diff options
author | Bjoern B. Brandenburg <bbb@cs.unc.edu> | 2011-02-08 00:29:16 -0500 |
---|---|---|
committer | Bjoern B. Brandenburg <bbb@cs.unc.edu> | 2011-02-08 00:29:16 -0500 |
commit | ffe6756d28b517e56c3ee8496a92f4e58e2bcebe (patch) | |
tree | 03808b6ac5b70c2025b87cb11971bfd08fb49d81 | |
parent | 9bdb1c134488b8bfa9dca6d50555ed9a9f86ffb7 (diff) |
P-FP: add new partitioned fixed-priority plugin
Currently, this is basically the PSN-EDF plugin with a bit of renaming
going on. The priority queue implementation and priority boosting
implementation should change next.
-rw-r--r-- | include/litmus/fp_common.h | 19 | ||||
-rw-r--r-- | include/litmus/litmus.h | 1 | ||||
-rw-r--r-- | litmus/Makefile | 4 | ||||
-rw-r--r-- | litmus/fp_common.c | 112 | ||||
-rw-r--r-- | litmus/sched_pfp.c | 620 |
5 files changed, 755 insertions, 1 deletions
diff --git a/include/litmus/fp_common.h b/include/litmus/fp_common.h new file mode 100644 index 000000000000..f23727ba913d --- /dev/null +++ b/include/litmus/fp_common.h | |||
@@ -0,0 +1,19 @@ | |||
1 | /* Fixed-priority scheduler support. | ||
2 | */ | ||
3 | |||
4 | #ifndef __FP_COMMON_H__ | ||
5 | #define __FP_COMMON_H__ | ||
6 | |||
7 | #include <litmus/rt_domain.h> | ||
8 | |||
9 | void fp_domain_init(rt_domain_t* rt, check_resched_needed_t resched, | ||
10 | release_jobs_t release); | ||
11 | |||
12 | int fp_higher_prio(struct task_struct* first, | ||
13 | struct task_struct* second); | ||
14 | |||
15 | int fp_ready_order(struct bheap_node* a, struct bheap_node* b); | ||
16 | |||
17 | int fp_preemption_needed(rt_domain_t* rt, struct task_struct *t); | ||
18 | |||
19 | #endif | ||
diff --git a/include/litmus/litmus.h b/include/litmus/litmus.h index 94086e2b38db..c5df5eeeea24 100644 --- a/include/litmus/litmus.h +++ b/include/litmus/litmus.h | |||
@@ -52,6 +52,7 @@ void litmus_exit_task(struct task_struct *tsk); | |||
52 | #define get_rt_period(t) (tsk_rt(t)->task_params.period) | 52 | #define get_rt_period(t) (tsk_rt(t)->task_params.period) |
53 | #define get_rt_phase(t) (tsk_rt(t)->task_params.phase) | 53 | #define get_rt_phase(t) (tsk_rt(t)->task_params.phase) |
54 | #define get_partition(t) (tsk_rt(t)->task_params.cpu) | 54 | #define get_partition(t) (tsk_rt(t)->task_params.cpu) |
55 | #define get_priority(t) (tsk_rt(t)->task_params.priority) | ||
55 | #define get_deadline(t) (tsk_rt(t)->job_params.deadline) | 56 | #define get_deadline(t) (tsk_rt(t)->job_params.deadline) |
56 | #define get_release(t) (tsk_rt(t)->job_params.release) | 57 | #define get_release(t) (tsk_rt(t)->job_params.release) |
57 | #define get_class(t) (tsk_rt(t)->task_params.cls) | 58 | #define get_class(t) (tsk_rt(t)->task_params.cls) |
diff --git a/litmus/Makefile b/litmus/Makefile index ad9936e07b83..e86fad8c25ec 100644 --- a/litmus/Makefile +++ b/litmus/Makefile | |||
@@ -11,13 +11,15 @@ obj-y = sched_plugin.o litmus.o \ | |||
11 | sync.o \ | 11 | sync.o \ |
12 | rt_domain.o \ | 12 | rt_domain.o \ |
13 | edf_common.o \ | 13 | edf_common.o \ |
14 | fp_common.o \ | ||
14 | fdso.o \ | 15 | fdso.o \ |
15 | locking.o \ | 16 | locking.o \ |
16 | srp.o \ | 17 | srp.o \ |
17 | bheap.o \ | 18 | bheap.o \ |
18 | ctrldev.o \ | 19 | ctrldev.o \ |
19 | sched_gsn_edf.o \ | 20 | sched_gsn_edf.o \ |
20 | sched_psn_edf.o | 21 | sched_psn_edf.o \ |
22 | sched_pfp.o | ||
21 | 23 | ||
22 | obj-$(CONFIG_PLUGIN_CEDF) += sched_cedf.o | 24 | obj-$(CONFIG_PLUGIN_CEDF) += sched_cedf.o |
23 | obj-$(CONFIG_PLUGIN_PFAIR) += sched_pfair.o | 25 | obj-$(CONFIG_PLUGIN_PFAIR) += sched_pfair.o |
