diff options
author | Dimitris Michailidis <dm@chelsio.com> | 2010-04-01 11:28:24 -0400 |
---|---|---|
committer | David S. Miller <davem@davemloft.net> | 2010-04-01 22:29:15 -0400 |
commit | fd3a47900b6f9fa72a4074ecb630f9dae62f1a95 (patch) | |
tree | 31936b85f82a198efb103a173b9e776753ad4678 | |
parent | 56d36be4dd5fc7b33bff7986737aff79c790184a (diff) |
cxgb4: Add packet queues and packet DMA code
Signed-off-by: Dimitris Michailidis <dm@chelsio.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
-rw-r--r-- | drivers/net/cxgb4/sge.c | 2431 |
1 files changed, 2431 insertions, 0 deletions
diff --git a/drivers/net/cxgb4/sge.c b/drivers/net/cxgb4/sge.c new file mode 100644 index 000000000000..14adc58e71c3 --- /dev/null +++ b/drivers/net/cxgb4/sge.c | |||
@@ -0,0 +1,2431 @@ | |||
1 | /* | ||
2 | * This file is part of the Chelsio T4 Ethernet driver for Linux. | ||
3 | * | ||
4 | * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved. | ||
5 | * | ||
6 | * This software is available to you under a choice of one of two | ||
7 | * licenses. You may choose to be licensed under the terms of the GNU | ||
8 | * General Public License (GPL) Version 2, available from the file | ||
9 | * COPYING in the main directory of this source tree, or the | ||
10 | * OpenIB.org BSD license below: | ||
11 | * | ||
12 | * Redistribution and use in source and binary forms, with or | ||
13 | * without modification, are permitted provided that the following | ||
14 | * conditions are met: | ||
15 | * | ||
16 | * - Redistributions of source code must retain the above | ||
17 | * copyright notice, this list of conditions and the following | ||
18 | * disclaimer. | ||
19 | * | ||
20 | * - Redistributions in binary form must reproduce the above | ||
21 | * copyright notice, this list of conditions and the following | ||
22 | * disclaimer in the documentation and/or other materials | ||
23 | * provided with the distribution. | ||
24 | * | ||
25 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
26 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
27 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
28 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
29 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
30 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
31 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
32 | * SOFTWARE. | ||
33 | */ | ||
34 | |||
35 | #include <linux/skbuff.h> | ||
36 | #include <linux/netdevice.h> | ||
37 | #include <linux/etherdevice.h> | ||
38 | #include <linux/if_vlan.h> | ||
39 | #include <linux/ip.h> | ||
40 | #include <linux/dma-mapping.h> | ||
41 | #include <linux/jiffies.h> | ||
42 | #include <net/ipv6.h> | ||
43 | #include <net/tcp.h> | ||
44 | #include "cxgb4.h" | ||
45 | #include "t4_regs.h" | ||
46 | #include "t4_msg.h" | ||
47 | #include "t4fw_api.h" | ||
48 | |||
49 | /* | ||
50 | * Rx buffer size. We use largish buffers if possible but settle for single | ||
51 | * pages under memory shortage. | ||
52 | */ | ||
53 | #if PAGE_SHIFT >= 16 | ||
54 | # define FL_PG_ORDER 0 | ||
55 | #else | ||
56 | # define FL_PG_ORDER (16 - PAGE_SHIFT) | ||
57 | #endif | ||
58 | |||
59 | /* RX_PULL_LEN should be <= RX_COPY_THRES */ | ||
60 | #define RX_COPY_THRES 256 | ||
61 | #define RX_PULL_LEN 128 | ||
62 | |||
63 | /* | ||
64 | * Main body length for sk_buffs used for Rx Ethernet packets with fragments. | ||
65 | * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. | ||
66 | */ | ||
67 | #define RX_PKT_SKB_LEN 512 | ||
68 | |||
69 | /* Ethernet header padding prepended to RX_PKTs */ | ||
70 | #define RX_PKT_PAD 2 | ||
71 | |||
72 | /* | ||
73 | * Max number of Tx descriptors we clean up at a time. Should be modest as | ||
74 | * freeing skbs isn't cheap and it happens while holding locks. We just need | ||
75 | * to free packets faster than they arrive, we eventually catch up and keep | ||
76 | * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. | ||
77 | */ | ||
78 | #define MAX_TX_RECLAIM 16 | ||
79 | |||
80 | /* | ||
81 | * Max number of Rx buffers we replenish at a time. Again keep this modest, | ||
82 | * allocating buffers isn't cheap either. | ||
83 | */ | ||
84 | #define MAX_RX_REFILL 16U | ||
85 | |||
86 | /* | ||
87 | * Period of the Rx queue check timer. This timer is infrequent as it has | ||
88 | * something to do only when the system experiences severe memory shortage. | ||
89 | */ | ||
90 | #define RX_QCHECK_PERIOD (HZ / 2) | ||
91 | |||
92 | /* | ||
93 | * Period of the Tx queue check timer. | ||
94 | */ | ||
95 | #define TX_QCHECK_PERIOD (HZ / 2) | ||
96 | |||
97 | /* | ||
98 | * Max number of Tx descriptors to be reclaimed by the Tx timer. | ||
99 | */ | ||
100 | #define MAX_TIMER_TX_RECLAIM 100 | ||
101 | |||
102 | /* | ||
103 | * Timer index used when backing off due to memory shortage. | ||
104 | */ | ||
105 | #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) | ||
106 | |||
107 | /* | ||
108 | * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will | ||
109 | * attempt to refill it. | ||
110 | */ | ||
111 | #define FL_STARVE_THRES 4 | ||
112 | |||
113 | /* | ||
114 | * Suspend an Ethernet Tx queue with fewer available descriptors than this. | ||
115 | * This is the same as calc_tx_descs() for a TSO packet with | ||
116 | * nr_frags == MAX_SKB_FRAGS. | ||
117 | */ | ||
118 | #define ETHTXQ_STOP_THRES \ | ||
119 | (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8)) | ||
120 | |||
121 | /* | ||
122 | * Suspension threshold for non-Ethernet Tx queues. We require enough room | ||
123 | * for a full sized WR. | ||
124 | */ | ||
125 | #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) | ||
126 | |||
127 | /* | ||
128 | * Max Tx descriptor space we allow for an Ethernet packet to be inlined | ||
129 | * into a WR. | ||
130 | */ | ||
131 | #define MAX_IMM_TX_PKT_LEN 128 | ||
132 | |||
133 | /* | ||
134 | * Max size of a WR sent through a control Tx queue. | ||
135 | */ | ||
136 | #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN | ||
137 | |||
138 | enum { | ||
139 | /* packet alignment in FL buffers */ | ||
140 | FL_ALIGN = L1_CACHE_BYTES < 32 ? 32 : L1_CACHE_BYTES, | ||
141 | /* egress status entry size */ | ||
142 | STAT_LEN = L1_CACHE_BYTES > 64 ? 128 : 64 | ||
143 | }; | ||
144 | |||
145 | struct tx_sw_desc { /* SW state per Tx descriptor */ | ||
146 | struct sk_buff *skb; | ||
147 | struct ulptx_sgl *sgl; | ||
148 | }; | ||
149 | |||
150 | struct rx_sw_desc { /* SW state per Rx descriptor */ | ||
151 | struct page *page; | ||
152 | dma_addr_t dma_addr; | ||
153 | }; | ||
154 | |||
155 | /* | ||
156 | * The low bits of rx_sw_desc.dma_addr have special meaning. | ||
157 | */ | ||
158 | enum { | ||
159 | RX_LARGE_BUF = 1 << 0, /* buffer is larger than PAGE_SIZE */ | ||
160 | RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */ | ||
161 | }; | ||
162 | |||
163 | static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) | ||
164 | { | ||
165 | return d->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF); | ||
166 | } | ||
