace.h index 3aab0f0930ef..b60b4fdb3eda 100644 --- a/arch/x86/kvm/mmutrace.h +++ b/arch/x86/kvm/mmutrace.h | |||
@@ -195,6 +195,25 @@ DEFINE_EVENT(kvm_mmu_page_class, kvm_mmu_prepare_zap_page, | |||
195 | 195 | ||
196 | TP_ARGS(sp) | 196 | TP_ARGS(sp) |
197 | ); | 197 | ); |
198 | |||
199 | TRACE_EVENT( | ||
200 | kvm_mmu_audit, | ||
201 | TP_PROTO(struct kvm_vcpu *vcpu, int audit_point), | ||
202 | TP_ARGS(vcpu, audit_point), | ||
203 | |||
204 | TP_STRUCT__entry( | ||
205 | __field(struct kvm_vcpu *, vcpu) | ||
206 | __field(int, audit_point) | ||
207 | ), | ||
208 | |||
209 | TP_fast_assign( | ||
210 | __entry->vcpu = vcpu; | ||
211 | __entry->audit_point = audit_point; | ||
212 | ), | ||
213 | |||
214 | TP_printk("vcpu:%d %s", __entry->vcpu->cpu, | ||
215 | audit_point_name[__entry->audit_point]) | ||
216 | ); | ||
198 | #endif /* _TRACE_KVMMMU_H */ | 217 | #endif /* _TRACE_KVMMMU_H */ |
199 | 218 | ||
200 | #undef TRACE_INCLUDE_PATH | 219 | #undef TRACE_INCLUDE_PATH |
diff --git a/arch/x86/kvm/paging_tmpl.h b/arch/x86/kvm/paging_tmpl.h index 51ef9097960d..cd7a833a3b52 100644 --- a/arch/x86/kvm/paging_tmpl.h +++ b/arch/x86/kvm/paging_tmpl.h | |||
@@ -7,7 +7,7 @@ | |||
7 | * MMU support | 7 | * MMU support |
8 | * | 8 | * |
9 | * Copyright (C) 2006 Qumranet, Inc. | 9 | * Copyright (C) 2006 Qumranet, Inc. |
10 | * Copyright 2010 Red Hat, Inc. and/or its affilates. | 10 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
11 | * | 11 | * |
12 | * Authors: | 12 | * Authors: |
13 | * Yaniv Kamay <yaniv@qumranet.com> | 13 | * Yaniv Kamay <yaniv@qumranet.com> |
@@ -67,6 +67,7 @@ struct guest_walker { | |||
67 | int level; | 67 | int level; |
68 | gfn_t table_gfn[PT_MAX_FULL_LEVELS]; | 68 | gfn_t table_gfn[PT_MAX_FULL_LEVELS]; |
69 | pt_element_t ptes[PT_MAX_FULL_LEVELS]; | 69 | pt_element_t ptes[PT_MAX_FULL_LEVELS]; |
70 | pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; | ||
70 | gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; | 71 | gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; |
71 | unsigned pt_access; | 72 | unsigned pt_access; |
72 | unsigned pte_access; | 73 | unsigned pte_access; |
@@ -104,7 +105,7 @@ static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte) | |||
104 | 105 | ||
105 | access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK; | 106 | access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK; |
106 | #if PTTYPE == 64 | 107 | #if PTTYPE == 64 |
107 | if (is_nx(vcpu)) | 108 | if (vcpu->arch.mmu.nx) |
108 | access &= ~(gpte >> PT64_NX_SHIFT); | 109 | access &= ~(gpte >> PT64_NX_SHIFT); |
109 | #endif | 110 | #endif |
110 | return access; | 111 | return access; |
@@ -113,26 +114,32 @@ static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte) | |||
113 | /* | 114 | /* |
114 | * Fetch a guest pte for a guest virtual address | 115 | * Fetch a guest pte for a guest virtual address |
115 | */ | 116 | */ |
116 | static int FNAME(walk_addr)(struct guest_walker *walker, | 117 | static int FNAME(walk_addr_generic)(struct guest_walker *walker, |
117 | struct kvm_vcpu *vcpu, gva_t addr, | 118 | struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, |
118 | int write_fault, int user_fault, int fetch_fault) | 119 | gva_t addr, u32 access) |
119 | { | 120 | { |
120 | pt_element_t pte; | 121 | pt_element_t pte; |
121 | gfn_t table_gfn; | 122 | gfn_t table_gfn; |
122 | unsigned index, pt_access, uninitialized_var(pte_access); | 123 | unsigned index, pt_access, uninitialized_var(pte_access); |
123 | gpa_t pte_gpa; | 124 | gpa_t pte_gpa; |
124 | bool eperm, present, rsvd_fault; | 125 | bool eperm, present, rsvd_fault; |
126 | int offset, write_fault, user_fault, fetch_fault; | ||
127 | |||
128 | write_fault = access & PFERR_WRITE_MASK; | ||
129 | user_fault = access & PFERR_USER_MASK; | ||
130 | fetch_fault = access & PFERR_FETCH_MASK; | ||
125 | 131 | ||
126 | trace_kvm_mmu_pagetable_walk(addr, write_fault, user_fault, | 132 | trace_kvm_mmu_pagetable_walk(addr, write_fault, user_fault, |
127 | fetch_fault); | 133 | fetch_fault); |
128 | walk: | 134 | walk: |
129 | present = true; | 135 | present = true; |
130 | eperm = rsvd_fault = false; | 136 | eperm = rsvd_fault = false; |
131 | walker->level = vcpu->arch.mmu.root_level; | 137 | walker->level = mmu->root_level; |
132 | pte = vcpu->arch.cr3; | 138 | pte = mmu->get_cr3(vcpu); |
139 | |||
133 | #if PTTYPE == 64 | 140 | #if PTTYPE == 64 |
134 | if (!is_long_mode(vcpu)) { | 141 | if (walker->level == PT32E_ROOT_LEVEL) { |
135 | pte = kvm_pdptr_read(vcpu, (addr >> 30) & 3); | 142 | pte = kvm_pdptr_read_mmu(vcpu, mmu, (addr >> 30) & 3); |
136 | trace_kvm_mmu_paging_element(pte, walker->level); | 143 | trace_kvm_mmu_paging_element(pte, walker->level); |
137 | if (!is_present_gpte(pte)) { | 144 | if (!is_present_gpte(pte)) { |
138 | present = false; | 145 | present = false; |
@@ -142,7 +149,7 @@ walk: | |||
142 | } | 149 | } |
143 | #endif | 150 | #endif |
144 | ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) || | 151 | ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) || |
145 | (vcpu->arch.cr3 & CR3_NONPAE_RESERVED_BITS) == 0); | 152 | (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0); |
146 | 153 | ||
147 | pt_access = ACC_ALL; | 154 | pt_access = ACC_ALL; |
148 | 155 | ||
@@ -150,12 +157,14 @@ walk: | |||
150 | index = PT_INDEX(addr, walker->level); | 157 | index = PT_INDEX(addr, walker->level); |
151 | 158 | ||
152 | table_gfn = gpte_to_gfn(pte); | 159 | table_gfn = gpte_to_gfn(pte); |
153 | pte_gpa = gfn_to_gpa(table_gfn); | 160 | offset = index * sizeof(pt_element_t); |
154 | pte_gpa += index * sizeof(pt_element_t); | 161 | pte_gpa = gfn_to_gpa(table_gfn) + offset; |
155 | walker->table_gfn[walker->level - 1] = table_gfn; | 162 | walker->table_gfn[walker->level - 1] = table_gfn; |
156 | walker->pte_gpa[walker->level - 1] = pte_gpa; | 163 | walker->pte_gpa[walker->level - 1] = pte_gpa; |
157 | 164 | ||
158 | if (kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte))) { | 165 | if (kvm_read_guest_page_mmu(vcpu, mmu, table_gfn, &pte, |
166 | offset, sizeof(pte), | ||
167 | PFERR_USER_MASK|PFERR_WRITE_MASK)) { | ||
159 | present = false; | 168 | present = false; |
160 | break; | 169 | break; |
161 | } | 170 | } |
@@ -167,7 +176,7 @@ walk: | |||
167 | break; | 176 | break; |
168 | } | 177 | } |
169 | 178 | ||
170 | if (is_rsvd_bits_set(vcpu, pte, walker->level)) { | 179 | if (is_rsvd_bits_set(&vcpu->arch.mmu, pte, walker->level)) { |
171 | rsvd_fault = true; | 180 | rsvd_fault = true; |
172 | break; | 181 | break; |
173 | } | 182 | } |
@@ -204,17 +213,28 @@ walk: | |||
204 | (PTTYPE == 64 || is_pse(vcpu))) || | 213 | (PTTYPE == 64 || is_pse(vcpu))) || |
205 | ((walker->level == PT_PDPE_LEVEL) && | 214 | ((walker->level == PT_PDPE_LEVEL) && |
206 | is_large_pte(pte) && | 215 | is_large_pte(pte) && |
207 | is_long_mode(vcpu))) { | 216 | mmu->root_level == PT64_ROOT_LEVEL)) { |
208 | int lvl = walker->level; | 217 | int lvl = walker->level; |
218 | gpa_t real_gpa; | ||
219 | gfn_t gfn; | ||
220 | u32 ac; | ||
209 | 221 | ||
210 | walker->gfn = gpte_to_gfn_lvl(pte, lvl); | 222 | gfn = gpte_to_gfn_lvl(pte, lvl); |
211 | walker->gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) | 223 | gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) >> PAGE_SHIFT; |
212 | >> PAGE_SHIFT; | ||
213 | 224 | ||
214 | if (PTTYPE == 32 && | 225 | if (PTTYPE == 32 && |
215 | walker->level == PT_DIRECTORY_LEVEL && | 226 | walker->level == PT_DIRECTORY_LEVEL && |
216 | is_cpuid_PSE36()) | 227 | is_cpuid_PSE36()) |
217 | walker->gfn += pse36_gfn_delta(pte); | 228 | gfn += pse36_gfn_delta(pte); |
229 | |||
230 | ac = write_fault | fetch_fault | user_fault; | ||
231 | |||
232 | real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), | ||
233 | ac); | ||
234 | if (real_gpa == UNMAPPED_GVA) | ||
235 | return 0; | ||
236 | |||
237 | walker->gfn = real_gpa >> PAGE_SHIFT; | ||
218 | 238 | ||
219 | break; | 239 | break; |
220 | } | 240 | } |
@@ -249,18 +269,36 @@ error: | |||
249 | walker->error_code = 0; | 269 | walker->error_code = 0; |
250 | if (present) | 270 | if (present) |
251 | walker->error_code |= PFERR_PRESENT_MASK; | 271 | walker->error_code |= PFERR_PRESENT_MASK; |
252 | if (write_fault) | 272 | |
253 | walker->error_code |= PFERR_WRITE_MASK; | 273 | walker->error_code |= write_fault | user_fault; |
254 | if (user_fault) | 274 | |
255 | walker->error_code |= PFERR_USER_MASK; | 275 | if (fetch_fault && mmu->nx) |
256 | if (fetch_fault && is_nx(vcpu)) | ||
257 | walker->error_code |= PFERR_FETCH_MASK; | 276 | walker->error_code |= PFERR_FETCH_MASK; |
258 | if (rsvd_fault) | 277 | if (rsvd_fault) |
259 | walker->error_code |= PFERR_RSVD_MASK; | 278 | walker->error_code |= PFERR_RSVD_MASK; |
279 | |||
280 | vcpu->arch.fault.address = addr; | ||
281 | vcpu->arch.fault.error_code = walker->error_code; | ||
282 | |||
260 | trace_kvm_mmu_walker_error(walker->error_code); | 283 | trace_kvm_mmu_walker_error(walker->error_code); |
261 | return 0; | 284 | return 0; |
262 | } | 285 | } |
263 | 286 | ||
287 | static int FNAME(walk_addr)(struct guest_walker *walker, | ||
288 | struct kvm_vcpu *vcpu, gva_t addr, u32 access) | ||
289 | { | ||
290 | return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr, | ||
291 | access); | ||
292 | } | ||
293 | |||
294 | static int FNAME(walk_addr_nested)(struct guest_walker *walker, | ||
295 | struct kvm_vcpu *vcpu, gva_t addr, | ||
296 | u32 access) | ||
297 | { | ||
298 | return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu, | ||
299 | addr, access); | ||
300 | } | ||
301 | |||
264 | static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, | 302 | static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
265 | u64 *spte, const void *pte) | 303 | u64 *spte, const void *pte) |
266 | { | 304 | { |
@@ -302,14 +340,87 @@ static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, | |||
302 | static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, | 340 | static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, |
303 | struct guest_walker *gw, int level) | 341 | struct guest_walker *gw, int level) |
304 | { | 342 | { |
305 | int r; | ||
306 | pt_element_t curr_pte; | 343 | pt_element_t curr_pte; |
307 | 344 | gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; | |
308 | r = kvm_read_guest_atomic(vcpu->kvm, gw->pte_gpa[level - 1], | 345 | u64 mask; |
346 | int r, index; | ||
347 | |||
348 | if (level == PT_PAGE_TABLE_LEVEL) { | ||
349 | mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; | ||
350 | base_gpa = pte_gpa & ~mask; | ||
351 | index = (pte_gpa - base_gpa) / sizeof(pt_element_t); | ||
352 | |||
353 | r = kvm_read_guest_atomic(vcpu->kvm, base_gpa, | ||
354 | gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); | ||
355 | curr_pte = gw->prefetch_ptes[index]; | ||
356 | } else | ||
357 | r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, | ||
309 | &curr_pte, sizeof(curr_pte)); | 358 | &curr_pte, sizeof(curr_pte)); |
359 | |||
310 | return r || curr_pte != gw->ptes[level - 1]; | 360 | return r || curr_pte != gw->ptes[level - 1]; |
311 | } | 361 | } |
312 | 362 | ||
363 | static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, | ||
364 | u64 *sptep) | ||
365 | { | ||
366 | struct kvm_mmu_page *sp; | ||
367 | struct kvm_mmu *mmu = &vcpu->arch.mmu; | ||
368 | pt_element_t *gptep = gw->prefetch_ptes; | ||
369 | u64 *spte; | ||
370 | int i; | ||
371 | |||
372 | sp = page_header(__pa(sptep)); | ||
373 | |||
374 | if (sp->role.level > PT_PAGE_TABLE_LEVEL) | ||
375 | return; | ||
376 | |||
377 | if (sp->role.direct) | ||
378 | return __direct_pte_prefetch(vcpu, sp, sptep); | ||
379 | |||
380 | i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); | ||
381 | spte = sp->spt + i; | ||
382 | |||
383 | for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { | ||
384 | pt_element_t gpte; | ||
385 | unsigned pte_access; | ||
386 | gfn_t gfn; | ||
387 | pfn_t pfn; | ||
388 | bool dirty; | ||
389 | |||
390 | if (spte == sptep) | ||
391 | continue; | ||
392 | |||
393 | if (*spte != shadow_trap_nonpresent_pte) | ||
394 | continue; | ||
395 | |||
396 | gpte = gptep[i]; | ||
397 | |||
398 | if (!is_present_gpte(gpte) || | ||
399 | is_rsvd_bits_set(mmu, gpte, PT_PAGE_TABLE_LEVEL)) { | ||
400 | if (!sp->unsync) | ||
401 | __set_spte(spte, shadow_notrap_nonpresent_pte); | ||
402 | continue; | ||
403 | } | ||
404 | |||
405 | if (!(gpte & PT_ACCESSED_MASK)) | ||
406 | continue; | ||
407 | |||
408 | pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte); | ||
409 | gfn = gpte_to_gfn(gpte); | ||
410 | dirty = is_dirty_gpte(gpte); | ||
411 | pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn, | ||
412 | (pte_access & ACC_WRITE_MASK) && dirty); | ||
413 | if (is_error_pfn(pfn)) { | ||
414 | kvm_release_pfn_clean(pfn); | ||
415 | break; | ||
416 | } | ||
417 | |||
418 | mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0, | ||
419 | dirty, NULL, PT_PAGE_TABLE_LEVEL, gfn, | ||
420 | pfn, true, true); | ||
421 | } | ||
422 | } | ||
423 | |||
313 | /* | 424 | /* |
314 | * Fetch a shadow pte for a specific level in the paging hierarchy. | 425 | * Fetch a shadow pte for a specific level in the paging hierarchy. |
315 | */ | 426 | */ |
@@ -391,6 +502,7 @@ static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr, | |||
391 | mmu_set_spte(vcpu, it.sptep, access, gw->pte_access & access, | 502 | mmu_set_spte(vcpu, it.sptep, access, gw->pte_access & access, |
392 | user_fault, write_fault, dirty, ptwrite, it.level, | 503 | user_fault, write_fault, dirty, ptwrite, it.level, |
393 | gw->gfn, pfn, false, true); | 504 | gw->gfn, pfn, false, true); |
505 | FNAME(pte_prefetch)(vcpu, gw, it.sptep); | ||
394 | 506 | ||
395 | return it.sptep; | 507 | return it.sptep; |
396 | 508 | ||
@@ -420,7 +532,6 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, | |||
420 | { | 532 | { |
421 | int write_fault = error_code & PFERR_WRITE_MASK; | 533 | int write_fault = error_code & PFERR_WRITE_MASK; |
422 | int user_fault = error_code & PFERR_USER_MASK; | 534 | int user_fault = error_code & PFERR_USER_MASK; |
423 | int fetch_fault = error_code & PFERR_FETCH_MASK; | ||
424 | struct guest_walker walker; | 535 | struct guest_walker walker; |
425 | u64 *sptep; | 536 | u64 *sptep; |
426 | int write_pt = 0; | 537 | int write_pt = 0; |
@@ -430,7 +541,6 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, | |||
430 | unsigned long mmu_seq; | 541 | unsigned long mmu_seq; |
431 | 542 | ||
432 | pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code); | 543 | pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code); |
433 | kvm_mmu_audit(vcpu, "pre page fault"); | ||
434 | 544 | ||
435 | r = mmu_topup_memory_caches(vcpu); | 545 | r = mmu_topup_memory_caches(vcpu); |
436 | if (r) | 546 | if (r) |
@@ -439,15 +549,14 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, | |||
439 | /* | 549 | /* |
440 | * Look up the guest pte for the faulting address. | 550 | * Look up the guest pte for the faulting address. |
441 | */ | 551 | */ |
442 | r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault, | 552 | r = FNAME(walk_addr)(&walker, vcpu, addr, error_code); |
443 | fetch_fault); | ||
444 | 553 | ||
445 | /* | 554 | /* |
446 | * The page is not mapped by the guest. Let the guest handle it. | 555 | * The page is not mapped by the guest. Let the guest handle it. |
447 | */ | 556 | */ |
448 | if (!r) { | 557 | if (!r) { |
449 | pgprintk("%s: guest page fault\n", __func__); | 558 | pgprintk("%s: guest page fault\n", __func__); |
450 | inject_page_fault(vcpu, addr, walker.error_code); | 559 | inject_page_fault(vcpu); |
451 | vcpu->arch.last_pt_write_count = 0; /* reset fork detector */ | 560 | vcpu->arch.last_pt_write_count = 0; /* reset fork detector */ |
452 | return 0; | 561 | return 0; |
453 | } | 562 | } |
@@ -468,6 +577,8 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, | |||
468 | spin_lock(&vcpu->kvm->mmu_lock); | 577 | spin_lock(&vcpu->kvm->mmu_lock); |
469 | if (mmu_notifier_retry(vcpu, mmu_seq)) | 578 | if (mmu_notifier_retry(vcpu, mmu_seq)) |
470 | goto out_unlock; | 579 | goto out_unlock; |
580 | |||
581 | trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT); | ||
471 | kvm_mmu_free_some_pages(vcpu); | 582 | kvm_mmu_free_some_pages(vcpu); |
472 | sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault, | 583 | sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault, |
473 | level, &write_pt, pfn); | 584 | level, &write_pt, pfn); |
@@ -479,7 +590,7 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, | |||
479 | vcpu->arch.last_pt_write_count = 0; /* reset fork detector */ | 590 | vcpu->arch.last_pt_write_count = 0; /* reset fork detector */ |
480 | 591 | ||
481 | ++vcpu->stat.pf_fixed; | 592 | ++vcpu->stat.pf_fixed; |
482 | kvm_mmu_audit(vcpu, "post page fault (fixed)"); | 593 | trace_kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT); |
483 | spin_unlock(&vcpu->kvm->mmu_lock); | 594 | spin_unlock(&vcpu->kvm->mmu_lock); |
484 | 595 | ||
485 | return write_pt; | 596 | return write_pt; |
@@ -556,10 +667,25 @@ static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access, | |||
556 | gpa_t gpa = UNMAPPED_GVA; | 667 | gpa_t gpa = UNMAPPED_GVA; |
557 | int r; | 668 | int r; |
558 | 669 | ||
559 | r = FNAME(walk_addr)(&walker, vcpu, vaddr, | 670 | r = FNAME(walk_addr)(&walker, vcpu, vaddr, access); |
560 | !!(access & PFERR_WRITE_MASK), | 671 | |
561 | !!(access & PFERR_USER_MASK), | 672 | if (r) { |
562 | !!(access & PFERR_FETCH_MASK)); | 673 | gpa = gfn_to_gpa(walker.gfn); |
674 | gpa |= vaddr & ~PAGE_MASK; | ||
675 | } else if (error) | ||
676 | *error = walker.error_code; | ||
677 | |||
678 | return gpa; | ||
679 | } | ||
680 | |||
681 | static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr, | ||
682 | u32 access, u32 *error) | ||
683 | { | ||
684 | struct guest_walker walker; | ||
685 | gpa_t gpa = UNMAPPED_GVA; | ||
686 | int r; | ||
687 | |||
688 | r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access); | ||
563 | 689 | ||
564 | if (r) { | 690 | if (r) { |
565 | gpa = gfn_to_gpa(walker.gfn); | 691 | gpa = gfn_to_gpa(walker.gfn); |
@@ -638,7 +764,7 @@ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, | |||
638 | return -EINVAL; | 764 | return -EINVAL; |
639 | 765 | ||
640 | gfn = gpte_to_gfn(gpte); | 766 | gfn = gpte_to_gfn(gpte); |
641 | if (is_rsvd_bits_set(vcpu, gpte, PT_PAGE_TABLE_LEVEL) | 767 | if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL) |
642 | || gfn != sp->gfns[i] || !is_present_gpte(gpte) | 768 | || gfn != sp->gfns[i] || !is_present_gpte(gpte) |
643 | || !(gpte & PT_ACCESSED_MASK)) { | 769 | || !(gpte & PT_ACCESSED_MASK)) { |
644 | u64 nonpresent; | 770 | u64 nonpresent; |
diff --git a/arch/x86/kvm/svm.c b/arch/x86/kvm/svm.c index 8a3f9f64f86f..82e144a4e514 100644 --- a/arch/x86/kvm/svm.c +++ b/arch/x86/kvm/svm.c | |||
@@ -4,7 +4,7 @@ | |||
4 | * AMD SVM support | 4 | * AMD SVM support |
5 | * | 5 | * |
6 | * Copyright (C) 2006 Qumranet, Inc. | 6 | * Copyright (C) 2006 Qumranet, Inc. |
7 | * Copyright 2010 Red Hat, Inc. and/or its affilates. | 7 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
8 | * | 8 | * |
9 | * Authors: | 9 | * Authors: |
10 | * Yaniv Kamay <yaniv@qumranet.com> | 10 | * Yaniv Kamay <yaniv@qumranet.com> |
@@ -88,6 +88,14 @@ struct nested_state { | |||
88 | /* A VMEXIT is required but not yet emulated */ | 88 | /* A VMEXIT is required but not yet emulated */ |
89 | bool exit_required; | 89 | bool exit_required; |
90 | 90 | ||
91 | /* | ||
92 | * If we vmexit during an instruction emulation we need this to restore | ||
93 | * the l1 guest rip after the emulation | ||
94 | */ | ||
95 | unsigned long vmexit_rip; | ||
96 | unsigned long vmexit_rsp; | ||
97 | unsigned long vmexit_rax; | ||
98 | |||
91 | /* cache for intercepts of the guest */ | 99 | /* cache for intercepts of the guest */ |
92 | u16 intercept_cr_read; | 100 | u16 intercept_cr_read; |
93 | u16 intercept_cr_write; | 101 | u16 intercept_cr_write; |
@@ -96,6 +104,8 @@ struct nested_state { | |||
96 | u32 intercept_exceptions; | 104 | u32 intercept_exceptions; |
97 | u64 intercept; | 105 | u64 intercept; |
98 | 106 | ||
107 | /* Nested Paging related state */ | ||
108 | u64 nested_cr3; | ||
99 | }; | 109 | }; |
100 | 110 | ||
101 | #define MSRPM_OFFSETS 16 | 111 | #define MSRPM_OFFSETS 16 |
@@ -284,6 +294,15 @@ static inline void flush_guest_tlb(struct kvm_vcpu *vcpu) | |||
284 | force_new_asid(vcpu); | 294 | force_new_asid(vcpu); |
285 | } | 295 | } |
286 | 296 | ||
297 | static int get_npt_level(void) | ||
298 | { | ||
299 | #ifdef CONFIG_X86_64 | ||
300 | return PT64_ROOT_LEVEL; | ||
301 | #else | ||
302 | return PT32E_ROOT_LEVEL; | ||
303 | #endif | ||
304 | } | ||
305 | |||
