diff options
| author | Robert Olsson <Robert.Olsson@data.slu.se> | 2005-06-21 15:43:18 -0400 |
|---|---|---|
| committer | David S. Miller <davem@davemloft.net> | 2005-06-21 15:43:18 -0400 |
| commit | 19baf839ff4a8daa1f2a7400897094fc18e4f5e9 (patch) | |
| tree | 719e1b64a4fedc4fc028874b5562553c7a524473 | |
| parent | 18b504e25fd617bee8830d2cdcaff7fb7b5931bb (diff) | |
[IPV4]: Add LC-Trie FIB lookup algorithm.
Signed-off-by: Robert Olsson <Robert.Olsson@data.slu.se>
Signed-off-by: David S. Miller <davem@davemloft.net>
| -rw-r--r-- | net/ipv4/Kconfig | 26 | ||||
| -rw-r--r-- | net/ipv4/Makefile | 4 | ||||
| -rw-r--r-- | net/ipv4/af_inet.c | 12 | ||||
| -rw-r--r-- | net/ipv4/fib_trie.c | 2454 |
4 files changed, 2495 insertions, 1 deletions
diff --git a/net/ipv4/Kconfig b/net/ipv4/Kconfig index 6d3e8b1bd1f2..05107e0dc145 100644 --- a/net/ipv4/Kconfig +++ b/net/ipv4/Kconfig | |||
| @@ -1,6 +1,32 @@ | |||
| 1 | # | 1 | # |
| 2 | # IP configuration | 2 | # IP configuration |
| 3 | # | 3 | # |
| 4 | choice | ||
| 5 | prompt "Choose IP: FIB lookup"" | ||
| 6 | depends on INET | ||
| 7 | default IP_FIB_HASH | ||
| 8 | |||
| 9 | config IP_FIB_HASH | ||
| 10 | bool "FIB_HASH" | ||
| 11 | ---help--- | ||
| 12 | Current FIB is very proven and good enough for most users. | ||
| 13 | |||
| 14 | config IP_FIB_TRIE | ||
| 15 | bool "FIB_TRIE" | ||
| 16 | ---help--- | ||
| 17 | Use new experimental LC-trie as FIB lookup algoritm. | ||
| 18 | This improves lookup performance | ||
| 19 | |||
| 20 | LC-trie is described in: | ||
| 21 | |||
| 22 | IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson | ||
| 23 | IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 | ||
| 24 | An experimental study of compression methods for dynamic tries | ||
| 25 | Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. | ||
| 26 | http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/ | ||
| 27 | |||
| 28 | endchoice | ||
| 29 | |||
| 4 | config IP_MULTICAST | 30 | config IP_MULTICAST |
| 5 | bool "IP: multicasting" | 31 | bool "IP: multicasting" |
| 6 | depends on INET | 32 | depends on INET |
diff --git a/net/ipv4/Makefile b/net/ipv4/Makefile index 8b379627ebb6..65d57d8e1add 100644 --- a/net/ipv4/Makefile +++ b/net/ipv4/Makefile | |||
| @@ -7,8 +7,10 @@ obj-y := utils.o route.o inetpeer.o protocol.o \ | |||
| 7 | ip_output.o ip_sockglue.o \ | 7 | ip_output.o ip_sockglue.o \ |
| 8 | tcp.o tcp_input.o tcp_output.o tcp_timer.o tcp_ipv4.o tcp_minisocks.o \ | 8 | tcp.o tcp_input.o tcp_output.o tcp_timer.o tcp_ipv4.o tcp_minisocks.o \ |
| 9 | datagram.o raw.o udp.o arp.o icmp.o devinet.o af_inet.o igmp.o \ | 9 | datagram.o raw.o udp.o arp.o icmp.o devinet.o af_inet.o igmp.o \ |
| 10 | sysctl_net_ipv4.o fib_frontend.o fib_semantics.o fib_hash.o | 10 | sysctl_net_ipv4.o fib_frontend.o fib_semantics.o |
| 11 | 11 | ||
| 12 | obj-$(CONFIG_IP_FIB_HASH) += fib_hash.o | ||
| 13 | obj-$(CONFIG_IP_FIB_TRIE) += fib_trie.o | ||
| 12 | obj-$(CONFIG_PROC_FS) += proc.o | 14 | obj-$(CONFIG_PROC_FS) += proc.o |
| 13 | obj-$(CONFIG_IP_MULTIPLE_TABLES) += fib_rules.o | 15 | obj-$(CONFIG_IP_MULTIPLE_TABLES) += fib_rules.o |
| 14 | obj-$(CONFIG_IP_MROUTE) += ipmr.o | 16 | obj-$(CONFIG_IP_MROUTE) += ipmr.o |
diff --git a/net/ipv4/af_inet.c b/net/ipv4/af_inet.c index 03942f133944..658e7977924d 100644 --- a/net/ipv4/af_inet.c +++ b/net/ipv4/af_inet.c | |||
| @@ -1119,6 +1119,10 @@ module_init(inet_init); | |||
| 1119 | #ifdef CONFIG_PROC_FS | 1119 | #ifdef CONFIG_PROC_FS |
| 1120 | extern int fib_proc_init(void); | 1120 | extern int fib_proc_init(void); |
| 1121 | extern void fib_proc_exit(void); | 1121 | extern void fib_proc_exit(void); |
| 1122 | #ifdef CONFIG_IP_FIB_TRIE | ||
| 1123 | extern int fib_stat_proc_init(void); | ||
| 1124 | extern void fib_stat_proc_exit(void); | ||
| 1125 | #endif | ||
| 1122 | extern int ip_misc_proc_init(void); | 1126 | extern int ip_misc_proc_init(void); |
| 1123 | extern int raw_proc_init(void); | 1127 | extern int raw_proc_init(void); |
| 1124 | extern void raw_proc_exit(void); | 1128 | extern void raw_proc_exit(void); |
| @@ -1139,11 +1143,19 @@ static int __init ipv4_proc_init(void) | |||
| 1139 | goto out_udp; | 1143 | goto out_udp; |
| 1140 | if (fib_proc_init()) | 1144 | if (fib_proc_init()) |
| 1141 | goto out_fib; | 1145 | goto out_fib; |
| 1146 | #ifdef CONFIG_IP_FIB_TRIE | ||
| 1147 | if (fib_stat_proc_init()) | ||
| 1148 | goto out_fib_stat; | ||
| 1149 | #endif | ||
| 1142 | if (ip_misc_proc_init()) | 1150 | if (ip_misc_proc_init()) |
| 1143 | goto out_misc; | 1151 | goto out_misc; |
| 1144 | out: | 1152 | out: |
| 1145 | return rc; | 1153 | return rc; |
| 1146 | out_misc: | 1154 | out_misc: |
| 1155 | #ifdef CONFIG_IP_FIB_TRIE | ||
| 1156 | fib_stat_proc_exit(); | ||
| 1157 | out_fib_stat: | ||
| 1158 | #endif | ||
| 1147 | fib_proc_exit(); | 1159 | fib_proc_exit(); |
| 1148 | out_fib: | 1160 | out_fib: |
| 1149 | udp4_proc_exit(); | 1161 | udp4_proc_exit(); |
diff --git a/net/ipv4/fib_trie.c b/net/ipv4/fib_trie.c new file mode 100644 index 000000000000..c0ece94fc63e --- /dev/null +++ b/net/ipv4/fib_trie.c | |||
| @@ -0,0 +1,2454 @@ | |||
| 1 | /* | ||
| 2 | * This program is free software; you can redistribute it and/or | ||
| 3 | * modify it under the terms of the GNU General Public License | ||
| 4 | * as published by the Free Software Foundation; either version | ||
| 5 | * 2 of the License, or (at your option) any later version. | ||
| 6 | * | ||
| 7 | * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet | ||
| 8 | * & Swedish University of Agricultural Sciences. | ||
| 9 | * | ||
| 10 | * Jens Laas <jens.laas@data.slu.se> Swedish University of | ||
| 11 | * Agricultural Sciences. | ||
| 12 | * | ||
| 13 | * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet | ||
| 14 | * | ||
| 15 | * This work is based on the LPC-trie which is originally descibed in: | ||
| 16 | * | ||
| 17 | * An experimental study of compression methods for dynamic tries | ||
| 18 | * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. | ||
| 19 | * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/ | ||
| 20 | * | ||
| 21 | * | ||
| 22 | * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson | ||
| 23 | * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 | ||
| 24 | * | ||
| 25 | * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $ | ||
| 26 | * | ||
| 27 | * | ||
| 28 | * Code from fib_hash has been reused which includes the following header: | ||
| 29 | * | ||
| 30 | * | ||
| 31 | * INET An implementation of the TCP/IP protocol suite for the LINUX | ||
| 32 | * operating system. INET is implemented using the BSD Socket | ||
| 33 | * interface as the means of communication with the user level. | ||
| 34 | * | ||
| 35 | * IPv4 FIB: lookup engine and maintenance routines. | ||
| 36 | * | ||
| 37 | * | ||
| 38 | * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> | ||
| 39 | * | ||
| 40 | * This program is free software; you can redistribute it and/or | ||
| 41 | * modify it under the terms of the GNU General Public License | ||
| 42 | * as published by the Free Software Foundation; either version | ||
| 43 | * 2 of the License, or (at your option) any later version. | ||
| 44 | */ | ||
| 45 | |||
| 46 | #define VERSION "0.323" | ||
| 47 | |||
| 48 | #include <linux/config.h> | ||
| 49 | #include <asm/uaccess.h> | ||
| 50 | #include <asm/system.h> | ||
| 51 | #include <asm/bitops.h> | ||
| 52 | #include <linux/types.h> | ||
| 53 | #include <linux/kernel.h> | ||
| 54 | #include <linux/sched.h> | ||
| 55 | #include <linux/mm.h> | ||
| 56 | #include <linux/string.h> | ||
| 57 | #include <linux/socket.h> | ||
| 58 | #include <linux/sockios.h> | ||
| 59 | #include <linux/errno.h> | ||
| 60 | #include <linux/in.h> | ||
| 61 | #include <linux/inet.h> | ||
| 62 | #include <linux/netdevice.h> | ||
| 63 | #include <linux/if_arp.h> | ||
| 64 | #include <linux/proc_fs.h> | ||
| 65 | #include <linux/skbuff.h> | ||
| 66 | #include <linux/netlink.h> | ||
| 67 | #include <linux/init.h> | ||
| 68 | #include <linux/list.h> | ||
| 69 | #include <net/ip.h> | ||
| 70 | #include <net/protocol.h> | ||
| 71 | #include <net/route.h> | ||
| 72 | #include <net/tcp.h> | ||
| 73 | #include <net/sock.h> | ||
| 74 | #include <net/ip_fib.h> | ||
| 75 | #include "fib_lookup.h" | ||
| 76 | |||
| 77 | #undef CONFIG_IP_FIB_TRIE_STATS | ||
| 78 | #define MAX_CHILDS 16384 | ||
| 79 | |||
| 80 | #define EXTRACT(p, n, str) ((str)<<(p)>>(32-(n))) | ||
| 81 | #define KEYLENGTH (8*sizeof(t_key)) | ||
| 82 | #define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l)) | ||
| 83 | #define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset)) | ||
| 84 | |||
| 85 | static DEFINE_RWLOCK(fib_lock); | ||
| 86 | |||
| 87 | typedef unsigned int t_key; | ||
| 88 | |||
| 89 | #define T_TNODE 0 | ||
| 90 | #define T_LEAF 1 | ||
| 91 | #define NODE_TYPE_MASK 0x1UL | ||
| 92 | #define NODE_PARENT(_node) \ | ||
| 93 | ((struct tnode *)((_node)->_parent & ~NODE_TYPE_MASK)) | ||
| 94 | #define NODE_SET_PARENT(_node, _ptr) \ | ||
| 95 | ((_node)->_parent = (((unsigned long)(_ptr)) | \ | ||
| 96 | ((_node)->_parent & NODE_TYPE_MASK))) | ||
| 97 | #define NODE_INIT_PARENT(_node, _type) \ | ||
| 98 | ((_node)->_parent = (_type)) | ||
| 99 | #define NODE_TYPE(_node) \ | ||
| 100 | ((_node)->_parent & NODE_TYPE_MASK) | ||
| 101 | |||
| 102 | #define IS_TNODE(n) (!(n->_parent & T_LEAF)) | ||
| 103 | #define IS_LEAF(n) (n->_parent & T_LEAF) | ||
| 104 | |||
| 105 | struct node { | ||
| 106 | t_key key; | ||
| 107 | unsigned long _parent; | ||
| 108 | }; | ||
| 109 | |||
| 110 | struct leaf { | ||
| 111 | t_key key; | ||
| 112 | unsigned long _parent; | ||
| 113 | struct hlist_head list; | ||
| 114 | }; | ||
| 115 | |||
| 116 | struct leaf_info { | ||
| 117 | struct hlist_node hlist; | ||
| 118 | int plen; | ||
| 119 | struct list_head falh; | ||
| 120 | }; | ||
| 121 | |||
| 122 | struct tnode { | ||
| 123 | t_key key; | ||
| 124 | unsigned long _parent; | ||
| 125 | unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */ | ||
| 126 | unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */ | ||
| 127 | unsigned short full_children; /* KEYLENGTH bits needed */ | ||
| 128 | unsigned short empty_children; /* KEYLENGTH bits needed */ | ||
| 129 | struct node *child[0]; | ||
| 130 | }; | ||
| 131 | |||
| 132 | #ifdef CONFIG_IP_FIB_TRIE_STATS | ||
| 133 | struct trie_use_stats { | ||
| 134 | unsigned int gets; | ||
| 135 | unsigned int backtrack; | ||
| 136 | unsigned int semantic_match_passed; | ||
| 137 | unsigned int semantic_match_miss; | ||
| 138 | unsigned int null_node_hit; | ||
| 139 | }; | ||
| 140 | #endif | ||
| 141 | |||
| 142 | struct trie_stat { | ||
| 143 | unsigned int totdepth; | ||
| 144 | unsigned int maxdepth; | ||
| 145 | unsigned int tnodes; | ||
| 146 | unsigned int leaves; | ||
| 147 | unsigned int nullpointers; | ||
| 148 | unsigned int nodesizes[MAX_CHILDS]; | ||
| 149 | }; | ||
| 150 | |||
| 151 | struct trie { | ||
| 152 | struct node *trie; | ||
| 153 | #ifdef CONFIG_IP_FIB_TRIE_STATS | ||
| 154 | struct trie_use_stats stats; | ||
| 155 | #endif | ||
| 156 | int size; | ||
| 157 | unsigned int revision; | ||
| 158 | }; | ||
| 159 | |||
| 160 | static int trie_debug = 0; | ||
| 161 | |||
| 162 | static int tnode_full(struct tnode *tn, struct node *n); | ||