167 | |||
168 | static inline bool is_buf_mapped(const struct rx_sw_desc *d) | ||
169 | { | ||
170 | return !(d->dma_addr & RX_UNMAPPED_BUF); | ||
171 | } | ||
172 | |||
173 | /** | ||
174 | * txq_avail - return the number of available slots in a Tx queue | ||
175 | * @q: the Tx queue | ||
176 | * | ||
177 | * Returns the number of descriptors in a Tx queue available to write new | ||
178 | * packets. | ||
179 | */ | ||
180 | static inline unsigned int txq_avail(const struct sge_txq *q) | ||
181 | { | ||
182 | return q->size - 1 - q->in_use; | ||
183 | } | ||
184 | |||
185 | /** | ||
186 | * fl_cap - return the capacity of a free-buffer list | ||
187 | * @fl: the FL | ||
188 | * | ||
189 | * Returns the capacity of a free-buffer list. The capacity is less than | ||
190 | * the size because one descriptor needs to be left unpopulated, otherwise | ||
191 | * HW will think the FL is empty. | ||
192 | */ | ||
193 | static inline unsigned int fl_cap(const struct sge_fl *fl) | ||
194 | { | ||
195 | return fl->size - 8; /* 1 descriptor = 8 buffers */ | ||
196 | } | ||
197 | |||
198 | static inline bool fl_starving(const struct sge_fl *fl) | ||
199 | { | ||
200 | return fl->avail - fl->pend_cred <= FL_STARVE_THRES; | ||
201 | } | ||
202 | |||
203 | static int map_skb(struct device *dev, const struct sk_buff *skb, | ||
204 | dma_addr_t *addr) | ||
205 | { | ||
206 | const skb_frag_t *fp, *end; | ||
207 | const struct skb_shared_info *si; | ||
208 | |||
209 | *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); | ||
210 | if (dma_mapping_error(dev, *addr)) | ||
211 | goto out_err; | ||
212 | |||
213 | si = skb_shinfo(skb); | ||
214 | end = &si->frags[si->nr_frags]; | ||
215 | |||
216 | for (fp = si->frags; fp < end; fp++) { | ||
217 | *++addr = dma_map_page(dev, fp->page, fp->page_offset, fp->size, | ||
218 | DMA_TO_DEVICE); | ||
219 | if (dma_mapping_error(dev, *addr)) | ||
220 | goto unwind; | ||
221 | } | ||
222 | return 0; | ||
223 | |||
224 | unwind: | ||
225 | while (fp-- > si->frags) | ||
226 | dma_unmap_page(dev, *--addr, fp->size, DMA_TO_DEVICE); | ||
227 | |||
228 | dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); | ||
229 | out_err: | ||
230 | return -ENOMEM; | ||
231 | } | ||
232 | |||
233 | #ifdef CONFIG_NEED_DMA_MAP_STATE | ||
234 | static void unmap_skb(struct device *dev, const struct sk_buff *skb, | ||
235 | const dma_addr_t *addr) | ||
236 | { | ||
237 | const skb_frag_t *fp, *end; | ||
238 | const struct skb_shared_info *si; | ||
239 | |||
240 | dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); | ||
241 | |||
242 | si = skb_shinfo(skb); | ||
243 | end = &si->frags[si->nr_frags]; | ||
244 | for (fp = si->frags; fp < end; fp++) | ||
245 | dma_unmap_page(dev, *addr++, fp->size, DMA_TO_DEVICE); | ||
246 | } | ||
247 | |||
248 | /** | ||
249 | * deferred_unmap_destructor - unmap a packet when it is freed | ||
250 | * @skb: the packet | ||
251 | * | ||
252 | * This is the packet destructor used for Tx packets that need to remain | ||
253 | * mapped until they are freed rather than until their Tx descriptors are | ||
254 | * freed. | ||
255 | */ | ||
256 | static void deferred_unmap_destructor(struct sk_buff *skb) | ||
257 | { | ||
258 | unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); | ||
259 | } | ||
260 | #endif | ||
261 | |||
262 | static void unmap_sgl(struct device *dev, const struct sk_buff *skb, | ||
263 | const struct ulptx_sgl *sgl, const struct sge_txq *q) | ||
264 | { | ||
265 | const struct ulptx_sge_pair *p; | ||
266 | unsigned int nfrags = skb_shinfo(skb)->nr_frags; | ||
267 | |||
268 | if (likely(skb_headlen(skb))) | ||
269 | dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), | ||
270 | DMA_TO_DEVICE); | ||
271 | else { | ||
272 | dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), | ||
273 | DMA_TO_DEVICE); | ||
274 | nfrags--; | ||
275 | } | ||
276 | |||
277 | /* | ||
278 | * the complexity below is because of the possibility of a wrap-around | ||
279 | * in the middle of an SGL | ||
280 | */ | ||
281 | for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { | ||
282 | if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) { | ||
283 | unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]), | ||
284 | ntohl(p->len[0]), DMA_TO_DEVICE); | ||
285 | dma_unmap_page(dev, be64_to_cpu(p->addr[1]), | ||
286 | ntohl(p->len[1]), DMA_TO_DEVICE); | ||
287 | p++; | ||
288 | } else if ((u8 *)p == (u8 *)q->stat) { | ||
289 | p = (const struct ulptx_sge_pair *)q->desc; | ||
290 | goto unmap; | ||
291 | } else if ((u8 *)p + 8 == (u8 *)q->stat) { | ||
292 | const __be64 *addr = (const __be64 *)q->desc; | ||
293 | |||
294 | dma_unmap_page(dev, be64_to_cpu(addr[0]), | ||
295 | ntohl(p->len[0]), DMA_TO_DEVICE); | ||
296 | dma_unmap_page(dev, be64_to_cpu(addr[1]), | ||
297 | ntohl(p->len[1]), DMA_TO_DEVICE); | ||
298 | p = (const struct ulptx_sge_pair *)&addr[2]; | ||
299 | } else { | ||
300 | const __be64 *addr = (const __be64 *)q->desc; | ||
301 | |||
302 | dma_unmap_page(dev, be64_to_cpu(p->addr[0]), | ||
303 | ntohl(p->len[0]), DMA_TO_DEVICE); | ||
304 | dma_unmap_page(dev, be64_to_cpu(addr[0]), | ||
305 | ntohl(p->len[1]), DMA_TO_DEVICE); | ||
306 | p = (const struct ulptx_sge_pair *)&addr[1]; | ||
307 | } | ||
308 | } | ||
309 | if (nfrags) { | ||
310 | __be64 addr; | ||
311 | |||
312 | if ((u8 *)p == (u8 *)q->stat) | ||
313 | p = (const struct ulptx_sge_pair *)q->desc; | ||
314 | addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] : | ||
315 | *(const __be64 *)q->desc; | ||
316 | dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]), | ||
317 | DMA_TO_DEVICE); | ||
318 | } | ||
319 | } | ||
320 | |||
321 | /** | ||
322 | * free_tx_desc - reclaims Tx descriptors and their buffers | ||
323 | * @adapter: the adapter | ||
324 | * @q: the Tx queue to reclaim descriptors from | ||
325 | * @n: the number of descriptors to reclaim | ||
326 | * @unmap: whether the buffers should be unmapped for DMA | ||
327 | * | ||
328 | * Reclaims Tx descriptors from an SGE Tx queue and frees the associated | ||
329 | * Tx buffers. Called with the Tx queue lock held. | ||
330 | */ | ||
331 | static void free_tx_desc(struct adapter *adap, struct sge_txq *q, | ||
332 | unsigned int n, bool unmap) | ||
333 | { | ||
334 | struct tx_sw_desc *d; | ||
335 | unsigned int cidx = q->cidx; | ||
336 | struct device *dev = adap->pdev_dev; | ||
337 | |||
338 | d = &q->sdesc[cidx]; | ||
339 | while (n--) { | ||
340 | if (d->skb) { /* an SGL is present */ | ||
341 | if (unmap) | ||
342 | unmap_sgl(dev, d->skb, d->sgl, q); | ||
343 | kfree_skb(d->skb); | ||
344 | d->skb = NULL; | ||
345 | } | ||
346 | ++d; | ||
347 | if (++cidx == q->size) { | ||
348 | cidx = 0; | ||
349 | d = q->sdesc; | ||
350 | } | ||
351 | } | ||
352 | q->cidx = cidx; | ||
353 | } | ||
354 | |||
355 | /* | ||
356 | * Return the number of reclaimable descriptors in a Tx queue. | ||
357 | */ | ||
358 | static inline int reclaimable(const struct sge_txq *q) | ||
359 | { | ||
360 | int hw_cidx = ntohs(q->stat->cidx); | ||