diff --git a/litmus/fp_common.c b/litmus/fp_common.c new file mode 100644 index 000000000000..fa36574d5992 --- /dev/null +++ b/litmus/fp_common.c | |||
@@ -0,0 +1,112 @@ | |||
1 | /* | ||
2 | * litmus/fp_common.c | ||
3 | * | ||
4 | * Common functions for fixed-priority scheduler. | ||
5 | */ | ||
6 | |||
7 | #include <linux/percpu.h> | ||
8 | #include <linux/sched.h> | ||
9 | #include <linux/list.h> | ||
10 | |||
11 | #include <litmus/litmus.h> | ||
12 | #include <litmus/sched_plugin.h> | ||
13 | #include <litmus/sched_trace.h> | ||
14 | |||
15 | #include <litmus/fp_common.h> | ||
16 | |||
17 | /* fp_higher_prio - returns true if first has a higher static priority | ||
18 | * than second. Deadline ties are broken by PID. | ||
19 | * | ||
20 | * both first and second may be NULL | ||
21 | */ | ||
22 | int fp_higher_prio(struct task_struct* first, | ||
23 | struct task_struct* second) | ||
24 | { | ||
25 | struct task_struct *first_task = first; | ||
26 | struct task_struct *second_task = second; | ||
27 | |||
28 | /* There is no point in comparing a task to itself. */ | ||
29 | if (first && first == second) { | ||
30 | TRACE_TASK(first, | ||
31 | "WARNING: pointless FP priority comparison.\n"); | ||
32 | return 0; | ||
33 | } | ||
34 | |||
35 | |||
36 | /* check for NULL tasks */ | ||
37 | if (!first || !second) | ||
38 | return first && !second; | ||
39 | |||
40 | #ifdef CONFIG_LITMUS_LOCKING | ||
41 | |||
42 | /* Check for inherited priorities. Change task | ||
43 | * used for comparison in such a case. | ||
44 | */ | ||
45 | if (unlikely(first->rt_param.inh_task)) | ||
46 | first_task = first->rt_param.inh_task; | ||
47 | if (unlikely(second->rt_param.inh_task)) | ||
48 | second_task = second->rt_param.inh_task; | ||
49 | |||
50 | /* Check for priority boosting. Tie-break by start of boosting. | ||
51 | */ | ||
52 | if (unlikely(is_priority_boosted(first_task))) { | ||
53 | /* first_task is boosted, how about second_task? */ | ||
54 | if (!is_priority_boosted(second_task) || | ||
55 | lt_before(get_boost_start(first_task), | ||
56 | get_boost_start(second_task))) | ||
57 | return 1; | ||
58 | else | ||
59 | return 0; | ||
60 | } else if (unlikely(is_priority_boosted(second_task))) | ||
61 | /* second_task is boosted, first is not*/ | ||
62 | return 0; | ||
63 | |||
64 | #endif | ||
65 | |||
66 | |||
67 | return !is_realtime(second_task) || | ||
68 | |||
69 | /* is the deadline of the first task earlier? | ||
70 | * Then it has higher priority. | ||
71 | */ | ||
72 | get_priority(first_task) < get_priority(second_task) || | ||
73 | |||
74 | /* Do we have a deadline tie? | ||
75 | * Then break by PID. | ||
76 | */ | ||
77 | (get_priority(first_task) == get_priority(second_task) && | ||
78 | (first_task->pid < second_task->pid || | ||
79 | |||
80 | /* If the PIDs are the same then the task with the inherited | ||
81 | * priority wins. | ||
82 | */ | ||
83 | (first_task->pid == second_task->pid && | ||
84 | !second->rt_param.inh_task))); | ||
85 | } | ||
86 | |||
87 | int fp_ready_order(struct bheap_node* a, struct bheap_node* b) | ||
88 | { | ||
89 | return fp_higher_prio(bheap2task(a), bheap2task(b)); | ||
90 | } | ||
91 | |||
92 | void fp_domain_init(rt_domain_t* rt, check_resched_needed_t resched, | ||
93 | release_jobs_t release) | ||
94 | { | ||
95 | rt_domain_init(rt, fp_ready_order, resched, release); | ||
96 | } | ||
97 | |||
98 | /* need_to_preempt - check whether the task t needs to be preempted | ||
99 | */ | ||
100 | int fp_preemption_needed(rt_domain_t* rt, struct task_struct *t) | ||
101 | { | ||