| 163 | static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n); | ||
| 164 | static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull); | ||
| 165 | static int tnode_child_length(struct tnode *tn); | ||
| 166 | static struct node *resize(struct trie *t, struct tnode *tn); | ||
| 167 | static struct tnode *inflate(struct trie *t, struct tnode *tn); | ||
| 168 | static struct tnode *halve(struct trie *t, struct tnode *tn); | ||
| 169 | static void tnode_free(struct tnode *tn); | ||
| 170 | static void trie_dump_seq(struct seq_file *seq, struct trie *t); | ||
| 171 | extern struct fib_alias *fib_find_alias(struct list_head *fah, u8 tos, u32 prio); | ||
| 172 | extern int fib_detect_death(struct fib_info *fi, int order, | ||
| 173 | struct fib_info **last_resort, int *last_idx, int *dflt); | ||
| 174 | |||
| 175 | extern void rtmsg_fib(int event, u32 key, struct fib_alias *fa, int z, int tb_id, | ||
| 176 | struct nlmsghdr *n, struct netlink_skb_parms *req); | ||
| 177 | |||
| 178 | static kmem_cache_t *fn_alias_kmem; | ||
| 179 | static struct trie *trie_local = NULL, *trie_main = NULL; | ||
| 180 | |||
| 181 | static void trie_bug(char *err) | ||
| 182 | { | ||
| 183 | printk("Trie Bug: %s\n", err); | ||
| 184 | BUG(); | ||
| 185 | } | ||
| 186 | |||
| 187 | static inline struct node *tnode_get_child(struct tnode *tn, int i) | ||
| 188 | { | ||
| 189 | if (i >= 1<<tn->bits) | ||
| 190 | trie_bug("tnode_get_child"); | ||
| 191 | |||
| 192 | return tn->child[i]; | ||
| 193 | } | ||
| 194 | |||
| 195 | static inline int tnode_child_length(struct tnode *tn) | ||
| 196 | { | ||
| 197 | return 1<<tn->bits; | ||
| 198 | } | ||
| 199 | |||
| 200 | /* | ||
| 201 | _________________________________________________________________ | ||
| 202 | | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | | ||
| 203 | ---------------------------------------------------------------- | ||
| 204 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ||
| 205 | |||
| 206 | _________________________________________________________________ | ||
| 207 | | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | | ||
| 208 | ----------------------------------------------------------------- | ||
| 209 | 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | ||
| 210 | |||
| 211 | tp->pos = 7 | ||
| 212 | tp->bits = 3 | ||
| 213 | n->pos = 15 | ||
| 214 | n->bits=4 | ||
| 215 | KEYLENGTH=32 | ||
| 216 | */ | ||
| 217 | |||
| 218 | static inline t_key tkey_extract_bits(t_key a, int offset, int bits) | ||
| 219 | { | ||
| 220 | if (offset < KEYLENGTH) | ||
| 221 | return ((t_key)(a << offset)) >> (KEYLENGTH - bits); | ||
| 222 | else | ||
| 223 | return 0; | ||
| 224 | } | ||
| 225 | |||
| 226 | static inline int tkey_equals(t_key a, t_key b) | ||
| 227 | { | ||
| 228 | return a == b; | ||
| 229 | } | ||
| 230 | |||
| 231 | static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) | ||
| 232 | { | ||
| 233 | if (bits == 0 || offset >= KEYLENGTH) | ||
| 234 | return 1; | ||
| 235 | bits = bits > KEYLENGTH ? KEYLENGTH : bits; | ||
| 236 | return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; | ||
| 237 | } | ||
| 238 | |||
| 239 | static inline int tkey_mismatch(t_key a, int offset, t_key b) | ||
| 240 | { | ||
| 241 | t_key diff = a ^ b; | ||
| 242 | int i = offset; | ||
| 243 | |||
| 244 | if(!diff) | ||
| 245 | return 0; | ||
| 246 | while((diff << i) >> (KEYLENGTH-1) == 0) | ||
| 247 | i++; | ||
| 248 | return i; | ||
| 249 | } | ||
| 250 | |||
| 251 | /* Candiate for fib_semantics */ | ||
| 252 | |||
| 253 | static void fn_free_alias(struct fib_alias *fa) | ||
| 254 | { | ||
| 255 | fib_release_info(fa->fa_info); | ||
| 256 | kmem_cache_free(fn_alias_kmem, fa); | ||
| 257 | } | ||
| 258 | |||
| 259 | /* | ||
| 260 | To understand this stuff, an understanding of keys and all their bits is | ||
| 261 | necessary. Every node in the trie has a key associated with it, but not | ||
| 262 | all of the bits in that key are significant. | ||
| 263 | |||
| 264 | Consider a node 'n' and its parent 'tp'. | ||
| 265 | |||
| 266 | If n is a leaf, every bit in its key is significant. Its presence is | ||
| 267 | necessitaded by path compression, since during a tree traversal (when | ||
| 268 | searching for a leaf - unless we are doing an insertion) we will completely | ||
| 269 | ignore all skipped bits we encounter. Thus we need to verify, at the end of | ||
| 270 | a potentially successful search, that we have indeed been walking the | ||
| 271 | correct key path. | ||
| 272 | |||
| 273 | Note that we can never "miss" the correct key in the tree if present by | ||
| 274 | following the wrong path. Path compression ensures that segments of the key | ||
| 275 | that are the same for all keys with a given prefix are skipped, but the | ||
| 276 | skipped part *is* identical for each node in the subtrie below the skipped | ||
| 277 | bit! trie_insert() in this implementation takes care of that - note the | ||
| 278 | call to tkey_sub_equals() in trie_insert(). | ||
| 279 | |||
| 280 | if n is an internal node - a 'tnode' here, the various parts of its key | ||
| 281 | have many different meanings. | ||
| 282 | |||
| 283 | Example: | ||
| 284 | _________________________________________________________________ | ||
| 285 | | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | | ||
| 286 | ----------------------------------------------------------------- | ||
| 287 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ||
| 288 | |||
| 289 | _________________________________________________________________ | ||
| 290 | | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | | ||
| 291 | ----------------------------------------------------------------- | ||
| 292 | 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | ||
| 293 | |||
| 294 | tp->pos = 7 | ||
| 295 | tp->bits = 3 | ||
| 296 | n->pos = 15 | ||
| 297 | n->bits=4 | ||
| 298 | |||
| 299 | First, let's just ignore the bits that come before the parent tp, that is | ||
| 300 | the bits from 0 to (tp->pos-1). They are *known* but at this point we do | ||
| 301 | not use them for anything. | ||
| 302 | |||
| 303 | The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the | ||
| 304 | index into the parent's child array. That is, they will be used to find | ||
| 305 | 'n' among tp's children. | ||
| 306 | |||
| 307 | The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits | ||
| 308 | for the node n. | ||
| 309 | |||
| 310 | All the bits we have seen so far are significant to the node n. The rest | ||
| 311 | of the bits are really not needed or indeed known in n->key. | ||
| 312 | |||
| 313 | The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into | ||
| 314 | n's child array, and will of course be different for each child. | ||
| 315 | |||
| 316 | The rest of the bits, from (n->pos + n->bits) onward, are completely unknown | ||
| 317 | at this point. | ||
| 318 | |||
| 319 | */ | ||
| 320 | |||
| 321 | static void check_tnode(struct tnode *tn) | ||
| 322 | { | ||
| 323 | if(tn && tn->pos+tn->bits > 32) { | ||
| 324 | printk("TNODE ERROR tn=%p, pos=%d, bits=%d\n", tn, tn->pos, tn->bits); | ||
| 325 | } | ||
| 326 | } | ||
| 327 | |||
| 328 | static int halve_threshold = 25; | ||
| 329 | static int inflate_threshold = 50; | ||
| 330 | |||
| 331 | static struct leaf *leaf_new(void) | ||
| 332 | { | ||
| 333 | struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL); | ||
| 334 | if(l) { | ||
| 335 | NODE_INIT_PARENT(l, T_LEAF); | ||
| 336 | INIT_HLIST_HEAD(&l->list); | ||
| 337 | } | ||
| 338 | return l; | ||
| 339 | } | ||
| 340 | |||
| 341 | static struct leaf_info *leaf_info_new(int plen) | ||
| 342 | { | ||
| 343 | struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); | ||
| 344 | li->plen = plen; | ||
| 345 | INIT_LIST_HEAD(&li->falh); | ||
| 346 | return li; | ||
| 347 | } | ||
| 348 | |||
| 349 | static inline void free_leaf(struct leaf *l) | ||
| 350 | { | ||
| 351 | kfree(l); | ||
| 352 | } | ||
| 353 | |||
| 354 | static inline void free_leaf_info(struct leaf_info *li) | ||
| 355 | { | ||
| 356 | kfree(li); | ||
| 357 | } | ||
| 358 | |||
| 359 | static struct tnode* tnode_new(t_key key, int pos, int bits) | ||
| 360 | { | ||
| 361 | int nchildren = 1<<bits; | ||
| 362 | int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *); | ||
| 363 | struct tnode *tn = kmalloc(sz, GFP_KERNEL); | ||
| 364 | |||
| 365 | if(tn) { | ||
| 366 | memset(tn, 0, sz); | ||
| 367 | NODE_INIT_PARENT(tn, T_TNODE); | ||
| 368 | tn->pos = pos; | ||
| 369 | tn->bits = bits; | ||
| 370 | tn->key = key; | ||
| 371 | tn->full_children = 0; | ||
| 372 | tn->empty_children = 1<<bits; | ||
| 373 | } | ||
| 374 | if(trie_debug > 0) | ||
| 375 | printk("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode), | ||
| 376 | (unsigned int) (sizeof(struct node) * 1<<bits)); | ||
| 377 | return tn; | ||
| 378 | } | ||
| 379 | |||
| 380 | static void tnode_free(struct tnode *tn) | ||
| 381 | { | ||
| 382 | if(!tn) { | ||
| 383 | trie_bug("tnode_free\n"); | ||
| 384 | } | ||
| 385 | if(IS_LEAF(tn)) { | ||
| 386 | free_leaf((struct leaf *)tn); | ||
| 387 | if(trie_debug > 0 ) | ||
| 388 | printk("FL %p \n", tn); | ||
| 389 | } | ||
| 390 | else if(IS_TNODE(tn)) { | ||
| 391 | kfree(tn); | ||
| 392 | if(trie_debug > 0 ) | ||
| 393 | printk("FT %p \n", tn); | ||
| 394 | } | ||
| 395 | else { | ||
| 396 | trie_bug("tnode_free\n"); | ||
| 397 | } | ||
| 398 | } | ||
| 399 | |||
| 400 | /* | ||
| 401 | * Check whether a tnode 'n' is "full", i.e. it is an internal node | ||
| 402 | * and no bits are skipped. See discussion in dyntree paper p. 6 | ||
| 403 | */ | ||
| 404 | |||
| 405 | static inline int tnode_full(struct tnode *tn, struct node *n) | ||
| 406 | { | ||
| 407 | if(n == NULL || IS_LEAF(n)) | ||
| 408 | return 0; | ||
| 409 | |||
| 410 | return ((struct tnode *) n)->pos == tn->pos + tn->bits; | ||
| 411 | } | ||
| 412 | |||
| 413 | static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n) | ||
| 414 | { | ||
| 415 | tnode_put_child_reorg(tn, i, n, -1); | ||
| 416 | } | ||
| 417 | |||
| 418 | /* | ||
| 419 | * Add a child at position i overwriting the old value. | ||
| 420 | * Update the value of full_children and empty_children. | ||
| 421 | */ | ||
| 422 | |||
| 423 | static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull) | ||
| 424 | { | ||
| 425 | struct node *chi; | ||
| 426 | int isfull; | ||
| 427 | |||
| 428 | if(i >= 1<<tn->bits) { | ||
| 429 | printk("bits=%d, i=%d\n", tn->bits, i); | ||
| 430 | trie_bug("tnode_put_child_reorg bits"); | ||
| 431 | } | ||
| 432 | write_lock_bh(&fib_lock); | ||
| 433 | chi = tn->child[i]; | ||
| 434 | |||
| 435 | /* update emptyChildren */ | ||
| 436 | if (n == NULL && chi != NULL) | ||
| 437 | tn->empty_children++; | ||
| 438 | else if (n != NULL && chi == NULL) | ||
| 439 | tn->empty_children--; | ||
| 440 | |||
| 441 | /* update fullChildren */ | ||
| 442 | if (wasfull == -1) | ||
| 443 | wasfull = tnode_full(tn, chi); | ||
| 444 | |||
| 445 | isfull = tnode_full(tn, n); | ||
| 446 | if (wasfull && !isfull) | ||
| 447 | tn->full_children--; | ||
| 448 | |||
| 449 | else if (!wasfull && isfull) | ||
| 450 | tn->full_children++; | ||
| 451 | if(n) | ||
| 452 | NODE_SET_PARENT(n, tn); | ||
| 453 | |||
| 454 | tn->child[i] = n; | ||
