diff options
author | Sebastian Siewior <sebastian@breakpoint.cc> | 2007-11-10 06:07:16 -0500 |
---|---|---|
committer | Herbert Xu <herbert@gondor.apana.org.au> | 2008-01-10 16:16:10 -0500 |
commit | 5157dea8139cf0edc4834d528531e642c0d27e37 (patch) | |
tree | 33d14cadc04c60ea95449c6bdc64ec0102eb823d | |
parent | b345cee90a3ffec5eca6d6c1c59bd0d1feb453d4 (diff) |
[CRYPTO] aes-i586: Remove setkey
The setkey() function can be shared with the generic algorithm.
Signed-off-by: Sebastian Siewior <sebastian@breakpoint.cc>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-rw-r--r-- | arch/x86/crypto/aes-i586-asm_32.S | 89 | ||||
-rw-r--r-- | arch/x86/crypto/aes_32.c | 461 | ||||
-rw-r--r-- | crypto/Kconfig | 1 |
3 files changed, 47 insertions, 504 deletions
diff --git a/arch/x86/crypto/aes-i586-asm_32.S b/arch/x86/crypto/aes-i586-asm_32.S index f942f0c8f630..1093bede3e0a 100644 --- a/arch/x86/crypto/aes-i586-asm_32.S +++ b/arch/x86/crypto/aes-i586-asm_32.S | |||
@@ -46,9 +46,9 @@ | |||
46 | #define in_blk 16 | 46 | #define in_blk 16 |
47 | 47 | ||
48 | /* offsets in crypto_tfm structure */ | 48 | /* offsets in crypto_tfm structure */ |
49 | #define ekey (crypto_tfm_ctx_offset + 0) | 49 | #define klen (crypto_tfm_ctx_offset + 0) |
50 | #define nrnd (crypto_tfm_ctx_offset + 256) | 50 | #define ekey (crypto_tfm_ctx_offset + 4) |
51 | #define dkey (crypto_tfm_ctx_offset + 260) | 51 | #define dkey (crypto_tfm_ctx_offset + 244) |
52 | 52 | ||
53 | // register mapping for encrypt and decrypt subroutines | 53 | // register mapping for encrypt and decrypt subroutines |
54 | 54 | ||
@@ -221,8 +221,8 @@ | |||
221 | 221 | ||
222 | .global aes_enc_blk | 222 | .global aes_enc_blk |
223 | 223 | ||
224 | .extern ft_tab | 224 | .extern crypto_ft_tab |
225 | .extern fl_tab | 225 | .extern crypto_fl_tab |
226 | 226 | ||
227 | .align 4 | 227 | .align 4 |
228 | 228 | ||
@@ -236,7 +236,7 @@ aes_enc_blk: | |||
236 | 1: push %ebx | 236 | 1: push %ebx |
237 | mov in_blk+4(%esp),%r2 | 237 | mov in_blk+4(%esp),%r2 |
238 | push %esi | 238 | push %esi |
239 | mov nrnd(%ebp),%r3 // number of rounds | 239 | mov klen(%ebp),%r3 // key size |
240 | push %edi | 240 | push %edi |
241 | #if ekey != 0 | 241 | #if ekey != 0 |
242 | lea ekey(%ebp),%ebp // key pointer | 242 | lea ekey(%ebp),%ebp // key pointer |
@@ -255,26 +255,26 @@ aes_enc_blk: | |||
255 | 255 | ||
256 | sub $8,%esp // space for register saves on stack | 256 | sub $8,%esp // space for register saves on stack |
257 | add $16,%ebp // increment to next round key | 257 | add $16,%ebp // increment to next round key |
258 | cmp $12,%r3 | 258 | cmp $24,%r3 |
259 | jb 4f // 10 rounds for 128-bit key | 259 | jb 4f // 10 rounds for 128-bit key |
260 | lea 32(%ebp),%ebp | 260 | lea 32(%ebp),%ebp |
261 | je 3f // 12 rounds for 192-bit key | 261 | je 3f // 12 rounds for 192-bit key |
262 | lea 32(%ebp),%ebp | 262 | lea 32(%ebp),%ebp |
263 | 263 | ||
264 | 2: fwd_rnd1( -64(%ebp) ,ft_tab) // 14 rounds for 256-bit key | 264 | 2: fwd_rnd1( -64(%ebp), crypto_ft_tab) // 14 rounds for 256-bit key |
265 | fwd_rnd2( -48(%ebp) ,ft_tab) | 265 | fwd_rnd2( -48(%ebp), crypto_ft_tab) |
266 | 3: fwd_rnd1( -32(%ebp) ,ft_tab) // 12 rounds for 192-bit key | 266 | 3: fwd_rnd1( -32(%ebp), crypto_ft_tab) // 12 rounds for 192-bit key |
267 | fwd_rnd2( -16(%ebp) ,ft_tab) | 267 | fwd_rnd2( -16(%ebp), crypto_ft_tab) |