102 | /* we need the read lock for edf_ready_queue */ | ||
103 | /* no need to preempt if there is nothing pending */ | ||
104 | if (!__jobs_pending(rt)) | ||
105 | return 0; | ||
106 | /* we need to reschedule if t doesn't exist */ | ||
107 | if (!t) | ||
108 | return 1; | ||
109 | |||
110 | /* make sure to get non-rt stuff out of the way */ | ||
111 | return !is_realtime(t) || fp_higher_prio(__next_ready(rt), t); | ||
112 | } | ||
diff --git a/litmus/sched_pfp.c b/litmus/sched_pfp.c new file mode 100644 index 000000000000..183ceedf8308 --- /dev/null +++ b/litmus/sched_pfp.c | |||
@@ -0,0 +1,620 @@ | |||
1 | /* | ||
2 | * litmus/sched_pfp.c | ||
3 | * | ||
4 | * Implementation of partitioned fixed-priority scheduling. | ||
5 | * Based on PSN-EDF. | ||
6 | */ | ||
7 | |||
8 | #include <linux/percpu.h> | ||
9 | #include <linux/sched.h> | ||
10 | #include <linux/list.h> | ||
11 | #include <linux/spinlock.h> | ||
12 | #include <linux/module.h> | ||
13 | |||
14 | #include <litmus/litmus.h> | ||
15 | #include <litmus/jobs.h> | ||
16 | #include <litmus/preempt.h> | ||
17 | #include <litmus/fp_common.h> | ||
18 | #include <litmus/sched_plugin.h> | ||
19 | #include <litmus/sched_trace.h> | ||
20 | #include <litmus/trace.h> | ||
21 | |||
22 | typedef struct { | ||
23 | rt_domain_t domain; | ||
24 | int cpu; | ||
25 | struct task_struct* scheduled; /* only RT tasks */ | ||
26 | /* | ||
27 | * scheduling lock slock | ||
28 | * protects the domain and serializes scheduling decisions | ||
29 | */ | ||
30 | #define slock domain.ready_lock | ||
31 | |||
32 | } pfp_domain_t; | ||
33 | |||
34 | DEFINE_PER_CPU(pfp_domain_t, pfp_domains); | ||
35 | |||
36 | #define local_pfp (&__get_cpu_var(pfp_domains)) | ||
37 | #define remote_dom(cpu) (&per_cpu(pfp_domains, cpu).domain) | ||
38 | #define remote_pfp(cpu) (&per_cpu(pfp_domains, cpu)) | ||
39 | #define task_dom(task) remote_dom(get_partition(task)) | ||
40 | #define task_pfp(task) remote_pfp(get_partition(task)) | ||
41 | |||
42 | |||
43 | static void pfp_domain_init(pfp_domain_t* pfp, | ||
44 | check_resched_needed_t check, | ||
45 | release_jobs_t release, | ||
46 | int cpu) | ||
47 | { | ||
48 | fp_domain_init(&pfp->domain, check, release); | ||
49 | pfp->cpu = cpu; | ||
50 | pfp->scheduled = NULL; | ||
51 | } | ||
52 | |||
53 | static void requeue(struct task_struct* t, rt_domain_t *dom) | ||
54 | { | ||
55 | if (t->state != TASK_RUNNING) | ||
56 | TRACE_TASK(t, "requeue: !TASK_RUNNING\n"); | ||
57 | |||
58 | set_rt_flags(t, RT_F_RUNNING); | ||
59 | if (is_released(t, litmus_clock())) | ||
60 | __add_ready(dom, t); | ||
61 | else | ||
62 | add_release(dom, t); /* it has got to wait */ | ||
63 | } | ||
64 | |||
65 | /* we assume the lock is being held */ | ||
66 | static void preempt(pfp_domain_t *pfp) | ||
67 | { | ||
68 | preempt_if_preemptable(pfp->scheduled, pfp->cpu); | ||
69 | } | ||
70 | |||
71 | /* This check is trivial in partioned systems as we only have to consider | ||
72 | * the CPU of the partition. | ||
73 | */ | ||
74 | static int pfp_check_resched(rt_domain_t *dom) | ||
75 | { | ||
76 | pfp_domain_t *pfp = container_of(dom, pfp_domain_t, domain); | ||
77 | |||
78 | /* because this is a callback from rt_domain_t we already hold | ||
79 | * the necessary lock for the ready queue | ||
80 | */ | ||
81 | if (fp_preemption_needed(dom, pfp->scheduled)) { | ||
82 | preempt(pfp); | ||
83 | return 1; | ||
84 | } else | ||
85 | return 0; | ||
86 | } | ||
87 | |||
88 | static void job_completion(struct task_struct* t, int forced) | ||
89 | { | ||
