diff options
| author | H. Peter Anvin <hpa@zytor.com> | 2010-03-03 16:38:48 -0500 |
|---|---|---|
| committer | H. Peter Anvin <hpa@zytor.com> | 2010-03-03 16:44:19 -0500 |
| commit | c7bbf52aa4fa332b84c4f2bb33e69561ee6870b4 (patch) | |
| tree | 5fe882bc5588c86a918934ba134e5ff13ae9cc90 | |
| parent | 3010673ef5f7bef4b4685566a0713de1b4306c93 (diff) | |
x86, mrst: Fix whitespace breakage in apb_timer.c
Checkin bb24c4716185f6e116c440462c65c1f56649183b:
"Moorestown APB system timer driver" suffered from severe whitespace
damage in arch/x86/kernel/apb_timer.c due to using Microsoft Lookout
to send a patch. Fix the whitespace breakage.
Reported-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
| -rw-r--r-- | arch/x86/kernel/apb_timer.c | 1068 |
1 files changed, 534 insertions, 534 deletions
diff --git a/arch/x86/kernel/apb_timer.c b/arch/x86/kernel/apb_timer.c index 6f27f8b75795..2afa27d01297 100644 --- a/arch/x86/kernel/apb_timer.c +++ b/arch/x86/kernel/apb_timer.c | |||
| @@ -43,11 +43,11 @@ | |||
| 43 | #include <asm/fixmap.h> | 43 | #include <asm/fixmap.h> |
| 44 | #include <asm/apb_timer.h> | 44 | #include <asm/apb_timer.h> |
| 45 | 45 | ||
| 46 | #define APBT_MASK CLOCKSOURCE_MASK(32) | 46 | #define APBT_MASK CLOCKSOURCE_MASK(32) |
| 47 | #define APBT_SHIFT 22 | 47 | #define APBT_SHIFT 22 |
| 48 | #define APBT_CLOCKEVENT_RATING 150 | 48 | #define APBT_CLOCKEVENT_RATING 150 |
| 49 | #define APBT_CLOCKSOURCE_RATING 250 | 49 | #define APBT_CLOCKSOURCE_RATING 250 |
| 50 | #define APBT_MIN_DELTA_USEC 200 | 50 | #define APBT_MIN_DELTA_USEC 200 |
| 51 | 51 | ||
| 52 | #define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt) | 52 | #define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt) |
| 53 | #define APBT_CLOCKEVENT0_NUM (0) | 53 | #define APBT_CLOCKEVENT0_NUM (0) |
| @@ -65,21 +65,21 @@ static int phy_cs_timer_id; | |||
| 65 | static uint64_t apbt_freq; | 65 | static uint64_t apbt_freq; |
| 66 | 66 | ||
| 67 | static void apbt_set_mode(enum clock_event_mode mode, | 67 | static void apbt_set_mode(enum clock_event_mode mode, |
| 68 | struct clock_event_device *evt); | 68 | struct clock_event_device *evt); |
| 69 | static int apbt_next_event(unsigned long delta, | 69 | static int apbt_next_event(unsigned long delta, |
| 70 | struct clock_event_device *evt); | 70 | struct clock_event_device *evt); |
| 71 | static cycle_t apbt_read_clocksource(struct clocksource *cs); | 71 | static cycle_t apbt_read_clocksource(struct clocksource *cs); |
| 72 | static void apbt_restart_clocksource(void); | 72 | static void apbt_restart_clocksource(void); |
| 73 | 73 | ||
| 74 | struct apbt_dev { | 74 | struct apbt_dev { |
| 75 | struct clock_event_device evt; | 75 | struct clock_event_device evt; |
| 76 | unsigned int num; | 76 | unsigned int num; |
| 77 | int cpu; | 77 | int cpu; |
| 78 | unsigned int irq; | 78 | unsigned int irq; |
| 79 | unsigned int tick; | 79 | unsigned int tick; |
| 80 | unsigned int count; | 80 | unsigned int count; |
| 81 | unsigned int flags; | 81 | unsigned int flags; |
| 82 | char name[10]; | 82 | char name[10]; |
| 83 | }; | 83 | }; |
| 84 | 84 | ||
| 85 | int disable_apbt_percpu __cpuinitdata; | 85 | int disable_apbt_percpu __cpuinitdata; |
| @@ -91,77 +91,77 @@ static unsigned int apbt_num_timers_used; | |||
| 91 | static struct apbt_dev *apbt_devs; | 91 | static struct apbt_dev *apbt_devs; |
| 92 | #endif | 92 | #endif |
| 93 | 93 | ||
| 94 | static inline unsigned long apbt_readl_reg(unsigned long a) | 94 | static inline unsigned long apbt_readl_reg(unsigned long a) |
| 95 | { | 95 | { |
| 96 | return readl(apbt_virt_address + a); | 96 | return readl(apbt_virt_address + a); |
| 97 | } | 97 | } |
| 98 | 98 | ||
| 99 | static inline void apbt_writel_reg(unsigned long d, unsigned long a) | 99 | static inline void apbt_writel_reg(unsigned long d, unsigned long a) |
| 100 | { | 100 | { |
| 101 | writel(d, apbt_virt_address + a); | 101 | writel(d, apbt_virt_address + a); |
| 102 | } | 102 | } |
| 103 | 103 | ||
| 104 | static inline unsigned long apbt_readl(int n, unsigned long a) | 104 | static inline unsigned long apbt_readl(int n, unsigned long a) |
| 105 | { | 105 | { |
| 106 | return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE); | 106 | return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE); |
| 107 | } | 107 | } |
| 108 | 108 | ||
| 109 | static inline void apbt_writel(int n, unsigned long d, unsigned long a) | 109 | static inline void apbt_writel(int n, unsigned long d, unsigned long a) |
| 110 | { | 110 | { |
| 111 | writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE); | 111 | writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE); |
| 112 | } | 112 | } |
| 113 | 113 | ||
| 114 | static inline void apbt_set_mapping(void) | 114 | static inline void apbt_set_mapping(void) |
| 115 | { | 115 | { |
| 116 | struct sfi_timer_table_entry *mtmr; | 116 | struct sfi_timer_table_entry *mtmr; |
| 117 | 117 | ||
| 118 | if (apbt_virt_address) { | 118 | if (apbt_virt_address) { |
| 119 | pr_debug("APBT base already mapped\n"); | 119 | pr_debug("APBT base already mapped\n"); |
| 120 | return; | 120 | return; |
| 121 | } | 121 | } |
| 122 | mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); | 122 | mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); |
| 123 | if (mtmr == NULL) { | 123 | if (mtmr == NULL) { |
| 124 | printk(KERN_ERR "Failed to get MTMR %d from SFI\n", | 124 | printk(KERN_ERR "Failed to get MTMR %d from SFI\n", |
| 125 | APBT_CLOCKEVENT0_NUM); | 125 | APBT_CLOCKEVENT0_NUM); |
| 126 | return; | 126 | return; |
| 127 | } | 127 | } |
| 128 | apbt_address = (unsigned long)mtmr->phys_addr; | 128 | apbt_address = (unsigned long)mtmr->phys_addr; |
| 129 | if (!apbt_address) { | 129 | if (!apbt_address) { |
| 130 | printk(KERN_WARNING "No timer base from SFI, use default\n"); | 130 | printk(KERN_WARNING "No timer base from SFI, use default\n"); |
| 131 | apbt_address = APBT_DEFAULT_BASE; | 131 | apbt_address = APBT_DEFAULT_BASE; |
| 132 | } | 132 | } |
| 133 | apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE); | 133 | apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE); |