268 | 4: fwd_rnd1( (%ebp) ,ft_tab) // 10 rounds for 128-bit key | 268 | 4: fwd_rnd1( (%ebp), crypto_ft_tab) // 10 rounds for 128-bit key |
269 | fwd_rnd2( +16(%ebp) ,ft_tab) | 269 | fwd_rnd2( +16(%ebp), crypto_ft_tab) |
270 | fwd_rnd1( +32(%ebp) ,ft_tab) | 270 | fwd_rnd1( +32(%ebp), crypto_ft_tab) |
271 | fwd_rnd2( +48(%ebp) ,ft_tab) | 271 | fwd_rnd2( +48(%ebp), crypto_ft_tab) |
272 | fwd_rnd1( +64(%ebp) ,ft_tab) | 272 | fwd_rnd1( +64(%ebp), crypto_ft_tab) |
273 | fwd_rnd2( +80(%ebp) ,ft_tab) | 273 | fwd_rnd2( +80(%ebp), crypto_ft_tab) |
274 | fwd_rnd1( +96(%ebp) ,ft_tab) | 274 | fwd_rnd1( +96(%ebp), crypto_ft_tab) |
275 | fwd_rnd2(+112(%ebp) ,ft_tab) | 275 | fwd_rnd2(+112(%ebp), crypto_ft_tab) |
276 | fwd_rnd1(+128(%ebp) ,ft_tab) | 276 | fwd_rnd1(+128(%ebp), crypto_ft_tab) |
277 | fwd_rnd2(+144(%ebp) ,fl_tab) // last round uses a different table | 277 | fwd_rnd2(+144(%ebp), crypto_fl_tab) // last round uses a different table |
278 | 278 | ||
279 | // move final values to the output array. CAUTION: the | 279 | // move final values to the output array. CAUTION: the |
280 | // order of these assigns rely on the register mappings | 280 | // order of these assigns rely on the register mappings |
@@ -297,8 +297,8 @@ aes_enc_blk: | |||
297 | 297 | ||
298 | .global aes_dec_blk | 298 | .global aes_dec_blk |
299 | 299 | ||
300 | .extern it_tab | 300 | .extern crypto_it_tab |
301 | .extern il_tab | 301 | .extern crypto_il_tab |
302 | 302 | ||
303 | .align 4 | 303 | .align 4 |
304 | 304 | ||
@@ -312,14 +312,11 @@ aes_dec_blk: | |||
312 | 1: push %ebx | 312 | 1: push %ebx |
313 | mov in_blk+4(%esp),%r2 | 313 | mov in_blk+4(%esp),%r2 |
314 | push %esi | 314 | push %esi |
315 | mov nrnd(%ebp),%r3 // number of rounds | 315 | mov klen(%ebp),%r3 // key size |
316 | push %edi | 316 | push %edi |
317 | #if dkey != 0 | 317 | #if dkey != 0 |
318 | lea dkey(%ebp),%ebp // key pointer | 318 | lea dkey(%ebp),%ebp // key pointer |
319 | #endif | 319 | #endif |
320 | mov %r3,%r0 | ||
321 | shl $4,%r0 | ||
322 | add %r0,%ebp | ||
323 | 320 | ||
324 | // input four columns and xor in first round key | 321 | // input four columns and xor in first round key |
325 | 322 | ||
@@ -333,27 +330,27 @@ aes_dec_blk: | |||
333 | xor 12(%ebp),%r5 | 330 | xor 12(%ebp),%r5 |
334 | 331 | ||
335 | sub $8,%esp // space for register saves on stack | 332 | sub $8,%esp // space for register saves on stack |
336 | sub $16,%ebp // increment to next round key | 333 | add $16,%ebp // increment to next round key |
337 | cmp $12,%r3 | 334 | cmp $24,%r3 |
338 | jb 4f // 10 rounds for 128-bit key | 335 | jb 4f // 10 rounds for 128-bit key |
339 | lea -32(%ebp),%ebp | 336 | lea 32(%ebp),%ebp |
340 | je 3f // 12 rounds for 192-bit key | 337 | je 3f // 12 rounds for 192-bit key |
341 | lea -32(%ebp),%ebp | 338 | lea 32(%ebp),%ebp |
342 | 339 | ||
343 | 2: inv_rnd1( +64(%ebp), it_tab) // 14 rounds for 256-bit key | 340 | 2: inv_rnd1( -64(%ebp), crypto_it_tab) // 14 rounds for 256-bit key |
344 | inv_rnd2( +48(%ebp), it_tab) | 341 | inv_rnd2( -48(%ebp), crypto_it_tab) |
345 | 3: inv_rnd1( +32(%ebp), it_tab) // 12 rounds for 192-bit key | 342 | 3: inv_rnd1( -32(%ebp), crypto_it_tab) // 12 rounds for 192-bit key |
346 | inv_rnd2( +16(%ebp), it_tab) | 343 | inv_rnd2( -16(%ebp), crypto_it_tab) |