361 | hw_cidx -= q->cidx; | ||
362 | return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; | ||
363 | } | ||
364 | |||
365 | /** | ||
366 | * reclaim_completed_tx - reclaims completed Tx descriptors | ||
367 | * @adap: the adapter | ||
368 | * @q: the Tx queue to reclaim completed descriptors from | ||
369 | * @unmap: whether the buffers should be unmapped for DMA | ||
370 | * | ||
371 | * Reclaims Tx descriptors that the SGE has indicated it has processed, | ||
372 | * and frees the associated buffers if possible. Called with the Tx | ||
373 | * queue locked. | ||
374 | */ | ||
375 | static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, | ||
376 | bool unmap) | ||
377 | { | ||
378 | int avail = reclaimable(q); | ||
379 | |||
380 | if (avail) { | ||
381 | /* | ||
382 | * Limit the amount of clean up work we do at a time to keep | ||
383 | * the Tx lock hold time O(1). | ||
384 | */ | ||
385 | if (avail > MAX_TX_RECLAIM) | ||
386 | avail = MAX_TX_RECLAIM; | ||
387 | |||
388 | free_tx_desc(adap, q, avail, unmap); | ||
389 | q->in_use -= avail; | ||
390 | } | ||
391 | } | ||
392 | |||
393 | static inline int get_buf_size(const struct rx_sw_desc *d) | ||
394 | { | ||
395 | #if FL_PG_ORDER > 0 | ||
396 | return (d->dma_addr & RX_LARGE_BUF) ? (PAGE_SIZE << FL_PG_ORDER) : | ||
397 | PAGE_SIZE; | ||
398 | #else | ||
399 | return PAGE_SIZE; | ||
400 | #endif | ||
401 | } | ||
402 | |||
403 | /** | ||
404 | * free_rx_bufs - free the Rx buffers on an SGE free list | ||
405 | * @adap: the adapter | ||
406 | * @q: the SGE free list to free buffers from | ||
407 | * @n: how many buffers to free | ||
408 | * | ||
409 | * Release the next @n buffers on an SGE free-buffer Rx queue. The | ||
410 | * buffers must be made inaccessible to HW before calling this function. | ||
411 | */ | ||
412 | static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) | ||
413 | { | ||
414 | while (n--) { | ||
415 | struct rx_sw_desc *d = &q->sdesc[q->cidx]; | ||
416 | |||
417 | if (is_buf_mapped(d)) | ||
418 | dma_unmap_page(adap->pdev_dev, get_buf_addr(d), | ||
419 | get_buf_size(d), PCI_DMA_FROMDEVICE); | ||
420 | put_page(d->page); | ||
421 | d->page = NULL; | ||
422 | if (++q->cidx == q->size) | ||
423 | q->cidx = 0; | ||
424 | q->avail--; | ||
425 | } | ||
426 | } | ||
427 | |||
428 | /** | ||
429 | * unmap_rx_buf - unmap the current Rx buffer on an SGE free list | ||
430 | * @adap: the adapter | ||
431 | * @q: the SGE free list | ||
432 | * | ||
433 | * Unmap the current buffer on an SGE free-buffer Rx queue. The | ||
434 | * buffer must be made inaccessible to HW before calling this function. | ||
435 | * | ||
436 | * This is similar to @free_rx_bufs above but does not free the buffer. | ||
437 | * Do note that the FL still loses any further access to the buffer. | ||
438 | */ | ||
439 | static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) | ||
440 | { | ||
441 | struct rx_sw_desc *d = &q->sdesc[q->cidx]; | ||
442 | |||
443 | if (is_buf_mapped(d)) | ||
444 | dma_unmap_page(adap->pdev_dev, get_buf_addr(d), | ||
445 | get_buf_size(d), PCI_DMA_FROMDEVICE); | ||
446 | d->page = NULL; | ||
447 | if (++q->cidx == q->size) | ||
448 | q->cidx = 0; | ||
449 | q->avail--; | ||
450 | } | ||
451 | |||
452 | static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) | ||
453 | { | ||
454 | if (q->pend_cred >= 8) { | ||
455 | wmb(); | ||
456 | t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), DBPRIO | | ||
457 | QID(q->cntxt_id) | PIDX(q->pend_cred / 8)); | ||
458 | q->pend_cred &= 7; | ||
459 | } | ||
460 | } | ||
461 | |||
462 | static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, | ||
463 | dma_addr_t mapping) | ||
464 | { | ||
465 | sd->page = pg; | ||
466 | sd->dma_addr = mapping; /* includes size low bits */ | ||
467 | } | ||
468 | |||
469 | /** | ||
470 | * refill_fl - refill an SGE Rx buffer ring | ||
471 | * @adap: the adapter | ||
472 | * @q: the ring to refill | ||
473 | * @n: the number of new buffers to allocate | ||
474 | * @gfp: the gfp flags for the allocations | ||
475 | * | ||
476 | * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, | ||
477 | * allocated with the supplied gfp flags. The caller must assure that | ||
478 | * @n does not exceed the queue's capacity. If afterwards the queue is | ||
479 | * found critically low mark it as starving in the bitmap of starving FLs. | ||
480 | * | ||
481 | * Returns the number of buffers allocated. | ||
482 | */ | ||
483 | static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, | ||
484 | gfp_t gfp) | ||
485 | { | ||
486 | struct page *pg; | ||
487 | dma_addr_t mapping; | ||
488 | unsigned int cred = q->avail; | ||
489 | __be64 *d = &q->desc[q->pidx]; | ||
490 | struct rx_sw_desc *sd = &q->sdesc[q->pidx]; | ||
491 | |||
492 | gfp |= __GFP_NOWARN; /* failures are expected */ | ||
493 | |||
494 | #if FL_PG_ORDER > 0 | ||
495 | /* | ||
496 | * Prefer large buffers | ||
497 | */ | ||
498 | while (n) { | ||
499 | pg = alloc_pages(gfp | __GFP_COMP, FL_PG_ORDER); | ||
500 | if (unlikely(!pg)) { | ||
501 | q->large_alloc_failed++; | ||
502 | break; /* fall back to single pages */ | ||
503 | } | ||
504 | |||
505 | mapping = dma_map_page(adap->pdev_dev, pg, 0, | ||
506 | PAGE_SIZE << FL_PG_ORDER, | ||
507 | PCI_DMA_FROMDEVICE); | ||
508 | if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { | ||
509 | __free_pages(pg, FL_PG_ORDER); | ||
510 | goto out; /* do not try small pages for this error */ | ||
511 | } | ||
512 | mapping |= RX_LARGE_BUF; | ||
513 | *d++ = cpu_to_be64(mapping); | ||
514 | |||
515 | set_rx_sw_desc(sd, pg, mapping); | ||
516 | sd++; | ||
517 | |||
518 | q->avail++; | ||
519 | if (++q->pidx == q->size) { | ||
520 | q->pidx = 0; | ||
521 | sd = q->sdesc; | ||
522 | d = q->desc; | ||
523 | } | ||
524 | n--; | ||
525 | } | ||
526 | #endif | ||
527 | |||
528 | while (n--) { | ||
529 | pg = __netdev_alloc_page(adap->port[0], gfp); | ||
530 | if (unlikely(!pg)) { | ||
531 | q->alloc_failed++; | ||
532 | break; | ||
533 | } | ||
534 | |||
535 | mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, | ||
536 | PCI_DMA_FROMDEVICE); | ||
537 | if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { | ||
538 | netdev_free_page(adap->port[0], pg); | ||
539 | goto out; | ||
540 | } | ||
541 | *d++ = cpu_to_be64(mapping); | ||
542 | |||
543 | set_rx_sw_desc(sd, pg, mapping); | ||
544 | sd++; | ||
545 | |||
546 | q->avail++; | ||
547 | if (++q->pidx == q->size) { | ||
548 | q->pidx = 0; | ||
549 | sd = q->sdesc; | ||
550 | d = q->desc; | ||
551 | } | ||
552 | } | ||
553 | |||
554 | out: cred = q->avail - cred; | ||
555 | q->pend_cred += cred; | ||
556 | ring_fl_db(adap, q); | ||
557 | |||
558 | if (unlikely(fl_starving(q))) { | ||
559 | smp_wmb(); | ||
560 | set_bit(q->cntxt_id, adap->sge.starving_fl); | ||
561 | } | ||
562 | |||
563 | return cred; | ||
564 | } | ||
565 | |||
566 | static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) | ||
567 | { | ||
568 | refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), | ||