287 | static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) | 306 | static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) |
288 | { | 307 | { |
289 | vcpu->arch.efer = efer; | 308 | vcpu->arch.efer = efer; |
@@ -701,6 +720,29 @@ static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) | |||
701 | seg->base = 0; | 720 | seg->base = 0; |
702 | } | 721 | } |
703 | 722 | ||
723 | static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) | ||
724 | { | ||
725 | struct vcpu_svm *svm = to_svm(vcpu); | ||
726 | u64 g_tsc_offset = 0; | ||
727 | |||
728 | if (is_nested(svm)) { | ||
729 | g_tsc_offset = svm->vmcb->control.tsc_offset - | ||
730 | svm->nested.hsave->control.tsc_offset; | ||
731 | svm->nested.hsave->control.tsc_offset = offset; | ||
732 | } | ||
733 | |||
734 | svm->vmcb->control.tsc_offset = offset + g_tsc_offset; | ||
735 | } | ||
736 | |||
737 | static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment) | ||
738 | { | ||
739 | struct vcpu_svm *svm = to_svm(vcpu); | ||
740 | |||
741 | svm->vmcb->control.tsc_offset += adjustment; | ||
742 | if (is_nested(svm)) | ||
743 | svm->nested.hsave->control.tsc_offset += adjustment; | ||
744 | } | ||
745 | |||
704 | static void init_vmcb(struct vcpu_svm *svm) | 746 | static void init_vmcb(struct vcpu_svm *svm) |
705 | { | 747 | { |
706 | struct vmcb_control_area *control = &svm->vmcb->control; | 748 | struct vmcb_control_area *control = &svm->vmcb->control; |
@@ -793,7 +835,7 @@ static void init_vmcb(struct vcpu_svm *svm) | |||
793 | init_sys_seg(&save->ldtr, SEG_TYPE_LDT); | 835 | init_sys_seg(&save->ldtr, SEG_TYPE_LDT); |
794 | init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); | 836 | init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); |
795 | 837 | ||
796 | save->efer = EFER_SVME; | 838 | svm_set_efer(&svm->vcpu, 0); |
797 | save->dr6 = 0xffff0ff0; | 839 | save->dr6 = 0xffff0ff0; |
798 | save->dr7 = 0x400; | 840 | save->dr7 = 0x400; |
799 | save->rflags = 2; | 841 | save->rflags = 2; |
@@ -804,8 +846,8 @@ static void init_vmcb(struct vcpu_svm *svm) | |||
804 | * This is the guest-visible cr0 value. | 846 | * This is the guest-visible cr0 value. |
805 | * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. | 847 | * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. |
806 | */ | 848 | */ |
807 | svm->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; | 849 | svm->vcpu.arch.cr0 = 0; |
808 | (void)kvm_set_cr0(&svm->vcpu, svm->vcpu.arch.cr0); | 850 | (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); |
809 | 851 | ||
810 | save->cr4 = X86_CR4_PAE; | 852 | save->cr4 = X86_CR4_PAE; |
811 | /* rdx = ?? */ | 853 | /* rdx = ?? */ |
@@ -901,7 +943,7 @@ static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id) | |||
901 | svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT; | 943 | svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT; |
902 | svm->asid_generation = 0; | 944 | svm->asid_generation = 0; |
903 | init_vmcb(svm); | 945 | init_vmcb(svm); |
904 | svm->vmcb->control.tsc_offset = 0-native_read_tsc(); | 946 | kvm_write_tsc(&svm->vcpu, 0); |
905 | 947 | ||
906 | err = fx_init(&svm->vcpu); | 948 | err = fx_init(&svm->vcpu); |
907 | if (err) | 949 | if (err) |
@@ -947,20 +989,6 @@ static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | |||
947 | int i; | 989 | int i; |
948 | 990 | ||
949 | if (unlikely(cpu != vcpu->cpu)) { | 991 | if (unlikely(cpu != vcpu->cpu)) { |
950 | u64 delta; | ||
951 | |||
952 | if (check_tsc_unstable()) { | ||
953 | /* | ||
954 | * Make sure that the guest sees a monotonically | ||
955 | * increasing TSC. | ||
956 | */ | ||
957 | delta = vcpu->arch.host_tsc - native_read_tsc(); | ||
958 | svm->vmcb->control.tsc_offset += delta; | ||
959 | if (is_nested(svm)) | ||
960 | svm->nested.hsave->control.tsc_offset += delta; | ||
961 | } | ||
962 | vcpu->cpu = cpu; | ||
963 | kvm_migrate_timers(vcpu); | ||
964 | svm->asid_generation = 0; | 992 | svm->asid_generation = 0; |
965 | } | 993 | } |
966 | 994 | ||
@@ -976,8 +1004,6 @@ static void svm_vcpu_put(struct kvm_vcpu *vcpu) | |||
976 | ++vcpu->stat.host_state_reload; | 1004 | ++vcpu->stat.host_state_reload; |
977 | for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) | 1005 | for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) |
978 | wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); | 1006 | wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); |
979 | |||
980 | vcpu->arch.host_tsc = native_read_tsc(); | ||
981 | } | 1007 | } |
982 | 1008 | ||
983 | static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) | 1009 | static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) |
@@ -995,7 +1021,7 @@ static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) | |||
995 | switch (reg) { | 1021 | switch (reg) { |
996 | case VCPU_EXREG_PDPTR: | 1022 | case VCPU_EXREG_PDPTR: |
997 | BUG_ON(!npt_enabled); | 1023 | BUG_ON(!npt_enabled); |
998 | load_pdptrs(vcpu, vcpu->arch.cr3); | 1024 | load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3); |
999 | break; | 1025 | break; |
1000 | default: | 1026 | default: |
1001 | BUG(); | 1027 | BUG(); |
@@ -1206,8 +1232,12 @@ static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) | |||
1206 | if (old == new) { | 1232 | if (old == new) { |
1207 | /* cr0 write with ts and mp unchanged */ | 1233 | /* cr0 write with ts and mp unchanged */ |
1208 | svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; | 1234 | svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; |
1209 | if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) | 1235 | if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) { |
1236 | svm->nested.vmexit_rip = kvm_rip_read(vcpu); | ||
1237 | svm->nested.vmexit_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); | ||
1238 | svm->nested.vmexit_rax = kvm_register_read(vcpu, VCPU_REGS_RAX); | ||
1210 | return; | 1239 | return; |
1240 | } | ||
1211 | } | 1241 | } |
1212 | } | 1242 | } |
1213 | 1243 | ||
@@ -1581,6 +1611,54 @@ static int vmmcall_interception(struct vcpu_svm *svm) | |||
1581 | return 1; | 1611 | return 1; |
1582 | } | 1612 | } |
1583 | 1613 | ||
1614 | static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu) | ||
1615 | { | ||
1616 | struct vcpu_svm *svm = to_svm(vcpu); | ||
1617 | |||
1618 | return svm->nested.nested_cr3; | ||
1619 | } | ||
1620 | |||
1621 | static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu, | ||
1622 | unsigned long root) | ||
1623 | { | ||
1624 | struct vcpu_svm *svm = to_svm(vcpu); | ||
1625 | |||
1626 | svm->vmcb->control.nested_cr3 = root; | ||
1627 | force_new_asid(vcpu); | ||
1628 | } | ||
1629 | |||
1630 | static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu) | ||
1631 | { | ||
1632 | struct vcpu_svm *svm = to_svm(vcpu); | ||
1633 | |||
1634 | svm->vmcb->control.exit_code = SVM_EXIT_NPF; | ||
1635 | svm->vmcb->control.exit_code_hi = 0; | ||
1636 | svm->vmcb->control.exit_info_1 = vcpu->arch.fault.error_code; | ||
1637 | svm->vmcb->control.exit_info_2 = vcpu->arch.fault.address; | ||
1638 | |||
1639 | nested_svm_vmexit(svm); | ||
1640 | } | ||
1641 | |||
1642 | static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu) | ||
1643 | { | ||
1644 | int r; | ||
1645 | |||
1646 | r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu); | ||
1647 | |||
1648 | vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3; | ||
1649 | vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3; | ||
1650 | vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit; | ||
1651 | vcpu->arch.mmu.shadow_root_level = get_npt_level(); | ||
1652 | vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; | ||
1653 | |||
1654 | return r; | ||
1655 | } | ||
1656 | |||
1657 | static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu) | ||
1658 | { | ||
1659 | vcpu->arch.walk_mmu = &vcpu->arch.mmu; | ||
1660 | } | ||
1661 | |||
1584 | static int nested_svm_check_permissions(struct vcpu_svm *svm) | 1662 | static int nested_svm_check_permissions(struct vcpu_svm *svm) |
1585 | { | 1663 | { |
1586 | if (!(svm->vcpu.arch.efer & EFER_SVME) | 1664 | if (!(svm->vcpu.arch.efer & EFER_SVME) |
@@ -1629,6 +1707,14 @@ static inline bool nested_svm_intr(struct vcpu_svm *svm) | |||
1629 | if (!(svm->vcpu.arch.hflags & HF_HIF_MASK)) | 1707 | if (!(svm->vcpu.arch.hflags & HF_HIF_MASK)) |
1630 | return false; | 1708 | return false; |
1631 | 1709 | ||
1710 | /* | ||
1711 | * if vmexit was already requested (by intercepted exception | ||
1712 | * for instance) do not overwrite it with "external interrupt" | ||
1713 | * vmexit. | ||
1714 | */ | ||
1715 | if (svm->nested.exit_required) | ||
1716 | return false; | ||
1717 | |||
1632 | svm->vmcb->control.exit_code = SVM_EXIT_INTR; | 1718 | svm->vmcb->control.exit_code = SVM_EXIT_INTR; |
1633 | svm->vmcb->control.exit_info_1 = 0; | 1719 | svm->vmcb->control.exit_info_1 = 0; |
1634 | svm->vmcb->control.exit_info_2 = 0; | 1720 | svm->vmcb->control.exit_info_2 = 0; |
@@ -1896,6 +1982,7 @@ static int nested_svm_vmexit(struct vcpu_svm *svm) | |||
1896 | nested_vmcb->save.ds = vmcb->save.ds; | 1982 | nested_vmcb->save.ds = vmcb->save.ds; |
1897 | nested_vmcb->save.gdtr = vmcb->save.gdtr; | 1983 | nested_vmcb->save.gdtr = vmcb->save.gdtr; |
1898 | nested_vmcb->save.idtr = vmcb->save.idtr; | 1984 | nested_vmcb->save.idtr = vmcb->save.idtr; |
1985 | nested_vmcb->save.efer = svm->vcpu.arch.efer; | ||
1899 | nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu); | 1986 | nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu); |
1900 | nested_vmcb->save.cr3 = svm->vcpu.arch.cr3; | 1987 | nested_vmcb->save.cr3 = svm->vcpu.arch.cr3; |
1901 | nested_vmcb->save.cr2 = vmcb->save.cr2; | 1988 | nested_vmcb->save.cr2 = vmcb->save.cr2; |
@@ -1917,6 +2004,7 @@ static int nested_svm_vmexit(struct vcpu_svm *svm) | |||
1917 | nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2; | 2004 | nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2; |
1918 | nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info; | 2005 | nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info; |
1919 | nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err; | 2006 | nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err; |
2007 | nested_vmcb->control.next_rip = vmcb->control.next_rip; | ||
1920 | 2008 | ||
1921 | /* | 2009 | /* |
1922 | * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have | 2010 | * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have |
@@ -1947,6 +2035,8 @@ static int nested_svm_vmexit(struct vcpu_svm *svm) | |||
1947 | kvm_clear_exception_queue(&svm->vcpu); | 2035 | kvm_clear_exception_queue(&svm->vcpu); |
1948 | kvm_clear_interrupt_queue(&svm->vcpu); | 2036 | kvm_clear_interrupt_queue(&svm->vcpu); |
1949 | 2037 | ||
2038 | svm->nested.nested_cr3 = 0; | ||
2039 | |||
1950 | /* Restore selected save entries */ | 2040 | /* Restore selected save entries */ |
1951 | svm->vmcb->save.es = hsave->save.es; | 2041 | svm->vmcb->save.es = hsave->save.es; |
1952 | svm->vmcb->save.cs = hsave->save.cs; | 2042 | svm->vmcb->save.cs = hsave->save.cs; |
@@ -1973,6 +2063,7 @@ static int nested_svm_vmexit(struct vcpu_svm *svm) | |||
1973 | 2063 | ||
1974 | nested_svm_unmap(page); | 2064 | nested_svm_unmap(page); |
1975 | 2065 | ||
2066 | nested_svm_uninit_mmu_context(&svm->vcpu); | ||
1976 | kvm_mmu_reset_context(&svm->vcpu); | 2067 | kvm_mmu_reset_context(&svm->vcpu); |
1977 | kvm_mmu_load(&svm->vcpu); | 2068 | kvm_mmu_load(&svm->vcpu); |
1978 | 2069 | ||
@@ -2012,6 +2103,20 @@ static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm) | |||
2012 | return true; | 2103 | return true; |
2013 | } | 2104 | } |
2014 | 2105 | ||
2106 | static bool nested_vmcb_checks(struct vmcb *vmcb) | ||
2107 | { | ||
2108 | if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0) | ||
2109 | return false; | ||
2110 | |||
2111 | if (vmcb->control.asid == 0) | ||
2112 | return false; | ||
2113 | |||
2114 | if (vmcb->control.nested_ctl && !npt_enabled) | ||
2115 | return false; | ||
2116 | |||
2117 | return true; | ||
2118 | } | ||
2119 | |||
2015 | static bool nested_svm_vmrun(struct vcpu_svm *svm) | 2120 | static bool nested_svm_vmrun(struct vcpu_svm *svm) |
2016 | { | 2121 | { |
2017 | struct vmcb *nested_vmcb; | 2122 | struct vmcb *nested_vmcb; |
@@ -2026,7 +2131,18 @@ static bool nested_svm_vmrun(struct vcpu_svm *svm) | |||
2026 | if (!nested_vmcb) | 2131 | if (!nested_vmcb) |
2027 | return false; | 2132 | return false; |
2028 | 2133 | ||
2029 | trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, vmcb_gpa, | 2134 | if (!nested_vmcb_checks(nested_vmcb)) { |
2135 | nested_vmcb->control.exit_code = SVM_EXIT_ERR; | ||
2136 | nested_vmcb->control.exit_code_hi = 0; | ||
2137 | nested_vmcb->control.exit_info_1 = 0; | ||
2138 | nested_vmcb->control.exit_info_2 = 0; | ||
2139 | |||
2140 | nested_svm_unmap(page); | ||
2141 | |||
2142 | return false; | ||
2143 | } | ||
2144 | |||
2145 | trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa, | ||
2030 | nested_vmcb->save.rip, | 2146 | nested_vmcb->save.rip, |
2031 | nested_vmcb->control.int_ctl, | 2147 | nested_vmcb->control.int_ctl, |
2032 | nested_vmcb->control.event_inj, | 2148 | nested_vmcb->control.event_inj, |
@@ -2055,7 +2171,7 @@ static bool nested_svm_vmrun(struct vcpu_svm *svm) | |||
2055 | hsave->save.cr0 = kvm_read_cr0(&svm->vcpu); | 2171 | hsave->save.cr0 = kvm_read_cr0(&svm->vcpu); |
2056 | hsave->save.cr4 = svm->vcpu.arch.cr4; | 2172 | hsave->save.cr4 = svm->vcpu.arch.cr4; |
2057 | hsave->save.rflags = vmcb->save.rflags; | 2173 | hsave->save.rflags = vmcb->save.rflags; |
2058 | hsave->save.rip = svm->next_rip; | 2174 | hsave->save.rip = kvm_rip_read(&svm->vcpu); |
2059 | hsave->save.rsp = vmcb->save.rsp; | 2175 | hsave->save.rsp = vmcb->save.rsp; |
2060 | hsave->save.rax = vmcb->save.rax; | 2176 | hsave->save.rax = vmcb->save.rax; |
2061 | if (npt_enabled) | 2177 | if (npt_enabled) |
@@ -2070,6 +2186,12 @@ static bool nested_svm_vmrun(struct vcpu_svm *svm) | |||
2070 | else | 2186 | else |
2071 | svm->vcpu.arch.hflags &= ~HF_HIF_MASK; | 2187 | svm->vcpu.arch.hflags &= ~HF_HIF_MASK; |
2072 | 2188 | ||
2189 | if (nested_vmcb->control.nested_ctl) { | ||
2190 | kvm_mmu_unload(&svm->vcpu); | ||
2191 | svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3; | ||
2192 | nested_svm_init_mmu_context(&svm->vcpu); | ||
2193 | } | ||
2194 | |||
2073 | /* Load the nested guest state */ | 2195 | /* Load the nested guest state */ |
2074 | svm->vmcb->save.es = nested_vmcb->save.es; | 2196 | svm->vmcb->save.es = nested_vmcb->save.es; |
2075 | svm->vmcb->save.cs = nested_vmcb->save.cs; | 2197 | svm->vmcb->save.cs = nested_vmcb->save.cs; |
@@ -2227,8 +2349,8 @@ static int vmrun_interception(struct vcpu_svm *svm) | |||
2227 | if (nested_svm_check_permissions(svm)) | 2349 | if (nested_svm_check_permissions(svm)) |
2228 | return 1; | 2350 | return 1; |
2229 | 2351 | ||
2230 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 2352 | /* Save rip after vmrun instruction */ |
2231 | skip_emulated_instruction(&svm->vcpu); | 2353 | kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3); |
2232 | 2354 | ||
2233 | if (!nested_svm_vmrun(svm)) | 2355 | if (!nested_svm_vmrun(svm)) |
2234 | return 1; | 2356 | return 1; |
@@ -2257,6 +2379,7 @@ static int stgi_interception(struct vcpu_svm *svm) | |||
2257 | 2379 | ||
2258 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 2380 | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; |
2259 | skip_emulated_instruction(&svm->vcpu); | 2381 | skip_emulated_instruction(&svm->vcpu); |
2382 | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); | ||
2260 | 2383 | ||
2261 | enable_gif(svm); | 2384 | enable_gif(svm); |
2262 | 2385 | ||
@@ -2399,6 +2522,23 @@ static int emulate_on_interception(struct vcpu_svm *svm) | |||
2399 | return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE; | 2522 | return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE; |
2400 | } | 2523 | } |
2401 | 2524 | ||
2525 | static int cr0_write_interception(struct vcpu_svm *svm) | ||
2526 | { | ||
2527 | struct kvm_vcpu *vcpu = &svm->vcpu; | ||
2528 | int r; | ||
2529 | |||
2530 | r = emulate_instruction(&svm->vcpu, 0, 0, 0); | ||
2531 | |||
2532 | if (svm->nested.vmexit_rip) { | ||
2533 | kvm_register_write(vcpu, VCPU_REGS_RIP, svm->nested.vmexit_rip); | ||
2534 | kvm_register_write(vcpu, VCPU_REGS_RSP, svm->nested.vmexit_rsp); | ||
2535 | kvm_register_write(vcpu, VCPU_REGS_RAX, svm->nested.vmexit_rax); | ||
2536 | svm->nested.vmexit_rip = 0; | ||
2537 | } | ||
2538 | |||
2539 | return r == EMULATE_DONE; | ||
2540 | } | ||
2541 | |||
2402 | static int cr8_write_interception(struct vcpu_svm *svm) | 2542 | static int cr8_write_interception(struct vcpu_svm *svm) |
2403 | { | 2543 | { |
2404 | struct kvm_run *kvm_run = svm->vcpu.run; | 2544 | struct kvm_run *kvm_run = svm->vcpu.run; |
@@ -2542,20 +2682,9 @@ static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data) | |||
2542 | struct vcpu_svm *svm = to_svm(vcpu); | 2682 | struct vcpu_svm *svm = to_svm(vcpu); |
2543 | 2683 | ||
2544 | switch (ecx) { | 2684 | switch (ecx) { |
2545 | case MSR_IA32_TSC: { | 2685 | case MSR_IA32_TSC: |
2546 | u64 tsc_offset = data - native_read_tsc(); | 2686 | kvm_write_tsc(vcpu, data); |
2547 | u64 g_tsc_offset = 0; | ||
2548 | |||
2549 | if (is_nested(svm)) { | ||
2550 | g_tsc_offset = svm->vmcb->control.tsc_offset - | ||
2551 | svm->nested.hsave->control.tsc_offset; | ||
2552 | svm->nested.hsave->control.tsc_offset = tsc_offset; | ||
2553 | } | ||
2554 | |||
2555 | svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset; | ||
2556 | |||
2557 | break; | 2687 | break; |
2558 | } | ||
2559 | case MSR_STAR: | 2688 | case MSR_STAR: |
2560 | svm->vmcb->save.star = data; | 2689 | svm->vmcb->save.star = data; |
2561 | break; | 2690 | break; |
@@ -2643,6 +2772,7 @@ static int interrupt_window_interception(struct vcpu_svm *svm) | |||
2643 | { | 2772 | { |
2644 | struct kvm_run *kvm_run = svm->vcpu.run; | 2773 | struct kvm_run *kvm_run = svm->vcpu.run; |
2645 | 2774 | ||
2775 | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); | ||
2646 | svm_clear_vintr(svm); | 2776 | svm_clear_vintr(svm); |
2647 | svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; | 2777 | svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; |
2648 | /* | 2778 | /* |
@@ -2672,7 +2802,7 @@ static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = { | |||
2672 | [SVM_EXIT_READ_CR4] = emulate_on_interception, | 2802 | [SVM_EXIT_READ_CR4] = emulate_on_interception, |
2673 | [SVM_EXIT_READ_CR8] = emulate_on_interception, | 2803 | [SVM_EXIT_READ_CR8] = emulate_on_interception, |
2674 | [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, | 2804 | [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, |
2675 | [SVM_EXIT_WRITE_CR0] = emulate_on_interception, | 2805 | [SVM_EXIT_WRITE_CR0] = cr0_write_interception, |
2676 | [SVM_EXIT_WRITE_CR3] = emulate_on_interception, | 2806 | [SVM_EXIT_WRITE_CR3] = emulate_on_interception, |
2677 | [SVM_EXIT_WRITE_CR4] = emulate_on_interception, | 2807 | [SVM_EXIT_WRITE_CR4] = emulate_on_interception, |
2678 | [SVM_EXIT_WRITE_CR8] = cr8_write_interception, | 2808 | [SVM_EXIT_WRITE_CR8] = cr8_write_interception, |
@@ -2871,7 +3001,8 @@ static int handle_exit(struct kvm_vcpu *vcpu) | |||
2871 | 3001 | ||
2872 | if (is_external_interrupt(svm->vmcb->control.exit_int_info) && | 3002 | if (is_external_interrupt(svm->vmcb->control.exit_int_info) && |
2873 | exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && | 3003 | exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && |
2874 | exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH) | 3004 | exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && |
3005 | exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) | ||
2875 | printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x " | 3006 | printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x " |
2876 | "exit_code 0x%x\n", | 3007 | "exit_code 0x%x\n", |
2877 | __func__, svm->vmcb->control.exit_int_info, | 3008 | __func__, svm->vmcb->control.exit_int_info, |
@@ -3088,8 +3219,10 @@ static void svm_complete_interrupts(struct vcpu_svm *svm) | |||
3088 | 3219 | ||
3089 | svm->int3_injected = 0; | 3220 | svm->int3_injected = 0; |
3090 | 3221 | ||
3091 | if (svm->vcpu.arch.hflags & HF_IRET_MASK) | 3222 | if (svm->vcpu.arch.hflags & HF_IRET_MASK) { |
3092 | svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); | 3223 | svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); |
3224 | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); | ||
3225 | } | ||
3093 | 3226 | ||
3094 | svm->vcpu.arch.nmi_injected = false; | 3227 | svm->vcpu.arch.nmi_injected = false; |
3095 | kvm_clear_exception_queue(&svm->vcpu); | 3228 | kvm_clear_exception_queue(&svm->vcpu); |