347 | 4: inv_rnd1( (%ebp), it_tab) // 10 rounds for 128-bit key | 344 | 4: inv_rnd1( (%ebp), crypto_it_tab) // 10 rounds for 128-bit key |
348 | inv_rnd2( -16(%ebp), it_tab) | 345 | inv_rnd2( +16(%ebp), crypto_it_tab) |
349 | inv_rnd1( -32(%ebp), it_tab) | 346 | inv_rnd1( +32(%ebp), crypto_it_tab) |
350 | inv_rnd2( -48(%ebp), it_tab) | 347 | inv_rnd2( +48(%ebp), crypto_it_tab) |
351 | inv_rnd1( -64(%ebp), it_tab) | 348 | inv_rnd1( +64(%ebp), crypto_it_tab) |
352 | inv_rnd2( -80(%ebp), it_tab) | 349 | inv_rnd2( +80(%ebp), crypto_it_tab) |
353 | inv_rnd1( -96(%ebp), it_tab) | 350 | inv_rnd1( +96(%ebp), crypto_it_tab) |
354 | inv_rnd2(-112(%ebp), it_tab) | 351 | inv_rnd2(+112(%ebp), crypto_it_tab) |
355 | inv_rnd1(-128(%ebp), it_tab) | 352 | inv_rnd1(+128(%ebp), crypto_it_tab) |
356 | inv_rnd2(-144(%ebp), il_tab) // last round uses a different table | 353 | inv_rnd2(+144(%ebp), crypto_il_tab) // last round uses a different table |
357 | 354 | ||
358 | // move final values to the output array. CAUTION: the | 355 | // move final values to the output array. CAUTION: the |
359 | // order of these assigns rely on the register mappings | 356 | // order of these assigns rely on the register mappings |
diff --git a/arch/x86/crypto/aes_32.c b/arch/x86/crypto/aes_32.c index 9b0ab50394b0..8556d9561c20 100644 --- a/arch/x86/crypto/aes_32.c +++ b/arch/x86/crypto/aes_32.c | |||
@@ -1,468 +1,14 @@ | |||
1 | /* | 1 | /* |
2 | * | ||
3 | * Glue Code for optimized 586 assembler version of AES | 2 | * Glue Code for optimized 586 assembler version of AES |
4 | * | ||
5 | * Copyright (c) 2002, Dr Brian Gladman <>, Worcester, UK. | ||
6 | * All rights reserved. | ||
7 | * | ||
8 | * LICENSE TERMS | ||
9 | * | ||
10 | * The free distribution and use of this software in both source and binary | ||
11 | * form is allowed (with or without changes) provided that: | ||
12 | * | ||
13 | * 1. distributions of this source code include the above copyright | ||
14 | * notice, this list of conditions and the following disclaimer; | ||
15 | * | ||
16 | * 2. distributions in binary form include the above copyright | ||
17 | * notice, this list of conditions and the following disclaimer | ||
18 | * in the documentation and/or other associated materials; | ||
19 | * | ||
20 | * 3. the copyright holder's name is not used to endorse products | ||
21 | * built using this software without specific written permission. | ||
22 | * | ||
23 | * ALTERNATIVELY, provided that this notice is retained in full, this product | ||
24 | * may be distributed under the terms of the GNU General Public License (GPL), | ||
25 | * in which case the provisions of the GPL apply INSTEAD OF those given above. | ||
26 | * | ||
27 | * DISCLAIMER | ||
28 | * | ||
29 | * This software is provided 'as is' with no explicit or implied warranties | ||
30 | * in respect of its properties, including, but not limited to, correctness | ||
31 | * and/or fitness for purpose. | ||
32 | * | ||
33 | * Copyright (c) 2003, Adam J. Richter <adam@yggdrasil.com> (conversion to | ||
34 | * 2.5 API). | ||
35 | * Copyright (c) 2003, 2004 Fruhwirth Clemens <clemens@endorphin.org> | ||
36 | * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> | ||
37 | * | ||
38 | */ | 3 | */ |
39 | 4 | ||
40 | #include <asm/byteorder.h> | ||
41 | #include <crypto/aes.h> | 5 | #include <crypto/aes.h> |
42 | #include <linux/kernel.h> | ||