| 455 | write_unlock_bh(&fib_lock); | ||
| 456 | } | ||
| 457 | |||
| 458 | static struct node *resize(struct trie *t, struct tnode *tn) | ||
| 459 | { | ||
| 460 | int i; | ||
| 461 | |||
| 462 | if (!tn) | ||
| 463 | return NULL; | ||
| 464 | |||
| 465 | if(trie_debug) | ||
| 466 | printk("In tnode_resize %p inflate_threshold=%d threshold=%d\n", | ||
| 467 | tn, inflate_threshold, halve_threshold); | ||
| 468 | |||
| 469 | /* No children */ | ||
| 470 | if (tn->empty_children == tnode_child_length(tn)) { | ||
| 471 | tnode_free(tn); | ||
| 472 | return NULL; | ||
| 473 | } | ||
| 474 | /* One child */ | ||
| 475 | if (tn->empty_children == tnode_child_length(tn) - 1) | ||
| 476 | for (i = 0; i < tnode_child_length(tn); i++) { | ||
| 477 | |||
| 478 | write_lock_bh(&fib_lock); | ||
| 479 | if (tn->child[i] != NULL) { | ||
| 480 | |||
| 481 | /* compress one level */ | ||
| 482 | struct node *n = tn->child[i]; | ||
| 483 | if(n) | ||
| 484 | NODE_INIT_PARENT(n, NODE_TYPE(n)); | ||
| 485 | |||
| 486 | write_unlock_bh(&fib_lock); | ||
| 487 | tnode_free(tn); | ||
| 488 | return n; | ||
| 489 | } | ||
| 490 | write_unlock_bh(&fib_lock); | ||
| 491 | } | ||
| 492 | /* | ||
| 493 | * Double as long as the resulting node has a number of | ||
| 494 | * nonempty nodes that are above the threshold. | ||
| 495 | */ | ||
| 496 | |||
| 497 | /* | ||
| 498 | * From "Implementing a dynamic compressed trie" by Stefan Nilsson of | ||
| 499 | * the Helsinki University of Technology and Matti Tikkanen of Nokia | ||
| 500 | * Telecommunications, page 6: | ||
| 501 | * "A node is doubled if the ratio of non-empty children to all | ||
| 502 | * children in the *doubled* node is at least 'high'." | ||
| 503 | * | ||
| 504 | * 'high' in this instance is the variable 'inflate_threshold'. It | ||
| 505 | * is expressed as a percentage, so we multiply it with | ||
| 506 | * tnode_child_length() and instead of multiplying by 2 (since the | ||
| 507 | * child array will be doubled by inflate()) and multiplying | ||
| 508 | * the left-hand side by 100 (to handle the percentage thing) we | ||
| 509 | * multiply the left-hand side by 50. | ||
| 510 | * | ||
| 511 | * The left-hand side may look a bit weird: tnode_child_length(tn) | ||
| 512 | * - tn->empty_children is of course the number of non-null children | ||
| 513 | * in the current node. tn->full_children is the number of "full" | ||
| 514 | * children, that is non-null tnodes with a skip value of 0. | ||
| 515 | * All of those will be doubled in the resulting inflated tnode, so | ||
| 516 | * we just count them one extra time here. | ||
| 517 | * | ||
| 518 | * A clearer way to write this would be: | ||
| 519 | * | ||
| 520 | * to_be_doubled = tn->full_children; | ||
| 521 | * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - | ||
| 522 | * tn->full_children; | ||
| 523 | * | ||
| 524 | * new_child_length = tnode_child_length(tn) * 2; | ||
| 525 | * | ||
| 526 | * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / | ||
| 527 | * new_child_length; | ||
| 528 | * if (new_fill_factor >= inflate_threshold) | ||
| 529 | * | ||
| 530 | * ...and so on, tho it would mess up the while() loop. | ||
| 531 | * | ||
| 532 | * anyway, | ||
| 533 | * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= | ||
| 534 | * inflate_threshold | ||
| 535 | * | ||
| 536 | * avoid a division: | ||
| 537 | * 100 * (not_to_be_doubled + 2*to_be_doubled) >= | ||
| 538 | * inflate_threshold * new_child_length | ||
| 539 | * | ||
| 540 | * expand not_to_be_doubled and to_be_doubled, and shorten: | ||
| 541 | * 100 * (tnode_child_length(tn) - tn->empty_children + | ||
| 542 | * tn->full_children ) >= inflate_threshold * new_child_length | ||
| 543 | * | ||
| 544 | * expand new_child_length: | ||
| 545 | * 100 * (tnode_child_length(tn) - tn->empty_children + | ||
| 546 | * tn->full_children ) >= | ||
| 547 | * inflate_threshold * tnode_child_length(tn) * 2 | ||
| 548 | * | ||
| 549 | * shorten again: | ||
| 550 | * 50 * (tn->full_children + tnode_child_length(tn) - | ||
| 551 | * tn->empty_children ) >= inflate_threshold * | ||
| 552 | * tnode_child_length(tn) | ||
| 553 | * | ||
| 554 | */ | ||
| 555 | |||
| 556 | check_tnode(tn); | ||
| 557 | |||
| 558 | while ((tn->full_children > 0 && | ||
| 559 | 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >= | ||
| 560 | inflate_threshold * tnode_child_length(tn))) { | ||
| 561 | |||
| 562 | tn = inflate(t, tn); | ||
| 563 | } | ||
| 564 | |||
| 565 | check_tnode(tn); | ||
| 566 | |||
| 567 | /* | ||
| 568 | * Halve as long as the number of empty children in this | ||
| 569 | * node is above threshold. | ||
| 570 | */ | ||
| 571 | while (tn->bits > 1 && | ||
| 572 | 100 * (tnode_child_length(tn) - tn->empty_children) < | ||
| 573 | halve_threshold * tnode_child_length(tn)) | ||
| 574 | |||
| 575 | tn = halve(t, tn); | ||
| 576 | |||
| 577 | /* Only one child remains */ | ||
| 578 | |||
| 579 | if (tn->empty_children == tnode_child_length(tn) - 1) | ||
| 580 | for (i = 0; i < tnode_child_length(tn); i++) { | ||
| 581 | |||
| 582 | write_lock_bh(&fib_lock); | ||
| 583 | if (tn->child[i] != NULL) { | ||
| 584 | /* compress one level */ | ||
| 585 | struct node *n = tn->child[i]; | ||
| 586 | |||
| 587 | if(n) | ||
| 588 | NODE_INIT_PARENT(n, NODE_TYPE(n)); | ||
| 589 | |||
| 590 | write_unlock_bh(&fib_lock); | ||
| 591 | tnode_free(tn); | ||
| 592 | return n; | ||
| 593 | } | ||
| 594 | write_unlock_bh(&fib_lock); | ||
| 595 | } | ||
| 596 | |||
| 597 | return (struct node *) tn; | ||
| 598 | } | ||
| 599 | |||
| 600 | static struct tnode *inflate(struct trie *t, struct tnode *tn) | ||
| 601 | { | ||
| 602 | struct tnode *inode; | ||
| 603 | struct tnode *oldtnode = tn; | ||
| 604 | int olen = tnode_child_length(tn); | ||
| 605 | int i; | ||
| 606 | |||
| 607 | if(trie_debug) | ||
| 608 | printk("In inflate\n"); | ||
| 609 | |||
| 610 | tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); | ||
| 611 | |||
| 612 | if (!tn) | ||
| 613 | trie_bug("tnode_new failed"); | ||
| 614 | |||
| 615 | for(i = 0; i < olen; i++) { | ||
| 616 | struct node *node = tnode_get_child(oldtnode, i); | ||
| 617 | |||
| 618 | /* An empty child */ | ||
| 619 | if (node == NULL) | ||
| 620 | continue; | ||
| 621 | |||
| 622 | /* A leaf or an internal node with skipped bits */ | ||
| 623 | |||
| 624 | if(IS_LEAF(node) || ((struct tnode *) node)->pos > | ||
| 625 | tn->pos + tn->bits - 1) { | ||
| 626 | if(tkey_extract_bits(node->key, tn->pos + tn->bits - 1, | ||
| 627 | 1) == 0) | ||
| 628 | put_child(t, tn, 2*i, node); | ||
| 629 | else | ||
| 630 | put_child(t, tn, 2*i+1, node); | ||
| 631 | continue; | ||
| 632 | } | ||
| 633 | |||
| 634 | /* An internal node with two children */ | ||
| 635 | inode = (struct tnode *) node; | ||
| 636 | |||
| 637 | if (inode->bits == 1) { | ||
| 638 | put_child(t, tn, 2*i, inode->child[0]); | ||
| 639 | put_child(t, tn, 2*i+1, inode->child[1]); | ||
| 640 | |||
| 641 | tnode_free(inode); | ||
| 642 | } | ||
| 643 | |||
| 644 | /* An internal node with more than two children */ | ||
| 645 | else { | ||
| 646 | struct tnode *left, *right; | ||
| 647 | int size, j; | ||
| 648 | |||
| 649 | /* We will replace this node 'inode' with two new | ||
| 650 | * ones, 'left' and 'right', each with half of the | ||
| 651 | * original children. The two new nodes will have | ||
| 652 | * a position one bit further down the key and this | ||
| 653 | * means that the "significant" part of their keys | ||
| 654 | * (see the discussion near the top of this file) | ||
| 655 | * will differ by one bit, which will be "0" in | ||
| 656 | * left's key and "1" in right's key. Since we are | ||
| 657 | * moving the key position by one step, the bit that | ||
| 658 | * we are moving away from - the bit at position | ||
| 659 | * (inode->pos) - is the one that will differ between | ||
| 660 | * left and right. So... we synthesize that bit in the | ||
| 661 | * two new keys. | ||
| 662 | * The mask 'm' below will be a single "one" bit at | ||
| 663 | * the position (inode->pos) | ||
| 664 | */ | ||
| 665 | |||
| 666 | t_key m = TKEY_GET_MASK(inode->pos, 1); | ||
| 667 | |||
| 668 | /* Use the old key, but set the new significant | ||
| 669 | * bit to zero. | ||
| 670 | */ | ||
| 671 | left = tnode_new(inode->key&(~m), inode->pos + 1, | ||
| 672 | inode->bits - 1); | ||
| 673 | |||
| 674 | if(!left) | ||
| 675 | trie_bug("tnode_new failed"); | ||
| 676 | |||
| 677 | |||
| 678 | /* Use the old key, but set the new significant | ||
| 679 | * bit to one. | ||
| 680 | */ | ||
| 681 | right = tnode_new(inode->key|m, inode->pos + 1, | ||
| 682 | inode->bits - 1); | ||
| 683 | |||
| 684 | if(!right) | ||
| 685 | trie_bug("tnode_new failed"); | ||
| 686 | |||
| 687 | size = tnode_child_length(left); | ||
| 688 | for(j = 0; j < size; j++) { | ||
| 689 | put_child(t, left, j, inode->child[j]); | ||
| 690 | put_child(t, right, j, inode->child[j + size]); | ||
| 691 | } | ||
| 692 | put_child(t, tn, 2*i, resize(t, left)); | ||
| 693 | put_child(t, tn, 2*i+1, resize(t, right)); | ||
| 694 | |||
| 695 | tnode_free(inode); | ||
| 696 | } | ||
| 697 | } | ||
| 698 | tnode_free(oldtnode); | ||
| 699 | return tn; | ||
| 700 | } | ||
| 701 | |||
| 702 | static struct tnode *halve(struct trie *t, struct tnode *tn) | ||
| 703 | { | ||
| 704 | struct tnode *oldtnode = tn; | ||
| 705 | struct node *left, *right; | ||
| 706 | int i; | ||
| 707 | int olen = tnode_child_length(tn); | ||
| 708 | |||
| 709 | if(trie_debug) printk("In halve\n"); | ||
| 710 | |||
| 711 | tn=tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); | ||
| 712 | |||
| 713 | if(!tn) | ||
| 714 | trie_bug("tnode_new failed"); | ||
| 715 | |||
| 716 | for(i = 0; i < olen; i += 2) { | ||
| 717 | left = tnode_get_child(oldtnode, i); | ||
| 718 | right = tnode_get_child(oldtnode, i+1); | ||
| 719 | |||
| 720 | /* At least one of the children is empty */ | ||
| 721 | if (left == NULL) { | ||
| 722 | if (right == NULL) /* Both are empty */ | ||
| 723 | continue; | ||
| 724 | put_child(t, tn, i/2, right); | ||
| 725 | } else if (right == NULL) | ||
| 726 | put_child(t, tn, i/2, left); | ||
| 727 | |||
| 728 | /* Two nonempty children */ | ||
| 729 | else { | ||
| 730 | struct tnode *newBinNode = | ||
| 731 | tnode_new(left->key, tn->pos + tn->bits, 1); | ||
| 732 | |||
| 733 | if(!newBinNode) | ||
| 734 | trie_bug("tnode_new failed"); | ||
| 735 | |||
| 736 | put_child(t, newBinNode, 0, left); | ||
| 737 | put_child(t, newBinNode, 1, right); | ||
| 738 | put_child(t, tn, i/2, resize(t, newBinNode)); | ||
| 739 | } | ||
| 740 | } | ||
| 741 | tnode_free(oldtnode); | ||
| 742 | return tn; | ||
| 743 | } | ||
| 744 | |||
| 745 | static void *trie_init(struct trie *t) | ||
| 746 | { | ||
| 747 | if(t) { | ||
| 748 | t->size = 0; | ||
| 749 | t->trie = NULL; | ||
| 750 | t->revision = 0; | ||
| 751 | #ifdef CONFIG_IP_FIB_TRIE_STATS | ||
| 752 | memset(&t->stats, 0, sizeof(struct trie_use_stats)); | ||
| 753 | #endif | ||
| 754 | } | ||
| 755 | return t; | ||
| 756 | } | ||
| 757 | |||
| 758 | static struct leaf_info *find_leaf_info(struct hlist_head *head, int plen) | ||
| 759 | { | ||
| 760 | struct hlist_node *node; | ||
| 761 | struct leaf_info *li; | ||
| 762 | |||
| 763 | hlist_for_each_entry(li, node, head, hlist) { | ||