@@ -3098,6 +3231,8 @@ static void svm_complete_interrupts(struct vcpu_svm *svm) | |||
3098 | if (!(exitintinfo & SVM_EXITINTINFO_VALID)) | 3231 | if (!(exitintinfo & SVM_EXITINTINFO_VALID)) |
3099 | return; | 3232 | return; |
3100 | 3233 | ||
3234 | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); | ||
3235 | |||
3101 | vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; | 3236 | vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; |
3102 | type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; | 3237 | type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; |
3103 | 3238 | ||
@@ -3134,6 +3269,17 @@ static void svm_complete_interrupts(struct vcpu_svm *svm) | |||
3134 | } | 3269 | } |
3135 | } | 3270 | } |
3136 | 3271 | ||
3272 | static void svm_cancel_injection(struct kvm_vcpu *vcpu) | ||
3273 | { | ||
3274 | struct vcpu_svm *svm = to_svm(vcpu); | ||
3275 | struct vmcb_control_area *control = &svm->vmcb->control; | ||
3276 | |||
3277 | control->exit_int_info = control->event_inj; | ||
3278 | control->exit_int_info_err = control->event_inj_err; | ||
3279 | control->event_inj = 0; | ||
3280 | svm_complete_interrupts(svm); | ||
3281 | } | ||
3282 | |||
3137 | #ifdef CONFIG_X86_64 | 3283 | #ifdef CONFIG_X86_64 |
3138 | #define R "r" | 3284 | #define R "r" |
3139 | #else | 3285 | #else |
@@ -3167,9 +3313,6 @@ static void svm_vcpu_run(struct kvm_vcpu *vcpu) | |||
3167 | savesegment(gs, gs_selector); | 3313 | savesegment(gs, gs_selector); |
3168 | ldt_selector = kvm_read_ldt(); | 3314 | ldt_selector = kvm_read_ldt(); |
3169 | svm->vmcb->save.cr2 = vcpu->arch.cr2; | 3315 | svm->vmcb->save.cr2 = vcpu->arch.cr2; |
3170 | /* required for live migration with NPT */ | ||
3171 | if (npt_enabled) | ||
3172 | svm->vmcb->save.cr3 = vcpu->arch.cr3; | ||
3173 | 3316 | ||
3174 | clgi(); | 3317 | clgi(); |
3175 | 3318 | ||
@@ -3291,16 +3434,22 @@ static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root) | |||
3291 | { | 3434 | { |
3292 | struct vcpu_svm *svm = to_svm(vcpu); | 3435 | struct vcpu_svm *svm = to_svm(vcpu); |
3293 | 3436 | ||
3294 | if (npt_enabled) { | ||
3295 | svm->vmcb->control.nested_cr3 = root; | ||
3296 | force_new_asid(vcpu); | ||
3297 | return; | ||
3298 | } | ||
3299 | |||
3300 | svm->vmcb->save.cr3 = root; | 3437 | svm->vmcb->save.cr3 = root; |
3301 | force_new_asid(vcpu); | 3438 | force_new_asid(vcpu); |
3302 | } | 3439 | } |
3303 | 3440 | ||
3441 | static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root) | ||
3442 | { | ||
3443 | struct vcpu_svm *svm = to_svm(vcpu); | ||
3444 | |||
3445 | svm->vmcb->control.nested_cr3 = root; | ||
3446 | |||
3447 | /* Also sync guest cr3 here in case we live migrate */ | ||
3448 | svm->vmcb->save.cr3 = vcpu->arch.cr3; | ||
3449 | |||
3450 | force_new_asid(vcpu); | ||
3451 | } | ||
3452 | |||
3304 | static int is_disabled(void) | 3453 | static int is_disabled(void) |
3305 | { | 3454 | { |
3306 | u64 vm_cr; | 3455 | u64 vm_cr; |
@@ -3333,15 +3482,6 @@ static bool svm_cpu_has_accelerated_tpr(void) | |||
3333 | return false; | 3482 | return false; |
3334 | } | 3483 | } |
3335 | 3484 | ||
3336 | static int get_npt_level(void) | ||
3337 | { | ||
3338 | #ifdef CONFIG_X86_64 | ||
3339 | return PT64_ROOT_LEVEL; | ||
3340 | #else | ||
3341 | return PT32E_ROOT_LEVEL; | ||
3342 | #endif | ||
3343 | } | ||
3344 | |||
3345 | static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) | 3485 | static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) |
3346 | { | 3486 | { |
3347 | return 0; | 3487 | return 0; |
@@ -3354,12 +3494,25 @@ static void svm_cpuid_update(struct kvm_vcpu *vcpu) | |||
3354 | static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) | 3494 | static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) |
3355 | { | 3495 | { |
3356 | switch (func) { | 3496 | switch (func) { |
3497 | case 0x80000001: | ||
3498 | if (nested) | ||
3499 | entry->ecx |= (1 << 2); /* Set SVM bit */ | ||
3500 | break; | ||
3357 | case 0x8000000A: | 3501 | case 0x8000000A: |
3358 | entry->eax = 1; /* SVM revision 1 */ | 3502 | entry->eax = 1; /* SVM revision 1 */ |
3359 | entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper | 3503 | entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper |
3360 | ASID emulation to nested SVM */ | 3504 | ASID emulation to nested SVM */ |
3361 | entry->ecx = 0; /* Reserved */ | 3505 | entry->ecx = 0; /* Reserved */ |
3362 | entry->edx = 0; /* Do not support any additional features */ | 3506 | entry->edx = 0; /* Per default do not support any |
3507 | additional features */ | ||
3508 | |||
3509 | /* Support next_rip if host supports it */ | ||
3510 | if (svm_has(SVM_FEATURE_NRIP)) | ||
3511 | entry->edx |= SVM_FEATURE_NRIP; | ||
3512 | |||
3513 | /* Support NPT for the guest if enabled */ | ||
3514 | if (npt_enabled) | ||
3515 | entry->edx |= SVM_FEATURE_NPT; | ||
3363 | 3516 | ||
3364 | break; | 3517 | break; |
3365 | } | 3518 | } |
@@ -3497,6 +3650,7 @@ static struct kvm_x86_ops svm_x86_ops = { | |||
3497 | .set_irq = svm_set_irq, | 3650 | .set_irq = svm_set_irq, |
3498 | .set_nmi = svm_inject_nmi, | 3651 | .set_nmi = svm_inject_nmi, |
3499 | .queue_exception = svm_queue_exception, | 3652 | .queue_exception = svm_queue_exception, |
3653 | .cancel_injection = svm_cancel_injection, | ||
3500 | .interrupt_allowed = svm_interrupt_allowed, | 3654 | .interrupt_allowed = svm_interrupt_allowed, |
3501 | .nmi_allowed = svm_nmi_allowed, | 3655 | .nmi_allowed = svm_nmi_allowed, |
3502 | .get_nmi_mask = svm_get_nmi_mask, | 3656 | .get_nmi_mask = svm_get_nmi_mask, |
@@ -3519,6 +3673,11 @@ static struct kvm_x86_ops svm_x86_ops = { | |||
3519 | .set_supported_cpuid = svm_set_supported_cpuid, | 3673 | .set_supported_cpuid = svm_set_supported_cpuid, |
3520 | 3674 | ||
3521 | .has_wbinvd_exit = svm_has_wbinvd_exit, | 3675 | .has_wbinvd_exit = svm_has_wbinvd_exit, |
3676 | |||
3677 | .write_tsc_offset = svm_write_tsc_offset, | ||
3678 | .adjust_tsc_offset = svm_adjust_tsc_offset, | ||
3679 | |||
3680 | .set_tdp_cr3 = set_tdp_cr3, | ||
3522 | }; | 3681 | }; |
3523 | 3682 | ||
3524 | static int __init svm_init(void) | 3683 | static int __init svm_init(void) |
diff --git a/arch/x86/kvm/timer.c b/arch/x86/kvm/timer.c index e16a0dbe74d8..fc7a101c4a35 100644 --- a/arch/x86/kvm/timer.c +++ b/arch/x86/kvm/timer.c | |||
@@ -6,7 +6,7 @@ | |||
6 | * | 6 | * |
7 | * timer support | 7 | * timer support |
8 | * | 8 | * |
9 | * Copyright 2010 Red Hat, Inc. and/or its affilates. | 9 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
10 | * | 10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2. See | 11 | * This work is licensed under the terms of the GNU GPL, version 2. See |
12 | * the COPYING file in the top-level directory. | 12 | * the COPYING file in the top-level directory. |
diff --git a/arch/x86/kvm/vmx.c b/arch/x86/kvm/vmx.c index 7bddfab12013..8da0e45ff7c9 100644 --- a/arch/x86/kvm/vmx.c +++ b/arch/x86/kvm/vmx.c | |||
@@ -5,7 +5,7 @@ | |||
5 | * machines without emulation or binary translation. | 5 | * machines without emulation or binary translation. |
6 | * | 6 | * |
7 | * Copyright (C) 2006 Qumranet, Inc. | 7 | * Copyright (C) 2006 Qumranet, Inc. |
8 | * Copyright 2010 Red Hat, Inc. and/or its affilates. | 8 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
9 | * | 9 | * |
10 | * Authors: | 10 | * Authors: |
11 | * Avi Kivity <avi@qumranet.com> | 11 | * Avi Kivity <avi@qumranet.com> |
@@ -125,6 +125,7 @@ struct vcpu_vmx { | |||
125 | unsigned long host_rsp; | 125 | unsigned long host_rsp; |
126 | int launched; | 126 | int launched; |
127 | u8 fail; | 127 | u8 fail; |
128 | u32 exit_intr_info; | ||
128 | u32 idt_vectoring_info; | 129 | u32 idt_vectoring_info; |
129 | struct shared_msr_entry *guest_msrs; | 130 | struct shared_msr_entry *guest_msrs; |
130 | int nmsrs; | 131 | int nmsrs; |
@@ -154,11 +155,6 @@ struct vcpu_vmx { | |||
154 | u32 limit; | 155 | u32 limit; |
155 | u32 ar; | 156 | u32 ar; |
156 | } tr, es, ds, fs, gs; | 157 | } tr, es, ds, fs, gs; |
157 | struct { | ||
158 | bool pending; | ||
159 | u8 vector; | ||
160 | unsigned rip; | ||
161 | } irq; | ||
162 | } rmode; | 158 | } rmode; |
163 | int vpid; | 159 | int vpid; |
164 | bool emulation_required; | 160 | bool emulation_required; |
@@ -505,7 +501,6 @@ static void __vcpu_clear(void *arg) | |||
505 | vmcs_clear(vmx->vmcs); | 501 | vmcs_clear(vmx->vmcs); |
506 | if (per_cpu(current_vmcs, cpu) == vmx->vmcs) | 502 | if (per_cpu(current_vmcs, cpu) == vmx->vmcs) |
507 | per_cpu(current_vmcs, cpu) = NULL; | 503 | per_cpu(current_vmcs, cpu) = NULL; |
508 | rdtscll(vmx->vcpu.arch.host_tsc); | ||
509 | list_del(&vmx->local_vcpus_link); | 504 | list_del(&vmx->local_vcpus_link); |
510 | vmx->vcpu.cpu = -1; | 505 | vmx->vcpu.cpu = -1; |
511 | vmx->launched = 0; | 506 | vmx->launched = 0; |
@@ -706,11 +701,10 @@ static void reload_tss(void) | |||
706 | /* | 701 | /* |
707 | * VT restores TR but not its size. Useless. | 702 | * VT restores TR but not its size. Useless. |
708 | */ | 703 | */ |
709 | struct desc_ptr gdt; | 704 | struct desc_ptr *gdt = &__get_cpu_var(host_gdt); |
710 | struct desc_struct *descs; | 705 | struct desc_struct *descs; |
711 | 706 | ||
712 | native_store_gdt(&gdt); | 707 | descs = (void *)gdt->address; |
713 | descs = (void *)gdt.address; | ||
714 | descs[GDT_ENTRY_TSS].type = 9; /* available TSS */ | 708 | descs[GDT_ENTRY_TSS].type = 9; /* available TSS */ |
715 | load_TR_desc(); | 709 | load_TR_desc(); |
716 | } | 710 | } |
@@ -753,7 +747,7 @@ static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset) | |||
753 | 747 | ||
754 | static unsigned long segment_base(u16 selector) | 748 | static unsigned long segment_base(u16 selector) |
755 | { | 749 | { |
756 | struct desc_ptr gdt; | 750 | struct desc_ptr *gdt = &__get_cpu_var(host_gdt); |
757 | struct desc_struct *d; | 751 | struct desc_struct *d; |
758 | unsigned long table_base; | 752 | unsigned long table_base; |
759 | unsigned long v; | 753 | unsigned long v; |
@@ -761,8 +755,7 @@ static unsigned long segment_base(u16 selector) | |||
761 | if (!(selector & ~3)) | 755 | if (!(selector & ~3)) |
762 | return 0; | 756 | return 0; |
763 | 757 | ||
764 | native_store_gdt(&gdt); | 758 | table_base = gdt->address; |
765 | table_base = gdt.address; | ||
766 | 759 | ||
767 | if (selector & 4) { /* from ldt */ | 760 | if (selector & 4) { /* from ldt */ |
768 | u16 ldt_selector = kvm_read_ldt(); | 761 | u16 ldt_selector = kvm_read_ldt(); |
@@ -883,7 +876,6 @@ static void vmx_load_host_state(struct vcpu_vmx *vmx) | |||
883 | static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 876 | static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
884 | { | 877 | { |
885 | struct vcpu_vmx *vmx = to_vmx(vcpu); | 878 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
886 | u64 tsc_this, delta, new_offset; | ||
887 | u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); | 879 | u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); |
888 | 880 | ||
889 | if (!vmm_exclusive) | 881 | if (!vmm_exclusive) |
@@ -897,37 +889,24 @@ static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | |||
897 | } | 889 | } |
898 | 890 | ||
899 | if (vcpu->cpu != cpu) { | 891 | if (vcpu->cpu != cpu) { |
900 | struct desc_ptr dt; | 892 | struct desc_ptr *gdt = &__get_cpu_var(host_gdt); |
901 | unsigned long sysenter_esp; | 893 | unsigned long sysenter_esp; |
902 | 894 | ||
903 | kvm_migrate_timers(vcpu); | ||
904 | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); | 895 | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
905 | local_irq_disable(); | 896 | local_irq_disable(); |
906 | list_add(&vmx->local_vcpus_link, | 897 | list_add(&vmx->local_vcpus_link, |
907 | &per_cpu(vcpus_on_cpu, cpu)); | 898 | &per_cpu(vcpus_on_cpu, cpu)); |
908 | local_irq_enable(); | 899 | local_irq_enable(); |
909 | 900 | ||
910 | vcpu->cpu = cpu; | ||
911 | /* | 901 | /* |
912 | * Linux uses per-cpu TSS and GDT, so set these when switching | 902 | * Linux uses per-cpu TSS and GDT, so set these when switching |
913 | * processors. | 903 | * processors. |
914 | */ | 904 | */ |
915 | vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */ | 905 | vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */ |
916 | native_store_gdt(&dt); | 906 | vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */ |
917 | vmcs_writel(HOST_GDTR_BASE, dt.address); /* 22.2.4 */ | ||
918 | 907 | ||
919 | rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); | 908 | rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); |
920 | vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ | 909 | vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ |
921 | |||
922 | /* | ||
923 | * Make sure the time stamp counter is monotonous. | ||
924 | */ | ||
925 | rdtscll(tsc_this); | ||
926 | if (tsc_this < vcpu->arch.host_tsc) { | ||
927 | delta = vcpu->arch.host_tsc - tsc_this; | ||
928 | new_offset = vmcs_read64(TSC_OFFSET) + delta; | ||
929 | vmcs_write64(TSC_OFFSET, new_offset); | ||
930 | } | ||
931 | } | 910 | } |
932 | } | 911 | } |
933 | 912 | ||
@@ -1044,16 +1023,8 @@ static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr, | |||
1044 | } | 1023 | } |
1045 | 1024 | ||
1046 | if (vmx->rmode.vm86_active) { | 1025 | if (vmx->rmode.vm86_active) { |
1047 | vmx->rmode.irq.pending = true; | 1026 | if (kvm_inject_realmode_interrupt(vcpu, nr) != EMULATE_DONE) |
1048 | vmx->rmode.irq.vector = nr; | 1027 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
1049 | vmx->rmode.irq.rip = kvm_rip_read(vcpu); | ||
1050 | if (kvm_exception_is_soft(nr)) | ||
1051 | vmx->rmode.irq.rip += | ||
1052 | vmx->vcpu.arch.event_exit_inst_len; | ||
1053 | intr_info |= INTR_TYPE_SOFT_INTR; | ||
1054 | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); | ||
1055 | vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1); | ||
1056 | kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1); | ||
1057 | return; | 1028 | return; |
1058 | } | 1029 | } |
1059 | 1030 | ||
@@ -1149,12 +1120,17 @@ static u64 guest_read_tsc(void) | |||
1149 | } | 1120 | } |
1150 | 1121 | ||
1151 | /* | 1122 | /* |
1152 | * writes 'guest_tsc' into guest's timestamp counter "register" | 1123 | * writes 'offset' into guest's timestamp counter offset register |
1153 | * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc | ||
1154 | */ | 1124 | */ |
1155 | static void guest_write_tsc(u64 guest_tsc, u64 host_tsc) | 1125 | static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) |
1126 | { | ||
1127 | vmcs_write64(TSC_OFFSET, offset); | ||
1128 | } | ||
1129 | |||
1130 | static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment) | ||
1156 | { | 1131 | { |
1157 | vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc); | 1132 | u64 offset = vmcs_read64(TSC_OFFSET); |
1133 | vmcs_write64(TSC_OFFSET, offset + adjustment); | ||
1158 | } | 1134 | } |
1159 | 1135 | ||
1160 | /* | 1136 | /* |
@@ -1227,7 +1203,6 @@ static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) | |||
1227 | { | 1203 | { |
1228 | struct vcpu_vmx *vmx = to_vmx(vcpu); | 1204 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
1229 | struct shared_msr_entry *msr; | 1205 | struct shared_msr_entry *msr; |
1230 | u64 host_tsc; | ||
1231 | int ret = 0; | 1206 | int ret = 0; |
1232 | 1207 | ||
1233 | switch (msr_index) { | 1208 | switch (msr_index) { |
@@ -1257,8 +1232,7 @@ static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) | |||
1257 | vmcs_writel(GUEST_SYSENTER_ESP, data); | 1232 | vmcs_writel(GUEST_SYSENTER_ESP, data); |
1258 | break; | 1233 | break; |
1259 | case MSR_IA32_TSC: | 1234 | case MSR_IA32_TSC: |
1260 | rdtscll(host_tsc); | 1235 | kvm_write_tsc(vcpu, data); |
1261 | guest_write_tsc(data, host_tsc); | ||
1262 | break; | 1236 | break; |
1263 | case MSR_IA32_CR_PAT: | 1237 | case MSR_IA32_CR_PAT: |
1264 | if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { | 1238 | if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { |
@@ -1856,20 +1830,20 @@ static void ept_load_pdptrs(struct kvm_vcpu *vcpu) | |||
1856 | return; | 1830 | return; |
1857 | 1831 | ||
1858 | if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { | 1832 | if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { |
1859 | vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]); | 1833 | vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]); |
1860 | vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]); | 1834 | vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]); |
1861 | vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]); | 1835 | vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]); |
1862 | vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]); | 1836 | vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]); |
1863 | } | 1837 | } |
1864 | } | 1838 | } |
1865 | 1839 | ||
1866 | static void ept_save_pdptrs(struct kvm_vcpu *vcpu) | 1840 | static void ept_save_pdptrs(struct kvm_vcpu *vcpu) |
1867 | { | 1841 | { |
1868 | if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { | 1842 | if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { |
1869 | vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0); | 1843 | vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0); |
1870 | vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1); | 1844 | vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1); |
1871 | vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2); | 1845 | vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2); |
1872 | vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3); | 1846 | vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3); |
1873 | } | 1847 | } |
1874 | 1848 | ||
1875 | __set_bit(VCPU_EXREG_PDPTR, | 1849 | __set_bit(VCPU_EXREG_PDPTR, |
@@ -2515,7 +2489,7 @@ static int vmx_vcpu_setup(struct vcpu_vmx *vmx) | |||
2515 | { | 2489 | { |
2516 | u32 host_sysenter_cs, msr_low, msr_high; | 2490 | u32 host_sysenter_cs, msr_low, msr_high; |
2517 | u32 junk; | 2491 | u32 junk; |
2518 | u64 host_pat, tsc_this, tsc_base; | 2492 | u64 host_pat; |
2519 | unsigned long a; | 2493 | unsigned long a; |
2520 | struct desc_ptr dt; | 2494 | struct desc_ptr dt; |
2521 | int i; | 2495 | int i; |
@@ -2656,12 +2630,7 @@ static int vmx_vcpu_setup(struct vcpu_vmx *vmx) | |||
2656 | vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE; | 2630 | vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE; |
2657 | vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits); | 2631 | vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits); |
2658 | 2632 | ||
2659 | tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc; | 2633 | kvm_write_tsc(&vmx->vcpu, 0); |
2660 | rdtscll(tsc_this); | ||
2661 | if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc) | ||
2662 | tsc_base = tsc_this; | ||
2663 | |||
2664 | guest_write_tsc(0, tsc_base); | ||
2665 | 2634 | ||
2666 | return 0; | 2635 | return 0; |
2667 | } | 2636 | } |
@@ -2834,16 +2803,8 @@ static void vmx_inject_irq(struct kvm_vcpu *vcpu) | |||
2834 | 2803 | ||
2835 | ++vcpu->stat.irq_injections; | 2804 | ++vcpu->stat.irq_injections; |
2836 | if (vmx->rmode.vm86_active) { | 2805 | if (vmx->rmode.vm86_active) { |
2837 | vmx->rmode.irq.pending = true; | 2806 | if (kvm_inject_realmode_interrupt(vcpu, irq) != EMULATE_DONE) |
2838 | vmx->rmode.irq.vector = irq; | 2807 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
2839 | vmx->rmode.irq.rip = kvm_rip_read(vcpu); | ||
2840 | if (vcpu->arch.interrupt.soft) | ||
2841 | vmx->rmode.irq.rip += | ||
2842 | vmx->vcpu.arch.event_exit_inst_len; | ||
2843 | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, | ||
2844 | irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK); | ||
2845 | vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1); | ||
2846 | kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1); | ||
2847 | return; | 2808 | return; |
2848 | } | 2809 | } |
2849 | intr = irq | INTR_INFO_VALID_MASK; | 2810 | intr = irq | INTR_INFO_VALID_MASK; |
@@ -2875,14 +2836,8 @@ static void vmx_inject_nmi(struct kvm_vcpu *vcpu) | |||
2875 | 2836 | ||
2876 | ++vcpu->stat.nmi_injections; | 2837 | ++vcpu->stat.nmi_injections; |
2877 | if (vmx->rmode.vm86_active) { | 2838 | if (vmx->rmode.vm86_active) { |
2878 | vmx->rmode.irq.pending = true; | 2839 | if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR) != EMULATE_DONE) |
2879 | vmx->rmode.irq.vector = NMI_VECTOR; | 2840 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
2880 | vmx->rmode.irq.rip = kvm_rip_read(vcpu); | ||
2881 | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, | ||
2882 | NMI_VECTOR | INTR_TYPE_SOFT_INTR | | ||
2883 | INTR_INFO_VALID_MASK); | ||
2884 | vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1); | ||
2885 | kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1); | ||