43 | #include <linux/module.h> | 6 | #include <linux/module.h> |
44 | #include <linux/init.h> | ||
45 | #include <linux/types.h> | ||
46 | #include <linux/crypto.h> | 7 | #include <linux/crypto.h> |
47 | #include <linux/linkage.h> | ||
48 | 8 | ||
49 | asmlinkage void aes_enc_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src); | 9 | asmlinkage void aes_enc_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src); |
50 | asmlinkage void aes_dec_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src); | 10 | asmlinkage void aes_dec_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src); |
51 | 11 | ||
52 | #define AES_KS_LENGTH 4 * AES_BLOCK_SIZE | ||
53 | #define RC_LENGTH 29 | ||
54 | |||
55 | struct aes_ctx { | ||
56 | u32 ekey[AES_KS_LENGTH]; | ||
57 | u32 rounds; | ||
58 | u32 dkey[AES_KS_LENGTH]; | ||
59 | }; | ||
60 | |||
61 | #define WPOLY 0x011b | ||
62 | #define bytes2word(b0, b1, b2, b3) \ | ||
63 | (((u32)(b3) << 24) | ((u32)(b2) << 16) | ((u32)(b1) << 8) | (b0)) | ||
64 | |||
65 | /* define the finite field multiplies required for Rijndael */ | ||
66 | #define f2(x) ((x) ? pow[log[x] + 0x19] : 0) | ||
67 | #define f3(x) ((x) ? pow[log[x] + 0x01] : 0) | ||
68 | #define f9(x) ((x) ? pow[log[x] + 0xc7] : 0) | ||
69 | #define fb(x) ((x) ? pow[log[x] + 0x68] : 0) | ||
70 | #define fd(x) ((x) ? pow[log[x] + 0xee] : 0) | ||
71 | #define fe(x) ((x) ? pow[log[x] + 0xdf] : 0) | ||
72 | #define fi(x) ((x) ? pow[255 - log[x]]: 0) | ||
73 | |||
74 | static inline u32 upr(u32 x, int n) | ||
75 | { | ||
76 | return (x << 8 * n) | (x >> (32 - 8 * n)); | ||
77 | } | ||
78 | |||
79 | static inline u8 bval(u32 x, int n) | ||
80 | { | ||
81 | return x >> 8 * n; | ||
82 | } | ||
83 | |||
84 | /* The forward and inverse affine transformations used in the S-box */ | ||
85 | #define fwd_affine(x) \ | ||
86 | (w = (u32)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(u8)(w^(w>>8))) | ||
87 | |||
88 | #define inv_affine(x) \ | ||
89 | (w = (u32)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(u8)(w^(w>>8))) | ||
90 | |||
91 | static u32 rcon_tab[RC_LENGTH]; | ||
92 | |||
93 | u32 ft_tab[4][256]; | ||
94 | u32 fl_tab[4][256]; | ||
95 | static u32 im_tab[4][256]; | ||
96 | u32 il_tab[4][256]; | ||
97 | u32 it_tab[4][256]; | ||
98 | |||
99 | static void gen_tabs(void) | ||
100 | { | ||
101 | u32 i, w; | ||
102 | u8 pow[512], log[256]; | ||
103 | |||
104 | /* | ||
105 | * log and power tables for GF(2^8) finite field with | ||
106 | * WPOLY as modular polynomial - the simplest primitive | ||
107 | * root is 0x03, used here to generate the tables. | ||
108 | */ | ||
109 | i = 0; w = 1; | ||
110 | |||
111 | do { | ||
112 | pow[i] = (u8)w; | ||
113 | pow[i + 255] = (u8)w; | ||
114 | log[w] = (u8)i++; | ||
115 | w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0); | ||
116 | } while (w != 1); | ||
117 | |||
118 | for(i = 0, w = 1; i < RC_LENGTH; ++i) { | ||
119 | rcon_tab[i] = bytes2word(w, 0, 0, 0); | ||
120 | w = f2(w); | ||
121 | } | ||
122 | |||
123 | for(i = 0; i < 256; ++i) { | ||
124 | u8 b; | ||
125 | |||
126 | b = fwd_affine(fi((u8)i)); | ||
127 | w = bytes2word(f2(b), b, b, f3(b)); | ||
128 | |||
129 | /* tables for a normal encryption round */ | ||
130 | ft_tab[0][i] = w; | ||
131 | ft_tab[1][i] = upr(w, 1); | ||
132 | ft_tab[2][i] = upr(w, 2); | ||
133 | ft_tab[3][i] = upr(w, 3); | ||