| 134 | if (apbt_virt_address) { | 134 | if (apbt_virt_address) { |
| 135 | pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\ | 135 | pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\ |
| 136 | (void *)apbt_address, (void *)apbt_virt_address); | 136 | (void *)apbt_address, (void *)apbt_virt_address); |
| 137 | } else { | 137 | } else { |
| 138 | pr_debug("Failed mapping APBT phy address at %p\n",\ | 138 | pr_debug("Failed mapping APBT phy address at %p\n",\ |
| 139 | (void *)apbt_address); | 139 | (void *)apbt_address); |
| 140 | goto panic_noapbt; | 140 | goto panic_noapbt; |
| 141 | } | 141 | } |
| 142 | apbt_freq = mtmr->freq_hz / USEC_PER_SEC; | 142 | apbt_freq = mtmr->freq_hz / USEC_PER_SEC; |
| 143 | sfi_free_mtmr(mtmr); | 143 | sfi_free_mtmr(mtmr); |
| 144 | 144 | ||
| 145 | /* Now figure out the physical timer id for clocksource device */ | 145 | /* Now figure out the physical timer id for clocksource device */ |
| 146 | mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM); | 146 | mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM); |
| 147 | if (mtmr == NULL) | 147 | if (mtmr == NULL) |
| 148 | goto panic_noapbt; | 148 | goto panic_noapbt; |
| 149 | 149 | ||
| 150 | /* Now figure out the physical timer id */ | 150 | /* Now figure out the physical timer id */ |
| 151 | phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) | 151 | phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) |
| 152 | / APBTMRS_REG_SIZE; | 152 | / APBTMRS_REG_SIZE; |
| 153 | pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id); | 153 | pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id); |
| 154 | return; | 154 | return; |
| 155 | 155 | ||
| 156 | panic_noapbt: | 156 | panic_noapbt: |
| 157 | panic("Failed to setup APB system timer\n"); | 157 | panic("Failed to setup APB system timer\n"); |
| 158 | 158 | ||
| 159 | } | 159 | } |
| 160 | 160 | ||
| 161 | static inline void apbt_clear_mapping(void) | 161 | static inline void apbt_clear_mapping(void) |
| 162 | { | 162 | { |
| 163 | iounmap(apbt_virt_address); | 163 | iounmap(apbt_virt_address); |
| 164 | apbt_virt_address = NULL; | 164 | apbt_virt_address = NULL; |
| 165 | } | 165 | } |
| 166 | 166 | ||
| 167 | /* | 167 | /* |
| @@ -169,28 +169,28 @@ static inline void apbt_clear_mapping(void) | |||
| 169 | */ | 169 | */ |
| 170 | static inline int is_apbt_capable(void) | 170 | static inline int is_apbt_capable(void) |
| 171 | { | 171 | { |
| 172 | return apbt_virt_address ? 1 : 0; | 172 | return apbt_virt_address ? 1 : 0; |
| 173 | } | 173 | } |
| 174 | 174 | ||
| 175 | static struct clocksource clocksource_apbt = { | 175 | static struct clocksource clocksource_apbt = { |
| 176 | .name = "apbt", | 176 | .name = "apbt", |
| 177 | .rating = APBT_CLOCKSOURCE_RATING, | 177 | .rating = APBT_CLOCKSOURCE_RATING, |
| 178 | .read = apbt_read_clocksource, | 178 | .read = apbt_read_clocksource, |
| 179 | .mask = APBT_MASK, | 179 | .mask = APBT_MASK, |
| 180 | .shift = APBT_SHIFT, | 180 | .shift = APBT_SHIFT, |
| 181 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, | 181 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| 182 | .resume = apbt_restart_clocksource, | 182 | .resume = apbt_restart_clocksource, |
| 183 | }; | 183 | }; |
| 184 | 184 | ||
| 185 | /* boot APB clock event device */ | 185 | /* boot APB clock event device */ |
| 186 | static struct clock_event_device apbt_clockevent = { | 186 | static struct clock_event_device apbt_clockevent = { |
| 187 | .name = "apbt0", | 187 | .name = "apbt0", |
| 188 | .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, | 188 | .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, |
| 189 | .set_mode = apbt_set_mode, | 189 | .set_mode = apbt_set_mode, |
| 190 | .set_next_event = apbt_next_event, | 190 | .set_next_event = apbt_next_event, |
| 191 | .shift = APBT_SHIFT, | 191 | .shift = APBT_SHIFT, |
| 192 | .irq = 0, | 192 | .irq = 0, |
| 193 | .rating = APBT_CLOCKEVENT_RATING, | 193 | .rating = APBT_CLOCKEVENT_RATING, |
| 194 | }; | 194 | }; |
| 195 | 195 | ||
| 196 | /* | 196 | /* |
| @@ -199,20 +199,20 @@ static struct clock_event_device apbt_clockevent = { | |||
| 199 | */ | 199 | */ |
| 200 | static inline int __init setup_x86_mrst_timer(char *arg) | 200 | static inline int __init setup_x86_mrst_timer(char *arg) |
| 201 | { | 201 | { |
| 202 | if (!arg) | 202 | if (!arg) |
| 203 | return -EINVAL; | 203 | return -EINVAL; |
| 204 | 204 | ||
| 205 | if (strcmp("apbt_only", arg) == 0) | 205 | if (strcmp("apbt_only", arg) == 0) |
| 206 | disable_apbt_percpu = 0; | 206 | disable_apbt_percpu = 0; |
| 207 | else if (strcmp("lapic_and_apbt", arg) == 0) | 207 | else if (strcmp("lapic_and_apbt", arg) == 0) |
| 208 | disable_apbt_percpu = 1; | 208 | disable_apbt_percpu = 1; |
| 209 | else { | 209 | else { |
| 210 | pr_warning("X86 MRST timer option %s not recognised" | 210 | pr_warning("X86 MRST timer option %s not recognised" |
| 211 | " use x86_mrst_timer=apbt_only or lapic_and_apbt\n", | 211 | " use x86_mrst_timer=apbt_only or lapic_and_apbt\n", |
| 212 | arg); | 212 | arg); |
| 213 | return -EINVAL; | 213 | return -EINVAL; |
| 214 | } | 214 | } |
| 215 | return 0; | 215 | return 0; |
| 216 | } | 216 | } |
| 217 | __setup("x86_mrst_timer=", setup_x86_mrst_timer); | 217 | __setup("x86_mrst_timer=", setup_x86_mrst_timer); |
| 218 | 218 | ||
| @@ -222,176 +222,176 @@ __setup("x86_mrst_timer=", setup_x86_mrst_timer); | |||
| 222 | */ | 222 | */ |
| 223 | static void apbt_start_counter(int n) | 223 | static void apbt_start_counter(int n) |
| 224 | { | 224 | { |
| 225 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); | 225 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); |
| 226 | 226 | ||
| 227 | ctrl &= ~APBTMR_CONTROL_ENABLE; | 227 | ctrl &= ~APBTMR_CONTROL_ENABLE; |
| 228 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | 228 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); |
| 229 | apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT); | 229 | apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT); |