2886 | return; | 2841 | return; |
2887 | } | 2842 | } |
2888 | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, | 2843 | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, |
@@ -3346,6 +3301,7 @@ static int handle_wrmsr(struct kvm_vcpu *vcpu) | |||
3346 | 3301 | ||
3347 | static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) | 3302 | static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) |
3348 | { | 3303 | { |
3304 | kvm_make_request(KVM_REQ_EVENT, vcpu); | ||
3349 | return 1; | 3305 | return 1; |
3350 | } | 3306 | } |
3351 | 3307 | ||
@@ -3358,6 +3314,8 @@ static int handle_interrupt_window(struct kvm_vcpu *vcpu) | |||
3358 | cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; | 3314 | cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; |
3359 | vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); | 3315 | vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); |
3360 | 3316 | ||
3317 | kvm_make_request(KVM_REQ_EVENT, vcpu); | ||
3318 | |||
3361 | ++vcpu->stat.irq_window_exits; | 3319 | ++vcpu->stat.irq_window_exits; |
3362 | 3320 | ||
3363 | /* | 3321 | /* |
@@ -3614,6 +3572,7 @@ static int handle_nmi_window(struct kvm_vcpu *vcpu) | |||
3614 | cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; | 3572 | cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; |
3615 | vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); | 3573 | vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); |
3616 | ++vcpu->stat.nmi_window_exits; | 3574 | ++vcpu->stat.nmi_window_exits; |
3575 | kvm_make_request(KVM_REQ_EVENT, vcpu); | ||
3617 | 3576 | ||
3618 | return 1; | 3577 | return 1; |
3619 | } | 3578 | } |
@@ -3623,8 +3582,17 @@ static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) | |||
3623 | struct vcpu_vmx *vmx = to_vmx(vcpu); | 3582 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
3624 | enum emulation_result err = EMULATE_DONE; | 3583 | enum emulation_result err = EMULATE_DONE; |
3625 | int ret = 1; | 3584 | int ret = 1; |
3585 | u32 cpu_exec_ctrl; | ||
3586 | bool intr_window_requested; | ||
3587 | |||
3588 | cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); | ||
3589 | intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING; | ||
3626 | 3590 | ||
3627 | while (!guest_state_valid(vcpu)) { | 3591 | while (!guest_state_valid(vcpu)) { |
3592 | if (intr_window_requested | ||
3593 | && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF)) | ||
3594 | return handle_interrupt_window(&vmx->vcpu); | ||
3595 | |||
3628 | err = emulate_instruction(vcpu, 0, 0, 0); | 3596 | err = emulate_instruction(vcpu, 0, 0, 0); |
3629 | 3597 | ||
3630 | if (err == EMULATE_DO_MMIO) { | 3598 | if (err == EMULATE_DO_MMIO) { |
@@ -3790,18 +3758,9 @@ static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) | |||
3790 | vmcs_write32(TPR_THRESHOLD, irr); | 3758 | vmcs_write32(TPR_THRESHOLD, irr); |
3791 | } | 3759 | } |
3792 | 3760 | ||
3793 | static void vmx_complete_interrupts(struct vcpu_vmx *vmx) | 3761 | static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx) |
3794 | { | 3762 | { |
3795 | u32 exit_intr_info; | 3763 | u32 exit_intr_info = vmx->exit_intr_info; |
3796 | u32 idt_vectoring_info = vmx->idt_vectoring_info; | ||
3797 | bool unblock_nmi; | ||
3798 | u8 vector; | ||
3799 | int type; | ||
3800 | bool idtv_info_valid; | ||
3801 | |||
3802 | exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); | ||
3803 | |||
3804 | vmx->exit_reason = vmcs_read32(VM_EXIT_REASON); | ||
3805 | 3764 | ||
3806 | /* Handle machine checks before interrupts are enabled */ | 3765 | /* Handle machine checks before interrupts are enabled */ |
3807 | if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY) | 3766 | if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY) |
@@ -3816,8 +3775,16 @@ static void vmx_complete_interrupts(struct vcpu_vmx *vmx) | |||
3816 | asm("int $2"); | 3775 | asm("int $2"); |
3817 | kvm_after_handle_nmi(&vmx->vcpu); | 3776 | kvm_after_handle_nmi(&vmx->vcpu); |
3818 | } | 3777 | } |
3778 | } | ||
3819 | 3779 | ||
3820 | idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; | 3780 | static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) |
3781 | { | ||
3782 | u32 exit_intr_info = vmx->exit_intr_info; | ||
3783 | bool unblock_nmi; | ||
3784 | u8 vector; | ||
3785 | bool idtv_info_valid; | ||
3786 | |||
3787 | idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; | ||
3821 | 3788 | ||
3822 | if (cpu_has_virtual_nmis()) { | 3789 | if (cpu_has_virtual_nmis()) { |
3823 | unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; | 3790 | unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; |
@@ -3839,6 +3806,18 @@ static void vmx_complete_interrupts(struct vcpu_vmx *vmx) | |||
3839 | } else if (unlikely(vmx->soft_vnmi_blocked)) | 3806 | } else if (unlikely(vmx->soft_vnmi_blocked)) |
3840 | vmx->vnmi_blocked_time += | 3807 | vmx->vnmi_blocked_time += |
3841 | ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time)); | 3808 | ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time)); |
3809 | } | ||
3810 | |||
3811 | static void __vmx_complete_interrupts(struct vcpu_vmx *vmx, | ||
3812 | u32 idt_vectoring_info, | ||
3813 | int instr_len_field, | ||
3814 | int error_code_field) | ||
3815 | { | ||
3816 | u8 vector; | ||
3817 | int type; | ||
3818 | bool idtv_info_valid; | ||
3819 | |||
3820 | idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; | ||
3842 | 3821 | ||
3843 | vmx->vcpu.arch.nmi_injected = false; | 3822 | vmx->vcpu.arch.nmi_injected = false; |
3844 | kvm_clear_exception_queue(&vmx->vcpu); | 3823 | kvm_clear_exception_queue(&vmx->vcpu); |
@@ -3847,6 +3826,8 @@ static void vmx_complete_interrupts(struct vcpu_vmx *vmx) | |||
3847 | if (!idtv_info_valid) | 3826 | if (!idtv_info_valid) |
3848 | return; | 3827 | return; |
3849 | 3828 | ||
3829 | kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu); | ||
3830 | |||
3850 | vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; | 3831 | vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; |
3851 | type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; | 3832 | type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; |
3852 | 3833 | ||
@@ -3863,18 +3844,18 @@ static void vmx_complete_interrupts(struct vcpu_vmx *vmx) | |||
3863 | break; | 3844 | break; |
3864 | case INTR_TYPE_SOFT_EXCEPTION: | 3845 | case INTR_TYPE_SOFT_EXCEPTION: |
3865 | vmx->vcpu.arch.event_exit_inst_len = | 3846 | vmx->vcpu.arch.event_exit_inst_len = |
3866 | vmcs_read32(VM_EXIT_INSTRUCTION_LEN); | 3847 | vmcs_read32(instr_len_field); |
3867 | /* fall through */ | 3848 | /* fall through */ |
3868 | case INTR_TYPE_HARD_EXCEPTION: | 3849 | case INTR_TYPE_HARD_EXCEPTION: |
3869 | if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { | 3850 | if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { |
3870 | u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE); | 3851 | u32 err = vmcs_read32(error_code_field); |
3871 | kvm_queue_exception_e(&vmx->vcpu, vector, err); | 3852 | kvm_queue_exception_e(&vmx->vcpu, vector, err); |
3872 | } else | 3853 | } else |
3873 | kvm_queue_exception(&vmx->vcpu, vector); | 3854 | kvm_queue_exception(&vmx->vcpu, vector); |
3874 | break; | 3855 | break; |
3875 | case INTR_TYPE_SOFT_INTR: | 3856 | case INTR_TYPE_SOFT_INTR: |
3876 | vmx->vcpu.arch.event_exit_inst_len = | 3857 | vmx->vcpu.arch.event_exit_inst_len = |
3877 | vmcs_read32(VM_EXIT_INSTRUCTION_LEN); | 3858 | vmcs_read32(instr_len_field); |
3878 | /* fall through */ | 3859 | /* fall through */ |
3879 | case INTR_TYPE_EXT_INTR: | 3860 | case INTR_TYPE_EXT_INTR: |
3880 | kvm_queue_interrupt(&vmx->vcpu, vector, | 3861 | kvm_queue_interrupt(&vmx->vcpu, vector, |
@@ -3885,27 +3866,21 @@ static void vmx_complete_interrupts(struct vcpu_vmx *vmx) | |||
3885 | } | 3866 | } |
3886 | } | 3867 | } |
3887 | 3868 | ||
3888 | /* | 3869 | static void vmx_complete_interrupts(struct vcpu_vmx *vmx) |
3889 | * Failure to inject an interrupt should give us the information | ||
3890 | * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs | ||
3891 | * when fetching the interrupt redirection bitmap in the real-mode | ||
3892 | * tss, this doesn't happen. So we do it ourselves. | ||
3893 | */ | ||
3894 | static void fixup_rmode_irq(struct vcpu_vmx *vmx) | ||
3895 | { | 3870 | { |
3896 | vmx->rmode.irq.pending = 0; | 3871 | __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info, |
3897 | if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip) | 3872 | VM_EXIT_INSTRUCTION_LEN, |
3898 | return; | 3873 | IDT_VECTORING_ERROR_CODE); |
3899 | kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip); | 3874 | } |
3900 | if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) { | 3875 | |
3901 | vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK; | 3876 | static void vmx_cancel_injection(struct kvm_vcpu *vcpu) |
3902 | vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR; | 3877 | { |
3903 | return; | 3878 | __vmx_complete_interrupts(to_vmx(vcpu), |
3904 | } | 3879 | vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), |
3905 | vmx->idt_vectoring_info = | 3880 | VM_ENTRY_INSTRUCTION_LEN, |
3906 | VECTORING_INFO_VALID_MASK | 3881 | VM_ENTRY_EXCEPTION_ERROR_CODE); |
3907 | | INTR_TYPE_EXT_INTR | 3882 | |
3908 | | vmx->rmode.irq.vector; | 3883 | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); |
3909 | } | 3884 | } |
3910 | 3885 | ||
3911 | #ifdef CONFIG_X86_64 | 3886 | #ifdef CONFIG_X86_64 |
@@ -4032,7 +4007,7 @@ static void vmx_vcpu_run(struct kvm_vcpu *vcpu) | |||
4032 | #endif | 4007 | #endif |
4033 | [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)) | 4008 | [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)) |
4034 | : "cc", "memory" | 4009 | : "cc", "memory" |
4035 | , R"bx", R"di", R"si" | 4010 | , R"ax", R"bx", R"di", R"si" |
4036 | #ifdef CONFIG_X86_64 | 4011 | #ifdef CONFIG_X86_64 |
4037 | , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" | 4012 | , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" |
4038 | #endif | 4013 | #endif |
@@ -4043,12 +4018,15 @@ static void vmx_vcpu_run(struct kvm_vcpu *vcpu) | |||
4043 | vcpu->arch.regs_dirty = 0; | 4018 | vcpu->arch.regs_dirty = 0; |
4044 | 4019 | ||
4045 | vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); | 4020 | vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); |
4046 | if (vmx->rmode.irq.pending) | ||
4047 | fixup_rmode_irq(vmx); | ||
4048 | 4021 | ||
4049 | asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS)); | 4022 | asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS)); |
4050 | vmx->launched = 1; | 4023 | vmx->launched = 1; |
4051 | 4024 | ||
4025 | vmx->exit_reason = vmcs_read32(VM_EXIT_REASON); | ||
4026 | vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); | ||
4027 | |||
4028 | vmx_complete_atomic_exit(vmx); | ||
4029 | vmx_recover_nmi_blocking(vmx); | ||
4052 | vmx_complete_interrupts(vmx); | 4030 | vmx_complete_interrupts(vmx); |
4053 | } | 4031 | } |
4054 | 4032 | ||
@@ -4119,6 +4097,7 @@ static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) | |||
4119 | 4097 | ||
4120 | cpu = get_cpu(); | 4098 | cpu = get_cpu(); |
4121 | vmx_vcpu_load(&vmx->vcpu, cpu); | 4099 | vmx_vcpu_load(&vmx->vcpu, cpu); |
4100 | vmx->vcpu.cpu = cpu; | ||
4122 | err = vmx_vcpu_setup(vmx); | 4101 | err = vmx_vcpu_setup(vmx); |
4123 | vmx_vcpu_put(&vmx->vcpu); | 4102 | vmx_vcpu_put(&vmx->vcpu); |
4124 | put_cpu(); | 4103 | put_cpu(); |
@@ -4334,6 +4313,7 @@ static struct kvm_x86_ops vmx_x86_ops = { | |||
4334 | .set_irq = vmx_inject_irq, | 4313 | .set_irq = vmx_inject_irq, |
4335 | .set_nmi = vmx_inject_nmi, | 4314 | .set_nmi = vmx_inject_nmi, |
4336 | .queue_exception = vmx_queue_exception, | 4315 | .queue_exception = vmx_queue_exception, |
4316 | .cancel_injection = vmx_cancel_injection, | ||
4337 | .interrupt_allowed = vmx_interrupt_allowed, | 4317 | .interrupt_allowed = vmx_interrupt_allowed, |
4338 | .nmi_allowed = vmx_nmi_allowed, | 4318 | .nmi_allowed = vmx_nmi_allowed, |
4339 | .get_nmi_mask = vmx_get_nmi_mask, | 4319 | .get_nmi_mask = vmx_get_nmi_mask, |
@@ -4356,6 +4336,11 @@ static struct kvm_x86_ops vmx_x86_ops = { | |||
4356 | .set_supported_cpuid = vmx_set_supported_cpuid, | 4336 | .set_supported_cpuid = vmx_set_supported_cpuid, |
4357 | 4337 | ||
4358 | .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, | 4338 | .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, |
4339 | |||
4340 | .write_tsc_offset = vmx_write_tsc_offset, | ||
4341 | .adjust_tsc_offset = vmx_adjust_tsc_offset, | ||
4342 | |||
4343 | .set_tdp_cr3 = vmx_set_cr3, | ||
4359 | }; | 4344 | }; |
4360 | 4345 | ||
4361 | static int __init vmx_init(void) | 4346 | static int __init vmx_init(void) |
diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c index 6c2ecf0a806d..2288ad829b32 100644 --- a/arch/x86/kvm/x86.c +++ b/arch/x86/kvm/x86.c | |||
@@ -6,7 +6,7 @@ | |||
6 | * Copyright (C) 2006 Qumranet, Inc. | 6 | * Copyright (C) 2006 Qumranet, Inc. |
7 | * Copyright (C) 2008 Qumranet, Inc. | 7 | * Copyright (C) 2008 Qumranet, Inc. |
8 | * Copyright IBM Corporation, 2008 | 8 | * Copyright IBM Corporation, 2008 |
9 | * Copyright 2010 Red Hat, Inc. and/or its affilates. | 9 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
10 | * | 10 | * |
11 | * Authors: | 11 | * Authors: |
12 | * Avi Kivity <avi@qumranet.com> | 12 | * Avi Kivity <avi@qumranet.com> |
@@ -55,6 +55,8 @@ | |||
55 | #include <asm/mce.h> | 55 | #include <asm/mce.h> |
56 | #include <asm/i387.h> | 56 | #include <asm/i387.h> |
57 | #include <asm/xcr.h> | 57 | #include <asm/xcr.h> |
58 | #include <asm/pvclock.h> | ||
59 | #include <asm/div64.h> | ||
58 | 60 | ||
59 | #define MAX_IO_MSRS 256 | 61 | #define MAX_IO_MSRS 256 |
60 | #define CR0_RESERVED_BITS \ | 62 | #define CR0_RESERVED_BITS \ |
@@ -71,7 +73,7 @@ | |||
71 | #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) | 73 | #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) |
72 | 74 | ||
73 | #define KVM_MAX_MCE_BANKS 32 | 75 | #define KVM_MAX_MCE_BANKS 32 |
74 | #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P | 76 | #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) |
75 | 77 | ||
76 | /* EFER defaults: | 78 | /* EFER defaults: |
77 | * - enable syscall per default because its emulated by KVM | 79 | * - enable syscall per default because its emulated by KVM |
@@ -282,6 +284,8 @@ static void kvm_multiple_exception(struct kvm_vcpu *vcpu, | |||
282 | u32 prev_nr; | 284 | u32 prev_nr; |
283 | int class1, class2; | 285 | int class1, class2; |
284 | 286 | ||
287 | kvm_make_request(KVM_REQ_EVENT, vcpu); | ||
288 | |||
285 | if (!vcpu->arch.exception.pending) { | 289 | if (!vcpu->arch.exception.pending) { |
286 | queue: | 290 | queue: |
287 | vcpu->arch.exception.pending = true; | 291 | vcpu->arch.exception.pending = true; |
@@ -327,16 +331,28 @@ void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) | |||
327 | } | 331 | } |
328 | EXPORT_SYMBOL_GPL(kvm_requeue_exception); | 332 | EXPORT_SYMBOL_GPL(kvm_requeue_exception); |
329 | 333 | ||
330 | void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr, | 334 | void kvm_inject_page_fault(struct kvm_vcpu *vcpu) |
331 | u32 error_code) | ||
332 | { | 335 | { |
336 | unsigned error_code = vcpu->arch.fault.error_code; | ||
337 | |||
333 | ++vcpu->stat.pf_guest; | 338 | ++vcpu->stat.pf_guest; |
334 | vcpu->arch.cr2 = addr; | 339 | vcpu->arch.cr2 = vcpu->arch.fault.address; |
335 | kvm_queue_exception_e(vcpu, PF_VECTOR, error_code); | 340 | kvm_queue_exception_e(vcpu, PF_VECTOR, error_code); |
336 | } | 341 | } |
337 | 342 | ||
343 | void kvm_propagate_fault(struct kvm_vcpu *vcpu) | ||
344 | { | ||
345 | if (mmu_is_nested(vcpu) && !vcpu->arch.fault.nested) | ||
346 | vcpu->arch.nested_mmu.inject_page_fault(vcpu); | ||
347 | else | ||
348 | vcpu->arch.mmu.inject_page_fault(vcpu); | ||
349 | |||
350 | vcpu->arch.fault.nested = false; | ||
351 | } | ||
352 | |||
338 | void kvm_inject_nmi(struct kvm_vcpu *vcpu) | 353 | void kvm_inject_nmi(struct kvm_vcpu *vcpu) |
339 | { | 354 | { |
355 | kvm_make_request(KVM_REQ_EVENT, vcpu); | ||
340 | vcpu->arch.nmi_pending = 1; | 356 | vcpu->arch.nmi_pending = 1; |
341 | } | 357 | } |
342 | EXPORT_SYMBOL_GPL(kvm_inject_nmi); | 358 | EXPORT_SYMBOL_GPL(kvm_inject_nmi); |
@@ -367,18 +383,49 @@ bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) | |||
367 | EXPORT_SYMBOL_GPL(kvm_require_cpl); | 383 | EXPORT_SYMBOL_GPL(kvm_require_cpl); |
368 | 384 | ||
369 | /* | 385 | /* |
386 | * This function will be used to read from the physical memory of the currently | ||
387 | * running guest. The difference to kvm_read_guest_page is that this function | ||
388 | * can read from guest physical or from the guest's guest physical memory. | ||
389 | */ | ||
390 | int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, | ||
391 | gfn_t ngfn, void *data, int offset, int len, | ||
392 | u32 access) | ||
393 | { | ||
394 | gfn_t real_gfn; | ||
395 | gpa_t ngpa; | ||
396 | |||
397 | ngpa = gfn_to_gpa(ngfn); | ||
398 | real_gfn = mmu->translate_gpa(vcpu, ngpa, access); | ||
399 | if (real_gfn == UNMAPPED_GVA) | ||
400 | return -EFAULT; | ||
401 | |||
402 | real_gfn = gpa_to_gfn(real_gfn); | ||
403 | |||
404 | return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); | ||
405 | } | ||
406 | EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); | ||
407 | |||
408 | int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, | ||
409 | void *data, int offset, int len, u32 access) | ||
410 | { | ||
411 | return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, | ||
412 | data, offset, len, access); | ||
413 | } | ||
414 | |||
415 | /* | ||
370 | * Load the pae pdptrs. Return true is they are all valid. | 416 | * Load the pae pdptrs. Return true is they are all valid. |
371 | */ | 417 | */ |
372 | int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) | 418 | int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) |
373 | { | 419 | { |
374 | gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; | 420 | gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; |
375 | unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; | 421 | unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; |
376 | int i; | 422 | int i; |
377 | int ret; | 423 | int ret; |
378 | u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)]; | 424 | u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; |
379 | 425 | ||
380 | ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte, | 426 | ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, |
381 | offset * sizeof(u64), sizeof(pdpte)); | 427 | offset * sizeof(u64), sizeof(pdpte), |
428 | PFERR_USER_MASK|PFERR_WRITE_MASK); | ||
382 | if (ret < 0) { | 429 | if (ret < 0) { |
383 | ret = 0; | 430 | ret = 0; |
384 | goto out; | 431 | goto out; |
@@ -392,7 +439,7 @@ int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) | |||
392 | } | 439 | } |
393 | ret = 1; | 440 | ret = 1; |
394 | 441 | ||
395 | memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs)); | 442 | memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); |
396 | __set_bit(VCPU_EXREG_PDPTR, | 443 | __set_bit(VCPU_EXREG_PDPTR, |
397 | (unsigned long *)&vcpu->arch.regs_avail); | 444 | (unsigned long *)&vcpu->arch.regs_avail); |
398 | __set_bit(VCPU_EXREG_PDPTR, | 445 | __set_bit(VCPU_EXREG_PDPTR, |
@@ -405,8 +452,10 @@ EXPORT_SYMBOL_GPL(load_pdptrs); | |||
405 | 452 | ||
406 | static bool pdptrs_changed(struct kvm_vcpu *vcpu) | 453 | static bool pdptrs_changed(struct kvm_vcpu *vcpu) |
407 | { | 454 | { |
408 | u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)]; | 455 | u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; |
409 | bool changed = true; | 456 | bool changed = true; |
457 | int offset; | ||
458 | gfn_t gfn; | ||
410 | int r; | 459 | int r; |
411 | 460 | ||
412 | if (is_long_mode(vcpu) || !is_pae(vcpu)) | 461 | if (is_long_mode(vcpu) || !is_pae(vcpu)) |
@@ -416,10 +465,13 @@ static bool pdptrs_changed(struct kvm_vcpu *vcpu) | |||
416 | (unsigned long *)&vcpu->arch.regs_avail)) | 465 | (unsigned long *)&vcpu->arch.regs_avail)) |
417 | return true; | 466 | return true; |
418 | 467 | ||
419 | r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte)); | 468 | gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT; |
469 | offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1); | ||
470 | r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), | ||
471 | PFERR_USER_MASK | PFERR_WRITE_MASK); | ||
420 | if (r < 0) | 472 | if (r < 0) |
421 | goto out; | 473 | goto out; |
422 | changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0; | 474 | changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; |
423 | out: | 475 | out: |
424 | 476 | ||
425 | return changed; | 477 | return changed; |