134 | w = bytes2word(b, 0, 0, 0); | ||
135 | |||
136 | /* | ||
137 | * tables for last encryption round | ||
138 | * (may also be used in the key schedule) | ||
139 | */ | ||
140 | fl_tab[0][i] = w; | ||
141 | fl_tab[1][i] = upr(w, 1); | ||
142 | fl_tab[2][i] = upr(w, 2); | ||
143 | fl_tab[3][i] = upr(w, 3); | ||
144 | |||
145 | b = fi(inv_affine((u8)i)); | ||
146 | w = bytes2word(fe(b), f9(b), fd(b), fb(b)); | ||
147 | |||
148 | /* tables for the inverse mix column operation */ | ||
149 | im_tab[0][b] = w; | ||
150 | im_tab[1][b] = upr(w, 1); | ||
151 | im_tab[2][b] = upr(w, 2); | ||
152 | im_tab[3][b] = upr(w, 3); | ||
153 | |||
154 | /* tables for a normal decryption round */ | ||
155 | it_tab[0][i] = w; | ||
156 | it_tab[1][i] = upr(w,1); | ||
157 | it_tab[2][i] = upr(w,2); | ||
158 | it_tab[3][i] = upr(w,3); | ||
159 | |||
160 | w = bytes2word(b, 0, 0, 0); | ||
161 | |||
162 | /* tables for last decryption round */ | ||
163 | il_tab[0][i] = w; | ||
164 | il_tab[1][i] = upr(w,1); | ||
165 | il_tab[2][i] = upr(w,2); | ||
166 | il_tab[3][i] = upr(w,3); | ||
167 | } | ||
168 | } | ||
169 | |||
170 | #define four_tables(x,tab,vf,rf,c) \ | ||
171 | ( tab[0][bval(vf(x,0,c),rf(0,c))] ^ \ | ||
172 | tab[1][bval(vf(x,1,c),rf(1,c))] ^ \ | ||
173 | tab[2][bval(vf(x,2,c),rf(2,c))] ^ \ | ||
174 | tab[3][bval(vf(x,3,c),rf(3,c))] \ | ||
175 | ) | ||
176 | |||
177 | #define vf1(x,r,c) (x) | ||
178 | #define rf1(r,c) (r) | ||
179 | #define rf2(r,c) ((r-c)&3) | ||
180 | |||
181 | #define inv_mcol(x) four_tables(x,im_tab,vf1,rf1,0) | ||
182 | #define ls_box(x,c) four_tables(x,fl_tab,vf1,rf2,c) | ||
183 | |||
184 | #define ff(x) inv_mcol(x) | ||
185 | |||
186 | #define ke4(k,i) \ | ||
187 | { \ | ||
188 | k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; \ | ||
189 | k[4*(i)+5] = ss[1] ^= ss[0]; \ | ||
190 | k[4*(i)+6] = ss[2] ^= ss[1]; \ | ||
191 | k[4*(i)+7] = ss[3] ^= ss[2]; \ | ||
192 | } | ||
193 | |||
194 | #define kel4(k,i) \ | ||
195 | { \ | ||
196 | k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; \ | ||
197 | k[4*(i)+5] = ss[1] ^= ss[0]; \ | ||
198 | k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \ | ||
199 | } | ||
200 | |||
201 | #define ke6(k,i) \ | ||
202 | { \ | ||
203 | k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ | ||
204 | k[6*(i)+ 7] = ss[1] ^= ss[0]; \ | ||
205 | k[6*(i)+ 8] = ss[2] ^= ss[1]; \ | ||
206 | k[6*(i)+ 9] = ss[3] ^= ss[2]; \ | ||
207 | k[6*(i)+10] = ss[4] ^= ss[3]; \ | ||
208 | k[6*(i)+11] = ss[5] ^= ss[4]; \ | ||
209 | } | ||
210 | |||
211 | #define kel6(k,i) \ | ||
212 | { \ | ||
213 | k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ | ||
214 | k[6*(i)+ 7] = ss[1] ^= ss[0]; \ | ||
215 | k[6*(i)+ 8] = ss[2] ^= ss[1]; \ | ||
216 | k[6*(i)+ 9] = ss[3] ^= ss[2]; \ | ||
217 | } | ||
218 | |||
219 | #define ke8(k,i) \ | ||
220 | { \ | ||
221 | k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ | ||
222 | k[8*(i)+ 9] = ss[1] ^= ss[0]; \ | ||
223 | k[8*(i)+10] = ss[2] ^= ss[1]; \ | ||
224 | k[8*(i)+11] = ss[3] ^= ss[2]; \ | ||
225 | k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); \ | ||
226 | k[8*(i)+13] = ss[5] ^= ss[4]; \ | ||
227 | k[8*(i)+14] = ss[6] ^= ss[5]; \ | ||
228 | k[8*(i)+15] = ss[7] ^= ss[6]; \ | ||
229 | } | ||
230 | |||
231 | #define kel8(k,i) \ | ||
232 | { \ | ||
233 | k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ | ||