90 | sched_trace_task_completion(t,forced); | ||
91 | TRACE_TASK(t, "job_completion().\n"); | ||
92 | |||
93 | set_rt_flags(t, RT_F_SLEEP); | ||
94 | prepare_for_next_period(t); | ||
95 | } | ||
96 | |||
97 | static void pfp_tick(struct task_struct *t) | ||
98 | { | ||
99 | pfp_domain_t *pfp = local_pfp; | ||
100 | |||
101 | /* Check for inconsistency. We don't need the lock for this since | ||
102 | * ->scheduled is only changed in schedule, which obviously is not | ||
103 | * executing in parallel on this CPU | ||
104 | */ | ||
105 | BUG_ON(is_realtime(t) && t != pfp->scheduled); | ||
106 | |||
107 | if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) { | ||
108 | if (!is_np(t)) { | ||
109 | litmus_reschedule_local(); | ||
110 | TRACE("pfp_scheduler_tick: " | ||
111 | "%d is preemptable " | ||
112 | " => FORCE_RESCHED\n", t->pid); | ||
113 | } else if (is_user_np(t)) { | ||
114 | TRACE("pfp_scheduler_tick: " | ||
115 | "%d is non-preemptable, " | ||
116 | "preemption delayed.\n", t->pid); | ||
117 | request_exit_np(t); | ||
118 | } | ||
119 | } | ||
120 | } | ||
121 | |||
122 | static struct task_struct* pfp_schedule(struct task_struct * prev) | ||
123 | { | ||
124 | pfp_domain_t* pfp = local_pfp; | ||
125 | rt_domain_t* dom = &pfp->domain; | ||
126 | struct task_struct* next; | ||
127 | |||
128 | int out_of_time, sleep, preempt, | ||
129 | np, exists, blocks, resched; | ||
130 | |||
131 | raw_spin_lock(&pfp->slock); | ||
132 | |||
133 | /* sanity checking | ||
134 | * differently from gedf, when a task exits (dead) | ||
135 | * pfp->schedule may be null and prev _is_ realtime | ||
136 | */ | ||
137 | BUG_ON(pfp->scheduled && pfp->scheduled != prev); | ||
138 | BUG_ON(pfp->scheduled && !is_realtime(prev)); | ||
139 | |||
140 | /* (0) Determine state */ | ||
141 | exists = pfp->scheduled != NULL; | ||
142 | blocks = exists && !is_running(pfp->scheduled); | ||
143 | out_of_time = exists && | ||
144 | budget_enforced(pfp->scheduled) && | ||
145 | budget_exhausted(pfp->scheduled); | ||
146 | np = exists && is_np(pfp->scheduled); | ||
147 | sleep = exists && get_rt_flags(pfp->scheduled) == RT_F_SLEEP; | ||
148 | preempt = fp_preemption_needed(dom, prev); | ||
149 | |||
150 | /* If we need to preempt do so. | ||
151 | * The following checks set resched to 1 in case of special | ||
152 | * circumstances. | ||
153 | */ | ||
154 | resched = preempt; | ||
155 | |||
156 | /* If a task blocks we have no choice but to reschedule. | ||
157 | */ | ||
158 | if (blocks) | ||
159 | resched = 1; | ||
160 | |||
161 | /* Request a sys_exit_np() call if we would like to preempt but cannot. | ||
162 | * Multiple calls to request_exit_np() don't hurt. | ||
163 | */ | ||
164 | if (np && (out_of_time || preempt || sleep)) | ||
165 | request_exit_np(pfp->scheduled); | ||
166 | |||
167 | /* Any task that is preemptable and either exhausts its execution | ||
168 | * budget or wants to sleep completes. We may have to reschedule after | ||
169 | * this. | ||
170 | */ | ||
171 | if (!np && (out_of_time || sleep) && !blocks) { | ||
172 | job_completion(pfp->scheduled, !sleep); | ||
173 | resched = 1; | ||
174 | } | ||
175 | |||
176 | /* The final scheduling decision. Do we need to switch for some reason? | ||
177 | * Switch if we are in RT mode and have no task or if we need to | ||
178 | * resched. | ||
179 | */ | ||
180 | next = NULL; | ||
181 | if ((!np || blocks) && (resched || !exists)) { | ||
182 | /* When preempting a task that does not block, then | ||
183 | * re-insert it into either the ready queue or the | ||