| 764 | |||
| 765 | if ( li->plen == plen ) | ||
| 766 | return li; | ||
| 767 | } | ||
| 768 | return NULL; | ||
| 769 | } | ||
| 770 | |||
| 771 | static inline struct list_head * get_fa_head(struct leaf *l, int plen) | ||
| 772 | { | ||
| 773 | struct list_head *fa_head=NULL; | ||
| 774 | struct leaf_info *li = find_leaf_info(&l->list, plen); | ||
| 775 | |||
| 776 | if(li) | ||
| 777 | fa_head = &li->falh; | ||
| 778 | |||
| 779 | return fa_head; | ||
| 780 | } | ||
| 781 | |||
| 782 | static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) | ||
| 783 | { | ||
| 784 | struct leaf_info *li=NULL, *last=NULL; | ||
| 785 | struct hlist_node *node, *tmp; | ||
| 786 | |||
| 787 | write_lock_bh(&fib_lock); | ||
| 788 | |||
| 789 | if(hlist_empty(head)) | ||
| 790 | hlist_add_head(&new->hlist, head); | ||
| 791 | else { | ||
| 792 | hlist_for_each_entry_safe(li, node, tmp, head, hlist) { | ||
| 793 | |||
| 794 | if (new->plen > li->plen) | ||
| 795 | break; | ||
| 796 | |||
| 797 | last = li; | ||
| 798 | } | ||
| 799 | if(last) | ||
| 800 | hlist_add_after(&last->hlist, &new->hlist); | ||
| 801 | else | ||
| 802 | hlist_add_before(&new->hlist, &li->hlist); | ||
| 803 | } | ||
| 804 | write_unlock_bh(&fib_lock); | ||
| 805 | } | ||
| 806 | |||
| 807 | static struct leaf * | ||
| 808 | fib_find_node(struct trie *t, u32 key) | ||
| 809 | { | ||
| 810 | int pos; | ||
| 811 | struct tnode *tn; | ||
| 812 | struct node *n; | ||
| 813 | |||
| 814 | pos = 0; | ||
| 815 | n=t->trie; | ||
| 816 | |||
| 817 | while (n != NULL && NODE_TYPE(n) == T_TNODE) { | ||
| 818 | tn = (struct tnode *) n; | ||
| 819 | |||
| 820 | check_tnode(tn); | ||
| 821 | |||
| 822 | if(tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { | ||
| 823 | pos=tn->pos + tn->bits; | ||
| 824 | n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits)); | ||
| 825 | } | ||
| 826 | else | ||
| 827 | break; | ||
| 828 | } | ||
| 829 | /* Case we have found a leaf. Compare prefixes */ | ||
| 830 | |||
| 831 | if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { | ||
| 832 | struct leaf *l = (struct leaf *) n; | ||
| 833 | return l; | ||
| 834 | } | ||
| 835 | return NULL; | ||
| 836 | } | ||
| 837 | |||
| 838 | static struct node *trie_rebalance(struct trie *t, struct tnode *tn) | ||
| 839 | { | ||
| 840 | int i = 0; | ||
| 841 | int wasfull; | ||
| 842 | t_key cindex, key; | ||
| 843 | struct tnode *tp = NULL; | ||
| 844 | |||
| 845 | if(!tn) | ||
| 846 | BUG(); | ||
| 847 | |||
| 848 | key = tn->key; | ||
| 849 | i = 0; | ||
| 850 | |||
| 851 | while (tn != NULL && NODE_PARENT(tn) != NULL) { | ||
| 852 | |||
| 853 | if( i > 10 ) { | ||
| 854 | printk("Rebalance tn=%p \n", tn); | ||
| 855 | if(tn) printk("tn->parent=%p \n", NODE_PARENT(tn)); | ||
| 856 | |||
| 857 | printk("Rebalance tp=%p \n", tp); | ||
| 858 | if(tp) printk("tp->parent=%p \n", NODE_PARENT(tp)); | ||
| 859 | } | ||
| 860 | |||
| 861 | if( i > 12 ) BUG(); | ||
| 862 | i++; | ||
| 863 | |||
| 864 | tp = NODE_PARENT(tn); | ||
| 865 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); | ||
| 866 | wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); | ||
| 867 | tn = (struct tnode *) resize (t, (struct tnode *)tn); | ||
| 868 | tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull); | ||
| 869 | |||
| 870 | if(!NODE_PARENT(tn)) | ||
| 871 | break; | ||
| 872 | |||
| 873 | tn = NODE_PARENT(tn); | ||
| 874 | } | ||
| 875 | /* Handle last (top) tnode */ | ||
| 876 | if (IS_TNODE(tn)) | ||
| 877 | tn = (struct tnode*) resize(t, (struct tnode *)tn); | ||
| 878 | |||
| 879 | return (struct node*) tn; | ||
| 880 | } | ||
| 881 | |||
| 882 | static struct list_head * | ||
| 883 | fib_insert_node(struct trie *t, u32 key, int plen) | ||
| 884 | { | ||
| 885 | int pos, newpos; | ||
| 886 | struct tnode *tp = NULL, *tn = NULL; | ||
| 887 | struct node *n; | ||
| 888 | struct leaf *l; | ||
| 889 | int missbit; | ||
| 890 | struct list_head *fa_head=NULL; | ||
| 891 | struct leaf_info *li; | ||
| 892 | t_key cindex; | ||
| 893 | |||
| 894 | pos = 0; | ||
| 895 | n=t->trie; | ||
| 896 | |||
| 897 | /* If we point to NULL, stop. Either the tree is empty and we should | ||
| 898 | * just put a new leaf in if, or we have reached an empty child slot, | ||
| 899 | * and we should just put our new leaf in that. | ||
| 900 | * If we point to a T_TNODE, check if it matches our key. Note that | ||
| 901 | * a T_TNODE might be skipping any number of bits - its 'pos' need | ||
| 902 | * not be the parent's 'pos'+'bits'! | ||
| 903 | * | ||
| 904 | * If it does match the current key, get pos/bits from it, extract | ||
| 905 | * the index from our key, push the T_TNODE and walk the tree. | ||
| 906 | * | ||
| 907 | * If it doesn't, we have to replace it with a new T_TNODE. | ||
| 908 | * | ||
| 909 | * If we point to a T_LEAF, it might or might not have the same key | ||
| 910 | * as we do. If it does, just change the value, update the T_LEAF's | ||
| 911 | * value, and return it. | ||
| 912 | * If it doesn't, we need to replace it with a T_TNODE. | ||
| 913 | */ | ||
| 914 | |||
| 915 | while (n != NULL && NODE_TYPE(n) == T_TNODE) { | ||
| 916 | tn = (struct tnode *) n; | ||
| 917 | |||
| 918 | check_tnode(tn); | ||
| 919 | |||
| 920 | if(tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { | ||
| 921 | tp = tn; | ||
| 922 | pos=tn->pos + tn->bits; | ||
| 923 | n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits)); | ||
| 924 | |||
| 925 | if(n && NODE_PARENT(n) != tn) { | ||
| 926 | printk("BUG tn=%p, n->parent=%p\n", tn, NODE_PARENT(n)); | ||
| 927 | BUG(); | ||
| 928 | } | ||
| 929 | } | ||
| 930 | else | ||
| 931 | break; | ||
| 932 | } | ||
| 933 | |||
| 934 | /* | ||
| 935 | * n ----> NULL, LEAF or TNODE | ||
| 936 | * | ||
| 937 | * tp is n's (parent) ----> NULL or TNODE | ||
| 938 | */ | ||
| 939 | |||
| 940 | if(tp && IS_LEAF(tp)) | ||
| 941 | BUG(); | ||
| 942 | |||
| 943 | t->revision++; | ||
| 944 | |||
| 945 | /* Case 1: n is a leaf. Compare prefixes */ | ||
| 946 | |||
| 947 | if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { | ||
| 948 | struct leaf *l = ( struct leaf *) n; | ||
| 949 | |||
| 950 | li = leaf_info_new(plen); | ||
| 951 | |||
| 952 | if(! li) | ||
| 953 | BUG(); | ||
| 954 | |||
| 955 | fa_head = &li->falh; | ||
| 956 | insert_leaf_info(&l->list, li); | ||
| 957 | goto done; | ||
| 958 | } | ||
| 959 | t->size++; | ||
| 960 | l = leaf_new(); | ||
| 961 | |||
| 962 | if(! l) | ||
| 963 | BUG(); | ||
| 964 | |||
| 965 | l->key = key; | ||
| 966 | li = leaf_info_new(plen); | ||
| 967 | |||
| 968 | if(! li) | ||
| 969 | BUG(); | ||
| 970 | |||
| 971 | fa_head = &li->falh; | ||
| 972 | insert_leaf_info(&l->list, li); | ||
| 973 | |||
| 974 | /* Case 2: n is NULL, and will just insert a new leaf */ | ||
| 975 | if (t->trie && n == NULL) { | ||
| 976 | |||
| 977 | NODE_SET_PARENT(l, tp); | ||
| 978 | |||
| 979 | if (!tp) | ||
| 980 | BUG(); | ||
| 981 | |||
| 982 | else { | ||
| 983 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); | ||
| 984 | put_child(t, (struct tnode *)tp, cindex, (struct node *)l); | ||
| 985 | } | ||
| 986 | } | ||
| 987 | /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ | ||
| 988 | else { | ||
| 989 | /* | ||
| 990 | * Add a new tnode here | ||
| 991 | * first tnode need some special handling | ||
| 992 | */ | ||
| 993 | |||
| 994 | if (tp) | ||
| 995 | pos=tp->pos+tp->bits; | ||
| 996 | else | ||
| 997 | pos=0; | ||
| 998 | if(n) { | ||
| 999 | newpos = tkey_mismatch(key, pos, n->key); | ||
| 1000 | tn = tnode_new(n->key, newpos, 1); | ||
| 1001 | } | ||
| 1002 | else { | ||
| 1003 | newpos = 0; | ||
| 1004 | tn = tnode_new(key, newpos, 1); /* First tnode */ | ||
| 1005 | } | ||
| 1006 | if(!tn) | ||
| 1007 | trie_bug("tnode_pfx_new failed"); | ||
| 1008 | |||
| 1009 | NODE_SET_PARENT(tn, tp); | ||
| 1010 | |||
| 1011 | missbit=tkey_extract_bits(key, newpos, 1); | ||
| 1012 | put_child(t, tn, missbit, (struct node *)l); | ||
| 1013 | put_child(t, tn, 1-missbit, n); | ||
| 1014 | |||
| 1015 | if(tp) { | ||
| 1016 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); | ||
| 1017 | put_child(t, (struct tnode *)tp, cindex, (struct node *)tn); | ||
| 1018 | } | ||
| 1019 | else { | ||
| 1020 | t->trie = (struct node*) tn; /* First tnode */ | ||
| 1021 | tp = tn; | ||
| 1022 | } | ||
| 1023 | } | ||
| 1024 | if(tp && tp->pos+tp->bits > 32) { | ||
| 1025 | printk("ERROR tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", | ||
| 1026 | tp, tp->pos, tp->bits, key, plen); | ||
| 1027 | } | ||
| 1028 | /* Rebalance the trie */ | ||
| 1029 | t->trie = trie_rebalance(t, tp); | ||
| 1030 | done:; | ||
| 1031 | return fa_head; | ||
| 1032 | } | ||
| 1033 | |||
| 1034 | static int | ||
| 1035 | fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta, | ||
| 1036 | struct nlmsghdr *nlhdr, struct netlink_skb_parms *req) | ||
| 1037 | { | ||
| 1038 | struct trie *t = (struct trie *) tb->tb_data; | ||
| 1039 | struct fib_alias *fa, *new_fa; | ||
| 1040 | struct list_head *fa_head=NULL; | ||
| 1041 | struct fib_info *fi; | ||
| 1042 | int plen = r->rtm_dst_len; | ||
| 1043 | int type = r->rtm_type; | ||
| 1044 | u8 tos = r->rtm_tos; | ||
| 1045 | u32 key, mask; | ||
| 1046 | int err; | ||
| 1047 | struct leaf *l; | ||
| 1048 | |||
| 1049 | if (plen > 32) | ||
| 1050 | return -EINVAL; | ||
| 1051 | |||
| 1052 | key = 0; | ||
| 1053 | if (rta->rta_dst) | ||
| 1054 | memcpy(&key, rta->rta_dst, 4); | ||
| 1055 | |||
| 1056 | key = ntohl(key); | ||
| 1057 | |||
| 1058 | if(trie_debug) | ||
| 1059 | printk("Insert table=%d %08x/%d\n", tb->tb_id, key, plen); | ||
| 1060 | |||
| 1061 | mask = ntohl( inet_make_mask(plen) ); | ||
| 1062 | |||
| 1063 | if(key & ~mask) | ||
| 1064 | return -EINVAL; | ||
| 1065 | |||
| 1066 | key = key & mask; | ||
| 1067 | |||
| 1068 | if ((fi = fib_create_info(r, rta, nlhdr, &err)) == NULL) | ||
| 1069 | goto err; | ||
| 1070 | |||
| 1071 | l = fib_find_node(t, key); | ||
| 1072 | fa = NULL; | ||
| 1073 | |||
| 1074 | if(l) { | ||
| 1075 | fa_head = get_fa_head(l, plen); | ||
| 1076 | fa = fib_find_alias(fa_head, tos, fi->fib_priority); | ||
| 1077 | } | ||
| 1078 | |||
| 1079 | /* Now fa, if non-NULL, points to the first fib alias | ||
| 1080 | * with the same keys [prefix,tos,priority], if such key already | ||
| 1081 | * exists or to the node before which we will insert new one. | ||
| 1082 | * | ||
| 1083 | * If fa is NULL, we will need to allocate a new one and | ||
| 1084 | * insert to the head of f. | ||
| 1085 | * | ||
| 1086 | * If f is NULL, no fib node matched the destination key | ||
| 1087 | * and we need to allocate a new one of those as well. | ||
| 1088 | */ | ||
| 1089 | |||
| 1090 | if (fa && | ||
| 1091 | fa->fa_info->fib_priority == fi->fib_priority) { | ||
| 1092 | struct fib_alias *fa_orig; | ||
| 1093 | |||
| 1094 | err = -EEXIST; | ||
| 1095 | if (nlhdr->nlmsg_flags & NLM_F_EXCL) | ||
| 1096 | goto out; | ||
| 1097 | |||
| 1098 | if (nlhdr->nlmsg_flags & NLM_F_REPLACE) { | ||
| 1099 | struct fib_info *fi_drop; | ||
| 1100 | u8 state; | ||
| 1101 | |||
| 1102 | write_lock_bh(&fib_lock); | ||
| 1103 | |||
| 1104 | fi_drop = fa->fa_info; | ||
| 1105 | fa->fa_info = fi; | ||
| 1106 | fa->fa_type = type; | ||
| 1107 | fa->fa_scope = r->rtm_scope; | ||
| 1108 | state = fa->fa_state; | ||