234 | k[8*(i)+ 9] = ss[1] ^= ss[0]; \ | ||
235 | k[8*(i)+10] = ss[2] ^= ss[1]; \ | ||
236 | k[8*(i)+11] = ss[3] ^= ss[2]; \ | ||
237 | } | ||
238 | |||
239 | #define kdf4(k,i) \ | ||
240 | { \ | ||
241 | ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \ | ||
242 | ss[1] = ss[1] ^ ss[3]; \ | ||
243 | ss[2] = ss[2] ^ ss[3]; \ | ||
244 | ss[3] = ss[3]; \ | ||
245 | ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \ | ||
246 | ss[i % 4] ^= ss[4]; \ | ||
247 | ss[4] ^= k[4*(i)]; \ | ||
248 | k[4*(i)+4] = ff(ss[4]); \ | ||
249 | ss[4] ^= k[4*(i)+1]; \ | ||
250 | k[4*(i)+5] = ff(ss[4]); \ | ||
251 | ss[4] ^= k[4*(i)+2]; \ | ||
252 | k[4*(i)+6] = ff(ss[4]); \ | ||
253 | ss[4] ^= k[4*(i)+3]; \ | ||
254 | k[4*(i)+7] = ff(ss[4]); \ | ||
255 | } | ||
256 | |||
257 | #define kd4(k,i) \ | ||
258 | { \ | ||
259 | ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \ | ||
260 | ss[i % 4] ^= ss[4]; \ | ||
261 | ss[4] = ff(ss[4]); \ | ||
262 | k[4*(i)+4] = ss[4] ^= k[4*(i)]; \ | ||
263 | k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \ | ||
264 | k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; \ | ||
265 | k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \ | ||
266 | } | ||
267 | |||
268 | #define kdl4(k,i) \ | ||
269 | { \ | ||
270 | ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \ | ||
271 | ss[i % 4] ^= ss[4]; \ | ||
272 | k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \ | ||
273 | k[4*(i)+5] = ss[1] ^ ss[3]; \ | ||
274 | k[4*(i)+6] = ss[0]; \ | ||
275 | k[4*(i)+7] = ss[1]; \ | ||
276 | } | ||
277 | |||
278 | #define kdf6(k,i) \ | ||
279 | { \ | ||
280 | ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ | ||
281 | k[6*(i)+ 6] = ff(ss[0]); \ | ||
282 | ss[1] ^= ss[0]; \ | ||
283 | k[6*(i)+ 7] = ff(ss[1]); \ | ||
284 | ss[2] ^= ss[1]; \ | ||
285 | k[6*(i)+ 8] = ff(ss[2]); \ | ||
286 | ss[3] ^= ss[2]; \ | ||
287 | k[6*(i)+ 9] = ff(ss[3]); \ | ||
288 | ss[4] ^= ss[3]; \ | ||
289 | k[6*(i)+10] = ff(ss[4]); \ | ||
290 | ss[5] ^= ss[4]; \ | ||
291 | k[6*(i)+11] = ff(ss[5]); \ | ||
292 | } | ||
293 | |||
294 | #define kd6(k,i) \ | ||
295 | { \ | ||
296 | ss[6] = ls_box(ss[5],3) ^ rcon_tab[i]; \ | ||
297 | ss[0] ^= ss[6]; ss[6] = ff(ss[6]); \ | ||
298 | k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \ | ||
299 | ss[1] ^= ss[0]; \ | ||
300 | k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \ | ||
301 | ss[2] ^= ss[1]; \ | ||
302 | k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \ | ||
303 | ss[3] ^= ss[2]; \ | ||
304 | k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \ | ||
305 | ss[4] ^= ss[3]; \ | ||
306 | k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \ | ||
307 | ss[5] ^= ss[4]; \ | ||
308 | k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \ | ||
309 | } | ||
310 | |||
311 | #define kdl6(k,i) \ | ||
312 | { \ | ||
313 | ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ | ||
314 | k[6*(i)+ 6] = ss[0]; \ | ||
315 | ss[1] ^= ss[0]; \ | ||
316 | k[6*(i)+ 7] = ss[1]; \ | ||
317 | ss[2] ^= ss[1]; \ | ||
318 | k[6*(i)+ 8] = ss[2]; \ | ||
319 | ss[3] ^= ss[2]; \ | ||
320 | k[6*(i)+ 9] = ss[3]; \ | ||
321 | } | ||
322 | |||
323 | #define kdf8(k,i) \ | ||
324 | { \ | ||
325 | ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ | ||
326 | k[8*(i)+ 8] = ff(ss[0]); \ | ||
327 | ss[1] ^= ss[0]; \ | ||
328 | k[8*(i)+ 9] = ff(ss[1]); \ | ||