569 | GFP_ATOMIC); | ||
570 | } | ||
571 | |||
572 | /** | ||
573 | * alloc_ring - allocate resources for an SGE descriptor ring | ||
574 | * @dev: the PCI device's core device | ||
575 | * @nelem: the number of descriptors | ||
576 | * @elem_size: the size of each descriptor | ||
577 | * @sw_size: the size of the SW state associated with each ring element | ||
578 | * @phys: the physical address of the allocated ring | ||
579 | * @metadata: address of the array holding the SW state for the ring | ||
580 | * @stat_size: extra space in HW ring for status information | ||
581 | * | ||
582 | * Allocates resources for an SGE descriptor ring, such as Tx queues, | ||
583 | * free buffer lists, or response queues. Each SGE ring requires | ||
584 | * space for its HW descriptors plus, optionally, space for the SW state | ||
585 | * associated with each HW entry (the metadata). The function returns | ||
586 | * three values: the virtual address for the HW ring (the return value | ||
587 | * of the function), the bus address of the HW ring, and the address | ||
588 | * of the SW ring. | ||
589 | */ | ||
590 | static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, | ||
591 | size_t sw_size, dma_addr_t *phys, void *metadata, | ||
592 | size_t stat_size) | ||
593 | { | ||
594 | size_t len = nelem * elem_size + stat_size; | ||
595 | void *s = NULL; | ||
596 | void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); | ||
597 | |||
598 | if (!p) | ||
599 | return NULL; | ||
600 | if (sw_size) { | ||
601 | s = kcalloc(nelem, sw_size, GFP_KERNEL); | ||
602 | |||
603 | if (!s) { | ||
604 | dma_free_coherent(dev, len, p, *phys); | ||
605 | return NULL; | ||
606 | } | ||
607 | } | ||
608 | if (metadata) | ||
609 | *(void **)metadata = s; | ||
610 | memset(p, 0, len); | ||
611 | return p; | ||
612 | } | ||
613 | |||
614 | /** | ||
615 | * sgl_len - calculates the size of an SGL of the given capacity | ||
616 | * @n: the number of SGL entries | ||
617 | * | ||
618 | * Calculates the number of flits needed for a scatter/gather list that | ||
619 | * can hold the given number of entries. | ||
620 | */ | ||
621 | static inline unsigned int sgl_len(unsigned int n) | ||
622 | { | ||
623 | n--; | ||
624 | return (3 * n) / 2 + (n & 1) + 2; | ||
625 | } | ||
626 | |||
627 | /** | ||
628 | * flits_to_desc - returns the num of Tx descriptors for the given flits | ||
629 | * @n: the number of flits | ||
630 | * | ||
631 | * Returns the number of Tx descriptors needed for the supplied number | ||
632 | * of flits. | ||
633 | */ | ||
634 | static inline unsigned int flits_to_desc(unsigned int n) | ||
635 | { | ||
636 | BUG_ON(n > SGE_MAX_WR_LEN / 8); | ||
637 | return DIV_ROUND_UP(n, 8); | ||
638 | } | ||
639 | |||
640 | /** | ||
641 | * is_eth_imm - can an Ethernet packet be sent as immediate data? | ||
642 | * @skb: the packet | ||
643 | * | ||
644 | * Returns whether an Ethernet packet is small enough to fit as | ||
645 | * immediate data. | ||
646 | */ | ||
647 | static inline int is_eth_imm(const struct sk_buff *skb) | ||
648 | { | ||
649 | return skb->len <= MAX_IMM_TX_PKT_LEN - sizeof(struct cpl_tx_pkt); | ||
650 | } | ||
651 | |||
652 | /** | ||
653 | * calc_tx_flits - calculate the number of flits for a packet Tx WR | ||
654 | * @skb: the packet | ||
655 | * | ||
656 | * Returns the number of flits needed for a Tx WR for the given Ethernet | ||
657 | * packet, including the needed WR and CPL headers. | ||
658 | */ | ||
659 | static inline unsigned int calc_tx_flits(const struct sk_buff *skb) | ||
660 | { | ||
661 | unsigned int flits; | ||
662 | |||
663 | if (is_eth_imm(skb)) | ||
664 | return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 8); | ||
665 | |||
666 | flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4; | ||
667 | if (skb_shinfo(skb)->gso_size) | ||
668 | flits += 2; | ||
669 | return flits; | ||
670 | } | ||
671 | |||
672 | /** | ||
673 | * calc_tx_descs - calculate the number of Tx descriptors for a packet | ||
674 | * @skb: the packet | ||
675 | * | ||
676 | * Returns the number of Tx descriptors needed for the given Ethernet | ||
677 | * packet, including the needed WR and CPL headers. | ||
678 | */ | ||
679 | static inline unsigned int calc_tx_descs(const struct sk_buff *skb) | ||
680 | { | ||
681 | return flits_to_desc(calc_tx_flits(skb)); | ||
682 | } | ||
683 | |||
684 | /** | ||
685 | * write_sgl - populate a scatter/gather list for a packet | ||
686 | * @skb: the packet | ||
687 | * @q: the Tx queue we are writing into | ||
688 | * @sgl: starting location for writing the SGL | ||
689 | * @end: points right after the end of the SGL | ||
690 | * @start: start offset into skb main-body data to include in the SGL | ||
691 | * @addr: the list of bus addresses for the SGL elements | ||
692 | * | ||
693 | * Generates a gather list for the buffers that make up a packet. | ||
694 | * The caller must provide adequate space for the SGL that will be written. | ||
695 | * The SGL includes all of the packet's page fragments and the data in its | ||
696 | * main body except for the first @start bytes. @sgl must be 16-byte | ||
697 | * aligned and within a Tx descriptor with available space. @end points | ||
698 | * right after the end of the SGL but does not account for any potential | ||
699 | * wrap around, i.e., @end > @sgl. | ||
700 | */ | ||
701 | static void write_sgl(const struct sk_buff *skb, struct sge_txq *q, | ||
702 | struct ulptx_sgl *sgl, u64 *end, unsigned int start, | ||
703 | const dma_addr_t *addr) | ||
704 | { | ||
705 | unsigned int i, len; | ||
706 | struct ulptx_sge_pair *to; | ||
707 | const struct skb_shared_info *si = skb_shinfo(skb); | ||
708 | unsigned int nfrags = si->nr_frags; | ||
709 | struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; | ||
710 | |||
711 | len = skb_headlen(skb) - start; | ||
712 | if (likely(len)) { | ||
713 | sgl->len0 = htonl(len); | ||
714 | sgl->addr0 = cpu_to_be64(addr[0] + start); | ||
715 | nfrags++; | ||
716 | } else { | ||
717 | sgl->len0 = htonl(si->frags[0].size); | ||
718 | sgl->addr0 = cpu_to_be64(addr[1]); | ||
719 | } | ||
720 | |||
721 | sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_NSGE(nfrags)); | ||
722 | if (likely(--nfrags == 0)) | ||
723 | return; | ||
724 | /* | ||
725 | * Most of the complexity below deals with the possibility we hit the | ||
726 | * end of the queue in the middle of writing the SGL. For this case | ||
727 | * only we create the SGL in a temporary buffer and then copy it. | ||
728 | */ | ||
729 | to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; | ||
730 | |||
731 | for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { | ||
732 | to->len[0] = cpu_to_be32(si->frags[i].size); | ||
733 | to->len[1] = cpu_to_be32(si->frags[++i].size); | ||
734 | to->addr[0] = cpu_to_be64(addr[i]); | ||
735 | to->addr[1] = cpu_to_be64(addr[++i]); | ||
736 | } | ||
737 | if (nfrags) { | ||
738 | to->len[0] = cpu_to_be32(si->frags[i].size); | ||
739 | to->len[1] = cpu_to_be32(0); | ||