@@ -458,7 +510,8 @@ int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) | |||
458 | return 1; | 510 | return 1; |
459 | } else | 511 | } else |
460 | #endif | 512 | #endif |
461 | if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) | 513 | if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, |
514 | vcpu->arch.cr3)) | ||
462 | return 1; | 515 | return 1; |
463 | } | 516 | } |
464 | 517 | ||
@@ -547,7 +600,7 @@ int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) | |||
547 | return 1; | 600 | return 1; |
548 | } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) | 601 | } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) |
549 | && ((cr4 ^ old_cr4) & pdptr_bits) | 602 | && ((cr4 ^ old_cr4) & pdptr_bits) |
550 | && !load_pdptrs(vcpu, vcpu->arch.cr3)) | 603 | && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3)) |
551 | return 1; | 604 | return 1; |
552 | 605 | ||
553 | if (cr4 & X86_CR4_VMXE) | 606 | if (cr4 & X86_CR4_VMXE) |
@@ -580,7 +633,8 @@ int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) | |||
580 | if (is_pae(vcpu)) { | 633 | if (is_pae(vcpu)) { |
581 | if (cr3 & CR3_PAE_RESERVED_BITS) | 634 | if (cr3 & CR3_PAE_RESERVED_BITS) |
582 | return 1; | 635 | return 1; |
583 | if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) | 636 | if (is_paging(vcpu) && |
637 | !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) | ||
584 | return 1; | 638 | return 1; |
585 | } | 639 | } |
586 | /* | 640 | /* |
@@ -737,7 +791,7 @@ static u32 msrs_to_save[] = { | |||
737 | #ifdef CONFIG_X86_64 | 791 | #ifdef CONFIG_X86_64 |
738 | MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, | 792 | MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, |
739 | #endif | 793 | #endif |
740 | MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA | 794 | MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA |
741 | }; | 795 | }; |
742 | 796 | ||
743 | static unsigned num_msrs_to_save; | 797 | static unsigned num_msrs_to_save; |
@@ -838,7 +892,7 @@ static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) | |||
838 | 892 | ||
839 | /* | 893 | /* |
840 | * The guest calculates current wall clock time by adding | 894 | * The guest calculates current wall clock time by adding |
841 | * system time (updated by kvm_write_guest_time below) to the | 895 | * system time (updated by kvm_guest_time_update below) to the |
842 | * wall clock specified here. guest system time equals host | 896 | * wall clock specified here. guest system time equals host |
843 | * system time for us, thus we must fill in host boot time here. | 897 | * system time for us, thus we must fill in host boot time here. |
844 | */ | 898 | */ |
@@ -866,65 +920,229 @@ static uint32_t div_frac(uint32_t dividend, uint32_t divisor) | |||
866 | return quotient; | 920 | return quotient; |
867 | } | 921 | } |
868 | 922 | ||
869 | static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock) | 923 | static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, |
924 | s8 *pshift, u32 *pmultiplier) | ||
870 | { | 925 | { |
871 | uint64_t nsecs = 1000000000LL; | 926 | uint64_t scaled64; |
872 | int32_t shift = 0; | 927 | int32_t shift = 0; |
873 | uint64_t tps64; | 928 | uint64_t tps64; |
874 | uint32_t tps32; | 929 | uint32_t tps32; |
875 | 930 | ||
876 | tps64 = tsc_khz * 1000LL; | 931 | tps64 = base_khz * 1000LL; |
877 | while (tps64 > nsecs*2) { | 932 | scaled64 = scaled_khz * 1000LL; |
933 | while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { | ||
878 | tps64 >>= 1; | 934 | tps64 >>= 1; |
879 | shift--; | 935 | shift--; |
880 | } | 936 | } |
881 | 937 | ||
882 | tps32 = (uint32_t)tps64; | 938 | tps32 = (uint32_t)tps64; |
883 | while (tps32 <= (uint32_t)nsecs) { | 939 | while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { |
884 | tps32 <<= 1; | 940 | if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) |
941 | scaled64 >>= 1; | ||
942 | else | ||
943 | tps32 <<= 1; | ||
885 | shift++; | 944 | shift++; |
886 | } | 945 | } |
887 | 946 | ||
888 | hv_clock->tsc_shift = shift; | 947 | *pshift = shift; |
889 | hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32); | 948 | *pmultiplier = div_frac(scaled64, tps32); |
890 | 949 | ||
891 | pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n", | 950 | pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", |
892 | __func__, tsc_khz, hv_clock->tsc_shift, | 951 | __func__, base_khz, scaled_khz, shift, *pmultiplier); |
893 | hv_clock->tsc_to_system_mul); | 952 | } |
953 | |||
954 | static inline u64 get_kernel_ns(void) | ||
955 | { | ||
956 | struct timespec ts; | ||
957 | |||
958 | WARN_ON(preemptible()); | ||
959 | ktime_get_ts(&ts); | ||
960 | monotonic_to_bootbased(&ts); | ||
961 | return timespec_to_ns(&ts); | ||
894 | } | 962 | } |
895 | 963 | ||
896 | static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); | 964 | static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); |
965 | unsigned long max_tsc_khz; | ||
897 | 966 | ||
898 | static void kvm_write_guest_time(struct kvm_vcpu *v) | 967 | static inline int kvm_tsc_changes_freq(void) |
968 | { | ||
969 | int cpu = get_cpu(); | ||
970 | int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && | ||
971 | cpufreq_quick_get(cpu) != 0; | ||
972 | put_cpu(); | ||
973 | return ret; | ||
974 | } | ||
975 | |||
976 | static inline u64 nsec_to_cycles(u64 nsec) | ||
977 | { | ||
978 | u64 ret; | ||
979 | |||
980 | WARN_ON(preemptible()); | ||
981 | if (kvm_tsc_changes_freq()) | ||
982 | printk_once(KERN_WARNING | ||
983 | "kvm: unreliable cycle conversion on adjustable rate TSC\n"); | ||
984 | ret = nsec * __get_cpu_var(cpu_tsc_khz); | ||
985 | do_div(ret, USEC_PER_SEC); | ||
986 | return ret; | ||
987 | } | ||
988 | |||
989 | static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz) | ||
990 | { | ||
991 | /* Compute a scale to convert nanoseconds in TSC cycles */ | ||
992 | kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, | ||
993 | &kvm->arch.virtual_tsc_shift, | ||
994 | &kvm->arch.virtual_tsc_mult); | ||
995 | kvm->arch.virtual_tsc_khz = this_tsc_khz; | ||
996 | } | ||
997 | |||
998 | static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) | ||
999 | { | ||
1000 | u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec, | ||
1001 | vcpu->kvm->arch.virtual_tsc_mult, | ||
1002 | vcpu->kvm->arch.virtual_tsc_shift); | ||
1003 | tsc += vcpu->arch.last_tsc_write; | ||
1004 | return tsc; | ||
1005 | } | ||
1006 | |||
1007 | void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data) | ||
1008 | { | ||
1009 | struct kvm *kvm = vcpu->kvm; | ||
1010 | u64 offset, ns, elapsed; | ||
1011 | unsigned long flags; | ||
1012 | s64 sdiff; | ||
1013 | |||
1014 | spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); | ||
1015 | offset = data - native_read_tsc(); | ||
1016 | ns = get_kernel_ns(); | ||
1017 | elapsed = ns - kvm->arch.last_tsc_nsec; | ||
1018 | sdiff = data - kvm->arch.last_tsc_write; | ||
1019 | if (sdiff < 0) | ||
1020 | sdiff = -sdiff; | ||
1021 | |||
1022 | /* | ||
1023 | * Special case: close write to TSC within 5 seconds of | ||
1024 | * another CPU is interpreted as an attempt to synchronize | ||
1025 | * The 5 seconds is to accomodate host load / swapping as | ||
1026 | * well as any reset of TSC during the boot process. | ||
1027 | * | ||
1028 | * In that case, for a reliable TSC, we can match TSC offsets, | ||
1029 | * or make a best guest using elapsed value. | ||
1030 | */ | ||
1031 | if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) && | ||
1032 | elapsed < 5ULL * NSEC_PER_SEC) { | ||
1033 | if (!check_tsc_unstable()) { | ||
1034 | offset = kvm->arch.last_tsc_offset; | ||
1035 | pr_debug("kvm: matched tsc offset for %llu\n", data); | ||
1036 | } else { | ||
1037 | u64 delta = nsec_to_cycles(elapsed); | ||
1038 | offset += delta; | ||
1039 | pr_debug("kvm: adjusted tsc offset by %llu\n", delta); | ||
1040 | } | ||
1041 | ns = kvm->arch.last_tsc_nsec; | ||
1042 | } | ||
1043 | kvm->arch.last_tsc_nsec = ns; | ||
1044 | kvm->arch.last_tsc_write = data; | ||
1045 | kvm->arch.last_tsc_offset = offset; | ||
1046 | kvm_x86_ops->write_tsc_offset(vcpu, offset); | ||
1047 | spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); | ||
1048 | |||
1049 | /* Reset of TSC must disable overshoot protection below */ | ||
1050 | vcpu->arch.hv_clock.tsc_timestamp = 0; | ||
1051 | vcpu->arch.last_tsc_write = data; | ||
1052 | vcpu->arch.last_tsc_nsec = ns; | ||
1053 | } | ||
1054 | EXPORT_SYMBOL_GPL(kvm_write_tsc); | ||
1055 | |||
1056 | static int kvm_guest_time_update(struct kvm_vcpu *v) | ||
899 | { | 1057 | { |
900 | struct timespec ts; | ||
901 | unsigned long flags; | 1058 | unsigned long flags; |
902 | struct kvm_vcpu_arch *vcpu = &v->arch; | 1059 | struct kvm_vcpu_arch *vcpu = &v->arch; |
903 | void *shared_kaddr; | 1060 | void *shared_kaddr; |
904 | unsigned long this_tsc_khz; | 1061 | unsigned long this_tsc_khz; |
1062 | s64 kernel_ns, max_kernel_ns; | ||
1063 | u64 tsc_timestamp; | ||
905 | 1064 | ||
906 | if ((!vcpu->time_page)) | 1065 | /* Keep irq disabled to prevent changes to the clock */ |
907 | return; | 1066 | local_irq_save(flags); |
1067 | kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp); | ||
1068 | kernel_ns = get_kernel_ns(); | ||
1069 | this_tsc_khz = __get_cpu_var(cpu_tsc_khz); | ||
908 | 1070 | ||
909 | this_tsc_khz = get_cpu_var(cpu_tsc_khz); | 1071 | if (unlikely(this_tsc_khz == 0)) { |
910 | if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) { | 1072 | local_irq_restore(flags); |
911 | kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock); | 1073 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); |
912 | vcpu->hv_clock_tsc_khz = this_tsc_khz; | 1074 | return 1; |
1075 | } | ||
1076 | |||
1077 | /* | ||
1078 | * We may have to catch up the TSC to match elapsed wall clock | ||
1079 | * time for two reasons, even if kvmclock is used. | ||
1080 | * 1) CPU could have been running below the maximum TSC rate | ||
1081 | * 2) Broken TSC compensation resets the base at each VCPU | ||
1082 | * entry to avoid unknown leaps of TSC even when running | ||
1083 | * again on the same CPU. This may cause apparent elapsed | ||
1084 | * time to disappear, and the guest to stand still or run | ||
1085 | * very slowly. | ||
1086 | */ | ||
1087 | if (vcpu->tsc_catchup) { | ||
1088 | u64 tsc = compute_guest_tsc(v, kernel_ns); | ||
1089 | if (tsc > tsc_timestamp) { | ||
1090 | kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp); | ||
1091 | tsc_timestamp = tsc; | ||
1092 | } | ||
913 | } | 1093 | } |
914 | put_cpu_var(cpu_tsc_khz); | ||
915 | 1094 | ||
916 | /* Keep irq disabled to prevent changes to the clock */ | ||
917 | local_irq_save(flags); | ||
918 | kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp); | ||
919 | ktime_get_ts(&ts); | ||
920 | monotonic_to_bootbased(&ts); | ||
921 | local_irq_restore(flags); | 1095 | local_irq_restore(flags); |
922 | 1096 | ||
923 | /* With all the info we got, fill in the values */ | 1097 | if (!vcpu->time_page) |
1098 | return 0; | ||
924 | 1099 | ||
925 | vcpu->hv_clock.system_time = ts.tv_nsec + | 1100 | /* |
926 | (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset; | 1101 | * Time as measured by the TSC may go backwards when resetting the base |
1102 | * tsc_timestamp. The reason for this is that the TSC resolution is | ||
1103 | * higher than the resolution of the other clock scales. Thus, many | ||
1104 | * possible measurments of the TSC correspond to one measurement of any | ||
1105 | * other clock, and so a spread of values is possible. This is not a | ||
1106 | * problem for the computation of the nanosecond clock; with TSC rates | ||
1107 | * around 1GHZ, there can only be a few cycles which correspond to one | ||
1108 | * nanosecond value, and any path through this code will inevitably | ||
1109 | * take longer than that. However, with the kernel_ns value itself, | ||
1110 | * the precision may be much lower, down to HZ granularity. If the | ||
1111 | * first sampling of TSC against kernel_ns ends in the low part of the | ||
1112 | * range, and the second in the high end of the range, we can get: | ||
1113 | * | ||
1114 | * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new | ||
1115 | * | ||
1116 | * As the sampling errors potentially range in the thousands of cycles, | ||
1117 | * it is possible such a time value has already been observed by the | ||
1118 | * guest. To protect against this, we must compute the system time as | ||
1119 | * observed by the guest and ensure the new system time is greater. | ||
1120 | */ | ||
1121 | max_kernel_ns = 0; | ||
1122 | if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) { | ||
1123 | max_kernel_ns = vcpu->last_guest_tsc - | ||
1124 | vcpu->hv_clock.tsc_timestamp; | ||
1125 | max_kernel_ns = pvclock_scale_delta(max_kernel_ns, | ||
1126 | vcpu->hv_clock.tsc_to_system_mul, | ||
1127 | vcpu->hv_clock.tsc_shift); | ||
1128 | max_kernel_ns += vcpu->last_kernel_ns; | ||
1129 | } | ||
927 | 1130 | ||
1131 | if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { | ||
1132 | kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, | ||
1133 | &vcpu->hv_clock.tsc_shift, | ||
1134 | &vcpu->hv_clock.tsc_to_system_mul); | ||
1135 | vcpu->hw_tsc_khz = this_tsc_khz; | ||
1136 | } | ||
1137 | |||
1138 | if (max_kernel_ns > kernel_ns) | ||
1139 | kernel_ns = max_kernel_ns; | ||
1140 | |||
1141 | /* With all the info we got, fill in the values */ | ||
1142 | vcpu->hv_clock.tsc_timestamp = tsc_timestamp; | ||
1143 | vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; | ||
1144 | vcpu->last_kernel_ns = kernel_ns; | ||
1145 | vcpu->last_guest_tsc = tsc_timestamp; | ||
928 | vcpu->hv_clock.flags = 0; | 1146 | vcpu->hv_clock.flags = 0; |
929 | 1147 | ||
930 | /* | 1148 | /* |
@@ -942,16 +1160,7 @@ static void kvm_write_guest_time(struct kvm_vcpu *v) | |||
942 | kunmap_atomic(shared_kaddr, KM_USER0); | 1160 | kunmap_atomic(shared_kaddr, KM_USER0); |
943 | 1161 | ||
944 | mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); | 1162 | mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); |
945 | } | 1163 | return 0; |
946 | |||
947 | static int kvm_request_guest_time_update(struct kvm_vcpu *v) | ||
948 | { | ||
949 | struct kvm_vcpu_arch *vcpu = &v->arch; | ||
950 | |||
951 | if (!vcpu->time_page) | ||
952 | return 0; | ||
953 | kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v); | ||
954 | return 1; | ||
955 | } | 1164 | } |
956 | 1165 | ||
957 | static bool msr_mtrr_valid(unsigned msr) | 1166 | static bool msr_mtrr_valid(unsigned msr) |
@@ -1277,6 +1486,7 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) | |||
1277 | } | 1486 | } |
1278 | 1487 | ||
1279 | vcpu->arch.time = data; | 1488 | vcpu->arch.time = data; |
1489 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | ||
1280 | 1490 | ||
1281 | /* we verify if the enable bit is set... */ | 1491 | /* we verify if the enable bit is set... */ |
1282 | if (!(data & 1)) | 1492 | if (!(data & 1)) |
@@ -1292,8 +1502,6 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) | |||
1292 | kvm_release_page_clean(vcpu->arch.time_page); | 1502 | kvm_release_page_clean(vcpu->arch.time_page); |
1293 | vcpu->arch.time_page = NULL; | 1503 | vcpu->arch.time_page = NULL; |
1294 | } | 1504 | } |
1295 | |||
1296 | kvm_request_guest_time_update(vcpu); | ||
1297 | break; | 1505 | break; |
1298 | } | 1506 | } |
1299 | case MSR_IA32_MCG_CTL: | 1507 | case MSR_IA32_MCG_CTL: |
@@ -1330,6 +1538,16 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) | |||
1330 | pr_unimpl(vcpu, "unimplemented perfctr wrmsr: " | 1538 | pr_unimpl(vcpu, "unimplemented perfctr wrmsr: " |
1331 | "0x%x data 0x%llx\n", msr, data); | 1539 | "0x%x data 0x%llx\n", msr, data); |
1332 | break; | 1540 | break; |
1541 | case MSR_K7_CLK_CTL: | ||
1542 | /* | ||
1543 | * Ignore all writes to this no longer documented MSR. | ||
1544 | * Writes are only relevant for old K7 processors, | ||
1545 | * all pre-dating SVM, but a recommended workaround from | ||
1546 | * AMD for these chips. It is possible to speicify the | ||
1547 | * affected processor models on the command line, hence | ||
1548 | * the need to ignore the workaround. | ||
1549 | */ | ||
1550 | break; | ||
1333 | case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: | 1551 | case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
1334 | if (kvm_hv_msr_partition_wide(msr)) { | 1552 | if (kvm_hv_msr_partition_wide(msr)) { |
1335 | int r; | 1553 | int r; |
@@ -1522,6 +1740,20 @@ int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) | |||
1522 | case 0xcd: /* fsb frequency */ | 1740 | case 0xcd: /* fsb frequency */ |
1523 | data = 3; | 1741 | data = 3; |
1524 | break; | 1742 | break; |
1743 | /* | ||
1744 | * MSR_EBC_FREQUENCY_ID | ||
1745 | * Conservative value valid for even the basic CPU models. | ||
1746 | * Models 0,1: 000 in bits 23:21 indicating a bus speed of | ||
1747 | * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, | ||
1748 | * and 266MHz for model 3, or 4. Set Core Clock | ||
1749 | * Frequency to System Bus Frequency Ratio to 1 (bits | ||
1750 | * 31:24) even though these are only valid for CPU | ||
1751 | * models > 2, however guests may end up dividing or | ||
1752 | * multiplying by zero otherwise. | ||
1753 | */ | ||
1754 | case MSR_EBC_FREQUENCY_ID: | ||
1755 | data = 1 << 24; | ||
1756 | break; | ||
1525 | case MSR_IA32_APICBASE: | 1757 | case MSR_IA32_APICBASE: |
1526 | data = kvm_get_apic_base(vcpu); | 1758 | data = kvm_get_apic_base(vcpu); |
1527 | break; | 1759 | break; |
@@ -1555,6 +1787,18 @@ int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) | |||
1555 | case MSR_IA32_MCG_STATUS: | 1787 | case MSR_IA32_MCG_STATUS: |
1556 | case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: | 1788 | case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: |
1557 | return get_msr_mce(vcpu, msr, pdata); | 1789 | return get_msr_mce(vcpu, msr, pdata); |
1790 | case MSR_K7_CLK_CTL: | ||
1791 | /* | ||
1792 | * Provide expected ramp-up count for K7. All other | ||
1793 | * are set to zero, indicating minimum divisors for | ||
1794 | * every field. | ||
1795 | * | ||
1796 | * This prevents guest kernels on AMD host with CPU | ||
1797 | * type 6, model 8 and higher from exploding due to | ||
1798 | * the rdmsr failing. | ||
1799 | */ | ||
1800 | data = 0x20000000; | ||
1801 | break; | ||
1558 | case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: | 1802 | case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
1559 | if (kvm_hv_msr_partition_wide(msr)) { | 1803 | if (kvm_hv_msr_partition_wide(msr)) { |
1560 | int r; | 1804 | int r; |
@@ -1808,19 +2052,28 @@ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | |||
1808 | } | 2052 | } |
1809 | 2053 | ||
1810 | kvm_x86_ops->vcpu_load(vcpu, cpu); | 2054 | kvm_x86_ops->vcpu_load(vcpu, cpu); |
1811 | if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) { | 2055 | if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { |
1812 | unsigned long khz = cpufreq_quick_get(cpu); | 2056 | /* Make sure TSC doesn't go backwards */ |
1813 | if (!khz) | 2057 | s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : |
1814 | khz = tsc_khz; | 2058 | native_read_tsc() - vcpu->arch.last_host_tsc; |
1815 | per_cpu(cpu_tsc_khz, cpu) = khz; | 2059 | if (tsc_delta < 0) |
2060 | mark_tsc_unstable("KVM discovered backwards TSC"); | ||
2061 | if (check_tsc_unstable()) { | ||
2062 | kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta); | ||
2063 | vcpu->arch.tsc_catchup = 1; | ||
2064 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | ||
2065 | } | ||
2066 | if (vcpu->cpu != cpu) | ||
2067 | kvm_migrate_timers(vcpu); | ||
2068 | vcpu->cpu = cpu; | ||
1816 | } | 2069 | } |
1817 | kvm_request_guest_time_update(vcpu); | ||
1818 | } | 2070 | } |
1819 | 2071 | ||
1820 | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) | 2072 | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) |
1821 | { | 2073 | { |
1822 | kvm_x86_ops->vcpu_put(vcpu); | 2074 | kvm_x86_ops->vcpu_put(vcpu); |
1823 | kvm_put_guest_fpu(vcpu); | 2075 | kvm_put_guest_fpu(vcpu); |
2076 | vcpu->arch.last_host_tsc = native_read_tsc(); | ||
1824 | } | 2077 | } |
1825 | 2078 | ||
1826 | static int is_efer_nx(void) | 2079 | static int is_efer_nx(void) |
@@ -1995,7 +2248,7 @@ static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, | |||
1995 | F(F16C); | 2248 | F(F16C); |
1996 | /* cpuid 0x80000001.ecx */ | 2249 | /* cpuid 0x80000001.ecx */ |
1997 | const u32 kvm_supported_word6_x86_features = | 2250 | const u32 kvm_supported_word6_x86_features = |
1998 | F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ | | 2251 | F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ | |
1999 | F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) | | 2252 | F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) | |
2000 | F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) | | 2253 | F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) | |
2001 | 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM); | 2254 | 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM); |
@@ -2204,6 +2457,7 @@ static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, | |||
2204 | return -ENXIO; | 2457 | return -ENXIO; |
2205 | 2458 | ||
2206 | kvm_queue_interrupt(vcpu, irq->irq, false); | 2459 | kvm_queue_interrupt(vcpu, irq->irq, false); |
2460 | kvm_make_request(KVM_REQ_EVENT, vcpu); | ||
2207 | 2461 | ||
2208 | return 0; | 2462 | return 0; |
2209 | } | 2463 | } |
@@ -2357,6 +2611,8 @@ static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, | |||
2357 | if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR) | 2611 | if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR) |
2358 | vcpu->arch.sipi_vector = events->sipi_vector; | 2612 | vcpu->arch.sipi_vector = events->sipi_vector; |
2359 | 2613 | ||
2614 | kvm_make_request(KVM_REQ_EVENT, vcpu); | ||
2615 | |||
2360 | return 0; | 2616 | return 0; |
2361 | } | 2617 | } |
2362 | 2618 | ||
@@ -2760,7 +3016,7 @@ static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, | |||
2760 | 3016 | ||
2761 | static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) | 3017 | static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) |
2762 | { | 3018 | { |
2763 | return kvm->arch.n_alloc_mmu_pages; | 3019 | return kvm->arch.n_max_mmu_pages; |
2764 | } | 3020 | } |
2765 | 3021 | ||
2766 | static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) | 3022 | static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) |
@@ -2796,18 +3052,18 @@ static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) | |||
2796 | r = 0; | 3052 | r = 0; |
2797 | switch (chip->chip_id) { | 3053 | switch (chip->chip_id) { |
2798 | case KVM_IRQCHIP_PIC_MASTER: | 3054 | case KVM_IRQCHIP_PIC_MASTER: |
2799 | raw_spin_lock(&pic_irqchip(kvm)->lock); | 3055 | spin_lock(&pic_irqchip(kvm)->lock); |
2800 | memcpy(&pic_irqchip(kvm)->pics[0], | 3056 | memcpy(&pic_irqchip(kvm)->pics[0], |
2801 | &chip->chip.pic, | 3057 | &chip->chip.pic, |
2802 | sizeof(struct kvm_pic_state)); | 3058 | sizeof(struct kvm_pic_state)); |
2803 | raw_spin_unlock(&pic_irqchip(kvm)->lock); | 3059 | spin_unlock(&pic_irqchip(kvm)->lock); |
2804 | break; | 3060 | break; |
2805 | case KVM_IRQCHIP_PIC_SLAVE: | 3061 | case KVM_IRQCHIP_PIC_SLAVE: |
2806 | raw_spin_lock(&pic_irqchip(kvm)->lock); | 3062 | spin_lock(&pic_irqchip(kvm)->lock); |
2807 | memcpy(&pic_irqchip(kvm)->pics[1], | 3063 | memcpy(&pic_irqchip(kvm)->pics[1], |
2808 | &chip->chip.pic, | 3064 | &chip->chip.pic, |
2809 | sizeof(struct kvm_pic_state)); | 3065 | sizeof(struct kvm_pic_state)); |
2810 | raw_spin_unlock(&pic_irqchip(kvm)->lock); | 3066 | spin_unlock(&pic_irqchip(kvm)->lock); |
2811 | break; | 3067 | break; |
2812 | case KVM_IRQCHIP_IOAPIC: | 3068 | case KVM_IRQCHIP_IOAPIC: |
2813 | r = kvm_set_ioapic(kvm, &chip->chip.ioapic); | 3069 | r = kvm_set_ioapic(kvm, &chip->chip.ioapic); |
@@ -3201,7 +3457,6 @@ long kvm_arch_vm_ioctl(struct file *filp, | |||
3201 | break; | 3457 | break; |
3202 | } | 3458 | } |
3203 | case KVM_SET_CLOCK: { | 3459 | case KVM_SET_CLOCK: { |
3204 | struct timespec now; | ||
3205 | struct kvm_clock_data user_ns; | 3460 | struct kvm_clock_data user_ns; |
3206 | u64 now_ns; | 3461 | u64 now_ns; |
3207 | s64 delta; | 3462 | s64 delta; |
@@ -3215,20 +3470,21 @@ long kvm_arch_vm_ioctl(struct file *filp, | |||
3215 | goto out; | 3470 | goto out; |
3216 | 3471 | ||
3217 | r = 0; | 3472 | r = 0; |
3218 | ktime_get_ts(&now); | 3473 | local_irq_disable(); |
3219 | now_ns = timespec_to_ns(&now); | 3474 | now_ns = get_kernel_ns(); |
3220 | delta = user_ns.clock - now_ns; | 3475 | delta = user_ns.clock - now_ns; |
3476 | local_irq_enable(); | ||
3221 | kvm->arch.kvmclock_offset = delta; | 3477 | kvm->arch.kvmclock_offset = delta; |
3222 | break; | 3478 | break; |
3223 | } | 3479 | } |
3224 | case KVM_GET_CLOCK: { | 3480 | case KVM_GET_CLOCK: { |
3225 | struct timespec now; | ||
3226 | struct kvm_clock_data user_ns; | 3481 | struct kvm_clock_data user_ns; |
3227 | u64 now_ns; | 3482 | u64 now_ns; |
3228 | 3483 | ||
3229 | ktime_get_ts(&now); | 3484 | local_irq_disable(); |
3230 | now_ns = timespec_to_ns(&now); | 3485 | now_ns = get_kernel_ns(); |
3231 | user_ns.clock = kvm->arch.kvmclock_offset + now_ns; | 3486 | user_ns.clock = kvm->arch.kvmclock_offset + now_ns; |
3487 | local_irq_enable(); | ||
3232 | user_ns.flags = 0; | 3488 | user_ns.flags = 0; |
3233 | 3489 | ||
3234 | r = -EFAULT; | 3490 | r = -EFAULT; |
@@ -3292,30 +3548,51 @@ void kvm_get_segment(struct kvm_vcpu *vcpu, | |||
3292 | kvm_x86_ops->get_segment(vcpu, var, seg); | 3548 | kvm_x86_ops->get_segment(vcpu, var, seg); |
3293 | } | 3549 | } |
3294 | 3550 | ||
3551 | static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) | ||
3552 | { | ||
3553 | return gpa; | ||
3554 | } | ||
3555 | |||
3556 | static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) | ||
3557 | { | ||
3558 | gpa_t t_gpa; | ||
3559 | u32 error; | ||
3560 | |||
3561 | BUG_ON(!mmu_is_nested(vcpu)); | ||
3562 | |||
3563 | /* NPT walks are always user-walks */ | ||
3564 | access |= PFERR_USER_MASK; | ||
3565 | t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &error); | ||
3566 | if (t_gpa == UNMAPPED_GVA) | ||
3567 | vcpu->arch.fault.nested = true; | ||
3568 | |||
3569 | return t_gpa; | ||
3570 | } | ||
3571 | |||
3295 | gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error) | 3572 | gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error) |
3296 | { | 3573 | { |
3297 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | 3574 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
3298 | return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error); | 3575 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error); |
3299 | } | 3576 | } |
3300 | 3577 | ||
3301 | gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error) | 3578 | gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error) |
3302 | { | 3579 | { |
3303 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | 3580 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
3304 | access |= PFERR_FETCH_MASK; | 3581 | access |= PFERR_FETCH_MASK; |
3305 | return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error); | 3582 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error); |
3306 | } | 3583 | } |
3307 | 3584 | ||
3308 | gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error) | 3585 | gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error) |
3309 | { | 3586 | { |
3310 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | 3587 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
3311 | access |= PFERR_WRITE_MASK; | 3588 | access |= PFERR_WRITE_MASK; |
3312 | return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error); | 3589 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error); |
3313 | } | 3590 | } |
3314 | 3591 | ||
3315 | /* uses this to access any guest's mapped memory without checking CPL */ | 3592 | /* uses this to access any guest's mapped memory without checking CPL */ |
3316 | gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error) | 3593 | gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error) |
3317 | { | 3594 | { |
3318 | return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error); | 3595 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, error); |
3319 | } | 3596 | } |
3320 | 3597 | ||
3321 | static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, | 3598 | static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, |
@@ -3326,7 +3603,8 @@ static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, | |||
3326 | int r = X86EMUL_CONTINUE; | 3603 | int r = X86EMUL_CONTINUE; |
3327 | 3604 | ||
3328 | while (bytes) { | 3605 | while (bytes) { |
3329 | gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error); | 3606 | gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, |
3607 | error); | ||
3330 | unsigned offset = addr & (PAGE_SIZE-1); | 3608 | unsigned offset = addr & (PAGE_SIZE-1); |
3331 | unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); | 3609 | unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); |
3332 | int ret; | 3610 | int ret; |
@@ -3381,8 +3659,9 @@ static int kvm_write_guest_virt_system(gva_t addr, void *val, | |||
3381 | int r = X86EMUL_CONTINUE; | 3659 | int r = X86EMUL_CONTINUE; |
3382 | 3660 | ||
3383 | while (bytes) { | 3661 | while (bytes) { |
3384 | gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, | 3662 | gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, |
3385 | PFERR_WRITE_MASK, error); | 3663 | PFERR_WRITE_MASK, |
3664 | error); | ||
3386 | unsigned offset = addr & (PAGE_SIZE-1); | 3665 | unsigned offset = addr & (PAGE_SIZE-1); |
3387 | unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); | 3666 | unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); |
3388 | int ret; | 3667 | int ret; |
@@ -3624,7 +3903,7 @@ static int emulator_pio_in_emulated(int size, unsigned short port, void *val, | |||
3624 | if (vcpu->arch.pio.count) | 3903 | if (vcpu->arch.pio.count) |
3625 | goto data_avail; | 3904 | goto data_avail; |
3626 | 3905 | ||
3627 | trace_kvm_pio(1, port, size, 1); | 3906 | trace_kvm_pio(0, port, size, 1); |
3628 | 3907 | ||
3629 | vcpu->arch.pio.port = port; | 3908 | vcpu->arch.pio.port = port; |
3630 | vcpu->arch.pio.in = 1; | 3909 | vcpu->arch.pio.in = 1; |
@@ -3652,7 +3931,7 @@ static int emulator_pio_out_emulated(int size, unsigned short port, | |||
3652 | const void *val, unsigned int count, | 3931 | const void *val, unsigned int count, |
3653 | struct kvm_vcpu *vcpu) | 3932 | struct kvm_vcpu *vcpu) |
3654 | { | 3933 | { |
3655 | trace_kvm_pio(0, port, size, 1); | 3934 | trace_kvm_pio(1, port, size, 1); |
3656 | 3935 | ||
3657 | vcpu->arch.pio.port = port; | 3936 | vcpu->arch.pio.port = port; |
3658 | vcpu->arch.pio.in = 0; | 3937 | vcpu->arch.pio.in = 0; |
@@ -3791,6 +4070,11 @@ static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu) | |||
3791 | kvm_x86_ops->get_gdt(vcpu, dt); | 4070 | kvm_x86_ops->get_gdt(vcpu, dt); |
3792 | } | 4071 | } |
3793 | 4072 | ||
4073 | static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu) | ||
4074 | { | ||
4075 | kvm_x86_ops->get_idt(vcpu, dt); | ||
4076 | } | ||
4077 | |||
3794 | static unsigned long emulator_get_cached_segment_base(int seg, | 4078 | static unsigned long emulator_get_cached_segment_base(int seg, |
3795 | struct kvm_vcpu *vcpu) | 4079 | struct kvm_vcpu *vcpu) |
3796 | { | 4080 | { |
@@ -3884,6 +4168,7 @@ static struct x86_emulate_ops emulate_ops = { | |||
3884 | .set_segment_selector = emulator_set_segment_selector, | 4168 | .set_segment_selector = emulator_set_segment_selector, |
3885 | .get_cached_segment_base = emulator_get_cached_segment_base, | 4169 | .get_cached_segment_base = emulator_get_cached_segment_base, |
3886 | .get_gdt = emulator_get_gdt, | 4170 | .get_gdt = emulator_get_gdt, |
4171 | .get_idt = emulator_get_idt, | ||
3887 | .get_cr = emulator_get_cr, | 4172 | .get_cr = emulator_get_cr, |
3888 | .set_cr = emulator_set_cr, | 4173 | .set_cr = emulator_set_cr, |
3889 | .cpl = emulator_get_cpl, | 4174 | .cpl = emulator_get_cpl, |
@@ -3919,13 +4204,64 @@ static void inject_emulated_exception(struct kvm_vcpu *vcpu) | |||
3919 | { | 4204 | { |
3920 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; | 4205 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
3921 | if (ctxt->exception == PF_VECTOR) | 4206 | if (ctxt->exception == PF_VECTOR) |
3922 | kvm_inject_page_fault(vcpu, ctxt->cr2, ctxt->error_code); | 4207 | kvm_propagate_fault(vcpu); |
3923 | else if (ctxt->error_code_valid) | 4208 | else if (ctxt->error_code_valid) |
3924 | kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code); | 4209 | kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code); |
3925 | else | 4210 | else |
3926 | kvm_queue_exception(vcpu, ctxt->exception); | 4211 | kvm_queue_exception(vcpu, ctxt->exception); |
3927 | } | 4212 | } |
3928 | 4213 | ||
4214 | static void init_emulate_ctxt(struct kvm_vcpu *vcpu) | ||
4215 | { | ||
4216 | struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode; | ||
4217 | int cs_db, cs_l; | ||
4218 | |||
4219 | cache_all_regs(vcpu); | ||
4220 | |||
4221 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); | ||
4222 | |||
4223 | vcpu->arch.emulate_ctxt.vcpu = vcpu; | ||
4224 | vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu); | ||
4225 | vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu); | ||
4226 | vcpu->arch.emulate_ctxt.mode = | ||
4227 | (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : | ||
4228 | (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM) | ||
4229 | ? X86EMUL_MODE_VM86 : cs_l | ||
4230 | ? X86EMUL_MODE_PROT64 : cs_db | ||
4231 | ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; | ||
4232 | memset(c, 0, sizeof(struct decode_cache)); | ||
4233 | memcpy(c->regs, vcpu->arch.regs, sizeof c->regs); | ||
4234 | } | ||
4235 | |||
4236 | int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq) | ||
4237 | { | ||
4238 | struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode; | ||
4239 | int ret; | ||
4240 | |||
4241 | init_emulate_ctxt(vcpu); | ||
4242 | |||
4243 | vcpu->arch.emulate_ctxt.decode.op_bytes = 2; | ||
4244 | vcpu->arch.emulate_ctxt.decode.ad_bytes = 2; | ||
4245 | vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip; | ||
4246 | ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq); | ||
4247 | |||
4248 | if (ret != X86EMUL_CONTINUE) | ||
4249 | return EMULATE_FAIL; | ||
4250 | |||
4251 | vcpu->arch.emulate_ctxt.eip = c->eip; | ||
4252 | memcpy(vcpu->arch.regs, c->regs, sizeof c->regs); | ||
4253 | kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip); | ||
4254 | kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags); | ||
4255 | |||
4256 | if (irq == NMI_VECTOR) | ||
4257 | vcpu->arch.nmi_pending = false; | ||
4258 | else | ||
4259 | vcpu->arch.interrupt.pending = false; | ||
4260 | |||
4261 | return EMULATE_DONE; | ||
4262 | } | ||
4263 | EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); | ||
4264 | |||
3929 | static int handle_emulation_failure(struct kvm_vcpu *vcpu) | 4265 | static int handle_emulation_failure(struct kvm_vcpu *vcpu) |
3930 | { | 4266 | { |
3931 | ++vcpu->stat.insn_emulation_fail; | 4267 | ++vcpu->stat.insn_emulation_fail; |
@@ -3982,24 +4318,15 @@ int emulate_instruction(struct kvm_vcpu *vcpu, | |||
3982 | cache_all_regs(vcpu); | 4318 | cache_all_regs(vcpu); |
3983 | 4319 | ||
3984 | if (!(emulation_type & EMULTYPE_NO_DECODE)) { | 4320 | if (!(emulation_type & EMULTYPE_NO_DECODE)) { |
3985 | int cs_db, cs_l; | 4321 | init_emulate_ctxt(vcpu); |
3986 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); | ||
3987 | |||
3988 | vcpu->arch.emulate_ctxt.vcpu = vcpu; | ||
3989 | vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu); | ||
3990 | vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu); | ||
3991 | vcpu->arch.emulate_ctxt.mode = | ||
3992 | (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : | ||
3993 | (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM) | ||
3994 | ? X86EMUL_MODE_VM86 : cs_l | ||
3995 | ? X86EMUL_MODE_PROT64 : cs_db | ||
3996 | ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; | ||
3997 | memset(c, 0, sizeof(struct decode_cache)); | ||
3998 | memcpy(c->regs, vcpu->arch.regs, sizeof c->regs); | ||
3999 | vcpu->arch.emulate_ctxt.interruptibility = 0; | 4322 | vcpu->arch.emulate_ctxt.interruptibility = 0; |
4000 | vcpu->arch.emulate_ctxt.exception = -1; | 4323 | vcpu->arch.emulate_ctxt.exception = -1; |
4324 | vcpu->arch.emulate_ctxt.perm_ok = false; | ||
4325 | |||
4326 | r = x86_decode_insn(&vcpu->arch.emulate_ctxt); | ||
4327 | if (r == X86EMUL_PROPAGATE_FAULT) | ||
4328 | goto done; | ||
4001 | 4329 | ||
4002 | r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops); | ||
4003 | trace_kvm_emulate_insn_start(vcpu); | 4330 | trace_kvm_emulate_insn_start(vcpu); |
4004 | 4331 | ||
4005 | /* Only allow emulation of specific instructions on #UD | 4332 | /* Only allow emulation of specific instructions on #UD |
@@ -4049,41 +4376,39 @@ int emulate_instruction(struct kvm_vcpu *vcpu, | |||
4049 | memcpy(c->regs, vcpu->arch.regs, sizeof c->regs); | 4376 | memcpy(c->regs, vcpu->arch.regs, sizeof c->regs); |
4050 | 4377 | ||
4051 | restart: | 4378 | restart: |
4052 | r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops); | 4379 | r = x86_emulate_insn(&vcpu->arch.emulate_ctxt); |
4053 | 4380 | ||
4054 | if (r) { /* emulation failed */ | 4381 | if (r == EMULATION_FAILED) { |
4055 | if (reexecute_instruction(vcpu, cr2)) | 4382 | if (reexecute_instruction(vcpu, cr2)) |
4056 | return EMULATE_DONE; | 4383 | return EMULATE_DONE; |
4057 | 4384 | ||
4058 | return handle_emulation_failure(vcpu); | 4385 | return handle_emulation_failure(vcpu); |
4059 | } | 4386 | } |
4060 | 4387 | ||
4061 | toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility); | 4388 | done: |
4062 | kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags); | ||
4063 | memcpy(vcpu->arch.regs, c->regs, sizeof c->regs); | ||
4064 | kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip); | ||
4065 | |||
4066 | if (vcpu->arch.emulate_ctxt.exception >= 0) { | 4389 | if (vcpu->arch.emulate_ctxt.exception >= 0) { |
4067 | inject_emulated_exception(vcpu); | 4390 | inject_emulated_exception(vcpu); |
4068 | return EMULATE_DONE; | 4391 | r = EMULATE_DONE; |
4069 | } | 4392 | } else if (vcpu->arch.pio.count) { |
4070 | |||
4071 | if (vcpu->arch.pio.count) { | ||
4072 | if (!vcpu->arch.pio.in) | 4393 | if (!vcpu->arch.pio.in) |
4073 | vcpu->arch.pio.count = 0; | 4394 | vcpu->arch.pio.count = 0; |
4074 | return EMULATE_DO_MMIO; | 4395 | r = EMULATE_DO_MMIO; |
4075 | } | 4396 | } else if (vcpu->mmio_needed) { |
4076 | |||
4077 | if (vcpu->mmio_needed) { | ||
4078 | if (vcpu->mmio_is_write) | 4397 | if (vcpu->mmio_is_write) |
4079 | vcpu->mmio_needed = 0; | 4398 | vcpu->mmio_needed = 0; |
4080 | return EMULATE_DO_MMIO; | 4399 | r = EMULATE_DO_MMIO; |
4081 | } | 4400 | } else if (r == EMULATION_RESTART) |
4082 | |||
4083 | if (vcpu->arch.emulate_ctxt.restart) | ||
4084 | goto restart; | 4401 | goto restart; |
4402 | else | ||
4403 | r = EMULATE_DONE; | ||
4085 | 4404 | ||
4086 | return EMULATE_DONE; | 4405 | toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility); |
4406 | kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags); | ||
4407 | kvm_make_request(KVM_REQ_EVENT, vcpu); | ||
4408 | memcpy(vcpu->arch.regs, c->regs, sizeof c->regs); | ||
4409 | kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip); | ||
4410 | |||
4411 | return r; | ||
4087 | } | 4412 | } |
4088 | EXPORT_SYMBOL_GPL(emulate_instruction); | 4413 | EXPORT_SYMBOL_GPL(emulate_instruction); |
4089 | 4414 | ||
@@ -4097,9 +4422,23 @@ int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) | |||
4097 | } | 4422 | } |
4098 | EXPORT_SYMBOL_GPL(kvm_fast_pio_out); | 4423 | EXPORT_SYMBOL_GPL(kvm_fast_pio_out); |
4099 | 4424 | ||
4100 | static void bounce_off(void *info) | 4425 | static void tsc_bad(void *info) |
4426 | { | ||
4427 | __get_cpu_var(cpu_tsc_khz) = 0; | ||
4428 | } | ||
4429 | |||
4430 | static void tsc_khz_changed(void *data) | ||
4101 | { | 4431 | { |
4102 | /* nothing */ | 4432 | struct cpufreq_freqs *freq = data; |
4433 | unsigned long khz = 0; | ||
4434 | |||
4435 | if (data) | ||
4436 | khz = freq->new; | ||
4437 | else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | ||
4438 | khz = cpufreq_quick_get(raw_smp_processor_id()); | ||
4439 | if (!khz) | ||
4440 | khz = tsc_khz; | ||
4441 | __get_cpu_var(cpu_tsc_khz) = khz; | ||
4103 | } | 4442 | } |
4104 | 4443 | ||
4105 | static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, | 4444 | static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
@@ -4110,21 +4449,60 @@ static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long va | |||
4110 | struct kvm_vcpu *vcpu; | 4449 | struct kvm_vcpu *vcpu; |
4111 | int i, send_ipi = 0; | 4450 | int i, send_ipi = 0; |
4112 | 4451 | ||
4452 | /* | ||
4453 | * We allow guests to temporarily run on slowing clocks, | ||
4454 | * provided we notify them after, or to run on accelerating | ||
4455 | * clocks, provided we notify them before. Thus time never | ||
4456 | * goes backwards. | ||
4457 | * | ||
4458 | * However, we have a problem. We can't atomically update | ||
4459 | * the frequency of a given CPU from this function; it is | ||
4460 | * merely a notifier, which can be called from any CPU. | ||