| 1109 | fa->fa_state &= ~FA_S_ACCESSED; | ||
| 1110 | |||
| 1111 | write_unlock_bh(&fib_lock); | ||
| 1112 | |||
| 1113 | fib_release_info(fi_drop); | ||
| 1114 | if (state & FA_S_ACCESSED) | ||
| 1115 | rt_cache_flush(-1); | ||
| 1116 | |||
| 1117 | goto succeeded; | ||
| 1118 | } | ||
| 1119 | /* Error if we find a perfect match which | ||
| 1120 | * uses the same scope, type, and nexthop | ||
| 1121 | * information. | ||
| 1122 | */ | ||
| 1123 | fa_orig = fa; | ||
| 1124 | list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) { | ||
| 1125 | if (fa->fa_tos != tos) | ||
| 1126 | break; | ||
| 1127 | if (fa->fa_info->fib_priority != fi->fib_priority) | ||
| 1128 | break; | ||
| 1129 | if (fa->fa_type == type && | ||
| 1130 | fa->fa_scope == r->rtm_scope && | ||
| 1131 | fa->fa_info == fi) { | ||
| 1132 | goto out; | ||
| 1133 | } | ||
| 1134 | } | ||
| 1135 | if (!(nlhdr->nlmsg_flags & NLM_F_APPEND)) | ||
| 1136 | fa = fa_orig; | ||
| 1137 | } | ||
| 1138 | err = -ENOENT; | ||
| 1139 | if (!(nlhdr->nlmsg_flags&NLM_F_CREATE)) | ||
| 1140 | goto out; | ||
| 1141 | |||
| 1142 | err = -ENOBUFS; | ||
| 1143 | new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL); | ||
| 1144 | if (new_fa == NULL) | ||
| 1145 | goto out; | ||
| 1146 | |||
| 1147 | new_fa->fa_info = fi; | ||
| 1148 | new_fa->fa_tos = tos; | ||
| 1149 | new_fa->fa_type = type; | ||
| 1150 | new_fa->fa_scope = r->rtm_scope; | ||
| 1151 | new_fa->fa_state = 0; | ||
| 1152 | #if 0 | ||
| 1153 | new_fa->dst = NULL; | ||
| 1154 | #endif | ||
| 1155 | /* | ||
| 1156 | * Insert new entry to the list. | ||
| 1157 | */ | ||
| 1158 | |||
| 1159 | if(!fa_head) | ||
| 1160 | fa_head = fib_insert_node(t, key, plen); | ||
| 1161 | |||
| 1162 | write_lock_bh(&fib_lock); | ||
| 1163 | |||
| 1164 | list_add_tail(&new_fa->fa_list, | ||
| 1165 | (fa ? &fa->fa_list : fa_head)); | ||
| 1166 | |||
| 1167 | write_unlock_bh(&fib_lock); | ||
| 1168 | |||
| 1169 | rt_cache_flush(-1); | ||
| 1170 | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, nlhdr, req); | ||
| 1171 | succeeded: | ||
| 1172 | return 0; | ||
| 1173 | out: | ||
| 1174 | fib_release_info(fi); | ||
| 1175 | err:; | ||
| 1176 | return err; | ||
| 1177 | } | ||
| 1178 | |||
| 1179 | static inline int check_leaf(struct trie *t, struct leaf *l, t_key key, int *plen, const struct flowi *flp, | ||
| 1180 | struct fib_result *res, int *err) | ||
| 1181 | { | ||
| 1182 | int i; | ||
| 1183 | t_key mask; | ||
| 1184 | struct leaf_info *li; | ||
| 1185 | struct hlist_head *hhead = &l->list; | ||
| 1186 | struct hlist_node *node; | ||
| 1187 | |||
| 1188 | hlist_for_each_entry(li, node, hhead, hlist) { | ||
| 1189 | |||
| 1190 | i = li->plen; | ||
| 1191 | mask = ntohl(inet_make_mask(i)); | ||
| 1192 | if (l->key != (key & mask)) | ||
| 1193 | continue; | ||
| 1194 | |||
| 1195 | if (((*err) = fib_semantic_match(&li->falh, flp, res, l->key, mask, i)) == 0) { | ||
| 1196 | *plen = i; | ||
| 1197 | #ifdef CONFIG_IP_FIB_TRIE_STATS | ||
| 1198 | t->stats.semantic_match_passed++; | ||
| 1199 | #endif | ||
| 1200 | return 1; | ||
| 1201 | } | ||
| 1202 | #ifdef CONFIG_IP_FIB_TRIE_STATS | ||
| 1203 | t->stats.semantic_match_miss++; | ||
| 1204 | #endif | ||
| 1205 | } | ||
| 1206 | return 0; | ||
| 1207 | } | ||
| 1208 | |||
| 1209 | static int | ||
| 1210 | fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res) | ||
| 1211 | { | ||
| 1212 | struct trie *t = (struct trie *) tb->tb_data; | ||
| 1213 | int plen, ret = 0; | ||
| 1214 | struct node *n; | ||
| 1215 | struct tnode *pn; | ||
| 1216 | int pos, bits; | ||
| 1217 | t_key key=ntohl(flp->fl4_dst); | ||
| 1218 | int chopped_off; | ||
| 1219 | t_key cindex = 0; | ||
| 1220 | int current_prefix_length = KEYLENGTH; | ||
| 1221 | n = t->trie; | ||
| 1222 | |||
| 1223 | read_lock(&fib_lock); | ||
| 1224 | if(!n) | ||
| 1225 | goto failed; | ||
| 1226 | |||
| 1227 | #ifdef CONFIG_IP_FIB_TRIE_STATS | ||
| 1228 | t->stats.gets++; | ||
| 1229 | #endif | ||
| 1230 | |||
| 1231 | /* Just a leaf? */ | ||
| 1232 | if (IS_LEAF(n)) { | ||
| 1233 | if( check_leaf(t, (struct leaf *)n, key, &plen, flp, res, &ret) ) | ||
| 1234 | goto found; | ||
| 1235 | goto failed; | ||
| 1236 | } | ||
| 1237 | pn = (struct tnode *) n; | ||
| 1238 | chopped_off = 0; | ||
| 1239 | |||
| 1240 | while (pn) { | ||
| 1241 | |||
| 1242 | pos = pn->pos; | ||
| 1243 | bits = pn->bits; | ||
| 1244 | |||
| 1245 | if(!chopped_off) | ||
| 1246 | cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits); | ||
| 1247 | |||
| 1248 | n = tnode_get_child(pn, cindex); | ||
| 1249 | |||
| 1250 | if (n == NULL) { | ||
| 1251 | #ifdef CONFIG_IP_FIB_TRIE_STATS | ||
| 1252 | t->stats.null_node_hit++; | ||
| 1253 | #endif | ||
| 1254 | goto backtrace; | ||
| 1255 | } | ||
| 1256 | |||
| 1257 | if (IS_TNODE(n)) { | ||
| 1258 | #define HL_OPTIMIZE | ||
| 1259 | #ifdef HL_OPTIMIZE | ||
| 1260 | struct tnode *cn = (struct tnode *)n; | ||
| 1261 | t_key node_prefix, key_prefix, pref_mismatch; | ||
| 1262 | int mp; | ||
| 1263 | |||
| 1264 | /* | ||
| 1265 | * It's a tnode, and we can do some extra checks here if we | ||
| 1266 | * like, to avoid descending into a dead-end branch. | ||
| 1267 | * This tnode is in the parent's child array at index | ||
| 1268 | * key[p_pos..p_pos+p_bits] but potentially with some bits | ||
| 1269 | * chopped off, so in reality the index may be just a | ||
| 1270 | * subprefix, padded with zero at the end. | ||
| 1271 | * We can also take a look at any skipped bits in this | ||
| 1272 | * tnode - everything up to p_pos is supposed to be ok, | ||
| 1273 | * and the non-chopped bits of the index (se previous | ||
| 1274 | * paragraph) are also guaranteed ok, but the rest is | ||
| 1275 | * considered unknown. | ||
| 1276 | * | ||
| 1277 | * The skipped bits are key[pos+bits..cn->pos]. | ||
| 1278 | */ | ||
| 1279 | |||
| 1280 | /* If current_prefix_length < pos+bits, we are already doing | ||
| 1281 | * actual prefix matching, which means everything from | ||
| 1282 | * pos+(bits-chopped_off) onward must be zero along some | ||
| 1283 | * branch of this subtree - otherwise there is *no* valid | ||
| 1284 | * prefix present. Here we can only check the skipped | ||
| 1285 | * bits. Remember, since we have already indexed into the | ||
| 1286 | * parent's child array, we know that the bits we chopped of | ||
| 1287 | * *are* zero. | ||
| 1288 | */ | ||
| 1289 | |||
| 1290 | /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */ | ||
| 1291 | |||
| 1292 | if (current_prefix_length < pos+bits) { | ||
| 1293 | if (tkey_extract_bits(cn->key, current_prefix_length, | ||
| 1294 | cn->pos - current_prefix_length) != 0 || | ||
| 1295 | !(cn->child[0])) | ||
| 1296 | goto backtrace; | ||
| 1297 | } | ||
| 1298 | |||
| 1299 | /* | ||
| 1300 | * If chopped_off=0, the index is fully validated and we | ||
| 1301 | * only need to look at the skipped bits for this, the new, | ||
| 1302 | * tnode. What we actually want to do is to find out if | ||
| 1303 | * these skipped bits match our key perfectly, or if we will | ||
| 1304 | * have to count on finding a matching prefix further down, | ||
| 1305 | * because if we do, we would like to have some way of | ||
| 1306 | * verifying the existence of such a prefix at this point. | ||
| 1307 | */ | ||
| 1308 | |||
| 1309 | /* The only thing we can do at this point is to verify that | ||
| 1310 | * any such matching prefix can indeed be a prefix to our | ||
| 1311 | * key, and if the bits in the node we are inspecting that | ||
| 1312 | * do not match our key are not ZERO, this cannot be true. | ||
| 1313 | * Thus, find out where there is a mismatch (before cn->pos) | ||
| 1314 | * and verify that all the mismatching bits are zero in the | ||
| 1315 | * new tnode's key. | ||
| 1316 | */ | ||
| 1317 | |||
| 1318 | /* Note: We aren't very concerned about the piece of the key | ||
| 1319 | * that precede pn->pos+pn->bits, since these have already been | ||
| 1320 | * checked. The bits after cn->pos aren't checked since these are | ||
| 1321 | * by definition "unknown" at this point. Thus, what we want to | ||
| 1322 | * see is if we are about to enter the "prefix matching" state, | ||
| 1323 | * and in that case verify that the skipped bits that will prevail | ||
| 1324 | * throughout this subtree are zero, as they have to be if we are | ||
| 1325 | * to find a matching prefix. | ||
| 1326 | */ | ||
| 1327 | |||
| 1328 | node_prefix = MASK_PFX(cn->key, cn->pos); | ||
| 1329 | key_prefix = MASK_PFX(key, cn->pos); | ||
| 1330 | pref_mismatch = key_prefix^node_prefix; | ||
| 1331 | mp = 0; | ||
| 1332 | |||
| 1333 | /* In short: If skipped bits in this node do not match the search | ||
| 1334 | * key, enter the "prefix matching" state.directly. | ||
| 1335 | */ | ||
| 1336 | if (pref_mismatch) { | ||
| 1337 | while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) { | ||
| 1338 | mp++; | ||
| 1339 | pref_mismatch = pref_mismatch <<1; | ||
| 1340 | } | ||
| 1341 | key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp); | ||
| 1342 | |||
| 1343 | if (key_prefix != 0) | ||
| 1344 | goto backtrace; | ||
| 1345 | |||
| 1346 | if (current_prefix_length >= cn->pos) | ||
| 1347 | current_prefix_length=mp; | ||
| 1348 | } | ||
| 1349 | #endif | ||
| 1350 | pn = (struct tnode *)n; /* Descend */ | ||
| 1351 | chopped_off = 0; | ||
| 1352 | continue; | ||
| 1353 | } | ||
| 1354 | if (IS_LEAF(n)) { | ||
| 1355 | if( check_leaf(t, (struct leaf *)n, key, &plen, flp, res, &ret)) | ||
| 1356 | goto found; | ||
| 1357 | } | ||
| 1358 | backtrace: | ||
| 1359 | chopped_off++; | ||
| 1360 | |||
| 1361 | /* As zero don't change the child key (cindex) */ | ||
| 1362 | while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1)))) { | ||
| 1363 | chopped_off++; | ||
| 1364 | } | ||
| 1365 | |||
| 1366 | /* Decrease current_... with bits chopped off */ | ||
| 1367 | if (current_prefix_length > pn->pos + pn->bits - chopped_off) | ||
| 1368 | current_prefix_length = pn->pos + pn->bits - chopped_off; | ||
| 1369 | |||
| 1370 | /* | ||
| 1371 | * Either we do the actual chop off according or if we have | ||
| 1372 | * chopped off all bits in this tnode walk up to our parent. | ||
| 1373 | */ | ||
| 1374 | |||
| 1375 | if(chopped_off <= pn->bits) | ||
| 1376 | cindex &= ~(1 << (chopped_off-1)); | ||
| 1377 | else { | ||
| 1378 | if( NODE_PARENT(pn) == NULL) | ||
| 1379 | goto failed; | ||
| 1380 | |||
| 1381 | /* Get Child's index */ | ||
| 1382 | cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits); | ||
| 1383 | pn = NODE_PARENT(pn); | ||
| 1384 | chopped_off = 0; | ||
| 1385 | |||
| 1386 | #ifdef CONFIG_IP_FIB_TRIE_STATS | ||
| 1387 | t->stats.backtrack++; | ||
| 1388 | #endif | ||
| 1389 | goto backtrace; | ||
| 1390 | } | ||
| 1391 | } | ||
| 1392 | failed: | ||
| 1393 | ret = 1; | ||
| 1394 | found: | ||
| 1395 | read_unlock(&fib_lock); | ||
| 1396 | return ret; | ||
| 1397 | } | ||
| 1398 | |||
| 1399 | static int trie_leaf_remove(struct trie *t, t_key key) | ||
| 1400 | { | ||
| 1401 | t_key cindex; | ||
| 1402 | struct tnode *tp = NULL; | ||
| 1403 | struct node *n = t->trie; | ||
| 1404 | struct leaf *l; | ||
| 1405 | |||
| 1406 | if(trie_debug) | ||
| 1407 | printk("entering trie_leaf_remove(%p)\n", n); | ||
| 1408 | |||
| 1409 | /* Note that in the case skipped bits, those bits are *not* checked! | ||