740 | to->addr[0] = cpu_to_be64(addr[i + 1]); | ||
741 | } | ||
742 | if (unlikely((u8 *)end > (u8 *)q->stat)) { | ||
743 | unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; | ||
744 | |||
745 | if (likely(part0)) | ||
746 | memcpy(sgl->sge, buf, part0); | ||
747 | part1 = (u8 *)end - (u8 *)q->stat; | ||
748 | memcpy(q->desc, (u8 *)buf + part0, part1); | ||
749 | end = (void *)q->desc + part1; | ||
750 | } | ||
751 | if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ | ||
752 | *(u64 *)end = 0; | ||
753 | } | ||
754 | |||
755 | /** | ||
756 | * ring_tx_db - check and potentially ring a Tx queue's doorbell | ||
757 | * @adap: the adapter | ||
758 | * @q: the Tx queue | ||
759 | * @n: number of new descriptors to give to HW | ||
760 | * | ||
761 | * Ring the doorbel for a Tx queue. | ||
762 | */ | ||
763 | static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) | ||
764 | { | ||
765 | wmb(); /* write descriptors before telling HW */ | ||
766 | t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), | ||
767 | QID(q->cntxt_id) | PIDX(n)); | ||
768 | } | ||
769 | |||
770 | /** | ||
771 | * inline_tx_skb - inline a packet's data into Tx descriptors | ||
772 | * @skb: the packet | ||
773 | * @q: the Tx queue where the packet will be inlined | ||
774 | * @pos: starting position in the Tx queue where to inline the packet | ||
775 | * | ||
776 | * Inline a packet's contents directly into Tx descriptors, starting at | ||
777 | * the given position within the Tx DMA ring. | ||
778 | * Most of the complexity of this operation is dealing with wrap arounds | ||
779 | * in the middle of the packet we want to inline. | ||
780 | */ | ||
781 | static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q, | ||
782 | void *pos) | ||
783 | { | ||
784 | u64 *p; | ||
785 | int left = (void *)q->stat - pos; | ||
786 | |||
787 | if (likely(skb->len <= left)) { | ||
788 | if (likely(!skb->data_len)) | ||
789 | skb_copy_from_linear_data(skb, pos, skb->len); | ||
790 | else | ||
791 | skb_copy_bits(skb, 0, pos, skb->len); | ||
792 | pos += skb->len; | ||
793 | } else { | ||
794 | skb_copy_bits(skb, 0, pos, left); | ||
795 | skb_copy_bits(skb, left, q->desc, skb->len - left); | ||
796 | pos = (void *)q->desc + (skb->len - left); | ||
797 | } | ||
798 | |||
799 | /* 0-pad to multiple of 16 */ | ||
800 | p = PTR_ALIGN(pos, 8); | ||
801 | if ((uintptr_t)p & 8) | ||
802 | *p = 0; | ||
803 | } | ||
804 | |||
805 | /* | ||
806 | * Figure out what HW csum a packet wants and return the appropriate control | ||
807 | * bits. | ||
808 | */ | ||
809 | static u64 hwcsum(const struct sk_buff *skb) | ||
810 | { | ||
811 | int csum_type; | ||
812 | const struct iphdr *iph = ip_hdr(skb); | ||
813 | |||
814 | if (iph->version == 4) { | ||
815 | if (iph->protocol == IPPROTO_TCP) | ||
816 | csum_type = TX_CSUM_TCPIP; | ||
817 | else if (iph->protocol == IPPROTO_UDP) | ||
818 | csum_type = TX_CSUM_UDPIP; | ||
819 | else { | ||
820 | nocsum: /* | ||
821 | * unknown protocol, disable HW csum | ||
822 | * and hope a bad packet is detected | ||
823 | */ | ||
824 | return TXPKT_L4CSUM_DIS; | ||
825 | } | ||
826 | } else { | ||
827 | /* | ||
828 | * this doesn't work with extension headers | ||
829 | */ | ||
830 | const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph; | ||
831 | |||
832 | if (ip6h->nexthdr == IPPROTO_TCP) | ||
833 | csum_type = TX_CSUM_TCPIP6; | ||
834 | else if (ip6h->nexthdr == IPPROTO_UDP) | ||
835 | csum_type = TX_CSUM_UDPIP6; | ||
836 | else | ||
837 | goto nocsum; | ||
838 | } | ||
839 | |||
840 | if (likely(csum_type >= TX_CSUM_TCPIP)) | ||
841 | return TXPKT_CSUM_TYPE(csum_type) | | ||
842 | TXPKT_IPHDR_LEN(skb_network_header_len(skb)) | | ||
843 | TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN); | ||
844 | else { | ||
845 | int start = skb_transport_offset(skb); | ||
846 | |||
847 | return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) | | ||
848 | TXPKT_CSUM_LOC(start + skb->csum_offset); | ||
849 | } | ||
850 | } | ||
851 | |||
852 | static void eth_txq_stop(struct sge_eth_txq *q) | ||
853 | { | ||
854 | netif_tx_stop_queue(q->txq); | ||
855 | q->q.stops++; | ||
856 | } | ||
857 | |||
858 | static inline void txq_advance(struct sge_txq *q, unsigned int n) | ||
859 | { | ||
860 | q->in_use += n; | ||
861 | q->pidx += n; | ||
862 | if (q->pidx >= q->size) | ||
863 | q->pidx -= q->size; | ||
864 | } | ||
865 | |||
866 | /** | ||
867 | * t4_eth_xmit - add a packet to an Ethernet Tx queue | ||
868 | * @skb: the packet | ||
869 | * @dev: the egress net device | ||
870 | * | ||
871 | * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. | ||
872 | */ | ||
873 | netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev) | ||
874 | { | ||
875 | u32 wr_mid; | ||
876 | u64 cntrl, *end; | ||
877 | int qidx, credits; | ||
878 | unsigned int flits, ndesc; | ||
879 | struct adapter *adap; | ||
880 | struct sge_eth_txq *q; | ||
881 | const struct port_info *pi; | ||
882 | struct fw_eth_tx_pkt_wr *wr; | ||
883 | struct cpl_tx_pkt_core *cpl; | ||
884 | const struct skb_shared_info *ssi; | ||
885 | dma_addr_t addr[MAX_SKB_FRAGS + 1]; | ||
886 | |||
887 | /* | ||
888 | * The chip min packet length is 10 octets but play safe and reject | ||
889 | * anything shorter than an Ethernet header. | ||
890 | */ | ||
891 | if (unlikely(skb->len < ETH_HLEN)) { | ||
892 | out_free: dev_kfree_skb(skb); | ||
893 | return NETDEV_TX_OK; | ||
894 | } | ||
895 | |||
896 | pi = netdev_priv(dev); | ||
897 | adap = pi->adapter; | ||
898 | qidx = skb_get_queue_mapping(skb); | ||
899 | q = &adap->sge.ethtxq[qidx + pi->first_qset]; | ||
900 | |||
901 | reclaim_completed_tx(adap, &q->q, true); | ||
902 | |||
903 | flits = calc_tx_flits(skb); | ||
904 | ndesc = flits_to_desc(flits); | ||
905 | credits = txq_avail(&q->q) - ndesc; | ||
906 | |||
907 | if (unlikely(credits < 0)) { | ||
908 | eth_txq_stop(q); | ||
909 | dev_err(adap->pdev_dev, | ||
910 | "%s: Tx ring %u full while queue awake!\n", | ||
911 | dev->name, qidx); | ||
912 | return NETDEV_TX_BUSY; | ||
913 | } | ||
914 | |||
915 | if (!is_eth_imm(skb) && | ||
916 | unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) { | ||
917 | q->mapping_err++; | ||
918 | goto out_free; | ||
919 | } | ||
920 | |||
921 | wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2)); | ||
922 | if (unlikely(credits < ETHTXQ_STOP_THRES)) { | ||
923 | eth_txq_stop(q); | ||
924 | wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ; | ||
925 | } | ||
926 | |||
927 | wr = (void *)&q->q.desc[q->q.pidx]; | ||
928 | wr->equiq_to_len16 = htonl(wr_mid); | ||
929 | wr->r3 = cpu_to_be64(0); | ||
930 | end = (u64 *)wr + flits; | ||
931 | |||
932 | ssi = skb_shinfo(skb); | ||
933 | if (ssi->gso_size) { | ||
934 | struct cpl_tx_pkt_lso *lso = (void *)wr; | ||
935 | bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; | ||
936 | int l3hdr_len = skb_network_header_len(skb); | ||
937 | int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; | ||
938 | |||
939 | wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) | | ||