| 230 | /* enable, mask interrupt */ | 230 | /* enable, mask interrupt */ |
| 231 | ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; | 231 | ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; |
| 232 | ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT); | 232 | ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT); |
| 233 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | 233 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); |
| 234 | /* read it once to get cached counter value initialized */ | 234 | /* read it once to get cached counter value initialized */ |
| 235 | apbt_read_clocksource(&clocksource_apbt); | 235 | apbt_read_clocksource(&clocksource_apbt); |
| 236 | } | 236 | } |
| 237 | 237 | ||
| 238 | static irqreturn_t apbt_interrupt_handler(int irq, void *data) | 238 | static irqreturn_t apbt_interrupt_handler(int irq, void *data) |
| 239 | { | 239 | { |
| 240 | struct apbt_dev *dev = (struct apbt_dev *)data; | 240 | struct apbt_dev *dev = (struct apbt_dev *)data; |
| 241 | struct clock_event_device *aevt = &dev->evt; | 241 | struct clock_event_device *aevt = &dev->evt; |
| 242 | 242 | ||
| 243 | if (!aevt->event_handler) { | 243 | if (!aevt->event_handler) { |
| 244 | printk(KERN_INFO "Spurious APBT timer interrupt on %d\n", | 244 | printk(KERN_INFO "Spurious APBT timer interrupt on %d\n", |
| 245 | dev->num); | 245 | dev->num); |
| 246 | return IRQ_NONE; | 246 | return IRQ_NONE; |
| 247 | } | 247 | } |
| 248 | aevt->event_handler(aevt); | 248 | aevt->event_handler(aevt); |
| 249 | return IRQ_HANDLED; | 249 | return IRQ_HANDLED; |
| 250 | } | 250 | } |
| 251 | 251 | ||
| 252 | static void apbt_restart_clocksource(void) | 252 | static void apbt_restart_clocksource(void) |
| 253 | { | 253 | { |
| 254 | apbt_start_counter(phy_cs_timer_id); | 254 | apbt_start_counter(phy_cs_timer_id); |
| 255 | } | 255 | } |
| 256 | 256 | ||
| 257 | /* Setup IRQ routing via IOAPIC */ | 257 | /* Setup IRQ routing via IOAPIC */ |
| 258 | #ifdef CONFIG_SMP | 258 | #ifdef CONFIG_SMP |
| 259 | static void apbt_setup_irq(struct apbt_dev *adev) | 259 | static void apbt_setup_irq(struct apbt_dev *adev) |
| 260 | { | 260 | { |
| 261 | struct irq_chip *chip; | 261 | struct irq_chip *chip; |
| 262 | struct irq_desc *desc; | 262 | struct irq_desc *desc; |
| 263 | 263 | ||
| 264 | /* timer0 irq has been setup early */ | 264 | /* timer0 irq has been setup early */ |
| 265 | if (adev->irq == 0) | 265 | if (adev->irq == 0) |
| 266 | return; | 266 | return; |
| 267 | desc = irq_to_desc(adev->irq); | 267 | desc = irq_to_desc(adev->irq); |
| 268 | chip = get_irq_chip(adev->irq); | 268 | chip = get_irq_chip(adev->irq); |
| 269 | disable_irq(adev->irq); | 269 | disable_irq(adev->irq); |
| 270 | desc->status |= IRQ_MOVE_PCNTXT; | 270 | desc->status |= IRQ_MOVE_PCNTXT; |
| 271 | irq_set_affinity(adev->irq, cpumask_of(adev->cpu)); | 271 | irq_set_affinity(adev->irq, cpumask_of(adev->cpu)); |
| 272 | /* APB timer irqs are set up as mp_irqs, timer is edge triggerred */ | 272 | /* APB timer irqs are set up as mp_irqs, timer is edge triggerred */ |
| 273 | set_irq_chip_and_handler_name(adev->irq, chip, handle_edge_irq, "edge"); | 273 | set_irq_chip_and_handler_name(adev->irq, chip, handle_edge_irq, "edge"); |
| 274 | enable_irq(adev->irq); | 274 | enable_irq(adev->irq); |
| 275 | if (system_state == SYSTEM_BOOTING) | 275 | if (system_state == SYSTEM_BOOTING) |
| 276 | if (request_irq(adev->irq, apbt_interrupt_handler, | 276 | if (request_irq(adev->irq, apbt_interrupt_handler, |
| 277 | IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING, | 277 | IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING, |
| 278 | adev->name, adev)) { | 278 | adev->name, adev)) { |
| 279 | printk(KERN_ERR "Failed request IRQ for APBT%d\n", | 279 | printk(KERN_ERR "Failed request IRQ for APBT%d\n", |
| 280 | adev->num); | 280 | adev->num); |
| 281 | } | 281 | } |
| 282 | } | 282 | } |
| 283 | #endif | 283 | #endif |
| 284 | 284 | ||
| 285 | static void apbt_enable_int(int n) | 285 | static void apbt_enable_int(int n) |
| 286 | { | 286 | { |
| 287 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); | 287 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); |
| 288 | /* clear pending intr */ | 288 | /* clear pending intr */ |
| 289 | apbt_readl(n, APBTMR_N_EOI); | 289 | apbt_readl(n, APBTMR_N_EOI); |
| 290 | ctrl &= ~APBTMR_CONTROL_INT; | 290 | ctrl &= ~APBTMR_CONTROL_INT; |
| 291 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | 291 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); |
| 292 | } | 292 | } |
| 293 | 293 | ||
| 294 | static void apbt_disable_int(int n) | 294 | static void apbt_disable_int(int n) |
| 295 | { | 295 | { |
| 296 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); | 296 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); |
| 297 | 297 | ||
| 298 | ctrl |= APBTMR_CONTROL_INT; | 298 | ctrl |= APBTMR_CONTROL_INT; |
| 299 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | 299 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); |
| 300 | } | 300 | } |
| 301 | 301 | ||
| 302 | 302 | ||
| 303 | static int __init apbt_clockevent_register(void) | 303 | static int __init apbt_clockevent_register(void) |
| 304 | { | 304 | { |
| 305 | struct sfi_timer_table_entry *mtmr; | 305 | struct sfi_timer_table_entry *mtmr; |
| 306 | struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev); | 306 | struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev); |
| 307 | 307 | ||
| 308 | mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); | 308 | mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); |
| 309 | if (mtmr == NULL) { | 309 | if (mtmr == NULL) { |
| 310 | printk(KERN_ERR "Failed to get MTMR %d from SFI\n", | 310 | printk(KERN_ERR "Failed to get MTMR %d from SFI\n", |
| 311 | APBT_CLOCKEVENT0_NUM); | 311 | APBT_CLOCKEVENT0_NUM); |
| 312 | return -ENODEV; | 312 | return -ENODEV; |
| 313 | } | 313 | } |
| 314 | 314 | ||
| 315 | /* | 315 | /* |
| 316 | * We need to calculate the scaled math multiplication factor for | 316 | * We need to calculate the scaled math multiplication factor for |