4461 | * Changing the TSC frequency at arbitrary points in time | ||
4462 | * requires a recomputation of local variables related to | ||
4463 | * the TSC for each VCPU. We must flag these local variables | ||
4464 | * to be updated and be sure the update takes place with the | ||
4465 | * new frequency before any guests proceed. | ||
4466 | * | ||
4467 | * Unfortunately, the combination of hotplug CPU and frequency | ||
4468 | * change creates an intractable locking scenario; the order | ||
4469 | * of when these callouts happen is undefined with respect to | ||
4470 | * CPU hotplug, and they can race with each other. As such, | ||
4471 | * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is | ||
4472 | * undefined; you can actually have a CPU frequency change take | ||
4473 | * place in between the computation of X and the setting of the | ||
4474 | * variable. To protect against this problem, all updates of | ||
4475 | * the per_cpu tsc_khz variable are done in an interrupt | ||
4476 | * protected IPI, and all callers wishing to update the value | ||
4477 | * must wait for a synchronous IPI to complete (which is trivial | ||
4478 | * if the caller is on the CPU already). This establishes the | ||
4479 | * necessary total order on variable updates. | ||
4480 | * | ||
4481 | * Note that because a guest time update may take place | ||
4482 | * anytime after the setting of the VCPU's request bit, the | ||
4483 | * correct TSC value must be set before the request. However, | ||
4484 | * to ensure the update actually makes it to any guest which | ||
4485 | * starts running in hardware virtualization between the set | ||
4486 | * and the acquisition of the spinlock, we must also ping the | ||
4487 | * CPU after setting the request bit. | ||
4488 | * | ||
4489 | */ | ||
4490 | |||
4113 | if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) | 4491 | if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) |
4114 | return 0; | 4492 | return 0; |
4115 | if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) | 4493 | if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) |
4116 | return 0; | 4494 | return 0; |
4117 | per_cpu(cpu_tsc_khz, freq->cpu) = freq->new; | 4495 | |
4496 | smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); | ||
4118 | 4497 | ||
4119 | spin_lock(&kvm_lock); | 4498 | spin_lock(&kvm_lock); |
4120 | list_for_each_entry(kvm, &vm_list, vm_list) { | 4499 | list_for_each_entry(kvm, &vm_list, vm_list) { |
4121 | kvm_for_each_vcpu(i, vcpu, kvm) { | 4500 | kvm_for_each_vcpu(i, vcpu, kvm) { |
4122 | if (vcpu->cpu != freq->cpu) | 4501 | if (vcpu->cpu != freq->cpu) |
4123 | continue; | 4502 | continue; |
4124 | if (!kvm_request_guest_time_update(vcpu)) | 4503 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
4125 | continue; | ||
4126 | if (vcpu->cpu != smp_processor_id()) | 4504 | if (vcpu->cpu != smp_processor_id()) |
4127 | send_ipi++; | 4505 | send_ipi = 1; |
4128 | } | 4506 | } |
4129 | } | 4507 | } |
4130 | spin_unlock(&kvm_lock); | 4508 | spin_unlock(&kvm_lock); |
@@ -4142,32 +4520,57 @@ static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long va | |||
4142 | * guest context is entered kvmclock will be updated, | 4520 | * guest context is entered kvmclock will be updated, |
4143 | * so the guest will not see stale values. | 4521 | * so the guest will not see stale values. |
4144 | */ | 4522 | */ |
4145 | smp_call_function_single(freq->cpu, bounce_off, NULL, 1); | 4523 | smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); |
4146 | } | 4524 | } |
4147 | return 0; | 4525 | return 0; |
4148 | } | 4526 | } |
4149 | 4527 | ||
4150 | static struct notifier_block kvmclock_cpufreq_notifier_block = { | 4528 | static struct notifier_block kvmclock_cpufreq_notifier_block = { |
4151 | .notifier_call = kvmclock_cpufreq_notifier | 4529 | .notifier_call = kvmclock_cpufreq_notifier |
4530 | }; | ||
4531 | |||
4532 | static int kvmclock_cpu_notifier(struct notifier_block *nfb, | ||
4533 | unsigned long action, void *hcpu) | ||
4534 | { | ||
4535 | unsigned int cpu = (unsigned long)hcpu; | ||
4536 | |||
4537 | switch (action) { | ||
4538 | case CPU_ONLINE: | ||
4539 | case CPU_DOWN_FAILED: | ||
4540 | smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); | ||
4541 | break; | ||
4542 | case CPU_DOWN_PREPARE: | ||
4543 | smp_call_function_single(cpu, tsc_bad, NULL, 1); | ||
4544 | break; | ||
4545 | } | ||
4546 | return NOTIFY_OK; | ||
4547 | } | ||
4548 | |||
4549 | static struct notifier_block kvmclock_cpu_notifier_block = { | ||
4550 | .notifier_call = kvmclock_cpu_notifier, | ||
4551 | .priority = -INT_MAX | ||
4152 | }; | 4552 | }; |
4153 | 4553 | ||
4154 | static void kvm_timer_init(void) | 4554 | static void kvm_timer_init(void) |
4155 | { | 4555 | { |
4156 | int cpu; | 4556 | int cpu; |
4157 | 4557 | ||
4558 | max_tsc_khz = tsc_khz; | ||
4559 | register_hotcpu_notifier(&kvmclock_cpu_notifier_block); | ||
4158 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { | 4560 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { |
4561 | #ifdef CONFIG_CPU_FREQ | ||
4562 | struct cpufreq_policy policy; | ||
4563 | memset(&policy, 0, sizeof(policy)); | ||
4564 | cpufreq_get_policy(&policy, get_cpu()); | ||
4565 | if (policy.cpuinfo.max_freq) | ||
4566 | max_tsc_khz = policy.cpuinfo.max_freq; | ||
4567 | #endif | ||
4159 | cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, | 4568 | cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, |
4160 | CPUFREQ_TRANSITION_NOTIFIER); | 4569 | CPUFREQ_TRANSITION_NOTIFIER); |
4161 | for_each_online_cpu(cpu) { | ||
4162 | unsigned long khz = cpufreq_get(cpu); | ||
4163 | if (!khz) | ||
4164 | khz = tsc_khz; | ||
4165 | per_cpu(cpu_tsc_khz, cpu) = khz; | ||
4166 | } | ||
4167 | } else { | ||
4168 | for_each_possible_cpu(cpu) | ||
4169 | per_cpu(cpu_tsc_khz, cpu) = tsc_khz; | ||
4170 | } | 4570 | } |
4571 | pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); | ||
4572 | for_each_online_cpu(cpu) | ||
4573 | smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); | ||
4171 | } | 4574 | } |
4172 | 4575 | ||
4173 | static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); | 4576 | static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); |
@@ -4269,6 +4672,7 @@ void kvm_arch_exit(void) | |||
4269 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | 4672 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
4270 | cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, | 4673 | cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, |
4271 | CPUFREQ_TRANSITION_NOTIFIER); | 4674 | CPUFREQ_TRANSITION_NOTIFIER); |
4675 | unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); | ||
4272 | kvm_x86_ops = NULL; | 4676 | kvm_x86_ops = NULL; |
4273 | kvm_mmu_module_exit(); | 4677 | kvm_mmu_module_exit(); |
4274 | } | 4678 | } |
@@ -4684,8 +5088,11 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) | |||
4684 | kvm_mmu_unload(vcpu); | 5088 | kvm_mmu_unload(vcpu); |
4685 | if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) | 5089 | if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) |
4686 | __kvm_migrate_timers(vcpu); | 5090 | __kvm_migrate_timers(vcpu); |
4687 | if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE, vcpu)) | 5091 | if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { |
4688 | kvm_write_guest_time(vcpu); | 5092 | r = kvm_guest_time_update(vcpu); |
5093 | if (unlikely(r)) | ||
5094 | goto out; | ||
5095 | } | ||
4689 | if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) | 5096 | if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) |
4690 | kvm_mmu_sync_roots(vcpu); | 5097 | kvm_mmu_sync_roots(vcpu); |
4691 | if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) | 5098 | if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) |
@@ -4710,6 +5117,21 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) | |||
4710 | if (unlikely(r)) | 5117 | if (unlikely(r)) |
4711 | goto out; | 5118 | goto out; |
4712 | 5119 | ||
5120 | if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { | ||
5121 | inject_pending_event(vcpu); | ||
5122 | |||
5123 | /* enable NMI/IRQ window open exits if needed */ | ||
5124 | if (vcpu->arch.nmi_pending) | ||
5125 | kvm_x86_ops->enable_nmi_window(vcpu); | ||
5126 | else if (kvm_cpu_has_interrupt(vcpu) || req_int_win) | ||
5127 | kvm_x86_ops->enable_irq_window(vcpu); | ||
5128 | |||
5129 | if (kvm_lapic_enabled(vcpu)) { | ||
5130 | update_cr8_intercept(vcpu); | ||
5131 | kvm_lapic_sync_to_vapic(vcpu); | ||
5132 | } | ||
5133 | } | ||
5134 | |||
4713 | preempt_disable(); | 5135 | preempt_disable(); |
4714 | 5136 | ||
4715 | kvm_x86_ops->prepare_guest_switch(vcpu); | 5137 | kvm_x86_ops->prepare_guest_switch(vcpu); |
@@ -4728,23 +5150,11 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) | |||
4728 | smp_wmb(); | 5150 | smp_wmb(); |
4729 | local_irq_enable(); | 5151 | local_irq_enable(); |
4730 | preempt_enable(); | 5152 | preempt_enable(); |
5153 | kvm_x86_ops->cancel_injection(vcpu); | ||
4731 | r = 1; | 5154 | r = 1; |
4732 | goto out; | 5155 | goto out; |
4733 | } | 5156 | } |
4734 | 5157 | ||
4735 | inject_pending_event(vcpu); | ||
4736 | |||
4737 | /* enable NMI/IRQ window open exits if needed */ | ||
4738 | if (vcpu->arch.nmi_pending) | ||
4739 | kvm_x86_ops->enable_nmi_window(vcpu); | ||
4740 | else if (kvm_cpu_has_interrupt(vcpu) || req_int_win) | ||
4741 | kvm_x86_ops->enable_irq_window(vcpu); | ||
4742 | |||
4743 | if (kvm_lapic_enabled(vcpu)) { | ||
4744 | update_cr8_intercept(vcpu); | ||
4745 | kvm_lapic_sync_to_vapic(vcpu); | ||
4746 | } | ||
4747 | |||
4748 | srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); | 5158 | srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); |
4749 | 5159 | ||
4750 | kvm_guest_enter(); | 5160 | kvm_guest_enter(); |
@@ -4770,6 +5180,8 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) | |||
4770 | if (hw_breakpoint_active()) | 5180 | if (hw_breakpoint_active()) |
4771 | hw_breakpoint_restore(); | 5181 | hw_breakpoint_restore(); |
4772 | 5182 | ||
5183 | kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc); | ||
5184 | |||
4773 | atomic_set(&vcpu->guest_mode, 0); | 5185 | atomic_set(&vcpu->guest_mode, 0); |
4774 | smp_wmb(); | 5186 | smp_wmb(); |
4775 | local_irq_enable(); | 5187 | local_irq_enable(); |
@@ -4899,8 +5311,7 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | |||
4899 | if (!irqchip_in_kernel(vcpu->kvm)) | 5311 | if (!irqchip_in_kernel(vcpu->kvm)) |
4900 | kvm_set_cr8(vcpu, kvm_run->cr8); | 5312 | kvm_set_cr8(vcpu, kvm_run->cr8); |
4901 | 5313 | ||
4902 | if (vcpu->arch.pio.count || vcpu->mmio_needed || | 5314 | if (vcpu->arch.pio.count || vcpu->mmio_needed) { |
4903 | vcpu->arch.emulate_ctxt.restart) { | ||
4904 | if (vcpu->mmio_needed) { | 5315 | if (vcpu->mmio_needed) { |
4905 | memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8); | 5316 | memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8); |
4906 | vcpu->mmio_read_completed = 1; | 5317 | vcpu->mmio_read_completed = 1; |
@@ -4981,6 +5392,8 @@ int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | |||
4981 | 5392 | ||
4982 | vcpu->arch.exception.pending = false; | 5393 | vcpu->arch.exception.pending = false; |
4983 | 5394 | ||
5395 | kvm_make_request(KVM_REQ_EVENT, vcpu); | ||
5396 | |||
4984 | return 0; | 5397 | return 0; |
4985 | } | 5398 | } |
4986 | 5399 | ||
@@ -5044,6 +5457,7 @@ int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, | |||
5044 | struct kvm_mp_state *mp_state) | 5457 | struct kvm_mp_state *mp_state) |
5045 | { | 5458 | { |
5046 | vcpu->arch.mp_state = mp_state->mp_state; | 5459 | vcpu->arch.mp_state = mp_state->mp_state; |
5460 | kvm_make_request(KVM_REQ_EVENT, vcpu); | ||
5047 | return 0; | 5461 | return 0; |
5048 | } | 5462 | } |
5049 | 5463 | ||
@@ -5051,24 +5465,11 @@ int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason, | |||
5051 | bool has_error_code, u32 error_code) | 5465 | bool has_error_code, u32 error_code) |
5052 | { | 5466 | { |
5053 | struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode; | 5467 | struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode; |
5054 | int cs_db, cs_l, ret; | 5468 | int ret; |
5055 | cache_all_regs(vcpu); | ||
5056 | |||
5057 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); | ||
5058 | 5469 | ||
5059 | vcpu->arch.emulate_ctxt.vcpu = vcpu; | 5470 | init_emulate_ctxt(vcpu); |
5060 | vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu); | ||
5061 | vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu); | ||
5062 | vcpu->arch.emulate_ctxt.mode = | ||
5063 | (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : | ||
5064 | (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM) | ||
5065 | ? X86EMUL_MODE_VM86 : cs_l | ||
5066 | ? X86EMUL_MODE_PROT64 : cs_db | ||
5067 | ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; | ||
5068 | memset(c, 0, sizeof(struct decode_cache)); | ||
5069 | memcpy(c->regs, vcpu->arch.regs, sizeof c->regs); | ||
5070 | 5471 | ||
5071 | ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, &emulate_ops, | 5472 | ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, |
5072 | tss_selector, reason, has_error_code, | 5473 | tss_selector, reason, has_error_code, |
5073 | error_code); | 5474 | error_code); |
5074 | 5475 | ||
@@ -5078,6 +5479,7 @@ int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason, | |||
5078 | memcpy(vcpu->arch.regs, c->regs, sizeof c->regs); | 5479 | memcpy(vcpu->arch.regs, c->regs, sizeof c->regs); |
5079 | kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip); | 5480 | kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip); |
5080 | kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags); | 5481 | kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags); |
5482 | kvm_make_request(KVM_REQ_EVENT, vcpu); | ||
5081 | return EMULATE_DONE; | 5483 | return EMULATE_DONE; |
5082 | } | 5484 | } |
5083 | EXPORT_SYMBOL_GPL(kvm_task_switch); | 5485 | EXPORT_SYMBOL_GPL(kvm_task_switch); |
@@ -5113,7 +5515,7 @@ int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, | |||
5113 | mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; | 5515 | mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; |
5114 | kvm_x86_ops->set_cr4(vcpu, sregs->cr4); | 5516 | kvm_x86_ops->set_cr4(vcpu, sregs->cr4); |
5115 | if (!is_long_mode(vcpu) && is_pae(vcpu)) { | 5517 | if (!is_long_mode(vcpu) && is_pae(vcpu)) { |
5116 | load_pdptrs(vcpu, vcpu->arch.cr3); | 5518 | load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3); |
5117 | mmu_reset_needed = 1; | 5519 | mmu_reset_needed = 1; |
5118 | } | 5520 | } |
5119 | 5521 | ||
@@ -5148,6 +5550,8 @@ int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, | |||
5148 | !is_protmode(vcpu)) | 5550 | !is_protmode(vcpu)) |
5149 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; | 5551 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
5150 | 5552 | ||
5553 | kvm_make_request(KVM_REQ_EVENT, vcpu); | ||
5554 | |||
5151 | return 0; | 5555 | return 0; |
5152 | } | 5556 | } |
5153 | 5557 | ||
@@ -5334,6 +5738,10 @@ void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) | |||
5334 | struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, | 5738 | struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, |
5335 | unsigned int id) | 5739 | unsigned int id) |
5336 | { | 5740 | { |
5741 | if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) | ||
5742 | printk_once(KERN_WARNING | ||
5743 | "kvm: SMP vm created on host with unstable TSC; " | ||
5744 | "guest TSC will not be reliable\n"); | ||
5337 | return kvm_x86_ops->vcpu_create(kvm, id); | 5745 | return kvm_x86_ops->vcpu_create(kvm, id); |
5338 | } | 5746 | } |
5339 | 5747 | ||
@@ -5376,22 +5784,22 @@ int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu) | |||
5376 | vcpu->arch.dr6 = DR6_FIXED_1; | 5784 | vcpu->arch.dr6 = DR6_FIXED_1; |
5377 | vcpu->arch.dr7 = DR7_FIXED_1; | 5785 | vcpu->arch.dr7 = DR7_FIXED_1; |
5378 | 5786 | ||
5787 | kvm_make_request(KVM_REQ_EVENT, vcpu); | ||
5788 | |||
5379 | return kvm_x86_ops->vcpu_reset(vcpu); | 5789 | return kvm_x86_ops->vcpu_reset(vcpu); |
5380 | } | 5790 | } |
5381 | 5791 | ||
5382 | int kvm_arch_hardware_enable(void *garbage) | 5792 | int kvm_arch_hardware_enable(void *garbage) |
5383 | { | 5793 | { |
5384 | /* | 5794 | struct kvm *kvm; |
5385 | * Since this may be called from a hotplug notifcation, | 5795 | struct kvm_vcpu *vcpu; |
5386 | * we can't get the CPU frequency directly. | 5796 | int i; |
5387 | */ | ||
5388 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { | ||
5389 | int cpu = raw_smp_processor_id(); | ||
5390 | per_cpu(cpu_tsc_khz, cpu) = 0; | ||
5391 | } | ||
5392 | 5797 | ||
5393 | kvm_shared_msr_cpu_online(); | 5798 | kvm_shared_msr_cpu_online(); |
5394 | 5799 | list_for_each_entry(kvm, &vm_list, vm_list) | |
5800 | kvm_for_each_vcpu(i, vcpu, kvm) | ||
5801 | if (vcpu->cpu == smp_processor_id()) | ||
5802 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | ||
5395 | return kvm_x86_ops->hardware_enable(garbage); | 5803 | return kvm_x86_ops->hardware_enable(garbage); |
5396 | } | 5804 | } |
5397 | 5805 | ||
@@ -5425,7 +5833,11 @@ int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) | |||
5425 | BUG_ON(vcpu->kvm == NULL); | 5833 | BUG_ON(vcpu->kvm == NULL); |
5426 | kvm = vcpu->kvm; | 5834 | kvm = vcpu->kvm; |
5427 | 5835 | ||
5836 | vcpu->arch.emulate_ctxt.ops = &emulate_ops; | ||
5837 | vcpu->arch.walk_mmu = &vcpu->arch.mmu; | ||
5428 | vcpu->arch.mmu.root_hpa = INVALID_PAGE; | 5838 | vcpu->arch.mmu.root_hpa = INVALID_PAGE; |
5839 | vcpu->arch.mmu.translate_gpa = translate_gpa; | ||
5840 | vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; | ||
5429 | if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) | 5841 | if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) |
5430 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; | 5842 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
5431 | else | 5843 | else |
@@ -5438,6 +5850,9 @@ int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) | |||
5438 | } | 5850 | } |
5439 | vcpu->arch.pio_data = page_address(page); | 5851 | vcpu->arch.pio_data = page_address(page); |
5440 | 5852 | ||
5853 | if (!kvm->arch.virtual_tsc_khz) | ||
5854 | kvm_arch_set_tsc_khz(kvm, max_tsc_khz); | ||
5855 | |||
5441 | r = kvm_mmu_create(vcpu); | 5856 | r = kvm_mmu_create(vcpu); |
5442 | if (r < 0) | 5857 | if (r < 0) |
5443 | goto fail_free_pio_data; | 5858 | goto fail_free_pio_data; |
@@ -5497,7 +5912,7 @@ struct kvm *kvm_arch_create_vm(void) | |||
5497 | /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ | 5912 | /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ |
5498 | set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); | 5913 | set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); |
5499 | 5914 | ||
5500 | rdtscll(kvm->arch.vm_init_tsc); | 5915 | spin_lock_init(&kvm->arch.tsc_write_lock); |
5501 | 5916 | ||
5502 | return kvm; | 5917 | return kvm; |
5503 | } | 5918 | } |
@@ -5684,6 +6099,7 @@ void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) | |||
5684 | kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) | 6099 | kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) |
5685 | rflags |= X86_EFLAGS_TF; | 6100 | rflags |= X86_EFLAGS_TF; |
5686 | kvm_x86_ops->set_rflags(vcpu, rflags); | 6101 | kvm_x86_ops->set_rflags(vcpu, rflags); |
6102 | kvm_make_request(KVM_REQ_EVENT, vcpu); | ||
5687 | } | 6103 | } |
5688 | EXPORT_SYMBOL_GPL(kvm_set_rflags); | 6104 | EXPORT_SYMBOL_GPL(kvm_set_rflags); |
5689 | 6105 | ||
diff --git a/arch/x86/kvm/x86.h b/arch/x86/kvm/x86.h index b7a404722d2b..2cea414489f3 100644 --- a/arch/x86/kvm/x86.h +++ b/arch/x86/kvm/x86.h | |||
@@ -50,6 +50,11 @@ static inline int is_long_mode(struct kvm_vcpu *vcpu) | |||
50 | #endif | 50 | #endif |
51 | } | 51 | } |
52 | 52 | ||
53 | static inline bool mmu_is_nested(struct kvm_vcpu *vcpu) | ||
54 | { | ||
55 | return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu; | ||
56 | } | ||
57 | |||
53 | static inline int is_pae(struct kvm_vcpu *vcpu) | 58 | static inline int is_pae(struct kvm_vcpu *vcpu) |
54 | { | 59 | { |
55 | return kvm_read_cr4_bits(vcpu, X86_CR4_PAE); | 60 | return kvm_read_cr4_bits(vcpu, X86_CR4_PAE); |
@@ -67,5 +72,8 @@ static inline int is_paging(struct kvm_vcpu *vcpu) | |||
67 | 72 | ||
68 | void kvm_before_handle_nmi(struct kvm_vcpu *vcpu); | 73 | void kvm_before_handle_nmi(struct kvm_vcpu *vcpu); |
69 | void kvm_after_handle_nmi(struct kvm_vcpu *vcpu); | 74 | void kvm_after_handle_nmi(struct kvm_vcpu *vcpu); |
75 | int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq); | ||
76 | |||
77 | void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data); | ||
70 | 78 | ||
71 | #endif | 79 | #endif |