| 1410 | * When we finish this, we will have NULL or a T_LEAF, and the | ||
| 1411 | * T_LEAF may or may not match our key. | ||
| 1412 | */ | ||
| 1413 | |||
| 1414 | while (n != NULL && IS_TNODE(n)) { | ||
| 1415 | struct tnode *tn = (struct tnode *) n; | ||
| 1416 | check_tnode(tn); | ||
| 1417 | n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits)); | ||
| 1418 | |||
| 1419 | if(n && NODE_PARENT(n) != tn) { | ||
| 1420 | printk("BUG tn=%p, n->parent=%p\n", tn, NODE_PARENT(n)); | ||
| 1421 | BUG(); | ||
| 1422 | } | ||
| 1423 | } | ||
| 1424 | l = (struct leaf *) n; | ||
| 1425 | |||
| 1426 | if(!n || !tkey_equals(l->key, key)) | ||
| 1427 | return 0; | ||
| 1428 | |||
| 1429 | /* | ||
| 1430 | * Key found. | ||
| 1431 | * Remove the leaf and rebalance the tree | ||
| 1432 | */ | ||
| 1433 | |||
| 1434 | t->revision++; | ||
| 1435 | t->size--; | ||
| 1436 | |||
| 1437 | tp = NODE_PARENT(n); | ||
| 1438 | tnode_free((struct tnode *) n); | ||
| 1439 | |||
| 1440 | if(tp) { | ||
| 1441 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); | ||
| 1442 | put_child(t, (struct tnode *)tp, cindex, NULL); | ||
| 1443 | t->trie = trie_rebalance(t, tp); | ||
| 1444 | } | ||
| 1445 | else | ||
| 1446 | t->trie = NULL; | ||
| 1447 | |||
| 1448 | return 1; | ||
| 1449 | } | ||
| 1450 | |||
| 1451 | static int | ||
| 1452 | fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta, | ||
| 1453 | struct nlmsghdr *nlhdr, struct netlink_skb_parms *req) | ||
| 1454 | { | ||
| 1455 | struct trie *t = (struct trie *) tb->tb_data; | ||
| 1456 | u32 key, mask; | ||
| 1457 | int plen = r->rtm_dst_len; | ||
| 1458 | u8 tos = r->rtm_tos; | ||
| 1459 | struct fib_alias *fa, *fa_to_delete; | ||
| 1460 | struct list_head *fa_head; | ||
| 1461 | struct leaf *l; | ||
| 1462 | |||
| 1463 | if (plen > 32) | ||
| 1464 | return -EINVAL; | ||
| 1465 | |||
| 1466 | key = 0; | ||
| 1467 | if (rta->rta_dst) | ||
| 1468 | memcpy(&key, rta->rta_dst, 4); | ||
| 1469 | |||
| 1470 | key = ntohl(key); | ||
| 1471 | mask = ntohl( inet_make_mask(plen) ); | ||
| 1472 | |||
| 1473 | if(key & ~mask) | ||
| 1474 | return -EINVAL; | ||
| 1475 | |||
| 1476 | key = key & mask; | ||
| 1477 | l = fib_find_node(t, key); | ||
| 1478 | |||
| 1479 | if(!l) | ||
| 1480 | return -ESRCH; | ||
| 1481 | |||
| 1482 | fa_head = get_fa_head(l, plen); | ||
| 1483 | fa = fib_find_alias(fa_head, tos, 0); | ||
| 1484 | |||
| 1485 | if (!fa) | ||
| 1486 | return -ESRCH; | ||
| 1487 | |||
| 1488 | if (trie_debug) | ||
| 1489 | printk("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); | ||
| 1490 | |||
| 1491 | fa_to_delete = NULL; | ||
| 1492 | fa_head = fa->fa_list.prev; | ||
| 1493 | list_for_each_entry(fa, fa_head, fa_list) { | ||
| 1494 | struct fib_info *fi = fa->fa_info; | ||
| 1495 | |||
| 1496 | if (fa->fa_tos != tos) | ||
| 1497 | break; | ||
| 1498 | |||
| 1499 | if ((!r->rtm_type || | ||
| 1500 | fa->fa_type == r->rtm_type) && | ||
| 1501 | (r->rtm_scope == RT_SCOPE_NOWHERE || | ||
| 1502 | fa->fa_scope == r->rtm_scope) && | ||
| 1503 | (!r->rtm_protocol || | ||
| 1504 | fi->fib_protocol == r->rtm_protocol) && | ||
| 1505 | fib_nh_match(r, nlhdr, rta, fi) == 0) { | ||
| 1506 | fa_to_delete = fa; | ||
| 1507 | break; | ||
| 1508 | } | ||
| 1509 | } | ||
| 1510 | |||
| 1511 | if (fa_to_delete) { | ||
| 1512 | int kill_li = 0; | ||
| 1513 | struct leaf_info *li; | ||
| 1514 | |||
| 1515 | fa = fa_to_delete; | ||
| 1516 | rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, nlhdr, req); | ||
| 1517 | |||
| 1518 | l = fib_find_node(t, key); | ||
| 1519 | li = find_leaf_info(&l->list, plen); | ||
| 1520 | |||
| 1521 | write_lock_bh(&fib_lock); | ||
| 1522 | |||
| 1523 | list_del(&fa->fa_list); | ||
| 1524 | |||
| 1525 | if(list_empty(fa_head)) { | ||
| 1526 | hlist_del(&li->hlist); | ||
| 1527 | kill_li = 1; | ||
| 1528 | } | ||
| 1529 | write_unlock_bh(&fib_lock); | ||
| 1530 | |||
| 1531 | if(kill_li) | ||
| 1532 | free_leaf_info(li); | ||
| 1533 | |||
| 1534 | if(hlist_empty(&l->list)) | ||
| 1535 | trie_leaf_remove(t, key); | ||
| 1536 | |||
| 1537 | if (fa->fa_state & FA_S_ACCESSED) | ||
| 1538 | rt_cache_flush(-1); | ||
| 1539 | |||
| 1540 | fn_free_alias(fa); | ||
| 1541 | return 0; | ||
| 1542 | } | ||
| 1543 | return -ESRCH; | ||
| 1544 | } | ||
| 1545 | |||
| 1546 | static int trie_flush_list(struct trie *t, struct list_head *head) | ||
| 1547 | { | ||
| 1548 | struct fib_alias *fa, *fa_node; | ||
| 1549 | int found = 0; | ||
| 1550 | |||
| 1551 | list_for_each_entry_safe(fa, fa_node, head, fa_list) { | ||
| 1552 | struct fib_info *fi = fa->fa_info; | ||
| 1553 | |||
| 1554 | if (fi && (fi->fib_flags&RTNH_F_DEAD)) { | ||
| 1555 | |||
| 1556 | write_lock_bh(&fib_lock); | ||
| 1557 | list_del(&fa->fa_list); | ||
| 1558 | write_unlock_bh(&fib_lock); | ||
| 1559 | |||
| 1560 | fn_free_alias(fa); | ||
| 1561 | found++; | ||
| 1562 | } | ||
| 1563 | } | ||
| 1564 | return found; | ||
| 1565 | } | ||
| 1566 | |||
| 1567 | static int trie_flush_leaf(struct trie *t, struct leaf *l) | ||
| 1568 | { | ||
| 1569 | int found = 0; | ||
| 1570 | struct hlist_head *lih = &l->list; | ||
| 1571 | struct hlist_node *node, *tmp; | ||
| 1572 | struct leaf_info *li = NULL; | ||
| 1573 | |||
| 1574 | hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { | ||
| 1575 | |||
| 1576 | found += trie_flush_list(t, &li->falh); | ||
| 1577 | |||
| 1578 | if (list_empty(&li->falh)) { | ||
| 1579 | |||
| 1580 | write_lock_bh(&fib_lock); | ||
| 1581 | hlist_del(&li->hlist); | ||
| 1582 | write_unlock_bh(&fib_lock); | ||
| 1583 | |||
| 1584 | free_leaf_info(li); | ||
| 1585 | } | ||
| 1586 | } | ||
| 1587 | return found; | ||
| 1588 | } | ||
| 1589 | |||
| 1590 | static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf) | ||
| 1591 | { | ||
| 1592 | struct node *c = (struct node *) thisleaf; | ||
| 1593 | struct tnode *p; | ||
| 1594 | int idx; | ||
| 1595 | |||
| 1596 | if(c == NULL) { | ||
| 1597 | if(t->trie == NULL) | ||
| 1598 | return NULL; | ||
| 1599 | |||
| 1600 | if (IS_LEAF(t->trie)) /* trie w. just a leaf */ | ||
| 1601 | return (struct leaf *) t->trie; | ||
| 1602 | |||
| 1603 | p = (struct tnode*) t->trie; /* Start */ | ||
| 1604 | } | ||
| 1605 | else | ||
| 1606 | p = (struct tnode *) NODE_PARENT(c); | ||
| 1607 | while (p) { | ||
| 1608 | int pos, last; | ||
| 1609 | |||
| 1610 | /* Find the next child of the parent */ | ||
| 1611 | if(c) | ||
| 1612 | pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits); | ||
| 1613 | else | ||
| 1614 | pos = 0; | ||
| 1615 | |||
| 1616 | last = 1 << p->bits; | ||
| 1617 | for(idx = pos; idx < last ; idx++) { | ||
| 1618 | if( p->child[idx]) { | ||
| 1619 | |||
| 1620 | /* Decend if tnode */ | ||
| 1621 | |||
| 1622 | while (IS_TNODE(p->child[idx])) { | ||
| 1623 | p = (struct tnode*) p->child[idx]; | ||
| 1624 | idx = 0; | ||
| 1625 | |||
| 1626 | /* Rightmost non-NULL branch */ | ||
| 1627 | if( p && IS_TNODE(p) ) | ||
| 1628 | while ( p->child[idx] == NULL && idx < (1 << p->bits) ) idx++; | ||
| 1629 | |||
| 1630 | /* Done with this tnode? */ | ||
| 1631 | if( idx >= (1 << p->bits) || p->child[idx] == NULL ) | ||
| 1632 | goto up; | ||
| 1633 | } | ||
| 1634 | return (struct leaf*) p->child[idx]; | ||
| 1635 | } | ||
| 1636 | } | ||
| 1637 | up: | ||
| 1638 | /* No more children go up one step */ | ||
| 1639 | c = (struct node*) p; | ||
| 1640 | p = (struct tnode *) NODE_PARENT(p); | ||
| 1641 | } | ||
| 1642 | return NULL; /* Ready. Root of trie */ | ||
| 1643 | } | ||
| 1644 | |||
| 1645 | static int fn_trie_flush(struct fib_table *tb) | ||
| 1646 | { | ||
| 1647 | struct trie *t = (struct trie *) tb->tb_data; | ||
| 1648 | struct leaf *ll = NULL, *l = NULL; | ||
| 1649 | int found = 0, h; | ||
| 1650 | |||
| 1651 | t->revision++; | ||
| 1652 | |||
| 1653 | for (h=0; (l = nextleaf(t, l)) != NULL; h++) { | ||
| 1654 | found += trie_flush_leaf(t, l); | ||
| 1655 | |||
| 1656 | if (ll && hlist_empty(&ll->list)) | ||
| 1657 | trie_leaf_remove(t, ll->key); | ||
| 1658 | ll = l; | ||
| 1659 | } | ||
| 1660 | |||
| 1661 | if (ll && hlist_empty(&ll->list)) | ||
| 1662 | trie_leaf_remove(t, ll->key); | ||
| 1663 | |||
| 1664 | if(trie_debug) | ||
| 1665 | printk("trie_flush found=%d\n", found); | ||
| 1666 | return found; | ||
| 1667 | } | ||
| 1668 | |||
| 1669 | static int trie_last_dflt=-1; | ||
| 1670 | |||
| 1671 | static void | ||
| 1672 | fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res) | ||
| 1673 | { | ||
| 1674 | struct trie *t = (struct trie *) tb->tb_data; | ||
| 1675 | int order, last_idx; | ||
| 1676 | struct fib_info *fi = NULL; | ||
| 1677 | struct fib_info *last_resort; | ||
| 1678 | struct fib_alias *fa = NULL; | ||
| 1679 | struct list_head *fa_head; | ||
| 1680 | struct leaf *l; | ||
| 1681 | |||
| 1682 | last_idx = -1; | ||
| 1683 | last_resort = NULL; | ||
| 1684 | order = -1; | ||
| 1685 | |||
| 1686 | read_lock(&fib_lock); | ||
| 1687 | |||
| 1688 | l = fib_find_node(t, 0); | ||
| 1689 | if(!l) | ||
| 1690 | goto out; | ||
| 1691 | |||
| 1692 | fa_head = get_fa_head(l, 0); | ||
| 1693 | if(!fa_head) | ||
| 1694 | goto out; | ||
| 1695 | |||
| 1696 | if (list_empty(fa_head)) | ||
| 1697 | goto out; | ||
| 1698 | |||
| 1699 | list_for_each_entry(fa, fa_head, fa_list) { | ||
| 1700 | struct fib_info *next_fi = fa->fa_info; | ||
| 1701 | |||
| 1702 | if (fa->fa_scope != res->scope || | ||
| 1703 | fa->fa_type != RTN_UNICAST) | ||
| 1704 | continue; | ||
| 1705 | |||
| 1706 | if (next_fi->fib_priority > res->fi->fib_priority) | ||
| 1707 | break; | ||
| 1708 | if (!next_fi->fib_nh[0].nh_gw || | ||
| 1709 | next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK) | ||
| 1710 | continue; | ||
| 1711 | fa->fa_state |= FA_S_ACCESSED; | ||
| 1712 | |||
| 1713 | if (fi == NULL) { | ||
| 1714 | if (next_fi != res->fi) | ||
| 1715 | break; | ||
| 1716 | } else if (!fib_detect_death(fi, order, &last_resort, | ||
| 1717 | &last_idx, &trie_last_dflt)) { | ||
| 1718 | if (res->fi) | ||
| 1719 | fib_info_put(res->fi); | ||
| 1720 | res->fi = fi; | ||
| 1721 | atomic_inc(&fi->fib_clntref); | ||
| 1722 | trie_last_dflt = order; | ||
| 1723 | goto out; | ||
| 1724 | } | ||
| 1725 | fi = next_fi; | ||
| 1726 | order++; | ||
| 1727 | } | ||
| 1728 | if (order <= 0 || fi == NULL) { | ||
| 1729 | trie_last_dflt = -1; | ||
| 1730 | goto out; | ||
| 1731 | } | ||
| 1732 | |||
| 1733 | if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) { | ||
| 1734 | if (res->fi) | ||
| 1735 | fib_info_put(res->fi); | ||
| 1736 | res->fi = fi; | ||
| 1737 | atomic_inc(&fi->fib_clntref); | ||
| 1738 | trie_last_dflt = order; | ||
| 1739 | goto out; | ||
| 1740 | } | ||
| 1741 | if (last_idx >= 0) { | ||
| 1742 | if (res->fi) | ||
| 1743 | fib_info_put(res->fi); | ||
| 1744 | res->fi = last_resort; | ||
| 1745 | if (last_resort) | ||
| 1746 | atomic_inc(&last_resort->fib_clntref); | ||
| 1747 | } | ||
| 1748 | trie_last_dflt = last_idx; | ||
| 1749 | out:; | ||
| 1750 | read_unlock(&fib_lock); | ||
| 1751 | } | ||
| 1752 | |||
| 1753 | static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb, | ||
| 1754 | struct sk_buff *skb, struct netlink_callback *cb) | ||
| 1755 | { | ||
| 1756 | int i, s_i; | ||
| 1757 | struct fib_alias *fa; | ||
| 1758 | |||
| 1759 | u32 xkey=htonl(key); | ||
| 1760 | |||