184 | * release queue (if it completed). requeue() picks | ||
185 | * the appropriate queue. | ||
186 | */ | ||
187 | if (pfp->scheduled && !blocks) | ||
188 | requeue(pfp->scheduled, dom); | ||
189 | next = __take_ready(dom); | ||
190 | } else | ||
191 | /* Only override Linux scheduler if we have a real-time task | ||
192 | * scheduled that needs to continue. | ||
193 | */ | ||
194 | if (exists) | ||
195 | next = prev; | ||
196 | |||
197 | if (next) { | ||
198 | TRACE_TASK(next, "scheduled at %llu\n", litmus_clock()); | ||
199 | set_rt_flags(next, RT_F_RUNNING); | ||
200 | } else { | ||
201 | TRACE("becoming idle at %llu\n", litmus_clock()); | ||
202 | } | ||
203 | |||
204 | pfp->scheduled = next; | ||
205 | sched_state_task_picked(); | ||
206 | raw_spin_unlock(&pfp->slock); | ||
207 | |||
208 | return next; | ||
209 | } | ||
210 | |||
211 | |||
212 | /* Prepare a task for running in RT mode | ||
213 | */ | ||
214 | static void pfp_task_new(struct task_struct * t, int on_rq, int running) | ||
215 | { | ||
216 | rt_domain_t* dom = task_dom(t); | ||
217 | pfp_domain_t* pfp = task_pfp(t); | ||
218 | unsigned long flags; | ||
219 | |||
220 | TRACE_TASK(t, "P-FP: task new, cpu = %d\n", | ||
221 | t->rt_param.task_params.cpu); | ||
222 | |||
223 | /* setup job parameters */ | ||
224 | release_at(t, litmus_clock()); | ||
225 | |||
226 | /* The task should be running in the queue, otherwise signal | ||
227 | * code will try to wake it up with fatal consequences. | ||
228 | */ | ||
229 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
230 | if (running) { | ||
231 | /* there shouldn't be anything else running at the time */ | ||
232 | BUG_ON(pfp->scheduled); | ||
233 | pfp->scheduled = t; | ||
234 | } else { | ||
235 | requeue(t, dom); | ||
236 | /* maybe we have to reschedule */ | ||
237 | preempt(pfp); | ||
238 | } | ||
239 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
240 | } | ||
241 | |||
242 | static void pfp_task_wake_up(struct task_struct *task) | ||
243 | { | ||
244 | unsigned long flags; | ||
245 | pfp_domain_t* pfp = task_pfp(task); | ||
246 | rt_domain_t* dom = task_dom(task); | ||
247 | lt_t now; | ||
248 | |||
249 | TRACE_TASK(task, "wake_up at %llu\n", litmus_clock()); | ||
250 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
251 | BUG_ON(is_queued(task)); | ||
252 | now = litmus_clock(); | ||
253 | if (is_tardy(task, now) | ||
254 | #ifdef CONFIG_LITMUS_LOCKING | ||
255 | /* We need to take suspensions because of semaphores into | ||
256 | * account! If a job resumes after being suspended due to acquiring | ||
257 | * a semaphore, it should never be treated as a new job release. | ||
258 | */ | ||
259 | && !is_priority_boosted(task) | ||
260 | #endif | ||
261 | ) { | ||
262 | /* new sporadic release */ | ||
263 | release_at(task, now); | ||
264 | sched_trace_task_release(task); | ||
265 | } | ||
266 | |||
267 | /* Only add to ready queue if it is not the currently-scheduled | ||
268 | * task. This could be the case if a task was woken up concurrently | ||
269 | * on a remote CPU before the executing CPU got around to actually | ||
270 | * de-scheduling the task, i.e., wake_up() raced with schedule() | ||
271 | * and won. | ||
272 | */ | ||
273 | if (pfp->scheduled != task) | ||
274 | requeue(task, dom); | ||
275 | |||
276 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
277 | TRACE_TASK(task, "wake up done\n"); | ||
278 | } | ||
279 | |||
280 | static void pfp_task_block(struct task_struct *t) | ||
281 | { | ||
282 | /* only running tasks can block, thus t is in no queue */ | ||