diff --git a/drivers/s390/kvm/kvm_virtio.c b/drivers/s390/kvm/kvm_virtio.c index 4e298bc8949d..5a46b8c5d68a 100644 --- a/drivers/s390/kvm/kvm_virtio.c +++ b/drivers/s390/kvm/kvm_virtio.c | |||
@@ -32,6 +32,7 @@ | |||
32 | * The pointer to our (page) of device descriptions. | 32 | * The pointer to our (page) of device descriptions. |
33 | */ | 33 | */ |
34 | static void *kvm_devices; | 34 | static void *kvm_devices; |
35 | struct work_struct hotplug_work; | ||
35 | 36 | ||
36 | struct kvm_device { | 37 | struct kvm_device { |
37 | struct virtio_device vdev; | 38 | struct virtio_device vdev; |
@@ -328,13 +329,54 @@ static void scan_devices(void) | |||
328 | } | 329 | } |
329 | 330 | ||
330 | /* | 331 | /* |
332 | * match for a kvm device with a specific desc pointer | ||
333 | */ | ||
334 | static int match_desc(struct device *dev, void *data) | ||
335 | { | ||
336 | if ((ulong)to_kvmdev(dev_to_virtio(dev))->desc == (ulong)data) | ||
337 | return 1; | ||
338 | |||
339 | return 0; | ||
340 | } | ||
341 | |||
342 | /* | ||
343 | * hotplug_device tries to find changes in the device page. | ||
344 | */ | ||
345 | static void hotplug_devices(struct work_struct *dummy) | ||
346 | { | ||
347 | unsigned int i; | ||
348 | struct kvm_device_desc *d; | ||
349 | struct device *dev; | ||
350 | |||
351 | for (i = 0; i < PAGE_SIZE; i += desc_size(d)) { | ||
352 | d = kvm_devices + i; | ||
353 | |||
354 | /* end of list */ | ||
355 | if (d->type == 0) | ||
356 | break; | ||
357 | |||
358 | /* device already exists */ | ||
359 | dev = device_find_child(kvm_root, d, match_desc); | ||
360 | if (dev) { | ||
361 | /* XXX check for hotplug remove */ | ||
362 | put_device(dev); | ||
363 | continue; | ||
364 | } | ||
365 | |||
366 | /* new device */ | ||
367 | printk(KERN_INFO "Adding new virtio device %p\n", d); | ||
368 | add_kvm_device(d, i); | ||
369 | } | ||
370 | } | ||
371 | |||
372 | /* | ||
331 | * we emulate the request_irq behaviour on top of s390 extints | 373 | * we emulate the request_irq behaviour on top of s390 extints |
332 | */ | 374 | */ |
333 | static void kvm_extint_handler(u16 code) | 375 | static void kvm_extint_handler(u16 code) |
334 | { | 376 | { |
335 | struct virtqueue *vq; | 377 | struct virtqueue *vq; |
336 | u16 subcode; | 378 | u16 subcode; |
337 | int config_changed; | 379 | u32 param; |
338 | 380 | ||
339 | subcode = S390_lowcore.cpu_addr; | 381 | subcode = S390_lowcore.cpu_addr; |
340 | if ((subcode & 0xff00) != VIRTIO_SUBCODE_64) | 382 | if ((subcode & 0xff00) != VIRTIO_SUBCODE_64) |
@@ -343,18 +385,28 @@ static void kvm_extint_handler(u16 code) | |||
343 | /* The LSB might be overloaded, we have to mask it */ | 385 | /* The LSB might be overloaded, we have to mask it */ |
344 | vq = (struct virtqueue *)(S390_lowcore.ext_params2 & ~1UL); | 386 | vq = (struct virtqueue *)(S390_lowcore.ext_params2 & ~1UL); |
345 | 387 | ||
346 | /* We use the LSB of extparam, to decide, if this interrupt is a config | 388 | /* We use ext_params to decide what this interrupt means */ |
347 | * change or a "standard" interrupt */ | 389 | param = S390_lowcore.ext_params & VIRTIO_PARAM_MASK; |
348 | config_changed = S390_lowcore.ext_params & 1; | ||
349 | 390 | ||
350 | if (config_changed) { | 391 | switch (param) { |
392 | case VIRTIO_PARAM_CONFIG_CHANGED: | ||
393 | { | ||
351 | struct virtio_driver *drv; | 394 | struct virtio_driver *drv; |
352 | drv = container_of(vq->vdev->dev.driver, | 395 | drv = container_of(vq->vdev->dev.driver, |
353 | struct virtio_driver, driver); | 396 | struct virtio_driver, driver); |
354 | if (drv->config_changed) | 397 | if (drv->config_changed) |
355 | drv->config_changed(vq->vdev); | 398 | drv->config_changed(vq->vdev); |
356 | } else | 399 | |
400 | break; | ||
401 | } | ||
402 | case VIRTIO_PARAM_DEV_ADD: | ||
403 | schedule_work(&hotplug_work); | ||
404 | break; | ||
405 | case VIRTIO_PARAM_VRING_INTERRUPT: | ||
406 | default: | ||
357 | vring_interrupt(0, vq); | 407 | vring_interrupt(0, vq); |
408 | break; | ||
409 | } | ||
358 | } | 410 | } |
359 | 411 | ||
360 | /* | 412 | /* |
@@ -383,6 +435,8 @@ static int __init kvm_devices_init(void) | |||
383 | 435 | ||
384 | kvm_devices = (void *) real_memory_size; | 436 | kvm_devices = (void *) real_memory_size; |
385 | 437 | ||
438 | INIT_WORK(&hotplug_work, hotplug_devices); | ||
439 | |||
386 | ctl_set_bit(0, 9); | 440 | ctl_set_bit(0, 9); |
387 | register_external_interrupt(0x2603, kvm_extint_handler); | 441 | register_external_interrupt(0x2603, kvm_extint_handler); |
388 | 442 | ||
diff --git a/include/linux/kvm.h b/include/linux/kvm.h index 636fc381c897..919ae53adc5c 100644 --- a/include/linux/kvm.h +++ b/include/linux/kvm.h | |||
@@ -414,6 +414,14 @@ struct kvm_enable_cap { | |||
414 | __u8 pad[64]; | 414 | __u8 pad[64]; |
415 | }; | 415 | }; |
416 | 416 | ||
417 | /* for KVM_PPC_GET_PVINFO */ | ||
418 | struct kvm_ppc_pvinfo { | ||
419 | /* out */ | ||
420 | __u32 flags; | ||
421 | __u32 hcall[4]; | ||
422 | __u8 pad[108]; | ||
423 | }; | ||
424 | |||
417 | #define KVMIO 0xAE | 425 | #define KVMIO 0xAE |
418 | 426 | ||
419 | /* | 427 | /* |
@@ -530,6 +538,8 @@ struct kvm_enable_cap { | |||
530 | #ifdef __KVM_HAVE_XCRS | 538 | #ifdef __KVM_HAVE_XCRS |
531 | #define KVM_CAP_XCRS 56 | 539 | #define KVM_CAP_XCRS 56 |
532 | #endif | 540 | #endif |
541 | #define KVM_CAP_PPC_GET_PVINFO 57 | ||
542 | #define KVM_CAP_PPC_IRQ_LEVEL 58 | ||
533 | 543 | ||
534 | #ifdef KVM_CAP_IRQ_ROUTING | 544 | #ifdef KVM_CAP_IRQ_ROUTING |
535 | 545 | ||
@@ -664,6 +674,8 @@ struct kvm_clock_data { | |||
664 | /* Available with KVM_CAP_PIT_STATE2 */ | 674 | /* Available with KVM_CAP_PIT_STATE2 */ |
665 | #define KVM_GET_PIT2 _IOR(KVMIO, 0x9f, struct kvm_pit_state2) | 675 | #define KVM_GET_PIT2 _IOR(KVMIO, 0x9f, struct kvm_pit_state2) |
666 | #define KVM_SET_PIT2 _IOW(KVMIO, 0xa0, struct kvm_pit_state2) | 676 | #define KVM_SET_PIT2 _IOW(KVMIO, 0xa0, struct kvm_pit_state2) |
677 | /* Available with KVM_CAP_PPC_GET_PVINFO */ | ||
678 | #define KVM_PPC_GET_PVINFO _IOW(KVMIO, 0xa1, struct kvm_ppc_pvinfo) | ||
667 | 679 | ||
668 | /* | 680 | /* |
669 | * ioctls for vcpu fds | 681 | * ioctls for vcpu fds |
diff --git a/include/linux/kvm_host.h b/include/linux/kvm_host.h index ac740b26eb10..a0557422715e 100644 --- a/include/linux/kvm_host.h +++ b/include/linux/kvm_host.h | |||
@@ -36,9 +36,10 @@ | |||
36 | #define KVM_REQ_PENDING_TIMER 5 | 36 | #define KVM_REQ_PENDING_TIMER 5 |
37 | #define KVM_REQ_UNHALT 6 | 37 | #define KVM_REQ_UNHALT 6 |
38 | #define KVM_REQ_MMU_SYNC 7 | 38 | #define KVM_REQ_MMU_SYNC 7 |
39 | #define KVM_REQ_KVMCLOCK_UPDATE 8 | 39 | #define KVM_REQ_CLOCK_UPDATE 8 |
40 | #define KVM_REQ_KICK 9 | 40 | #define KVM_REQ_KICK 9 |
41 | #define KVM_REQ_DEACTIVATE_FPU 10 | 41 | #define KVM_REQ_DEACTIVATE_FPU 10 |
42 | #define KVM_REQ_EVENT 11 | ||
42 | 43 | ||
43 | #define KVM_USERSPACE_IRQ_SOURCE_ID 0 | 44 | #define KVM_USERSPACE_IRQ_SOURCE_ID 0 |
44 | 45 | ||
@@ -289,6 +290,9 @@ void kvm_arch_commit_memory_region(struct kvm *kvm, | |||
289 | void kvm_disable_largepages(void); | 290 | void kvm_disable_largepages(void); |
290 | void kvm_arch_flush_shadow(struct kvm *kvm); | 291 | void kvm_arch_flush_shadow(struct kvm *kvm); |
291 | 292 | ||
293 | int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, | ||
294 | int nr_pages); | ||
295 | |||
292 | struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); | 296 | struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); |
293 | unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); | 297 | unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); |
294 | void kvm_release_page_clean(struct page *page); | 298 | void kvm_release_page_clean(struct page *page); |
@@ -296,6 +300,8 @@ void kvm_release_page_dirty(struct page *page); | |||
296 | void kvm_set_page_dirty(struct page *page); | 300 | void kvm_set_page_dirty(struct page *page); |
297 | void kvm_set_page_accessed(struct page *page); | 301 | void kvm_set_page_accessed(struct page *page); |
298 | 302 | ||
303 | pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr); | ||
304 | pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); | ||
299 | pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); | 305 | pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); |
300 | pfn_t gfn_to_pfn_memslot(struct kvm *kvm, | 306 | pfn_t gfn_to_pfn_memslot(struct kvm *kvm, |
301 | struct kvm_memory_slot *slot, gfn_t gfn); | 307 | struct kvm_memory_slot *slot, gfn_t gfn); |
@@ -477,8 +483,7 @@ int kvm_deassign_device(struct kvm *kvm, | |||
477 | struct kvm_assigned_dev_kernel *assigned_dev); | 483 | struct kvm_assigned_dev_kernel *assigned_dev); |
478 | #else /* CONFIG_IOMMU_API */ | 484 | #else /* CONFIG_IOMMU_API */ |
479 | static inline int kvm_iommu_map_pages(struct kvm *kvm, | 485 | static inline int kvm_iommu_map_pages(struct kvm *kvm, |
480 | gfn_t base_gfn, | 486 | struct kvm_memory_slot *slot) |
481 | unsigned long npages) | ||
482 | { | 487 | { |
483 | return 0; | 488 | return 0; |
484 | } | 489 | } |
@@ -518,11 +523,22 @@ static inline void kvm_guest_exit(void) | |||
518 | current->flags &= ~PF_VCPU; | 523 | current->flags &= ~PF_VCPU; |
519 | } | 524 | } |
520 | 525 | ||
526 | static inline unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, | ||
527 | gfn_t gfn) | ||
528 | { | ||
529 | return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; | ||
530 | } | ||
531 | |||
521 | static inline gpa_t gfn_to_gpa(gfn_t gfn) | 532 | static inline gpa_t gfn_to_gpa(gfn_t gfn) |
522 | { | 533 | { |
523 | return (gpa_t)gfn << PAGE_SHIFT; | 534 | return (gpa_t)gfn << PAGE_SHIFT; |
524 | } | 535 | } |
525 | 536 | ||
537 | static inline gfn_t gpa_to_gfn(gpa_t gpa) | ||
538 | { | ||
539 | return (gfn_t)(gpa >> PAGE_SHIFT); | ||
540 | } | ||
541 | |||
526 | static inline hpa_t pfn_to_hpa(pfn_t pfn) | 542 | static inline hpa_t pfn_to_hpa(pfn_t pfn) |
527 | { | 543 | { |
528 | return (hpa_t)pfn << PAGE_SHIFT; | 544 | return (hpa_t)pfn << PAGE_SHIFT; |
diff --git a/include/linux/kvm_para.h b/include/linux/kvm_para.h index d73109243fda..47a070b0520e 100644 --- a/include/linux/kvm_para.h +++ b/include/linux/kvm_para.h | |||
@@ -17,6 +17,8 @@ | |||
17 | 17 | ||
18 | #define KVM_HC_VAPIC_POLL_IRQ 1 | 18 | #define KVM_HC_VAPIC_POLL_IRQ 1 |
19 | #define KVM_HC_MMU_OP 2 | 19 | #define KVM_HC_MMU_OP 2 |
20 | #define KVM_HC_FEATURES 3 | ||
21 | #define KVM_HC_PPC_MAP_MAGIC_PAGE 4 | ||
20 | 22 | ||
21 | /* | 23 | /* |
22 | * hypercalls use architecture specific | 24 | * hypercalls use architecture specific |
@@ -24,11 +26,6 @@ | |||
24 | #include <asm/kvm_para.h> | 26 | #include <asm/kvm_para.h> |
25 | 27 | ||
26 | #ifdef __KERNEL__ | 28 | #ifdef __KERNEL__ |
27 | #ifdef CONFIG_KVM_GUEST | ||
28 | void __init kvm_guest_init(void); | ||
29 | #else | ||
30 | #define kvm_guest_init() do { } while (0) | ||
31 | #endif | ||
32 | 29 | ||
33 | static inline int kvm_para_has_feature(unsigned int feature) | 30 | static inline int kvm_para_has_feature(unsigned int feature) |
34 | { | 31 | { |
@@ -245,6 +245,19 @@ void arch_pick_mmap_layout(struct mm_struct *mm) | |||
245 | } | 245 | } |
246 | #endif | 246 | #endif |
247 | 247 | ||
248 | /* | ||
249 | * Like get_user_pages_fast() except its IRQ-safe in that it won't fall | ||
250 | * back to the regular GUP. | ||
251 | * If the architecture not support this fucntion, simply return with no | ||
252 | * page pinned | ||
253 | */ | ||
254 | int __attribute__((weak)) __get_user_pages_fast(unsigned long start, | ||
255 | int nr_pages, int write, struct page **pages) | ||
256 | { | ||
257 | return 0; | ||
258 | } | ||
259 | EXPORT_SYMBOL_GPL(__get_user_pages_fast); | ||
260 | |||
248 | /** | 261 | /** |
249 | * get_user_pages_fast() - pin user pages in memory | 262 | * get_user_pages_fast() - pin user pages in memory |
250 | * @start: starting user address | 263 | * @start: starting user address |
diff --git a/virt/kvm/irq_comm.c b/virt/kvm/irq_comm.c index 369e38010ad5..8edca9141b78 100644 --- a/virt/kvm/irq_comm.c +++ b/virt/kvm/irq_comm.c | |||
@@ -17,7 +17,7 @@ | |||
17 | * Authors: | 17 | * Authors: |
18 | * Yaozu (Eddie) Dong <Eddie.dong@intel.com> | 18 | * Yaozu (Eddie) Dong <Eddie.dong@intel.com> |
19 | * | 19 | * |
20 | * Copyright 2010 Red Hat, Inc. and/or its affilates. | 20 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
21 | */ | 21 | */ |
22 | 22 | ||
23 | #include <linux/kvm_host.h> | 23 | #include <linux/kvm_host.h> |
diff --git a/virt/kvm/kvm_main.c b/virt/kvm/kvm_main.c index 60e5e4612b0b..5225052aebc1 100644 --- a/virt/kvm/kvm_main.c +++ b/virt/kvm/kvm_main.c | |||
@@ -5,7 +5,7 @@ | |||
5 | * machines without emulation or binary translation. | 5 | * machines without emulation or binary translation. |
6 | * | 6 | * |
7 | * Copyright (C) 2006 Qumranet, Inc. | 7 | * Copyright (C) 2006 Qumranet, Inc. |
8 | * Copyright 2010 Red Hat, Inc. and/or its affilates. | 8 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
9 | * | 9 | * |
10 | * Authors: | 10 | * Authors: |
11 | * Avi Kivity <avi@qumranet.com> | 11 | * Avi Kivity <avi@qumranet.com> |
@@ -705,14 +705,12 @@ skip_lpage: | |||
705 | if (r) | 705 | if (r) |
706 | goto out_free; | 706 | goto out_free; |
707 | 707 | ||
708 | #ifdef CONFIG_DMAR | ||
709 | /* map the pages in iommu page table */ | 708 | /* map the pages in iommu page table */ |
710 | if (npages) { | 709 | if (npages) { |
711 | r = kvm_iommu_map_pages(kvm, &new); | 710 | r = kvm_iommu_map_pages(kvm, &new); |
712 | if (r) | 711 | if (r) |
713 | goto out_free; | 712 | goto out_free; |
714 | } | 713 | } |
715 | #endif | ||
716 | 714 | ||
717 | r = -ENOMEM; | 715 | r = -ENOMEM; |
718 | slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); | 716 | slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); |
@@ -927,35 +925,46 @@ int memslot_id(struct kvm *kvm, gfn_t gfn) | |||
927 | return memslot - slots->memslots; | 925 | return memslot - slots->memslots; |
928 | } | 926 | } |
929 | 927 | ||
930 | static unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) | 928 | static unsigned long gfn_to_hva_many(struct kvm *kvm, gfn_t gfn, |
931 | { | 929 | gfn_t *nr_pages) |
932 | return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; | ||
933 | } | ||
934 | |||
935 | unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) | ||
936 | { | 930 | { |
937 | struct kvm_memory_slot *slot; | 931 | struct kvm_memory_slot *slot; |
938 | 932 | ||
939 | slot = gfn_to_memslot(kvm, gfn); | 933 | slot = gfn_to_memslot(kvm, gfn); |
940 | if (!slot || slot->flags & KVM_MEMSLOT_INVALID) | 934 | if (!slot || slot->flags & KVM_MEMSLOT_INVALID) |
941 | return bad_hva(); | 935 | return bad_hva(); |
936 | |||
937 | if (nr_pages) | ||
938 | *nr_pages = slot->npages - (gfn - slot->base_gfn); | ||
939 | |||
942 | return gfn_to_hva_memslot(slot, gfn); | 940 | return gfn_to_hva_memslot(slot, gfn); |
943 | } | 941 | } |
942 | |||
943 | unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) | ||
944 | { | ||
945 | return gfn_to_hva_many(kvm, gfn, NULL); | ||
946 | } | ||
944 | EXPORT_SYMBOL_GPL(gfn_to_hva); | 947 | EXPORT_SYMBOL_GPL(gfn_to_hva); |
945 | 948 | ||
946 | static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr) | 949 | static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic) |
947 | { | 950 | { |
948 | struct page *page[1]; | 951 | struct page *page[1]; |
949 | int npages; | 952 | int npages; |
950 | pfn_t pfn; | 953 | pfn_t pfn; |
951 | 954 | ||
952 | might_sleep(); | 955 | if (atomic) |
953 | 956 | npages = __get_user_pages_fast(addr, 1, 1, page); | |
954 | npages = get_user_pages_fast(addr, 1, 1, page); | 957 | else { |
958 | might_sleep(); | ||
959 | npages = get_user_pages_fast(addr, 1, 1, page); | ||
960 | } | ||
955 | 961 | ||
956 | if (unlikely(npages != 1)) { | 962 | if (unlikely(npages != 1)) { |
957 | struct vm_area_struct *vma; | 963 | struct vm_area_struct *vma; |
958 | 964 | ||
965 | if (atomic) | ||
966 | goto return_fault_page; | ||
967 | |||
959 | down_read(¤t->mm->mmap_sem); | 968 | down_read(¤t->mm->mmap_sem); |
960 | if (is_hwpoison_address(addr)) { | 969 | if (is_hwpoison_address(addr)) { |
961 | up_read(¤t->mm->mmap_sem); | 970 | up_read(¤t->mm->mmap_sem); |
@@ -968,6 +977,7 @@ static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr) | |||
968 | if (vma == NULL || addr < vma->vm_start || | 977 | if (vma == NULL || addr < vma->vm_start || |
969 | !(vma->vm_flags & VM_PFNMAP)) { | 978 | !(vma->vm_flags & VM_PFNMAP)) { |
970 | up_read(¤t->mm->mmap_sem); | 979 | up_read(¤t->mm->mmap_sem); |
980 | return_fault_page: | ||
971 | get_page(fault_page); | 981 | get_page(fault_page); |
972 | return page_to_pfn(fault_page); | 982 | return page_to_pfn(fault_page); |
973 | } | 983 | } |
@@ -981,7 +991,13 @@ static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr) | |||
981 | return pfn; | 991 | return pfn; |
982 | } | 992 | } |
983 | 993 | ||
984 | pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) | 994 | pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr) |
995 | { | ||
996 | return hva_to_pfn(kvm, addr, true); | ||
997 | } | ||
998 | EXPORT_SYMBOL_GPL(hva_to_pfn_atomic); | ||
999 | |||
1000 | static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic) | ||
985 | { | 1001 | { |
986 | unsigned long addr; | 1002 | unsigned long addr; |
987 | 1003 | ||
@@ -991,7 +1007,18 @@ pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) | |||
991 | return page_to_pfn(bad_page); | 1007 | return page_to_pfn(bad_page); |
992 | } | 1008 | } |
993 | 1009 | ||
994 | return hva_to_pfn(kvm, addr); | 1010 | return hva_to_pfn(kvm, addr, atomic); |
1011 | } | ||
1012 | |||
1013 | pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) | ||
1014 | { | ||
1015 | return __gfn_to_pfn(kvm, gfn, true); | ||
1016 | } | ||
1017 | EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); | ||
1018 | |||
1019 | pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) | ||
1020 | { | ||
1021 | return __gfn_to_pfn(kvm, gfn, false); | ||
995 | } | 1022 | } |
996 | EXPORT_SYMBOL_GPL(gfn_to_pfn); | 1023 | EXPORT_SYMBOL_GPL(gfn_to_pfn); |
997 | 1024 | ||
@@ -999,9 +1026,26 @@ pfn_t gfn_to_pfn_memslot(struct kvm *kvm, | |||
999 | struct kvm_memory_slot *slot, gfn_t gfn) | 1026 | struct kvm_memory_slot *slot, gfn_t gfn) |
1000 | { | 1027 | { |
1001 | unsigned long addr = gfn_to_hva_memslot(slot, gfn); | 1028 | unsigned long addr = gfn_to_hva_memslot(slot, gfn); |
1002 | return hva_to_pfn(kvm, addr); | 1029 | return hva_to_pfn(kvm, addr, false); |
1003 | } | 1030 | } |
1004 | 1031 | ||
1032 | int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, | ||
1033 | int nr_pages) | ||
1034 | { | ||
1035 | unsigned long addr; | ||
1036 | gfn_t entry; | ||
1037 | |||
1038 | addr = gfn_to_hva_many(kvm, gfn, &entry); | ||
1039 | if (kvm_is_error_hva(addr)) | ||
1040 | return -1; | ||
1041 | |||
1042 | if (entry < nr_pages) | ||
1043 | return 0; | ||
1044 | |||
1045 | return __get_user_pages_fast(addr, nr_pages, 1, pages); | ||
1046 | } | ||
1047 | EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); | ||
1048 | |||
1005 | struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) | 1049 | struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) |
1006 | { | 1050 | { |
1007 | pfn_t pfn; | 1051 | pfn_t pfn; |
@@ -1964,7 +2008,9 @@ static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, | |||
1964 | case CPU_STARTING: | 2008 | case CPU_STARTING: |
1965 | printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", | 2009 | printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", |
1966 | cpu); | 2010 | cpu); |
2011 | spin_lock(&kvm_lock); | ||
1967 | hardware_enable(NULL); | 2012 | hardware_enable(NULL); |
2013 | spin_unlock(&kvm_lock); | ||
1968 | break; | 2014 | break; |
1969 | } | 2015 | } |
1970 | return NOTIFY_OK; | 2016 | return NOTIFY_OK; |
@@ -1977,7 +2023,7 @@ asmlinkage void kvm_handle_fault_on_reboot(void) | |||
1977 | /* spin while reset goes on */ | 2023 | /* spin while reset goes on */ |
1978 | local_irq_enable(); | 2024 | local_irq_enable(); |
1979 | while (true) | 2025 | while (true) |
1980 | ; | 2026 | cpu_relax(); |
1981 | } | 2027 | } |
1982 | /* Fault while not rebooting. We want the trace. */ | 2028 | /* Fault while not rebooting. We want the trace. */ |
1983 | BUG(); | 2029 | BUG(); |
@@ -2171,8 +2217,10 @@ static int kvm_suspend(struct sys_device *dev, pm_message_t state) | |||
2171 | 2217 | ||
2172 | static int kvm_resume(struct sys_device *dev) | 2218 | static int kvm_resume(struct sys_device *dev) |
2173 | { | 2219 | { |
2174 | if (kvm_usage_count) | 2220 | if (kvm_usage_count) { |
2221 | WARN_ON(spin_is_locked(&kvm_lock)); | ||
2175 | hardware_enable(NULL); | 2222 | hardware_enable(NULL); |
2223 | } | ||
2176 | return 0; | 2224 | return 0; |
2177 | } | 2225 | } |
2178 | 2226 | ||