| 317 | * nanosecond to apbt tick conversion. | 317 | * nanosecond to apbt tick conversion. |
| 318 | * mult = (nsec/cycle)*2^APBT_SHIFT | 318 | * mult = (nsec/cycle)*2^APBT_SHIFT |
| 319 | */ | 319 | */ |
| 320 | apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz | 320 | apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz |
| 321 | , NSEC_PER_SEC, APBT_SHIFT); | 321 | , NSEC_PER_SEC, APBT_SHIFT); |
| 322 | 322 | ||
| 323 | /* Calculate the min / max delta */ | 323 | /* Calculate the min / max delta */ |
| 324 | apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, | 324 | apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, |
| 325 | &apbt_clockevent); | 325 | &apbt_clockevent); |
| 326 | apbt_clockevent.min_delta_ns = clockevent_delta2ns( | 326 | apbt_clockevent.min_delta_ns = clockevent_delta2ns( |
| 327 | APBT_MIN_DELTA_USEC*apbt_freq, | 327 | APBT_MIN_DELTA_USEC*apbt_freq, |
| 328 | &apbt_clockevent); | 328 | &apbt_clockevent); |
| 329 | /* | 329 | /* |
| 330 | * Start apbt with the boot cpu mask and make it | 330 | * Start apbt with the boot cpu mask and make it |
| 331 | * global if not used for per cpu timer. | 331 | * global if not used for per cpu timer. |
| 332 | */ | 332 | */ |
| 333 | apbt_clockevent.cpumask = cpumask_of(smp_processor_id()); | 333 | apbt_clockevent.cpumask = cpumask_of(smp_processor_id()); |
| 334 | adev->num = smp_processor_id(); | 334 | adev->num = smp_processor_id(); |
| 335 | memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device)); | 335 | memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device)); |
| 336 | 336 | ||
| 337 | if (disable_apbt_percpu) { | 337 | if (disable_apbt_percpu) { |
| 338 | apbt_clockevent.rating = APBT_CLOCKEVENT_RATING - 100; | 338 | apbt_clockevent.rating = APBT_CLOCKEVENT_RATING - 100; |
| 339 | global_clock_event = &adev->evt; | 339 | global_clock_event = &adev->evt; |
| 340 | printk(KERN_DEBUG "%s clockevent registered as global\n", | 340 | printk(KERN_DEBUG "%s clockevent registered as global\n", |
| 341 | global_clock_event->name); | 341 | global_clock_event->name); |
| 342 | } | 342 | } |
| 343 | 343 | ||
| 344 | if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler, | 344 | if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler, |
| 345 | IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING, | 345 | IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING, |
| 346 | apbt_clockevent.name, adev)) { | 346 | apbt_clockevent.name, adev)) { |
| 347 | printk(KERN_ERR "Failed request IRQ for APBT%d\n", | 347 | printk(KERN_ERR "Failed request IRQ for APBT%d\n", |
| 348 | apbt_clockevent.irq); | 348 | apbt_clockevent.irq); |
| 349 | } | 349 | } |
| 350 | 350 | ||
| 351 | clockevents_register_device(&adev->evt); | 351 | clockevents_register_device(&adev->evt); |
| 352 | /* Start APBT 0 interrupts */ | 352 | /* Start APBT 0 interrupts */ |
| 353 | apbt_enable_int(APBT_CLOCKEVENT0_NUM); | 353 | apbt_enable_int(APBT_CLOCKEVENT0_NUM); |
| 354 | 354 | ||
| 355 | sfi_free_mtmr(mtmr); | 355 | sfi_free_mtmr(mtmr); |
| 356 | return 0; | 356 | return 0; |
| 357 | } | 357 | } |
| 358 | 358 | ||
| 359 | #ifdef CONFIG_SMP | 359 | #ifdef CONFIG_SMP |
| 360 | /* Should be called with per cpu */ | 360 | /* Should be called with per cpu */ |
| 361 | void apbt_setup_secondary_clock(void) | 361 | void apbt_setup_secondary_clock(void) |
| 362 | { | 362 | { |
| 363 | struct apbt_dev *adev; | 363 | struct apbt_dev *adev; |
| 364 | struct clock_event_device *aevt; | 364 | struct clock_event_device *aevt; |
| 365 | int cpu; | 365 | int cpu; |
| 366 | 366 | ||
| 367 | /* Don't register boot CPU clockevent */ | 367 | /* Don't register boot CPU clockevent */ |
| 368 | cpu = smp_processor_id(); | 368 | cpu = smp_processor_id(); |
| 369 | if (cpu == boot_cpu_id) | 369 | if (cpu == boot_cpu_id) |
| 370 | return; | 370 | return; |
| 371 | /* | 371 | /* |
| 372 | * We need to calculate the scaled math multiplication factor for | 372 | * We need to calculate the scaled math multiplication factor for |
| 373 | * nanosecond to apbt tick conversion. | 373 | * nanosecond to apbt tick conversion. |
| 374 | * mult = (nsec/cycle)*2^APBT_SHIFT | 374 | * mult = (nsec/cycle)*2^APBT_SHIFT |
| 375 | */ | 375 | */ |
| 376 | printk(KERN_INFO "Init per CPU clockevent %d\n", cpu); | 376 | printk(KERN_INFO "Init per CPU clockevent %d\n", cpu); |
| 377 | adev = &per_cpu(cpu_apbt_dev, cpu); | 377 | adev = &per_cpu(cpu_apbt_dev, cpu); |
| 378 | aevt = &adev->evt; | 378 | aevt = &adev->evt; |
| 379 | 379 | ||
| 380 | memcpy(aevt, &apbt_clockevent, sizeof(*aevt)); | 380 | memcpy(aevt, &apbt_clockevent, sizeof(*aevt)); |
| 381 | aevt->cpumask = cpumask_of(cpu); | 381 | aevt->cpumask = cpumask_of(cpu); |
| 382 | aevt->name = adev->name; | 382 | aevt->name = adev->name; |
| 383 | aevt->mode = CLOCK_EVT_MODE_UNUSED; | 383 | aevt->mode = CLOCK_EVT_MODE_UNUSED; |
| 384 | 384 | ||
| 385 | printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n", | 385 | printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n", |
| 386 | cpu, aevt->name, *(u32 *)aevt->cpumask); | 386 | cpu, aevt->name, *(u32 *)aevt->cpumask); |
| 387 | 387 | ||
| 388 | apbt_setup_irq(adev); | 388 | apbt_setup_irq(adev); |
| 389 | 389 | ||
| 390 | clockevents_register_device(aevt); | 390 | clockevents_register_device(aevt); |
| 391 | 391 | ||
| 392 | apbt_enable_int(cpu); | 392 | apbt_enable_int(cpu); |
| 393 | 393 | ||
| 394 | return; | 394 | return; |
| 395 | } | 395 | } |
| 396 | 396 | ||
| 397 | /* | 397 | /* |
| @@ -405,34 +405,34 @@ void apbt_setup_secondary_clock(void) | |||
| 405 | * the extra interrupt is harmless. | 405 | * the extra interrupt is harmless. |
| 406 | */ | 406 | */ |
| 407 | static int apbt_cpuhp_notify(struct notifier_block *n, | 407 | static int apbt_cpuhp_notify(struct notifier_block *n, |
| 408 | unsigned long action, void *hcpu) | 408 | unsigned long action, void *hcpu) |
| 409 | { | 409 | { |
| 410 | unsigned long cpu = (unsigned long)hcpu; | 410 | unsigned long cpu = (unsigned long)hcpu; |