940 | FW_WR_IMMDLEN(sizeof(*lso))); | ||
941 | lso->lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) | | ||
942 | LSO_FIRST_SLICE | LSO_LAST_SLICE | | ||
943 | LSO_IPV6(v6) | | ||
944 | LSO_ETHHDR_LEN(eth_xtra_len / 4) | | ||
945 | LSO_IPHDR_LEN(l3hdr_len / 4) | | ||
946 | LSO_TCPHDR_LEN(tcp_hdr(skb)->doff)); | ||
947 | lso->ipid_ofst = htons(0); | ||
948 | lso->mss = htons(ssi->gso_size); | ||
949 | lso->seqno_offset = htonl(0); | ||
950 | lso->len = htonl(skb->len); | ||
951 | cpl = (void *)(lso + 1); | ||
952 | cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | | ||
953 | TXPKT_IPHDR_LEN(l3hdr_len) | | ||
954 | TXPKT_ETHHDR_LEN(eth_xtra_len); | ||
955 | q->tso++; | ||
956 | q->tx_cso += ssi->gso_segs; | ||
957 | } else { | ||
958 | int len; | ||
959 | |||
960 | len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl); | ||
961 | wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) | | ||
962 | FW_WR_IMMDLEN(len)); | ||
963 | cpl = (void *)(wr + 1); | ||
964 | if (skb->ip_summed == CHECKSUM_PARTIAL) { | ||
965 | cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS; | ||
966 | q->tx_cso++; | ||
967 | } else | ||
968 | cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS; | ||
969 | } | ||
970 | |||
971 | if (vlan_tx_tag_present(skb)) { | ||
972 | q->vlan_ins++; | ||
973 | cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb)); | ||
974 | } | ||
975 | |||
976 | cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) | | ||
977 | TXPKT_INTF(pi->tx_chan) | TXPKT_PF(0)); | ||
978 | cpl->pack = htons(0); | ||
979 | cpl->len = htons(skb->len); | ||
980 | cpl->ctrl1 = cpu_to_be64(cntrl); | ||
981 | |||
982 | if (is_eth_imm(skb)) { | ||
983 | inline_tx_skb(skb, &q->q, cpl + 1); | ||
984 | dev_kfree_skb(skb); | ||
985 | } else { | ||
986 | int last_desc; | ||
987 | |||
988 | write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0, | ||
989 | addr); | ||
990 | skb_orphan(skb); | ||
991 | |||
992 | last_desc = q->q.pidx + ndesc - 1; | ||
993 | if (last_desc >= q->q.size) | ||
994 | last_desc -= q->q.size; | ||
995 | q->q.sdesc[last_desc].skb = skb; | ||
996 | q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1); | ||
997 | } | ||
998 | |||
999 | txq_advance(&q->q, ndesc); | ||
1000 | |||
1001 | ring_tx_db(adap, &q->q, ndesc); | ||
1002 | return NETDEV_TX_OK; | ||
1003 | } | ||
1004 | |||
1005 | /** | ||
1006 | * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs | ||
1007 | * @q: the SGE control Tx queue | ||
1008 | * | ||
1009 | * This is a variant of reclaim_completed_tx() that is used for Tx queues | ||
1010 | * that send only immediate data (presently just the control queues) and | ||
1011 | * thus do not have any sk_buffs to release. | ||
1012 | */ | ||
1013 | static inline void reclaim_completed_tx_imm(struct sge_txq *q) | ||
1014 | { | ||
1015 | int hw_cidx = ntohs(q->stat->cidx); | ||
1016 | int reclaim = hw_cidx - q->cidx; | ||
1017 | |||
1018 | if (reclaim < 0) | ||
1019 | reclaim += q->size; | ||
1020 | |||
1021 | q->in_use -= reclaim; | ||
1022 | q->cidx = hw_cidx; | ||
1023 | } | ||
1024 | |||
1025 | /** | ||
1026 | * is_imm - check whether a packet can be sent as immediate data | ||
1027 | * @skb: the packet | ||
1028 | * | ||
1029 | * Returns true if a packet can be sent as a WR with immediate data. | ||
1030 | */ | ||
1031 | static inline int is_imm(const struct sk_buff *skb) | ||
1032 | { | ||
1033 | return skb->len <= MAX_CTRL_WR_LEN; | ||
1034 | } | ||
1035 | |||
1036 | /** | ||
1037 | * ctrlq_check_stop - check if a control queue is full and should stop | ||
1038 | * @q: the queue | ||
1039 | * @wr: most recent WR written to the queue | ||
1040 | * | ||
1041 | * Check if a control queue has become full and should be stopped. | ||
1042 | * We clean up control queue descriptors very lazily, only when we are out. | ||
1043 | * If the queue is still full after reclaiming any completed descriptors | ||
1044 | * we suspend it and have the last WR wake it up. | ||
1045 | */ | ||
1046 | static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) | ||
1047 | { | ||
1048 | reclaim_completed_tx_imm(&q->q); | ||
1049 | if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { | ||
1050 | wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ); | ||
1051 | q->q.stops++; | ||
1052 | q->full = 1; | ||
1053 | } | ||
1054 | } | ||
1055 | |||
1056 | /** | ||
1057 | * ctrl_xmit - send a packet through an SGE control Tx queue | ||
1058 | * @q: the control queue | ||
1059 | * @skb: the packet | ||
1060 | * | ||
1061 | * Send a packet through an SGE control Tx queue. Packets sent through | ||
1062 | * a control queue must fit entirely as immediate data. | ||
1063 | */ | ||
1064 | static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) | ||
1065 | { | ||
1066 | unsigned int ndesc; | ||
1067 | struct fw_wr_hdr *wr; | ||
1068 | |||
1069 | if (unlikely(!is_imm(skb))) { | ||
1070 | WARN_ON(1); | ||
1071 | dev_kfree_skb(skb); | ||
1072 | return NET_XMIT_DROP; | ||
1073 | } | ||
1074 | |||
1075 | ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); | ||
1076 | spin_lock(&q->sendq.lock); | ||
1077 | |||
1078 | if (unlikely(q->full)) { | ||
1079 | skb->priority = ndesc; /* save for restart */ | ||
1080 | __skb_queue_tail(&q->sendq, skb); | ||
1081 | spin_unlock(&q->sendq.lock); | ||
1082 | return NET_XMIT_CN; | ||
1083 | } | ||
1084 | |||
1085 | wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; | ||
1086 | inline_tx_skb(skb, &q->q, wr); | ||
1087 | |||
1088 | txq_advance(&q->q, ndesc); | ||
1089 | if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) | ||
1090 | ctrlq_check_stop(q, wr); | ||
1091 | |||
1092 | ring_tx_db(q->adap, &q->q, ndesc); | ||
1093 | spin_unlock(&q->sendq.lock); | ||
1094 | |||
1095 | kfree_skb(skb); | ||
1096 | return NET_XMIT_SUCCESS; | ||
1097 | } | ||
1098 | |||
1099 | /** | ||
1100 | * restart_ctrlq - restart a suspended control queue | ||
1101 | * @data: the control queue to restart | ||
1102 | * | ||
1103 | * Resumes transmission on a suspended Tx control queue. | ||
1104 | */ | ||
1105 | static void restart_ctrlq(unsigned long data) | ||
1106 | { | ||
1107 | struct sk_buff *skb; | ||
1108 | unsigned int written = 0; | ||
1109 | struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; | ||
1110 | |||
1111 | spin_lock(&q->sendq.lock); | ||
1112 | reclaim_completed_tx_imm(&q->q); | ||
1113 | BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ | ||
1114 | |||
1115 | while ((skb = __skb_dequeue(&q->sendq)) != NULL) { | ||
1116 | struct fw_wr_hdr *wr; | ||
1117 | unsigned int ndesc = skb->priority; /* previously saved */ | ||
1118 | |||
1119 | /* | ||
1120 | * Write descriptors and free skbs outside the lock to limit | ||
1121 | * wait times. q->full is still set so new skbs will be queued. | ||
1122 | */ | ||
1123 | spin_unlock(&q->sendq.lock); | ||
1124 | |||
1125 | wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; | ||
1126 | inline_tx_skb(skb, &q->q, wr); | ||
1127 | kfree_skb(skb); | ||
1128 | |||