283 | TRACE_TASK(t, "block at %llu, state=%d\n", litmus_clock(), t->state); | ||
284 | |||
285 | BUG_ON(!is_realtime(t)); | ||
286 | BUG_ON(is_queued(t)); | ||
287 | } | ||
288 | |||
289 | static void pfp_task_exit(struct task_struct * t) | ||
290 | { | ||
291 | unsigned long flags; | ||
292 | pfp_domain_t* pfp = task_pfp(t); | ||
293 | rt_domain_t* dom; | ||
294 | |||
295 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
296 | if (is_queued(t)) { | ||
297 | /* dequeue */ | ||
298 | dom = task_dom(t); | ||
299 | remove(dom, t); | ||
300 | } | ||
301 | if (pfp->scheduled == t) | ||
302 | pfp->scheduled = NULL; | ||
303 | |||
304 | TRACE_TASK(t, "RIP, now reschedule\n"); | ||
305 | |||
306 | preempt(pfp); | ||
307 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
308 | } | ||
309 | |||
310 | #ifdef CONFIG_LITMUS_LOCKING | ||
311 | |||
312 | #include <litmus/fdso.h> | ||
313 | #include <litmus/srp.h> | ||
314 | |||
315 | static void boost_priority(struct task_struct* t) | ||
316 | { | ||
317 | unsigned long flags; | ||
318 | pfp_domain_t* pfp = task_pfp(t); | ||
319 | lt_t now; | ||
320 | |||
321 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
322 | now = litmus_clock(); | ||
323 | |||
324 | TRACE_TASK(t, "priority boosted at %llu\n", now); | ||
325 | |||
326 | tsk_rt(t)->priority_boosted = 1; | ||
327 | tsk_rt(t)->boost_start_time = now; | ||
328 | |||
329 | if (pfp->scheduled != t) { | ||
330 | /* holder may be queued: first stop queue changes */ | ||
331 | raw_spin_lock(&pfp->domain.release_lock); | ||
332 | if (is_queued(t) && | ||
333 | /* If it is queued, then we need to re-order. */ | ||
334 | bheap_decrease(fp_ready_order, tsk_rt(t)->heap_node) && | ||
335 | /* If we bubbled to the top, then we need to check for preemptions. */ | ||
336 | fp_preemption_needed(&pfp->domain, pfp->scheduled)) | ||
337 | preempt(pfp); | ||
338 | raw_spin_unlock(&pfp->domain.release_lock); | ||
339 | } /* else: nothing to do since the job is not queued while scheduled */ | ||
340 | |||
341 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
342 | } | ||
343 | |||
344 | static void unboost_priority(struct task_struct* t) | ||
345 | { | ||
346 | unsigned long flags; | ||
347 | pfp_domain_t* pfp = task_pfp(t); | ||
348 | lt_t now; | ||
349 | |||
350 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
351 | now = litmus_clock(); | ||
352 | |||
353 | /* assumption: this only happens when the job is scheduled */ | ||
354 | BUG_ON(pfp->scheduled != t); | ||
355 | |||
356 | TRACE_TASK(t, "priority restored at %llu\n", now); | ||
357 | |||
358 | /* priority boosted jobs must be scheduled */ | ||
359 | BUG_ON(pfp->scheduled != t); | ||
360 | |||
361 | tsk_rt(t)->priority_boosted = 0; | ||
362 | tsk_rt(t)->boost_start_time = 0; | ||
363 | |||
364 | /* check if this changes anything */ | ||
365 | if (fp_preemption_needed(&pfp->domain, pfp->scheduled)) | ||
366 | preempt(pfp); | ||
367 | |||
368 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
369 | } | ||
370 | |||
371 | /* ******************** SRP support ************************ */ | ||
372 | |||
373 | static unsigned int pfp_get_srp_prio(struct task_struct* t) | ||
374 | { | ||
375 | return get_priority(t); | ||
376 | } | ||
377 | |||
378 | static long pfp_activate_plugin(void) | ||
379 | { | ||
380 | get_srp_prio = pfp_get_srp_prio; | ||
381 | return 0; | ||
382 | } | ||
383 | |||
384 | /* ******************** FMLP support ********************** */ | ||
385 | |||
386 | /* struct for semaphore with priority inheritance */ | ||