| 411 | struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu); | 411 | struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu); |
| 412 | 412 | ||
| 413 | switch (action & 0xf) { | 413 | switch (action & 0xf) { |
| 414 | case CPU_DEAD: | 414 | case CPU_DEAD: |
| 415 | apbt_disable_int(cpu); | 415 | apbt_disable_int(cpu); |
| 416 | if (system_state == SYSTEM_RUNNING) | 416 | if (system_state == SYSTEM_RUNNING) |
| 417 | pr_debug("skipping APBT CPU %lu offline\n", cpu); | 417 | pr_debug("skipping APBT CPU %lu offline\n", cpu); |
| 418 | else if (adev) { | 418 | else if (adev) { |
| 419 | pr_debug("APBT clockevent for cpu %lu offline\n", cpu); | 419 | pr_debug("APBT clockevent for cpu %lu offline\n", cpu); |
| 420 | free_irq(adev->irq, adev); | 420 | free_irq(adev->irq, adev); |
| 421 | } | 421 | } |
| 422 | break; | 422 | break; |
| 423 | default: | 423 | default: |
| 424 | pr_debug(KERN_INFO "APBT notified %lu, no action\n", action); | 424 | pr_debug(KERN_INFO "APBT notified %lu, no action\n", action); |
| 425 | } | 425 | } |
| 426 | return NOTIFY_OK; | 426 | return NOTIFY_OK; |
| 427 | } | 427 | } |
| 428 | 428 | ||
| 429 | static __init int apbt_late_init(void) | 429 | static __init int apbt_late_init(void) |
| 430 | { | 430 | { |
| 431 | if (disable_apbt_percpu) | 431 | if (disable_apbt_percpu) |
| 432 | return 0; | 432 | return 0; |
| 433 | /* This notifier should be called after workqueue is ready */ | 433 | /* This notifier should be called after workqueue is ready */ |
| 434 | hotcpu_notifier(apbt_cpuhp_notify, -20); | 434 | hotcpu_notifier(apbt_cpuhp_notify, -20); |
| 435 | return 0; | 435 | return 0; |
| 436 | } | 436 | } |
| 437 | fs_initcall(apbt_late_init); | 437 | fs_initcall(apbt_late_init); |
| 438 | #else | 438 | #else |
| @@ -442,93 +442,93 @@ void apbt_setup_secondary_clock(void) {} | |||
| 442 | #endif /* CONFIG_SMP */ | 442 | #endif /* CONFIG_SMP */ |
| 443 | 443 | ||
| 444 | static void apbt_set_mode(enum clock_event_mode mode, | 444 | static void apbt_set_mode(enum clock_event_mode mode, |
| 445 | struct clock_event_device *evt) | 445 | struct clock_event_device *evt) |
| 446 | { | 446 | { |
| 447 | unsigned long ctrl; | 447 | unsigned long ctrl; |
| 448 | uint64_t delta; | 448 | uint64_t delta; |
| 449 | int timer_num; | 449 | int timer_num; |
| 450 | struct apbt_dev *adev = EVT_TO_APBT_DEV(evt); | 450 | struct apbt_dev *adev = EVT_TO_APBT_DEV(evt); |
| 451 | 451 | ||
| 452 | timer_num = adev->num; | 452 | timer_num = adev->num; |
| 453 | pr_debug("%s CPU %d timer %d mode=%d\n", | 453 | pr_debug("%s CPU %d timer %d mode=%d\n", |
| 454 | __func__, first_cpu(*evt->cpumask), timer_num, mode); | 454 | __func__, first_cpu(*evt->cpumask), timer_num, mode); |
| 455 | 455 | ||
| 456 | switch (mode) { | 456 | switch (mode) { |
| 457 | case CLOCK_EVT_MODE_PERIODIC: | 457 | case CLOCK_EVT_MODE_PERIODIC: |
| 458 | delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult; | 458 | delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult; |
| 459 | delta >>= apbt_clockevent.shift; | 459 | delta >>= apbt_clockevent.shift; |
| 460 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); | 460 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); |
| 461 | ctrl |= APBTMR_CONTROL_MODE_PERIODIC; | 461 | ctrl |= APBTMR_CONTROL_MODE_PERIODIC; |
| 462 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | 462 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| 463 | /* | 463 | /* |
| 464 | * DW APB p. 46, have to disable timer before load counter, | 464 | * DW APB p. 46, have to disable timer before load counter, |
| 465 | * may cause sync problem. | 465 | * may cause sync problem. |
| 466 | */ | 466 | */ |
| 467 | ctrl &= ~APBTMR_CONTROL_ENABLE; | 467 | ctrl &= ~APBTMR_CONTROL_ENABLE; |
| 468 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | 468 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| 469 | udelay(1); | 469 | udelay(1); |
| 470 | pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ); | 470 | pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ); |
| 471 | apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT); | 471 | apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT); |
| 472 | ctrl |= APBTMR_CONTROL_ENABLE; | 472 | ctrl |= APBTMR_CONTROL_ENABLE; |
| 473 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | 473 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| 474 | break; | 474 | break; |
| 475 | /* APB timer does not have one-shot mode, use free running mode */ | 475 | /* APB timer does not have one-shot mode, use free running mode */ |
| 476 | case CLOCK_EVT_MODE_ONESHOT: | 476 | case CLOCK_EVT_MODE_ONESHOT: |
| 477 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); | 477 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); |
| 478 | /* | 478 | /* |
| 479 | * set free running mode, this mode will let timer reload max | 479 | * set free running mode, this mode will let timer reload max |
| 480 | * timeout which will give time (3min on 25MHz clock) to rearm | 480 | * timeout which will give time (3min on 25MHz clock) to rearm |
| 481 | * the next event, therefore emulate the one-shot mode. | 481 | * the next event, therefore emulate the one-shot mode. |
| 482 | */ | 482 | */ |
| 483 | ctrl &= ~APBTMR_CONTROL_ENABLE; | 483 | ctrl &= ~APBTMR_CONTROL_ENABLE; |
| 484 | ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; | 484 | ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; |
| 485 | 485 | ||
| 486 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | 486 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| 487 | /* write again to set free running mode */ | 487 | /* write again to set free running mode */ |
| 488 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | 488 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| 489 | 489 | ||
| 490 | /* | 490 | /* |
| 491 | * DW APB p. 46, load counter with all 1s before starting free | 491 | * DW APB p. 46, load counter with all 1s before starting free |
| 492 | * running mode. | 492 | * running mode. |
| 493 | */ | 493 | */ |