1129 | written += ndesc; | ||
1130 | txq_advance(&q->q, ndesc); | ||
1131 | if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { | ||
1132 | unsigned long old = q->q.stops; | ||
1133 | |||
1134 | ctrlq_check_stop(q, wr); | ||
1135 | if (q->q.stops != old) { /* suspended anew */ | ||
1136 | spin_lock(&q->sendq.lock); | ||
1137 | goto ringdb; | ||
1138 | } | ||
1139 | } | ||
1140 | if (written > 16) { | ||
1141 | ring_tx_db(q->adap, &q->q, written); | ||
1142 | written = 0; | ||
1143 | } | ||
1144 | spin_lock(&q->sendq.lock); | ||
1145 | } | ||
1146 | q->full = 0; | ||
1147 | ringdb: if (written) | ||
1148 | ring_tx_db(q->adap, &q->q, written); | ||
1149 | spin_unlock(&q->sendq.lock); | ||
1150 | } | ||
1151 | |||
1152 | /** | ||
1153 | * t4_mgmt_tx - send a management message | ||
1154 | * @adap: the adapter | ||
1155 | * @skb: the packet containing the management message | ||
1156 | * | ||
1157 | * Send a management message through control queue 0. | ||
1158 | */ | ||
1159 | int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) | ||
1160 | { | ||
1161 | int ret; | ||
1162 | |||
1163 | local_bh_disable(); | ||
1164 | ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); | ||
1165 | local_bh_enable(); | ||
1166 | return ret; | ||
1167 | } | ||
1168 | |||
1169 | /** | ||
1170 | * is_ofld_imm - check whether a packet can be sent as immediate data | ||
1171 | * @skb: the packet | ||
1172 | * | ||
1173 | * Returns true if a packet can be sent as an offload WR with immediate | ||
1174 | * data. We currently use the same limit as for Ethernet packets. | ||
1175 | */ | ||
1176 | static inline int is_ofld_imm(const struct sk_buff *skb) | ||
1177 | { | ||
1178 | return skb->len <= MAX_IMM_TX_PKT_LEN; | ||
1179 | } | ||
1180 | |||
1181 | /** | ||
1182 | * calc_tx_flits_ofld - calculate # of flits for an offload packet | ||
1183 | * @skb: the packet | ||
1184 | * | ||
1185 | * Returns the number of flits needed for the given offload packet. | ||
1186 | * These packets are already fully constructed and no additional headers | ||
1187 | * will be added. | ||
1188 | */ | ||
1189 | static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) | ||
1190 | { | ||
1191 | unsigned int flits, cnt; | ||
1192 | |||
1193 | if (is_ofld_imm(skb)) | ||
1194 | return DIV_ROUND_UP(skb->len, 8); | ||
1195 | |||
1196 | flits = skb_transport_offset(skb) / 8U; /* headers */ | ||
1197 | cnt = skb_shinfo(skb)->nr_frags; | ||
1198 | if (skb->tail != skb->transport_header) | ||
1199 | cnt++; | ||
1200 | return flits + sgl_len(cnt); | ||
1201 | } | ||
1202 | |||
1203 | /** | ||
1204 | * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion | ||
1205 | * @adap: the adapter | ||
1206 | * @q: the queue to stop | ||
1207 | * | ||
1208 | * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting | ||
1209 | * inability to map packets. A periodic timer attempts to restart | ||
1210 | * queues so marked. | ||
1211 | */ | ||
1212 | static void txq_stop_maperr(struct sge_ofld_txq *q) | ||
1213 | { | ||
1214 | q->mapping_err++; | ||
1215 | q->q.stops++; | ||
1216 | set_bit(q->q.cntxt_id, q->adap->sge.txq_maperr); | ||
1217 | } | ||
1218 | |||
1219 | /** | ||
1220 | * ofldtxq_stop - stop an offload Tx queue that has become full | ||
1221 | * @q: the queue to stop | ||
1222 | * @skb: the packet causing the queue to become full | ||
1223 | * | ||
1224 | * Stops an offload Tx queue that has become full and modifies the packet | ||
1225 | * being written to request a wakeup. | ||
1226 | */ | ||
1227 | static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb) | ||
1228 | { | ||
1229 | struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data; | ||
1230 | |||
1231 | wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ); | ||
1232 | q->q.stops++; | ||
1233 | q->full = 1; | ||
1234 | } | ||
1235 | |||
1236 | /** | ||
1237 | * service_ofldq - restart a suspended offload queue | ||
1238 | * @q: the offload queue | ||
1239 | * | ||
1240 | * Services an offload Tx queue by moving packets from its packet queue | ||
1241 | * to the HW Tx ring. The function starts and ends with the queue locked. | ||
1242 | */ | ||
1243 | static void service_ofldq(struct sge_ofld_txq *q) | ||
1244 | { | ||
1245 | u64 *pos; | ||
1246 | int credits; | ||
1247 | struct sk_buff *skb; | ||
1248 | unsigned int written = 0; | ||
1249 | unsigned int flits, ndesc; | ||
1250 | |||
1251 | while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { | ||
1252 | /* | ||
1253 | * We drop the lock but leave skb on sendq, thus retaining | ||
1254 | * exclusive access to the state of the queue. | ||
1255 | */ | ||
1256 | spin_unlock(&q->sendq.lock); | ||
1257 | |||
1258 | reclaim_completed_tx(q->adap, &q->q, false); | ||
1259 | |||
1260 | flits = skb->priority; /* previously saved */ | ||
1261 | ndesc = flits_to_desc(flits); | ||
1262 | credits = txq_avail(&q->q) - ndesc; | ||
1263 | BUG_ON(credits < 0); | ||
1264 | if (unlikely(credits < TXQ_STOP_THRES)) | ||
1265 | ofldtxq_stop(q, skb); | ||
1266 | |||
1267 | pos = (u64 *)&q->q.desc[q->q.pidx]; | ||
1268 | if (is_ofld_imm(skb)) | ||
1269 | inline_tx_skb(skb, &q->q, pos); | ||
1270 | else if (map_skb(q->adap->pdev_dev, skb, | ||
1271 | (dma_addr_t *)skb->head)) { | ||
1272 | txq_stop_maperr(q); | ||
1273 | spin_lock(&q->sendq.lock); | ||
1274 | break; | ||
1275 | } else { | ||
1276 | int last_desc, hdr_len = skb_transport_offset(skb); | ||
1277 | |||
1278 | memcpy(pos, skb->data, hdr_len); | ||
1279 | write_sgl(skb, &q->q, (void *)pos + hdr_len, | ||
1280 | pos + flits, hdr_len, | ||
1281 | (dma_addr_t *)skb->head); | ||
1282 | #ifdef CONFIG_NEED_DMA_MAP_STATE | ||
1283 | skb->dev = q->adap->port[0]; | ||
1284 | skb->destructor = deferred_unmap_destructor; | ||
1285 | #endif | ||
1286 | last_desc = q->q.pidx + ndesc - 1; | ||
1287 | if (last_desc >= q->q.size) | ||
1288 | last_desc -= q->q.size; | ||
1289 | q->q.sdesc[last_desc].skb = skb; | ||
1290 | } | ||
1291 | |||
1292 | txq_advance(&q->q, ndesc); | ||
1293 | written += ndesc; | ||
1294 | if (unlikely(written > 32)) { | ||
1295 | ring_tx_db(q->adap, &q->q, written); | ||
1296 | written = 0; | ||
1297 | } | ||
1298 | |||
1299 | spin_lock(&q->sendq.lock); | ||
1300 | __skb_unlink(skb, &q->sendq); | ||
1301 | if (is_ofld_imm(skb)) | ||
1302 | kfree_skb(skb); | ||
1303 | } | ||
1304 | if (likely(written)) | ||
1305 | ring_tx_db(q->adap, &q->q, written); | ||
1306 | } | ||
1307 | |||
1308 | /** | ||
1309 | * ofld_xmit - send a packet through an offload queue | ||
1310 | * @q: the Tx offload queue | ||
1311 | * @skb: the packet | ||
1312 | * | ||
1313 | * Send an offload packet through an SGE offload queue. | ||
1314 | */ | ||
1315 | static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb) | ||
1316 | { | ||
1317 | skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ | ||
1318 | spin_lock(&q->sendq.lock); | ||
1319 | __skb_queue_tail(&q->sendq, skb); | ||
1320 | if (q->sendq.qlen == 1) | ||
1321 | service_ofldq(q); | ||
1322 | spin_unlock(&q->sendq.lock); | ||
1323 | return NET_XMIT_SUCCESS; | ||