387 | struct fmlp_semaphore { | ||
388 | struct litmus_lock litmus_lock; | ||
389 | |||
390 | /* current resource holder */ | ||
391 | struct task_struct *owner; | ||
392 | |||
393 | /* FIFO queue of waiting tasks */ | ||
394 | wait_queue_head_t wait; | ||
395 | }; | ||
396 | |||
397 | static inline struct fmlp_semaphore* fmlp_from_lock(struct litmus_lock* lock) | ||
398 | { | ||
399 | return container_of(lock, struct fmlp_semaphore, litmus_lock); | ||
400 | } | ||
401 | int pfp_fmlp_lock(struct litmus_lock* l) | ||
402 | { | ||
403 | struct task_struct* t = current; | ||
404 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
405 | wait_queue_t wait; | ||
406 | unsigned long flags; | ||
407 | |||
408 | if (!is_realtime(t)) | ||
409 | return -EPERM; | ||
410 | |||
411 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
412 | |||
413 | if (sem->owner) { | ||
414 | /* resource is not free => must suspend and wait */ | ||
415 | |||
416 | init_waitqueue_entry(&wait, t); | ||
417 | |||
418 | /* FIXME: interruptible would be nice some day */ | ||
419 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
420 | |||
421 | __add_wait_queue_tail_exclusive(&sem->wait, &wait); | ||
422 | |||
423 | TS_LOCK_SUSPEND; | ||
424 | |||
425 | /* release lock before sleeping */ | ||
426 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
427 | |||
428 | /* We depend on the FIFO order. Thus, we don't need to recheck | ||
429 | * when we wake up; we are guaranteed to have the lock since | ||
430 | * there is only one wake up per release. | ||
431 | */ | ||
432 | |||
433 | schedule(); | ||
434 | |||
435 | TS_LOCK_RESUME; | ||
436 | |||
437 | /* Since we hold the lock, no other task will change | ||
438 | * ->owner. We can thus check it without acquiring the spin | ||
439 | * lock. */ | ||
440 | BUG_ON(sem->owner != t); | ||
441 | |||
442 | /* FIXME: could we punt the dequeuing to the previous job, | ||
443 | * which is holding the spinlock anyway? */ | ||
444 | remove_wait_queue(&sem->wait, &wait); | ||
445 | } else { | ||
446 | /* it's ours now */ | ||
447 | sem->owner = t; | ||
448 | |||
449 | /* mark the task as priority-boosted. */ | ||
450 | boost_priority(t); | ||
451 | |||
452 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
453 | } | ||
454 | |||
455 | return 0; | ||
456 | } | ||
457 | |||
458 | int pfp_fmlp_unlock(struct litmus_lock* l) | ||
459 | { | ||
460 | struct task_struct *t = current, *next; | ||
461 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
462 | unsigned long flags; | ||
463 | int err = 0; | ||
464 | |||
465 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
466 | |||
467 | if (sem->owner != t) { | ||
468 | err = -EINVAL; | ||
469 | goto out; | ||
470 | } | ||
471 | |||
472 | /* we lose the benefit of priority boosting */ | ||
473 | |||
474 | unboost_priority(t); | ||
475 | |||
476 | /* check if there are jobs waiting for this resource */ | ||
477 | next = waitqueue_first(&sem->wait); | ||
478 | if (next) { | ||
479 | /* boost next job */ | ||
480 | boost_priority(next); | ||
481 | |||
482 | /* next becomes the resouce holder */ | ||
483 | sem->owner = next; | ||
484 | |||
485 | /* wake up next */ | ||
486 | wake_up_process(next); | ||
487 | } else | ||
488 | /* resource becomes available */ | ||
489 | sem->owner = NULL; | ||
490 | |||
491 | out: | ||
492 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
493 | return err; | ||
494 | } | ||
495 | |||
496 | int pfp_fmlp_close(struct litmus_lock* l) | ||
497 | { | ||
498 | struct task_struct *t = current; | ||