| 494 | apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT); | 494 | apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT); |
| 495 | ctrl &= ~APBTMR_CONTROL_INT; | 495 | ctrl &= ~APBTMR_CONTROL_INT; |
| 496 | ctrl |= APBTMR_CONTROL_ENABLE; | 496 | ctrl |= APBTMR_CONTROL_ENABLE; |
| 497 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | 497 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| 498 | break; | 498 | break; |
| 499 | 499 | ||
| 500 | case CLOCK_EVT_MODE_UNUSED: | 500 | case CLOCK_EVT_MODE_UNUSED: |
| 501 | case CLOCK_EVT_MODE_SHUTDOWN: | 501 | case CLOCK_EVT_MODE_SHUTDOWN: |
| 502 | apbt_disable_int(timer_num); | 502 | apbt_disable_int(timer_num); |
| 503 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); | 503 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); |
| 504 | ctrl &= ~APBTMR_CONTROL_ENABLE; | 504 | ctrl &= ~APBTMR_CONTROL_ENABLE; |
| 505 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | 505 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| 506 | break; | 506 | break; |
| 507 | 507 | ||
| 508 | case CLOCK_EVT_MODE_RESUME: | 508 | case CLOCK_EVT_MODE_RESUME: |
| 509 | apbt_enable_int(timer_num); | 509 | apbt_enable_int(timer_num); |
| 510 | break; | 510 | break; |
| 511 | } | 511 | } |
| 512 | } | 512 | } |
| 513 | 513 | ||
| 514 | static int apbt_next_event(unsigned long delta, | 514 | static int apbt_next_event(unsigned long delta, |
| 515 | struct clock_event_device *evt) | 515 | struct clock_event_device *evt) |
| 516 | { | 516 | { |
| 517 | unsigned long ctrl; | 517 | unsigned long ctrl; |
| 518 | int timer_num; | 518 | int timer_num; |
| 519 | 519 | ||
| 520 | struct apbt_dev *adev = EVT_TO_APBT_DEV(evt); | 520 | struct apbt_dev *adev = EVT_TO_APBT_DEV(evt); |
| 521 | 521 | ||
| 522 | timer_num = adev->num; | 522 | timer_num = adev->num; |
| 523 | /* Disable timer */ | 523 | /* Disable timer */ |
| 524 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); | 524 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); |
| 525 | ctrl &= ~APBTMR_CONTROL_ENABLE; | 525 | ctrl &= ~APBTMR_CONTROL_ENABLE; |
| 526 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | 526 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| 527 | /* write new count */ | 527 | /* write new count */ |
| 528 | apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT); | 528 | apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT); |
| 529 | ctrl |= APBTMR_CONTROL_ENABLE; | 529 | ctrl |= APBTMR_CONTROL_ENABLE; |
| 530 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | 530 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| 531 | return 0; | 531 | return 0; |
| 532 | } | 532 | } |
| 533 | 533 | ||
| 534 | /* | 534 | /* |
| @@ -540,94 +540,94 @@ static int apbt_next_event(unsigned long delta, | |||
| 540 | */ | 540 | */ |
| 541 | static cycle_t apbt_read_clocksource(struct clocksource *cs) | 541 | static cycle_t apbt_read_clocksource(struct clocksource *cs) |
| 542 | { | 542 | { |
| 543 | unsigned long t0, t1, t2; | 543 | unsigned long t0, t1, t2; |
| 544 | static unsigned long last_read; | 544 | static unsigned long last_read; |
| 545 | 545 | ||
| 546 | bad_count: | 546 | bad_count: |
| 547 | t1 = apbt_readl(phy_cs_timer_id, | 547 | t1 = apbt_readl(phy_cs_timer_id, |
| 548 | APBTMR_N_CURRENT_VALUE); | 548 | APBTMR_N_CURRENT_VALUE); |
| 549 | t2 = apbt_readl(phy_cs_timer_id, | 549 | t2 = apbt_readl(phy_cs_timer_id, |
| 550 | APBTMR_N_CURRENT_VALUE); | 550 | APBTMR_N_CURRENT_VALUE); |
| 551 | if (unlikely(t1 < t2)) { | 551 | if (unlikely(t1 < t2)) { |
| 552 | pr_debug("APBT: read current count error %lx:%lx:%lx\n", | 552 | pr_debug("APBT: read current count error %lx:%lx:%lx\n", |
| 553 | t1, t2, t2 - t1); | 553 | t1, t2, t2 - t1); |
| 554 | goto bad_count; | 554 | goto bad_count; |
| 555 | } | 555 | } |
| 556 | /* | 556 | /* |
| 557 | * check against cached last read, makes sure time does not go back. | 557 | * check against cached last read, makes sure time does not go back. |
| 558 | * it could be a normal rollover but we will do tripple check anyway | 558 | * it could be a normal rollover but we will do tripple check anyway |
| 559 | */ | 559 | */ |
| 560 | if (unlikely(t2 > last_read)) { | 560 | if (unlikely(t2 > last_read)) { |
| 561 | /* check if we have a normal rollover */ | 561 | /* check if we have a normal rollover */ |
| 562 | unsigned long raw_intr_status = | 562 | unsigned long raw_intr_status = |
| 563 | apbt_readl_reg(APBTMRS_RAW_INT_STATUS); | 563 | apbt_readl_reg(APBTMRS_RAW_INT_STATUS); |
| 564 | /* | 564 | /* |
| 565 | * cs timer interrupt is masked but raw intr bit is set if | 565 | * cs timer interrupt is masked but raw intr bit is set if |
| 566 | * rollover occurs. then we read EOI reg to clear it. | 566 | * rollover occurs. then we read EOI reg to clear it. |
| 567 | */ | 567 | */ |
| 568 | if (raw_intr_status & (1 << phy_cs_timer_id)) { | 568 | if (raw_intr_status & (1 << phy_cs_timer_id)) { |
| 569 | apbt_readl(phy_cs_timer_id, APBTMR_N_EOI); | 569 | apbt_readl(phy_cs_timer_id, APBTMR_N_EOI); |
| 570 | goto out; | 570 | goto out; |
| 571 | } | 571 | } |
| 572 | pr_debug("APB CS going back %lx:%lx:%lx ", | 572 | pr_debug("APB CS going back %lx:%lx:%lx ", |
| 573 | t2, last_read, t2 - last_read); | 573 | t2, last_read, t2 - last_read); |
| 574 | bad_count_x3: | 574 | bad_count_x3: |
| 575 | pr_debug(KERN_INFO "tripple check enforced\n"); | 575 | pr_debug(KERN_INFO "tripple check enforced\n"); |
| 576 | t0 = apbt_readl(phy_cs_timer_id, | 576 | t0 = apbt_readl(phy_cs_timer_id, |
| 577 | APBTMR_N_CURRENT_VALUE); | 577 | APBTMR_N_CURRENT_VALUE); |
| 578 | udelay(1); | 578 | udelay(1); |
| 579 | t1 = apbt_readl(phy_cs_timer_id, | 579 | t1 = apbt_readl(phy_cs_timer_id, |
| 580 | APBTMR_N_CURRENT_VALUE); | 580 | APBTMR_N_CURRENT_VALUE); |
| 581 | udelay(1); | 581 | udelay(1); |
| 582 | t2 = apbt_readl(phy_cs_timer_id, | 582 | t2 = apbt_readl(phy_cs_timer_id, |
| 583 | APBTMR_N_CURRENT_VALUE); | 583 | APBTMR_N_CURRENT_VALUE); |
| 584 | if ((t2 > t1) || (t1 > t0)) { | 584 | if ((t2 > t1) || (t1 > t0)) { |