| 1761 | s_i=cb->args[3]; | ||
| 1762 | i = 0; | ||
| 1763 | |||
| 1764 | list_for_each_entry(fa, fah, fa_list) { | ||
| 1765 | if (i < s_i) { | ||
| 1766 | i++; | ||
| 1767 | continue; | ||
| 1768 | } | ||
| 1769 | if (fa->fa_info->fib_nh == NULL) { | ||
| 1770 | printk("Trie error _fib_nh=NULL in fa[%d] k=%08x plen=%d\n", i, key, plen); | ||
| 1771 | i++; | ||
| 1772 | continue; | ||
| 1773 | } | ||
| 1774 | if (fa->fa_info == NULL) { | ||
| 1775 | printk("Trie error fa_info=NULL in fa[%d] k=%08x plen=%d\n", i, key, plen); | ||
| 1776 | i++; | ||
| 1777 | continue; | ||
| 1778 | } | ||
| 1779 | |||
| 1780 | if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid, | ||
| 1781 | cb->nlh->nlmsg_seq, | ||
| 1782 | RTM_NEWROUTE, | ||
| 1783 | tb->tb_id, | ||
| 1784 | fa->fa_type, | ||
| 1785 | fa->fa_scope, | ||
| 1786 | &xkey, | ||
| 1787 | plen, | ||
| 1788 | fa->fa_tos, | ||
| 1789 | fa->fa_info) < 0) { | ||
| 1790 | cb->args[3] = i; | ||
| 1791 | return -1; | ||
| 1792 | } | ||
| 1793 | i++; | ||
| 1794 | } | ||
| 1795 | cb->args[3]=i; | ||
| 1796 | return skb->len; | ||
| 1797 | } | ||
| 1798 | |||
| 1799 | static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb, | ||
| 1800 | struct netlink_callback *cb) | ||
| 1801 | { | ||
| 1802 | int h, s_h; | ||
| 1803 | struct list_head *fa_head; | ||
| 1804 | struct leaf *l = NULL; | ||
| 1805 | s_h=cb->args[2]; | ||
| 1806 | |||
| 1807 | for (h=0; (l = nextleaf(t, l)) != NULL; h++) { | ||
| 1808 | |||
| 1809 | if (h < s_h) | ||
| 1810 | continue; | ||
| 1811 | if (h > s_h) | ||
| 1812 | memset(&cb->args[3], 0, | ||
| 1813 | sizeof(cb->args) - 3*sizeof(cb->args[0])); | ||
| 1814 | |||
| 1815 | fa_head = get_fa_head(l, plen); | ||
| 1816 | |||
| 1817 | if(!fa_head) | ||
| 1818 | continue; | ||
| 1819 | |||
| 1820 | if(list_empty(fa_head)) | ||
| 1821 | continue; | ||
| 1822 | |||
| 1823 | if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) { | ||
| 1824 | cb->args[2]=h; | ||
| 1825 | return -1; | ||
| 1826 | } | ||
| 1827 | } | ||
| 1828 | cb->args[2]=h; | ||
| 1829 | return skb->len; | ||
| 1830 | } | ||
| 1831 | |||
| 1832 | static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb) | ||
| 1833 | { | ||
| 1834 | int m, s_m; | ||
| 1835 | struct trie *t = (struct trie *) tb->tb_data; | ||
| 1836 | |||
| 1837 | s_m = cb->args[1]; | ||
| 1838 | |||
| 1839 | read_lock(&fib_lock); | ||
| 1840 | for (m=0; m<=32; m++) { | ||
| 1841 | |||
| 1842 | if (m < s_m) | ||
| 1843 | continue; | ||
| 1844 | if (m > s_m) | ||
| 1845 | memset(&cb->args[2], 0, | ||
| 1846 | sizeof(cb->args) - 2*sizeof(cb->args[0])); | ||
| 1847 | |||
| 1848 | if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) { | ||
| 1849 | cb->args[1] = m; | ||
| 1850 | goto out; | ||
| 1851 | } | ||
| 1852 | } | ||
| 1853 | read_unlock(&fib_lock); | ||
| 1854 | cb->args[1] = m; | ||
| 1855 | return skb->len; | ||
| 1856 | out: | ||
| 1857 | read_unlock(&fib_lock); | ||
| 1858 | return -1; | ||
| 1859 | } | ||
| 1860 | |||
| 1861 | /* Fix more generic FIB names for init later */ | ||
| 1862 | |||
| 1863 | #ifdef CONFIG_IP_MULTIPLE_TABLES | ||
| 1864 | struct fib_table * fib_hash_init(int id) | ||
| 1865 | #else | ||
| 1866 | struct fib_table * __init fib_hash_init(int id) | ||
| 1867 | #endif | ||
| 1868 | { | ||
| 1869 | struct fib_table *tb; | ||
| 1870 | struct trie *t; | ||
| 1871 | |||
| 1872 | if (fn_alias_kmem == NULL) | ||
| 1873 | fn_alias_kmem = kmem_cache_create("ip_fib_alias", | ||
| 1874 | sizeof(struct fib_alias), | ||
| 1875 | 0, SLAB_HWCACHE_ALIGN, | ||
| 1876 | NULL, NULL); | ||
| 1877 | |||
| 1878 | tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), | ||
| 1879 | GFP_KERNEL); | ||
| 1880 | if (tb == NULL) | ||
| 1881 | return NULL; | ||
| 1882 | |||
| 1883 | tb->tb_id = id; | ||
| 1884 | tb->tb_lookup = fn_trie_lookup; | ||
| 1885 | tb->tb_insert = fn_trie_insert; | ||
| 1886 | tb->tb_delete = fn_trie_delete; | ||
| 1887 | tb->tb_flush = fn_trie_flush; | ||
| 1888 | tb->tb_select_default = fn_trie_select_default; | ||
| 1889 | tb->tb_dump = fn_trie_dump; | ||
| 1890 | memset(tb->tb_data, 0, sizeof(struct trie)); | ||
| 1891 | |||
| 1892 | t = (struct trie *) tb->tb_data; | ||
| 1893 | |||
| 1894 | trie_init(t); | ||
| 1895 | |||
| 1896 | if (id == RT_TABLE_LOCAL) | ||
| 1897 | trie_local=t; | ||
| 1898 | else if (id == RT_TABLE_MAIN) | ||
| 1899 | trie_main=t; | ||
| 1900 | |||
| 1901 | if (id == RT_TABLE_LOCAL) | ||
| 1902 | printk("IPv4 FIB: Using LC-trie version %s\n", VERSION); | ||
| 1903 | |||
| 1904 | return tb; | ||
| 1905 | } | ||
| 1906 | |||
| 1907 | /* Trie dump functions */ | ||
| 1908 | |||
| 1909 | static void putspace_seq(struct seq_file *seq, int n) | ||
| 1910 | { | ||
| 1911 | while (n--) seq_printf(seq, " "); | ||
| 1912 | } | ||
| 1913 | |||
| 1914 | static void printbin_seq(struct seq_file *seq, unsigned int v, int bits) | ||
| 1915 | { | ||
| 1916 | while (bits--) | ||
| 1917 | seq_printf(seq, "%s", (v & (1<<bits))?"1":"0"); | ||
| 1918 | } | ||
| 1919 | |||
| 1920 | static void printnode_seq(struct seq_file *seq, int indent, struct node *n, | ||
| 1921 | int pend, int cindex, int bits) | ||
| 1922 | { | ||
| 1923 | putspace_seq(seq, indent); | ||
| 1924 | if (IS_LEAF(n)) | ||
| 1925 | seq_printf(seq, "|"); | ||
| 1926 | else | ||
| 1927 | seq_printf(seq, "+"); | ||
| 1928 | if (bits) { | ||
| 1929 | seq_printf(seq, "%d/", cindex); | ||
| 1930 | printbin_seq(seq, cindex, bits); | ||
| 1931 | seq_printf(seq, ": "); | ||
| 1932 | } | ||
| 1933 | else | ||
| 1934 | seq_printf(seq, "<root>: "); | ||
| 1935 | seq_printf(seq, "%s:%p ", IS_LEAF(n)?"Leaf":"Internal node", n); | ||
| 1936 | |||
| 1937 | if (IS_LEAF(n)) | ||
| 1938 | seq_printf(seq, "key=%d.%d.%d.%d\n", | ||
| 1939 | n->key >> 24, (n->key >> 16) % 256, (n->key >> 8) % 256, n->key % 256); | ||
| 1940 | else { | ||
| 1941 | int plen=((struct tnode *)n)->pos; | ||
| 1942 | t_key prf=MASK_PFX(n->key, plen); | ||
| 1943 | seq_printf(seq, "key=%d.%d.%d.%d/%d\n", | ||
| 1944 | prf >> 24, (prf >> 16) % 256, (prf >> 8) % 256, prf % 256, plen); | ||
| 1945 | } | ||
| 1946 | if (IS_LEAF(n)) { | ||
| 1947 | struct leaf *l=(struct leaf *)n; | ||
| 1948 | struct fib_alias *fa; | ||
| 1949 | int i; | ||
| 1950 | for (i=32; i>=0; i--) | ||
| 1951 | if(find_leaf_info(&l->list, i)) { | ||
| 1952 | |||
| 1953 | struct list_head *fa_head = get_fa_head(l, i); | ||
| 1954 | |||
| 1955 | if(!fa_head) | ||
| 1956 | continue; | ||
| 1957 | |||
| 1958 | if(list_empty(fa_head)) | ||
| 1959 | continue; | ||
| 1960 | |||
| 1961 | putspace_seq(seq, indent+2); | ||
| 1962 | seq_printf(seq, "{/%d...dumping}\n", i); | ||
| 1963 | |||
| 1964 | |||
| 1965 | list_for_each_entry(fa, fa_head, fa_list) { | ||
| 1966 | putspace_seq(seq, indent+2); | ||
| 1967 | if (fa->fa_info->fib_nh == NULL) { | ||
| 1968 | seq_printf(seq, "Error _fib_nh=NULL\n"); | ||
| 1969 | continue; | ||
| 1970 | } | ||
| 1971 | if (fa->fa_info == NULL) { | ||
| 1972 | seq_printf(seq, "Error fa_info=NULL\n"); | ||
| 1973 | continue; | ||
| 1974 | } | ||
| 1975 | |||
| 1976 | seq_printf(seq, "{type=%d scope=%d TOS=%d}\n", | ||
| 1977 | fa->fa_type, | ||
| 1978 | fa->fa_scope, | ||
| 1979 | fa->fa_tos); | ||
| 1980 | } | ||
| 1981 | } | ||
| 1982 | } | ||
| 1983 | else if (IS_TNODE(n)) { | ||
| 1984 | struct tnode *tn=(struct tnode *)n; | ||
| 1985 | putspace_seq(seq, indent); seq_printf(seq, "| "); | ||
| 1986 | seq_printf(seq, "{key prefix=%08x/", tn->key&TKEY_GET_MASK(0, tn->pos)); | ||
| 1987 | printbin_seq(seq, tkey_extract_bits(tn->key, 0, tn->pos), tn->pos); | ||
| 1988 | seq_printf(seq, "}\n"); | ||
| 1989 | putspace_seq(seq, indent); seq_printf(seq, "| "); | ||
| 1990 | seq_printf(seq, "{pos=%d", tn->pos); | ||
| 1991 | seq_printf(seq, " (skip=%d bits)", tn->pos - pend); | ||
| 1992 | seq_printf(seq, " bits=%d (%u children)}\n", tn->bits, (1 << tn->bits)); | ||
| 1993 | putspace_seq(seq, indent); seq_printf(seq, "| "); | ||
| 1994 | seq_printf(seq, "{empty=%d full=%d}\n", tn->empty_children, tn->full_children); | ||
| 1995 | } | ||
| 1996 | } | ||
| 1997 | |||
| 1998 | static void trie_dump_seq(struct seq_file *seq, struct trie *t) | ||
| 1999 | { | ||
| 2000 | struct node *n=t->trie; | ||
| 2001 | int cindex=0; | ||
| 2002 | int indent=1; | ||
| 2003 | int pend=0; | ||
| 2004 | int depth = 0; | ||
| 2005 | |||
| 2006 | read_lock(&fib_lock); | ||
| 2007 | |||
| 2008 | seq_printf(seq, "------ trie_dump of t=%p ------\n", t); | ||
| 2009 | if (n) { | ||
| 2010 | printnode_seq(seq, indent, n, pend, cindex, 0); | ||
| 2011 | if (IS_TNODE(n)) { | ||
| 2012 | struct tnode *tn=(struct tnode *)n; | ||
| 2013 | pend = tn->pos+tn->bits; | ||
| 2014 | putspace_seq(seq, indent); seq_printf(seq, "\\--\n"); | ||
| 2015 | indent += 3; | ||
| 2016 | depth++; | ||
| 2017 | |||
| 2018 | while (tn && cindex < (1 << tn->bits)) { | ||
| 2019 | if (tn->child[cindex]) { | ||
| 2020 | |||
| 2021 | /* Got a child */ | ||
| 2022 | |||
| 2023 | printnode_seq(seq, indent, tn->child[cindex], pend, cindex, tn->bits); | ||
| 2024 | if (IS_LEAF(tn->child[cindex])) { | ||
| 2025 | cindex++; | ||
| 2026 | |||
| 2027 | } | ||
| 2028 | else { | ||
| 2029 | /* | ||
| 2030 | * New tnode. Decend one level | ||
| 2031 | */ | ||
| 2032 | |||
| 2033 | depth++; | ||
| 2034 | n=tn->child[cindex]; | ||
| 2035 | tn=(struct tnode *)n; | ||
| 2036 | pend=tn->pos+tn->bits; | ||
| 2037 | putspace_seq(seq, indent); seq_printf(seq, "\\--\n"); | ||
| 2038 | indent+=3; | ||
| 2039 | cindex=0; | ||
| 2040 | } | ||
| 2041 | } | ||
| 2042 | else | ||
| 2043 | cindex++; | ||
| 2044 | |||
| 2045 | /* | ||
| 2046 | * Test if we are done | ||
| 2047 | */ | ||
| 2048 | |||
| 2049 | while (cindex >= (1 << tn->bits)) { | ||
| 2050 | |||
| 2051 | /* | ||
| 2052 | * Move upwards and test for root | ||
| 2053 | * pop off all traversed nodes | ||
| 2054 | */ | ||
| 2055 | |||
| 2056 | if (NODE_PARENT(tn) == NULL) { | ||
| 2057 | tn = NULL; | ||
| 2058 | n = NULL; | ||
| 2059 | break; | ||
| 2060 | } | ||
| 2061 | else { | ||
| 2062 | cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits); | ||
| 2063 | tn = NODE_PARENT(tn); | ||
| 2064 | cindex++; | ||
| 2065 | n=(struct node *)tn; | ||
| 2066 | pend=tn->pos+tn->bits; | ||
| 2067 | indent-=3; | ||
| 2068 | depth--; | ||
| 2069 | } | ||
| 2070 | } | ||
| 2071 | } | ||
| 2072 | } | ||
| 2073 | else n = NULL; | ||
| 2074 | } | ||
| 2075 | else seq_printf(seq, "------ trie is empty\n"); | ||
| 2076 | |||
| 2077 | read_unlock(&fib_lock); | ||
| 2078 | } | ||
| 2079 | |||
| 2080 | static struct trie_stat *trie_stat_new(void) | ||
| 2081 | { | ||
| 2082 | struct trie_stat *s = kmalloc(sizeof(struct trie_stat), GFP_KERNEL); | ||
| 2083 | int i; | ||
| 2084 | |||
| 2085 | if(s) { | ||
| 2086 | s->totdepth = 0; | ||
| 2087 | s->maxdepth = 0; | ||
| 2088 | s->tnodes = 0; | ||
| 2089 | s->leaves = 0; | ||
| 2090 | s->nullpointers = 0; | ||
| 2091 | |||
| 2092 | for(i=0; i< MAX_CHILDS; i++) | ||
| 2093 | s->nodesizes[i] = 0; | ||
| 2094 | } | ||
| 2095 | return s; | ||
| 2096 | } | ||
| 2097 | |||
| 2098 | static struct trie_stat *trie_collect_stats(struct trie *t) | ||
| 2099 | { | ||
| 2100 | struct node *n=t->trie; | ||
| 2101 | struct trie_stat *s = trie_stat_new(); | ||
| 2102 | int cindex = 0; | ||
| 2103 | int indent = 1; | ||
| 2104 | int pend = 0; | ||