499 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
500 | unsigned long flags; | ||
501 | |||
502 | int owner; | ||
503 | |||
504 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
505 | |||
506 | owner = sem->owner == t; | ||
507 | |||
508 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
509 | |||
510 | if (owner) | ||
511 | pfp_fmlp_unlock(l); | ||
512 | |||
513 | return 0; | ||
514 | } | ||
515 | |||
516 | void pfp_fmlp_free(struct litmus_lock* lock) | ||
517 | { | ||
518 | kfree(fmlp_from_lock(lock)); | ||
519 | } | ||
520 | |||
521 | static struct litmus_lock_ops pfp_fmlp_lock_ops = { | ||
522 | .close = pfp_fmlp_close, | ||
523 | .lock = pfp_fmlp_lock, | ||
524 | .unlock = pfp_fmlp_unlock, | ||
525 | .deallocate = pfp_fmlp_free, | ||
526 | }; | ||
527 | |||
528 | static struct litmus_lock* pfp_new_fmlp(void) | ||
529 | { | ||
530 | struct fmlp_semaphore* sem; | ||
531 | |||
532 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
533 | if (!sem) | ||
534 | return NULL; | ||
535 | |||
536 | sem->owner = NULL; | ||
537 | init_waitqueue_head(&sem->wait); | ||
538 | sem->litmus_lock.ops = &pfp_fmlp_lock_ops; | ||
539 | |||
540 | return &sem->litmus_lock; | ||
541 | } | ||
542 | |||
543 | /* **** lock constructor **** */ | ||
544 | |||
545 | |||
546 | static long pfp_allocate_lock(struct litmus_lock **lock, int type, | ||
547 | void* __user unused) | ||
548 | { | ||
549 | int err = -ENXIO; | ||
550 | struct srp_semaphore* srp; | ||
551 | |||
552 | /* P-FP currently supports the SRP for local resources and the FMLP | ||
553 | * for global resources. */ | ||
554 | switch (type) { | ||
555 | case FMLP_SEM: | ||
556 | /* Flexible Multiprocessor Locking Protocol */ | ||
557 | *lock = pfp_new_fmlp(); | ||
558 | if (*lock) | ||
559 | err = 0; | ||
560 | else | ||
561 | err = -ENOMEM; | ||
562 | break; | ||
563 | |||
564 | case SRP_SEM: | ||
565 | /* Baker's Stack Resource Policy */ | ||
566 | srp = allocate_srp_semaphore(); | ||
567 | if (srp) { | ||
568 | *lock = &srp->litmus_lock; | ||
569 | err = 0; | ||
570 | } else | ||
571 | err = -ENOMEM; | ||
572 | break; | ||
573 | }; | ||
574 | |||
575 | return err; | ||
576 | } | ||
577 | |||
578 | #endif | ||
579 | |||
580 | static long pfp_admit_task(struct task_struct* tsk) | ||
581 | { | ||
582 | return task_cpu(tsk) == tsk->rt_param.task_params.cpu ? 0 : -EINVAL; | ||
583 | } | ||
584 | |||
585 | /* Plugin object */ | ||
586 | static struct sched_plugin pfp_plugin __cacheline_aligned_in_smp = { | ||
587 | .plugin_name = "P-FP", | ||
588 | .tick = pfp_tick, | ||
589 | .task_new = pfp_task_new, | ||
590 | .complete_job = complete_job, | ||
591 | .task_exit = pfp_task_exit, | ||
592 | .schedule = pfp_schedule, | ||
593 | .task_wake_up = pfp_task_wake_up, | ||
594 | .task_block = pfp_task_block, | ||
595 | .admit_task = pfp_admit_task, | ||
596 | #ifdef CONFIG_LITMUS_LOCKING | ||
597 | .allocate_lock = pfp_allocate_lock, | ||
598 | .activate_plugin = pfp_activate_plugin, | ||
599 | #endif | ||
600 | }; | ||
601 | |||
602 | |||
603 | static int __init init_pfp(void) | ||
604 | { | ||
605 | int i; | ||
606 | |||
607 | /* We do not really want to support cpu hotplug, do we? ;) | ||
608 | * However, if we are so crazy to do so, | ||
609 | * we cannot use num_online_cpu() | ||
610 | */ | ||
611 | for (i = 0; i < num_online_cpus(); i++) { | ||
612 | pfp_domain_init(remote_pfp(i), | ||
613 | pfp_check_resched, | ||
614 | NULL, i); | ||
615 | } | ||
616 | return register_sched_plugin(&pfp_plugin); | ||
617 | } | ||
618 | |||
619 | module_init(init_pfp); | ||
620 | |||