329 | ss[2] ^= ss[1]; \ | ||
330 | k[8*(i)+10] = ff(ss[2]); \ | ||
331 | ss[3] ^= ss[2]; \ | ||
332 | k[8*(i)+11] = ff(ss[3]); \ | ||
333 | ss[4] ^= ls_box(ss[3],0); \ | ||
334 | k[8*(i)+12] = ff(ss[4]); \ | ||
335 | ss[5] ^= ss[4]; \ | ||
336 | k[8*(i)+13] = ff(ss[5]); \ | ||
337 | ss[6] ^= ss[5]; \ | ||
338 | k[8*(i)+14] = ff(ss[6]); \ | ||
339 | ss[7] ^= ss[6]; \ | ||
340 | k[8*(i)+15] = ff(ss[7]); \ | ||
341 | } | ||
342 | |||
343 | #define kd8(k,i) \ | ||
344 | { \ | ||
345 | u32 __g = ls_box(ss[7],3) ^ rcon_tab[i]; \ | ||
346 | ss[0] ^= __g; \ | ||
347 | __g = ff(__g); \ | ||
348 | k[8*(i)+ 8] = __g ^= k[8*(i)]; \ | ||
349 | ss[1] ^= ss[0]; \ | ||
350 | k[8*(i)+ 9] = __g ^= k[8*(i)+ 1]; \ | ||
351 | ss[2] ^= ss[1]; \ | ||
352 | k[8*(i)+10] = __g ^= k[8*(i)+ 2]; \ | ||
353 | ss[3] ^= ss[2]; \ | ||
354 | k[8*(i)+11] = __g ^= k[8*(i)+ 3]; \ | ||
355 | __g = ls_box(ss[3],0); \ | ||
356 | ss[4] ^= __g; \ | ||
357 | __g = ff(__g); \ | ||
358 | k[8*(i)+12] = __g ^= k[8*(i)+ 4]; \ | ||
359 | ss[5] ^= ss[4]; \ | ||
360 | k[8*(i)+13] = __g ^= k[8*(i)+ 5]; \ | ||
361 | ss[6] ^= ss[5]; \ | ||
362 | k[8*(i)+14] = __g ^= k[8*(i)+ 6]; \ | ||
363 | ss[7] ^= ss[6]; \ | ||
364 | k[8*(i)+15] = __g ^= k[8*(i)+ 7]; \ | ||
365 | } | ||
366 | |||
367 | #define kdl8(k,i) \ | ||
368 | { \ | ||
369 | ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ | ||
370 | k[8*(i)+ 8] = ss[0]; \ | ||
371 | ss[1] ^= ss[0]; \ | ||
372 | k[8*(i)+ 9] = ss[1]; \ | ||
373 | ss[2] ^= ss[1]; \ | ||
374 | k[8*(i)+10] = ss[2]; \ | ||
375 | ss[3] ^= ss[2]; \ | ||
376 | k[8*(i)+11] = ss[3]; \ | ||
377 | } | ||
378 | |||
379 | static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, | ||
380 | unsigned int key_len) | ||
381 | { | ||
382 | int i; | ||
383 | u32 ss[8]; | ||
384 | struct aes_ctx *ctx = crypto_tfm_ctx(tfm); | ||
385 | const __le32 *key = (const __le32 *)in_key; | ||
386 | u32 *flags = &tfm->crt_flags; | ||
387 | |||
388 | /* encryption schedule */ | ||
389 | |||
390 | ctx->ekey[0] = ss[0] = le32_to_cpu(key[0]); | ||
391 | ctx->ekey[1] = ss[1] = le32_to_cpu(key[1]); | ||
392 | ctx->ekey[2] = ss[2] = le32_to_cpu(key[2]); | ||
393 | ctx->ekey[3] = ss[3] = le32_to_cpu(key[3]); | ||
394 | |||
395 | switch(key_len) { | ||
396 | case 16: | ||
397 | for (i = 0; i < 9; i++) | ||
398 | ke4(ctx->ekey, i); | ||
399 | kel4(ctx->ekey, 9); | ||
400 | ctx->rounds = 10; | ||
401 | break; | ||
402 | |||
403 | case 24: | ||
404 | ctx->ekey[4] = ss[4] = le32_to_cpu(key[4]); | ||
405 | ctx->ekey[5] = ss[5] = le32_to_cpu(key[5]); | ||
406 | for (i = 0; i < 7; i++) | ||
407 | ke6(ctx->ekey, i); | ||
408 | kel6(ctx->ekey, 7); | ||
409 | ctx->rounds = 12; | ||
410 | break; | ||
411 | |||
412 | case 32: | ||
413 | ctx->ekey[4] = ss[4] = le32_to_cpu(key[4]); | ||
414 | ctx->ekey[5] = ss[5] = le32_to_cpu(key[5]); | ||
415 | ctx->ekey[6] = ss[6] = le32_to_cpu(key[6]); | ||
416 | ctx->ekey[7] = ss[7] = le32_to_cpu(key[7]); | ||
417 | for (i = 0; i < 6; i++) | ||
418 | ke8(ctx->ekey, i); | ||
419 | kel8(ctx->ekey, 6); | ||
420 | ctx->rounds = 14; | ||
421 | break; | ||
422 | |||
423 | default: | ||
424 | *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; | ||
425 | return -EINVAL; | ||
426 | } | ||
427 | |||
428 | /* decryption schedule */ | ||
429 | |||
430 | ctx->dkey[0] = ss[0] = le32_to_cpu(key[0]); | ||
431 | ctx->dkey[1] = ss[1] = le32_to_cpu(key[1]); | ||