| 585 | printk(KERN_ERR "Error: APB CS tripple check failed\n"); | 585 | printk(KERN_ERR "Error: APB CS tripple check failed\n"); |
| 586 | goto bad_count_x3; | 586 | goto bad_count_x3; |
| 587 | } | 587 | } |
| 588 | } | 588 | } |
| 589 | out: | 589 | out: |
| 590 | last_read = t2; | 590 | last_read = t2; |
| 591 | return (cycle_t)~t2; | 591 | return (cycle_t)~t2; |
| 592 | } | 592 | } |
| 593 | 593 | ||
| 594 | static int apbt_clocksource_register(void) | 594 | static int apbt_clocksource_register(void) |
| 595 | { | 595 | { |
| 596 | u64 start, now; | 596 | u64 start, now; |
| 597 | cycle_t t1; | 597 | cycle_t t1; |
| 598 | 598 | ||
| 599 | /* Start the counter, use timer 2 as source, timer 0/1 for event */ | 599 | /* Start the counter, use timer 2 as source, timer 0/1 for event */ |
| 600 | apbt_start_counter(phy_cs_timer_id); | 600 | apbt_start_counter(phy_cs_timer_id); |
| 601 | 601 | ||
| 602 | /* Verify whether apbt counter works */ | 602 | /* Verify whether apbt counter works */ |
| 603 | t1 = apbt_read_clocksource(&clocksource_apbt); | 603 | t1 = apbt_read_clocksource(&clocksource_apbt); |
| 604 | rdtscll(start); | 604 | rdtscll(start); |
| 605 | 605 | ||
| 606 | /* | 606 | /* |
| 607 | * We don't know the TSC frequency yet, but waiting for | 607 | * We don't know the TSC frequency yet, but waiting for |
| 608 | * 200000 TSC cycles is safe: | 608 | * 200000 TSC cycles is safe: |
| 609 | * 4 GHz == 50us | 609 | * 4 GHz == 50us |
| 610 | * 1 GHz == 200us | 610 | * 1 GHz == 200us |
| 611 | */ | 611 | */ |
| 612 | do { | 612 | do { |
| 613 | rep_nop(); | 613 | rep_nop(); |
| 614 | rdtscll(now); | 614 | rdtscll(now); |
| 615 | } while ((now - start) < 200000UL); | 615 | } while ((now - start) < 200000UL); |
| 616 | 616 | ||
| 617 | /* APBT is the only always on clocksource, it has to work! */ | 617 | /* APBT is the only always on clocksource, it has to work! */ |
| 618 | if (t1 == apbt_read_clocksource(&clocksource_apbt)) | 618 | if (t1 == apbt_read_clocksource(&clocksource_apbt)) |
| 619 | panic("APBT counter not counting. APBT disabled\n"); | 619 | panic("APBT counter not counting. APBT disabled\n"); |
| 620 | 620 | ||
| 621 | /* | 621 | /* |
| 622 | * initialize and register APBT clocksource | 622 | * initialize and register APBT clocksource |
| 623 | * convert that to ns/clock cycle | 623 | * convert that to ns/clock cycle |
| 624 | * mult = (ns/c) * 2^APBT_SHIFT | 624 | * mult = (ns/c) * 2^APBT_SHIFT |
| 625 | */ | 625 | */ |
| 626 | clocksource_apbt.mult = div_sc(MSEC_PER_SEC, | 626 | clocksource_apbt.mult = div_sc(MSEC_PER_SEC, |
| 627 | (unsigned long) apbt_freq, APBT_SHIFT); | 627 | (unsigned long) apbt_freq, APBT_SHIFT); |
| 628 | clocksource_register(&clocksource_apbt); | 628 | clocksource_register(&clocksource_apbt); |
| 629 | 629 | ||
| 630 | return 0; | 630 | return 0; |
| 631 | } | 631 | } |
| 632 | 632 | ||
| 633 | /* | 633 | /* |
| @@ -640,145 +640,145 @@ static int apbt_clocksource_register(void) | |||
| 640 | void __init apbt_time_init(void) | 640 | void __init apbt_time_init(void) |
| 641 | { | 641 | { |
| 642 | #ifdef CONFIG_SMP | 642 | #ifdef CONFIG_SMP |
| 643 | int i; | 643 | int i; |
| 644 | struct sfi_timer_table_entry *p_mtmr; | 644 | struct sfi_timer_table_entry *p_mtmr; |
| 645 | unsigned int percpu_timer; | 645 | unsigned int percpu_timer; |
| 646 | struct apbt_dev *adev; | 646 | struct apbt_dev *adev; |
| 647 | #endif | 647 | #endif |
| 648 | 648 | ||
| 649 | if (apb_timer_block_enabled) | 649 | if (apb_timer_block_enabled) |
| 650 | return; | 650 | return; |
| 651 | apbt_set_mapping(); | 651 | apbt_set_mapping(); |
| 652 | if (apbt_virt_address) { | 652 | if (apbt_virt_address) { |
| 653 | pr_debug("Found APBT version 0x%lx\n",\ | 653 | pr_debug("Found APBT version 0x%lx\n",\ |
| 654 | apbt_readl_reg(APBTMRS_COMP_VERSION)); | 654 | apbt_readl_reg(APBTMRS_COMP_VERSION)); |
| 655 | } else | 655 | } else |
| 656 | goto out_noapbt; | 656 | goto out_noapbt; |
| 657 | /* | 657 | /* |
| 658 | * Read the frequency and check for a sane value, for ESL model | 658 | * Read the frequency and check for a sane value, for ESL model |
| 659 | * we extend the possible clock range to allow time scaling. | 659 | * we extend the possible clock range to allow time scaling. |
| 660 | */ | 660 | */ |
| 661 | 661 | ||
| 662 | if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) { | 662 | if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) { |
| 663 | pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq); | 663 | pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq); |
| 664 | goto out_noapbt; | 664 | goto out_noapbt; |
| 665 | } | 665 | } |
| 666 | if (apbt_clocksource_register()) { | 666 | if (apbt_clocksource_register()) { |
| 667 | pr_debug("APBT has failed to register clocksource\n"); | 667 | pr_debug("APBT has failed to register clocksource\n"); |
| 668 | goto out_noapbt; | 668 | goto out_noapbt; |
| 669 | } | 669 | } |
| 670 | if (!apbt_clockevent_register()) | 670 | if (!apbt_clockevent_register()) |
| 671 | apb_timer_block_enabled = 1; | 671 | apb_timer_block_enabled = 1; |
| 672 | else { | 672 | else { |
| 673 | pr_debug("APBT has failed to register clockevent\n"); | 673 | pr_debug("APBT has failed to register clockevent\n"); |
| 674 | goto out_noapbt; | 674 | goto out_noapbt; |
| 675 | } | 675 | } |
| 676 | #ifdef CONFIG_SMP | 676 | #ifdef CONFIG_SMP |
| 677 | /* kernel cmdline disable apb timer, so we will use lapic timers */ | 677 | /* kernel cmdline disable apb timer, so we will use lapic timers */ |
| 678 | if (disable_apbt_percpu) { | 678 | if (disable_apbt_percpu) { |
| 679 | printk(KERN_INFO "apbt: disabled per cpu timer\n"); | 679 | printk(KERN_INFO "apbt: disabled per cpu timer\n"); |
| 680 | return; | 680 | return; |
| 681 | } | 681 | } |
| 682 | pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus()); | 682 | pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus()); |
| 683 | if (num_possible_cpus() <= sfi_mtimer_num) { | 683 | if (num_possible_cpus() <= sfi_mtimer_num) { |
| 684 | percpu_timer = 1; | 684 | percpu_timer = 1; |
| 685 | apbt_num_timers_used = num_possible_cpus(); | 685 | apbt_num_timers_used = num_possible_cpus(); |