| 2105 | int depth = 0; | ||
| 2106 | |||
| 2107 | read_lock(&fib_lock); | ||
| 2108 | |||
| 2109 | if (s) { | ||
| 2110 | if (n) { | ||
| 2111 | if (IS_TNODE(n)) { | ||
| 2112 | struct tnode *tn = (struct tnode *)n; | ||
| 2113 | pend=tn->pos+tn->bits; | ||
| 2114 | indent += 3; | ||
| 2115 | s->nodesizes[tn->bits]++; | ||
| 2116 | depth++; | ||
| 2117 | |||
| 2118 | while (tn && cindex < (1 << tn->bits)) { | ||
| 2119 | if (tn->child[cindex]) { | ||
| 2120 | /* Got a child */ | ||
| 2121 | |||
| 2122 | if (IS_LEAF(tn->child[cindex])) { | ||
| 2123 | cindex++; | ||
| 2124 | |||
| 2125 | /* stats */ | ||
| 2126 | if (depth > s->maxdepth) | ||
| 2127 | s->maxdepth = depth; | ||
| 2128 | s->totdepth += depth; | ||
| 2129 | s->leaves++; | ||
| 2130 | } | ||
| 2131 | |||
| 2132 | else { | ||
| 2133 | /* | ||
| 2134 | * New tnode. Decend one level | ||
| 2135 | */ | ||
| 2136 | |||
| 2137 | s->tnodes++; | ||
| 2138 | s->nodesizes[tn->bits]++; | ||
| 2139 | depth++; | ||
| 2140 | |||
| 2141 | n = tn->child[cindex]; | ||
| 2142 | tn = (struct tnode *)n; | ||
| 2143 | pend = tn->pos+tn->bits; | ||
| 2144 | |||
| 2145 | indent += 3; | ||
| 2146 | cindex = 0; | ||
| 2147 | } | ||
| 2148 | } | ||
| 2149 | else { | ||
| 2150 | cindex++; | ||
| 2151 | s->nullpointers++; | ||
| 2152 | } | ||
| 2153 | |||
| 2154 | /* | ||
| 2155 | * Test if we are done | ||
| 2156 | */ | ||
| 2157 | |||
| 2158 | while (cindex >= (1 << tn->bits)) { | ||
| 2159 | |||
| 2160 | /* | ||
| 2161 | * Move upwards and test for root | ||
| 2162 | * pop off all traversed nodes | ||
| 2163 | */ | ||
| 2164 | |||
| 2165 | |||
| 2166 | if (NODE_PARENT(tn) == NULL) { | ||
| 2167 | tn = NULL; | ||
| 2168 | n = NULL; | ||
| 2169 | break; | ||
| 2170 | } | ||
| 2171 | else { | ||
| 2172 | cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits); | ||
| 2173 | tn = NODE_PARENT(tn); | ||
| 2174 | cindex++; | ||
| 2175 | n = (struct node *)tn; | ||
| 2176 | pend=tn->pos+tn->bits; | ||
| 2177 | indent -= 3; | ||
| 2178 | depth--; | ||
| 2179 | } | ||
| 2180 | } | ||
| 2181 | } | ||
| 2182 | } | ||
| 2183 | else n = NULL; | ||
| 2184 | } | ||
| 2185 | } | ||
| 2186 | |||
| 2187 | read_unlock(&fib_lock); | ||
| 2188 | return s; | ||
| 2189 | } | ||
| 2190 | |||
| 2191 | #ifdef CONFIG_PROC_FS | ||
| 2192 | |||
| 2193 | static struct fib_alias *fib_triestat_get_first(struct seq_file *seq) | ||
| 2194 | { | ||
| 2195 | return NULL; | ||
| 2196 | } | ||
| 2197 | |||
| 2198 | static struct fib_alias *fib_triestat_get_next(struct seq_file *seq) | ||
| 2199 | { | ||
| 2200 | return NULL; | ||
| 2201 | } | ||
| 2202 | |||
| 2203 | static void *fib_triestat_seq_start(struct seq_file *seq, loff_t *pos) | ||
| 2204 | { | ||
| 2205 | void *v = NULL; | ||
| 2206 | |||
| 2207 | if (ip_fib_main_table) | ||
| 2208 | v = *pos ? fib_triestat_get_next(seq) : SEQ_START_TOKEN; | ||
| 2209 | return v; | ||
| 2210 | } | ||
| 2211 | |||
| 2212 | static void *fib_triestat_seq_next(struct seq_file *seq, void *v, loff_t *pos) | ||
| 2213 | { | ||
| 2214 | ++*pos; | ||
| 2215 | return v == SEQ_START_TOKEN ? fib_triestat_get_first(seq) : fib_triestat_get_next(seq); | ||
| 2216 | } | ||
| 2217 | |||
| 2218 | static void fib_triestat_seq_stop(struct seq_file *seq, void *v) | ||
| 2219 | { | ||
| 2220 | |||
| 2221 | } | ||
| 2222 | |||
| 2223 | /* | ||
| 2224 | * This outputs /proc/net/fib_triestats | ||
| 2225 | * | ||
| 2226 | * It always works in backward compatibility mode. | ||
| 2227 | * The format of the file is not supposed to be changed. | ||
| 2228 | */ | ||
| 2229 | |||
| 2230 | static void collect_and_show(struct trie *t, struct seq_file *seq) | ||
| 2231 | { | ||
| 2232 | int bytes = 0; /* How many bytes are used, a ref is 4 bytes */ | ||
| 2233 | int i, max, pointers; | ||
| 2234 | struct trie_stat *stat; | ||
| 2235 | int avdepth; | ||
| 2236 | |||
| 2237 | stat = trie_collect_stats(t); | ||
| 2238 | |||
| 2239 | bytes=0; | ||
| 2240 | seq_printf(seq, "trie=%p\n", t); | ||
| 2241 | |||
| 2242 | if (stat) { | ||
| 2243 | if (stat->leaves) | ||
| 2244 | avdepth=stat->totdepth*100 / stat->leaves; | ||
| 2245 | else | ||
| 2246 | avdepth=0; | ||
| 2247 | seq_printf(seq, "Aver depth: %d.%02d\n", avdepth / 100, avdepth % 100 ); | ||
| 2248 | seq_printf(seq, "Max depth: %4d\n", stat->maxdepth); | ||
| 2249 | |||
| 2250 | seq_printf(seq, "Leaves: %d\n", stat->leaves); | ||
| 2251 | bytes += sizeof(struct leaf) * stat->leaves; | ||
| 2252 | seq_printf(seq, "Internal nodes: %d\n", stat->tnodes); | ||
| 2253 | bytes += sizeof(struct tnode) * stat->tnodes; | ||
| 2254 | |||
| 2255 | max = MAX_CHILDS-1; | ||
| 2256 | |||
| 2257 | while (max >= 0 && stat->nodesizes[max] == 0) | ||
| 2258 | max--; | ||
| 2259 | pointers = 0; | ||
| 2260 | |||
| 2261 | for (i = 1; i <= max; i++) | ||
| 2262 | if (stat->nodesizes[i] != 0) { | ||
| 2263 | seq_printf(seq, " %d: %d", i, stat->nodesizes[i]); | ||
| 2264 | pointers += (1<<i) * stat->nodesizes[i]; | ||
| 2265 | } | ||
| 2266 | seq_printf(seq, "\n"); | ||
| 2267 | seq_printf(seq, "Pointers: %d\n", pointers); | ||
| 2268 | bytes += sizeof(struct node *) * pointers; | ||
| 2269 | seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers); | ||
| 2270 | seq_printf(seq, "Total size: %d kB\n", bytes / 1024); | ||
| 2271 | |||
| 2272 | kfree(stat); | ||
| 2273 | } | ||
| 2274 | |||
| 2275 | #ifdef CONFIG_IP_FIB_TRIE_STATS | ||
| 2276 | seq_printf(seq, "Counters:\n---------\n"); | ||
| 2277 | seq_printf(seq,"gets = %d\n", t->stats.gets); | ||
| 2278 | seq_printf(seq,"backtracks = %d\n", t->stats.backtrack); | ||
| 2279 | seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed); | ||
| 2280 | seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss); | ||
| 2281 | seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit); | ||
| 2282 | #ifdef CLEAR_STATS | ||
| 2283 | memset(&(t->stats), 0, sizeof(t->stats)); | ||
| 2284 | #endif | ||
| 2285 | #endif /* CONFIG_IP_FIB_TRIE_STATS */ | ||
| 2286 | } | ||
| 2287 | |||
| 2288 | static int fib_triestat_seq_show(struct seq_file *seq, void *v) | ||
| 2289 | { | ||
| 2290 | char bf[128]; | ||
| 2291 | |||
| 2292 | if (v == SEQ_START_TOKEN) { | ||
| 2293 | seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n", | ||
| 2294 | sizeof(struct leaf), sizeof(struct tnode)); | ||
| 2295 | if (trie_local) | ||
| 2296 | collect_and_show(trie_local, seq); | ||
| 2297 | |||
| 2298 | if (trie_main) | ||
| 2299 | collect_and_show(trie_main, seq); | ||
| 2300 | } | ||
| 2301 | else { | ||
| 2302 | snprintf(bf, sizeof(bf), | ||
| 2303 | "*\t%08X\t%08X", 200, 400); | ||
| 2304 | |||
| 2305 | seq_printf(seq, "%-127s\n", bf); | ||
| 2306 | } | ||
| 2307 | return 0; | ||
| 2308 | } | ||
| 2309 | |||
| 2310 | static struct seq_operations fib_triestat_seq_ops = { | ||
| 2311 | .start = fib_triestat_seq_start, | ||
| 2312 | .next = fib_triestat_seq_next, | ||
| 2313 | .stop = fib_triestat_seq_stop, | ||
| 2314 | .show = fib_triestat_seq_show, | ||
| 2315 | }; | ||
| 2316 | |||
| 2317 | static int fib_triestat_seq_open(struct inode *inode, struct file *file) | ||
| 2318 | { | ||
| 2319 | struct seq_file *seq; | ||
| 2320 | int rc = -ENOMEM; | ||
| 2321 | |||
| 2322 | rc = seq_open(file, &fib_triestat_seq_ops); | ||
| 2323 | if (rc) | ||
| 2324 | goto out_kfree; | ||
| 2325 | |||
| 2326 | seq = file->private_data; | ||
| 2327 | out: | ||
| 2328 | return rc; | ||
| 2329 | out_kfree: | ||
| 2330 | goto out; | ||
| 2331 | } | ||
| 2332 | |||
| 2333 | static struct file_operations fib_triestat_seq_fops = { | ||
| 2334 | .owner = THIS_MODULE, | ||
| 2335 | .open = fib_triestat_seq_open, | ||
| 2336 | .read = seq_read, | ||
| 2337 | .llseek = seq_lseek, | ||
| 2338 | .release = seq_release_private, | ||
| 2339 | }; | ||
| 2340 | |||
| 2341 | int __init fib_stat_proc_init(void) | ||
| 2342 | { | ||
| 2343 | if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_seq_fops)) | ||
| 2344 | return -ENOMEM; | ||
| 2345 | return 0; | ||
| 2346 | } | ||
| 2347 | |||
| 2348 | void __init fib_stat_proc_exit(void) | ||
| 2349 | { | ||
| 2350 | proc_net_remove("fib_triestat"); | ||
| 2351 | } | ||
| 2352 | |||
| 2353 | static struct fib_alias *fib_trie_get_first(struct seq_file *seq) | ||
| 2354 | { | ||
| 2355 | return NULL; | ||
| 2356 | } | ||
| 2357 | |||
| 2358 | static struct fib_alias *fib_trie_get_next(struct seq_file *seq) | ||
| 2359 | { | ||
| 2360 | return NULL; | ||
| 2361 | } | ||
| 2362 | |||
| 2363 | static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) | ||
| 2364 | { | ||
| 2365 | void *v = NULL; | ||
| 2366 | |||
| 2367 | if (ip_fib_main_table) | ||
| 2368 | v = *pos ? fib_trie_get_next(seq) : SEQ_START_TOKEN; | ||
| 2369 | return v; | ||
| 2370 | } | ||
| 2371 | |||
| 2372 | static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) | ||
| 2373 | { | ||
| 2374 | ++*pos; | ||
| 2375 | return v == SEQ_START_TOKEN ? fib_trie_get_first(seq) : fib_trie_get_next(seq); | ||
| 2376 | } | ||
| 2377 | |||
| 2378 | static void fib_trie_seq_stop(struct seq_file *seq, void *v) | ||
| 2379 | { | ||
| 2380 | |||
| 2381 | } | ||
| 2382 | |||
| 2383 | /* | ||
| 2384 | * This outputs /proc/net/fib_trie. | ||
| 2385 | * | ||
| 2386 | * It always works in backward compatibility mode. | ||
| 2387 | * The format of the file is not supposed to be changed. | ||
| 2388 | */ | ||
| 2389 | |||
| 2390 | static int fib_trie_seq_show(struct seq_file *seq, void *v) | ||
| 2391 | { | ||
| 2392 | char bf[128]; | ||
| 2393 | |||
| 2394 | if (v == SEQ_START_TOKEN) { | ||
| 2395 | if (trie_local) | ||
| 2396 | trie_dump_seq(seq, trie_local); | ||
| 2397 | |||
| 2398 | if (trie_main) | ||
| 2399 | trie_dump_seq(seq, trie_main); | ||
| 2400 | } | ||
| 2401 | |||
| 2402 | else { | ||
| 2403 | snprintf(bf, sizeof(bf), | ||
| 2404 | "*\t%08X\t%08X", 200, 400); | ||
| 2405 | seq_printf(seq, "%-127s\n", bf); | ||
| 2406 | } | ||
| 2407 | |||
| 2408 | return 0; | ||
| 2409 | } | ||
| 2410 | |||
| 2411 | static struct seq_operations fib_trie_seq_ops = { | ||
| 2412 | .start = fib_trie_seq_start, | ||
| 2413 | .next = fib_trie_seq_next, | ||
| 2414 | .stop = fib_trie_seq_stop, | ||
| 2415 | .show = fib_trie_seq_show, | ||
| 2416 | }; | ||
| 2417 | |||
| 2418 | static int fib_trie_seq_open(struct inode *inode, struct file *file) | ||
| 2419 | { | ||
| 2420 | struct seq_file *seq; | ||
| 2421 | int rc = -ENOMEM; | ||
| 2422 | |||
| 2423 | rc = seq_open(file, &fib_trie_seq_ops); | ||
| 2424 | if (rc) | ||
| 2425 | goto out_kfree; | ||
| 2426 | |||
| 2427 | seq = file->private_data; | ||
| 2428 | out: | ||
| 2429 | return rc; | ||
| 2430 | out_kfree: | ||
| 2431 | goto out; | ||
| 2432 | } | ||
| 2433 | |||
| 2434 | static struct file_operations fib_trie_seq_fops = { | ||
| 2435 | .owner = THIS_MODULE, | ||
| 2436 | .open = fib_trie_seq_open, | ||
| 2437 | .read = seq_read, | ||
| 2438 | .llseek = seq_lseek, | ||
| 2439 | .release = seq_release_private, | ||
| 2440 | }; | ||
| 2441 | |||
| 2442 | int __init fib_proc_init(void) | ||
| 2443 | { | ||
| 2444 | if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_seq_fops)) | ||
| 2445 | return -ENOMEM; | ||
| 2446 | return 0; | ||
| 2447 | } | ||
| 2448 | |||
| 2449 | void __init fib_proc_exit(void) | ||
| 2450 | { | ||
| 2451 | proc_net_remove("fib_trie"); | ||
| 2452 | } | ||
| 2453 | |||
| 2454 | #endif /* CONFIG_PROC_FS */ | ||