432 | ctx->dkey[2] = ss[2] = le32_to_cpu(key[2]); | ||
433 | ctx->dkey[3] = ss[3] = le32_to_cpu(key[3]); | ||
434 | |||
435 | switch (key_len) { | ||
436 | case 16: | ||
437 | kdf4(ctx->dkey, 0); | ||
438 | for (i = 1; i < 9; i++) | ||
439 | kd4(ctx->dkey, i); | ||
440 | kdl4(ctx->dkey, 9); | ||
441 | break; | ||
442 | |||
443 | case 24: | ||
444 | ctx->dkey[4] = ff(ss[4] = le32_to_cpu(key[4])); | ||
445 | ctx->dkey[5] = ff(ss[5] = le32_to_cpu(key[5])); | ||
446 | kdf6(ctx->dkey, 0); | ||
447 | for (i = 1; i < 7; i++) | ||
448 | kd6(ctx->dkey, i); | ||
449 | kdl6(ctx->dkey, 7); | ||
450 | break; | ||
451 | |||
452 | case 32: | ||
453 | ctx->dkey[4] = ff(ss[4] = le32_to_cpu(key[4])); | ||
454 | ctx->dkey[5] = ff(ss[5] = le32_to_cpu(key[5])); | ||
455 | ctx->dkey[6] = ff(ss[6] = le32_to_cpu(key[6])); | ||
456 | ctx->dkey[7] = ff(ss[7] = le32_to_cpu(key[7])); | ||
457 | kdf8(ctx->dkey, 0); | ||
458 | for (i = 1; i < 6; i++) | ||
459 | kd8(ctx->dkey, i); | ||
460 | kdl8(ctx->dkey, 6); | ||
461 | break; | ||
462 | } | ||
463 | return 0; | ||
464 | } | ||
465 | |||
466 | static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) | 12 | static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) |
467 | { | 13 | { |
468 | aes_enc_blk(tfm, dst, src); | 14 | aes_enc_blk(tfm, dst, src); |
@@ -479,14 +25,14 @@ static struct crypto_alg aes_alg = { | |||
479 | .cra_priority = 200, | 25 | .cra_priority = 200, |
480 | .cra_flags = CRYPTO_ALG_TYPE_CIPHER, | 26 | .cra_flags = CRYPTO_ALG_TYPE_CIPHER, |
481 | .cra_blocksize = AES_BLOCK_SIZE, | 27 | .cra_blocksize = AES_BLOCK_SIZE, |
482 | .cra_ctxsize = sizeof(struct aes_ctx), | 28 | .cra_ctxsize = sizeof(struct crypto_aes_ctx), |
483 | .cra_module = THIS_MODULE, | 29 | .cra_module = THIS_MODULE, |
484 | .cra_list = LIST_HEAD_INIT(aes_alg.cra_list), | 30 | .cra_list = LIST_HEAD_INIT(aes_alg.cra_list), |
485 | .cra_u = { | 31 | .cra_u = { |
486 | .cipher = { | 32 | .cipher = { |
487 | .cia_min_keysize = AES_MIN_KEY_SIZE, | 33 | .cia_min_keysize = AES_MIN_KEY_SIZE, |
488 | .cia_max_keysize = AES_MAX_KEY_SIZE, | 34 | .cia_max_keysize = AES_MAX_KEY_SIZE, |
489 | .cia_setkey = aes_set_key, | 35 | .cia_setkey = crypto_aes_set_key, |
490 | .cia_encrypt = aes_encrypt, | 36 | .cia_encrypt = aes_encrypt, |
491 | .cia_decrypt = aes_decrypt | 37 | .cia_decrypt = aes_decrypt |
492 | } | 38 | } |
@@ -495,7 +41,6 @@ static struct crypto_alg aes_alg = { | |||
495 | 41 | ||
496 | static int __init aes_init(void) | 42 | static int __init aes_init(void) |
497 | { | 43 | { |
498 | gen_tabs(); | ||
499 | return crypto_register_alg(&aes_alg); | 44 | return crypto_register_alg(&aes_alg); |
500 | } | 45 | } |
501 | 46 | ||
diff --git a/crypto/Kconfig b/crypto/Kconfig index d9666e33a9f1..cf115b14079e 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig | |||
@@ -328,6 +328,7 @@ config CRYPTO_AES_586 | |||
328 | tristate "AES cipher algorithms (i586)" | 328 | tristate "AES cipher algorithms (i586)" |
329 | depends on (X86 || UML_X86) && !64BIT | 329 | depends on (X86 || UML_X86) && !64BIT |
330 | select CRYPTO_ALGAPI | 330 | select CRYPTO_ALGAPI |
331 | select CRYPTO_AES | ||
331 | help | 332 | help |
332 | AES cipher algorithms (FIPS-197). AES uses the Rijndael | 333 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
333 | algorithm. | 334 | algorithm. |