| 686 | } else { | 686 | } else { |
| 687 | percpu_timer = 0; | 687 | percpu_timer = 0; |
| 688 | apbt_num_timers_used = 1; | 688 | apbt_num_timers_used = 1; |
| 689 | adev = &per_cpu(cpu_apbt_dev, 0); | 689 | adev = &per_cpu(cpu_apbt_dev, 0); |
| 690 | adev->flags &= ~APBT_DEV_USED; | 690 | adev->flags &= ~APBT_DEV_USED; |
| 691 | } | 691 | } |
| 692 | pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used); | 692 | pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used); |
| 693 | 693 | ||
| 694 | /* here we set up per CPU timer data structure */ | 694 | /* here we set up per CPU timer data structure */ |
| 695 | apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used, | 695 | apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used, |
| 696 | GFP_KERNEL); | 696 | GFP_KERNEL); |
| 697 | if (!apbt_devs) { | 697 | if (!apbt_devs) { |
| 698 | printk(KERN_ERR "Failed to allocate APB timer devices\n"); | 698 | printk(KERN_ERR "Failed to allocate APB timer devices\n"); |
| 699 | return; | 699 | return; |
| 700 | } | 700 | } |
| 701 | for (i = 0; i < apbt_num_timers_used; i++) { | 701 | for (i = 0; i < apbt_num_timers_used; i++) { |
| 702 | adev = &per_cpu(cpu_apbt_dev, i); | 702 | adev = &per_cpu(cpu_apbt_dev, i); |
| 703 | adev->num = i; | 703 | adev->num = i; |
| 704 | adev->cpu = i; | 704 | adev->cpu = i; |
| 705 | p_mtmr = sfi_get_mtmr(i); | 705 | p_mtmr = sfi_get_mtmr(i); |
| 706 | if (p_mtmr) { | 706 | if (p_mtmr) { |
| 707 | adev->tick = p_mtmr->freq_hz; | 707 | adev->tick = p_mtmr->freq_hz; |
| 708 | adev->irq = p_mtmr->irq; | 708 | adev->irq = p_mtmr->irq; |
| 709 | } else | 709 | } else |
| 710 | printk(KERN_ERR "Failed to get timer for cpu %d\n", i); | 710 | printk(KERN_ERR "Failed to get timer for cpu %d\n", i); |
| 711 | adev->count = 0; | 711 | adev->count = 0; |
| 712 | sprintf(adev->name, "apbt%d", i); | 712 | sprintf(adev->name, "apbt%d", i); |
| 713 | } | 713 | } |
| 714 | #endif | 714 | #endif |
| 715 | 715 | ||
| 716 | return; | 716 | return; |
| 717 | 717 | ||
| 718 | out_noapbt: | 718 | out_noapbt: |
| 719 | apbt_clear_mapping(); | 719 | apbt_clear_mapping(); |
| 720 | apb_timer_block_enabled = 0; | 720 | apb_timer_block_enabled = 0; |
| 721 | panic("failed to enable APB timer\n"); | 721 | panic("failed to enable APB timer\n"); |
| 722 | } | 722 | } |
| 723 | 723 | ||
| 724 | static inline void apbt_disable(int n) | 724 | static inline void apbt_disable(int n) |
| 725 | { | 725 | { |
| 726 | if (is_apbt_capable()) { | 726 | if (is_apbt_capable()) { |
| 727 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); | 727 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); |
| 728 | ctrl &= ~APBTMR_CONTROL_ENABLE; | 728 | ctrl &= ~APBTMR_CONTROL_ENABLE; |
| 729 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | 729 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); |
| 730 | } | 730 | } |
| 731 | } | 731 | } |
| 732 | 732 | ||
| 733 | /* called before apb_timer_enable, use early map */ | 733 | /* called before apb_timer_enable, use early map */ |
| 734 | unsigned long apbt_quick_calibrate() | 734 | unsigned long apbt_quick_calibrate() |
| 735 | { | 735 | { |
| 736 | int i, scale; | 736 | int i, scale; |
| 737 | u64 old, new; | 737 | u64 old, new; |
| 738 | cycle_t t1, t2; | 738 | cycle_t t1, t2; |
| 739 | unsigned long khz = 0; | 739 | unsigned long khz = 0; |
| 740 | u32 loop, shift; | 740 | u32 loop, shift; |
| 741 | 741 | ||
| 742 | apbt_set_mapping(); | 742 | apbt_set_mapping(); |
| 743 | apbt_start_counter(phy_cs_timer_id); | 743 | apbt_start_counter(phy_cs_timer_id); |
| 744 | 744 | ||
| 745 | /* check if the timer can count down, otherwise return */ | 745 | /* check if the timer can count down, otherwise return */ |
| 746 | old = apbt_read_clocksource(&clocksource_apbt); | 746 | old = apbt_read_clocksource(&clocksource_apbt); |
| 747 | i = 10000; | 747 | i = 10000; |
| 748 | while (--i) { | 748 | while (--i) { |
| 749 | if (old != apbt_read_clocksource(&clocksource_apbt)) | 749 | if (old != apbt_read_clocksource(&clocksource_apbt)) |
| 750 | break; | 750 | break; |
| 751 | } | 751 | } |
| 752 | if (!i) | 752 | if (!i) |
| 753 | goto failed; | 753 | goto failed; |
| 754 | 754 | ||
| 755 | /* count 16 ms */ | 755 | /* count 16 ms */ |
| 756 | loop = (apbt_freq * 1000) << 4; | 756 | loop = (apbt_freq * 1000) << 4; |
| 757 | 757 | ||
| 758 | /* restart the timer to ensure it won't get to 0 in the calibration */ | 758 | /* restart the timer to ensure it won't get to 0 in the calibration */ |
| 759 | apbt_start_counter(phy_cs_timer_id); | 759 | apbt_start_counter(phy_cs_timer_id); |
| 760 | 760 | ||
| 761 | old = apbt_read_clocksource(&clocksource_apbt); | 761 | old = apbt_read_clocksource(&clocksource_apbt); |
| 762 | old += loop; | 762 | old += loop; |
| 763 | 763 | ||
| 764 | t1 = __native_read_tsc(); | 764 | t1 = __native_read_tsc(); |
| 765 | 765 | ||
| 766 | do { | 766 | do { |
| 767 | new = apbt_read_clocksource(&clocksource_apbt); | 767 | new = apbt_read_clocksource(&clocksource_apbt); |
| 768 | } while (new < old); | 768 | } while (new < old); |
| 769 | 769 | ||
| 770 | t2 = __native_read_tsc(); | 770 | t2 = __native_read_tsc(); |
| 771 | 771 | ||
| 772 | shift = 5; | 772 | shift = 5; |
| 773 | if (unlikely(loop >> shift == 0)) { | 773 | if (unlikely(loop >> shift == 0)) { |
| 774 | printk(KERN_INFO | 774 | printk(KERN_INFO |
| 775 | "APBT TSC calibration failed, not enough resolution\n"); | 775 | "APBT TSC calibration failed, not enough resolution\n"); |
| 776 | return 0; | 776 | return 0; |
| 777 | } | 777 | } |
| 778 | scale = (int)div_u64((t2 - t1), loop >> shift); | 778 | scale = (int)div_u64((t2 - t1), loop >> shift); |
| 779 | khz = (scale * apbt_freq * 1000) >> shift; | 779 | khz = (scale * apbt_freq * 1000) >> shift; |
| 780 | printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz); | 780 | printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz); |
| 781 | return khz; | 781 | return khz; |
| 782 | failed: | 782 | failed: |
| 783 | return 0; | 783 | return 0; |
| 784 | } | 784 | } |