1324 | } | ||
1325 | |||
1326 | /** | ||
1327 | * restart_ofldq - restart a suspended offload queue | ||
1328 | * @data: the offload queue to restart | ||
1329 | * | ||
1330 | * Resumes transmission on a suspended Tx offload queue. | ||
1331 | */ | ||
1332 | static void restart_ofldq(unsigned long data) | ||
1333 | { | ||
1334 | struct sge_ofld_txq *q = (struct sge_ofld_txq *)data; | ||
1335 | |||
1336 | spin_lock(&q->sendq.lock); | ||
1337 | q->full = 0; /* the queue actually is completely empty now */ | ||
1338 | service_ofldq(q); | ||
1339 | spin_unlock(&q->sendq.lock); | ||
1340 | } | ||
1341 | |||
1342 | /** | ||
1343 | * skb_txq - return the Tx queue an offload packet should use | ||
1344 | * @skb: the packet | ||
1345 | * | ||
1346 | * Returns the Tx queue an offload packet should use as indicated by bits | ||
1347 | * 1-15 in the packet's queue_mapping. | ||
1348 | */ | ||
1349 | static inline unsigned int skb_txq(const struct sk_buff *skb) | ||
1350 | { | ||
1351 | return skb->queue_mapping >> 1; | ||
1352 | } | ||
1353 | |||
1354 | /** | ||
1355 | * is_ctrl_pkt - return whether an offload packet is a control packet | ||
1356 | * @skb: the packet | ||
1357 | * | ||
1358 | * Returns whether an offload packet should use an OFLD or a CTRL | ||
1359 | * Tx queue as indicated by bit 0 in the packet's queue_mapping. | ||
1360 | */ | ||
1361 | static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) | ||
1362 | { | ||
1363 | return skb->queue_mapping & 1; | ||
1364 | } | ||
1365 | |||
1366 | static inline int ofld_send(struct adapter *adap, struct sk_buff *skb) | ||
1367 | { | ||
1368 | unsigned int idx = skb_txq(skb); | ||
1369 | |||
1370 | if (unlikely(is_ctrl_pkt(skb))) | ||
1371 | return ctrl_xmit(&adap->sge.ctrlq[idx], skb); | ||
1372 | return ofld_xmit(&adap->sge.ofldtxq[idx], skb); | ||
1373 | } | ||
1374 | |||
1375 | /** | ||
1376 | * t4_ofld_send - send an offload packet | ||
1377 | * @adap: the adapter | ||
1378 | * @skb: the packet | ||
1379 | * | ||
1380 | * Sends an offload packet. We use the packet queue_mapping to select the | ||
1381 | * appropriate Tx queue as follows: bit 0 indicates whether the packet | ||
1382 | * should be sent as regular or control, bits 1-15 select the queue. | ||
1383 | */ | ||
1384 | int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) | ||
1385 | { | ||
1386 | int ret; | ||
1387 | |||
1388 | local_bh_disable(); | ||
1389 | ret = ofld_send(adap, skb); | ||
1390 | local_bh_enable(); | ||
1391 | return ret; | ||
1392 | } | ||
1393 | |||
1394 | /** | ||
1395 | * cxgb4_ofld_send - send an offload packet | ||
1396 | * @dev: the net device | ||
1397 | * @skb: the packet | ||
1398 | * | ||
1399 | * Sends an offload packet. This is an exported version of @t4_ofld_send, | ||
1400 | * intended for ULDs. | ||
1401 | */ | ||
1402 | int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) | ||
1403 | { | ||
1404 | return t4_ofld_send(netdev2adap(dev), skb); | ||
1405 | } | ||
1406 | EXPORT_SYMBOL(cxgb4_ofld_send); | ||
1407 | |||
1408 | static inline void copy_frags(struct skb_shared_info *ssi, | ||
1409 | const struct pkt_gl *gl, unsigned int offset) | ||
1410 | { | ||
1411 | unsigned int n; | ||
1412 | |||
1413 | /* usually there's just one frag */ | ||
1414 | ssi->frags[0].page = gl->frags[0].page; | ||
1415 | ssi->frags[0].page_offset = gl->frags[0].page_offset + offset; | ||
1416 | ssi->frags[0].size = gl->frags[0].size - offset; | ||
1417 | ssi->nr_frags = gl->nfrags; | ||
1418 | n = gl->nfrags - 1; | ||
1419 | if (n) | ||
1420 | memcpy(&ssi->frags[1], &gl->frags[1], n * sizeof(skb_frag_t)); | ||
1421 | |||
1422 | /* get a reference to the last page, we don't own it */ | ||
1423 | get_page(gl->frags[n].page); | ||
1424 | } | ||
1425 | |||
1426 | /** | ||
1427 | * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list | ||
1428 | * @gl: the gather list | ||
1429 | * @skb_len: size of sk_buff main body if it carries fragments | ||
1430 | * @pull_len: amount of data to move to the sk_buff's main body | ||
1431 | * | ||
1432 | * Builds an sk_buff from the given packet gather list. Returns the | ||
1433 | * sk_buff or %NULL if sk_buff allocation failed. | ||
1434 | */ | ||
1435 | struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, | ||
1436 | unsigned int skb_len, unsigned int pull_len) | ||
1437 | { | ||
1438 | struct sk_buff *skb; | ||
1439 | |||
1440 | /* | ||
1441 | * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer | ||
1442 | * size, which is expected since buffers are at least PAGE_SIZEd. | ||
1443 | * In this case packets up to RX_COPY_THRES have only one fragment. | ||
1444 | */ | ||
1445 | if (gl->tot_len <= RX_COPY_THRES) { | ||
1446 | skb = dev_alloc_skb(gl->tot_len); | ||
1447 | if (unlikely(!skb)) | ||
1448 | goto out; | ||
1449 | __skb_put(skb, gl->tot_len); | ||
1450 | skb_copy_to_linear_data(skb, gl->va, gl->tot_len); | ||
1451 | } else { | ||
1452 | skb = dev_alloc_skb(skb_len); | ||
1453 | if (unlikely(!skb)) | ||
1454 | goto out; | ||
1455 | __skb_put(skb, pull_len); | ||
1456 | skb_copy_to_linear_data(skb, gl->va, pull_len); | ||
1457 | |||
1458 | copy_frags(skb_shinfo(skb), gl, pull_len); | ||
1459 | skb->len = gl->tot_len; | ||
1460 | skb->data_len = skb->len - pull_len; | ||
1461 | skb->truesize += skb->data_len; | ||
1462 | } | ||
1463 | out: return skb; | ||
1464 | } | ||
1465 | EXPORT_SYMBOL(cxgb4_pktgl_to_skb); | ||
1466 | |||
1467 | /** | ||
1468 | * t4_pktgl_free - free a packet gather list | ||
1469 | * @gl: the gather list | ||
1470 | * | ||
1471 | * Releases the pages of a packet gather list. We do not own the last | ||
1472 | * page on the list and do not free it. | ||
1473 | */ | ||
1474 | void t4_pktgl_free(const struct pkt_gl *gl) | ||
1475 | { | ||
1476 | int n; | ||
1477 | const skb_frag_t *p; | ||
1478 | |||
1479 | for (p = gl->frags, n = gl->nfrags - 1; n--; p++) | ||
1480 | put_page(p->page); | ||
1481 | } | ||
1482 | |||
1483 | /* | ||
1484 | * Process an MPS trace packet. Give it an unused protocol number so it won't | ||
1485 | * be delivered to anyone and send it to the stack for capture. | ||
1486 | */ | ||
1487 | static noinline int handle_trace_pkt(struct adapter *adap, | ||
1488 | const struct pkt_gl *gl) | ||
1489 | { | ||
1490 | struct sk_buff *skb; | ||
1491 | struct cpl_trace_pkt *p; | ||
1492 | |||
1493 | skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); | ||
1494 | if (unlikely(!skb)) { | ||
1495 | t4_pktgl_free(gl); | ||
1496 | return 0; | ||
1497 | } | ||
1498 | |||
1499 | p = (struct cpl_trace_pkt *)skb->data; | ||
1500 | __skb_pull(skb, sizeof(*p)); | ||
1501 | skb_reset_mac_header(skb); | ||
1502 | skb->protocol = htons(0xffff); | ||
1503 | skb->dev = adap->port[0]; | ||
1504 | netif_receive_skb(skb); | ||
1505 | return 0; | ||
1506 | } | ||
1507 | |||
1508 | static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, | ||
1509 | const struct cpl_rx_pkt *pkt) | ||
1510 | { | ||
1511 | int ret; | ||
1512 | struct sk_buff *skb; | ||
1513 | |||
1514 | skb = napi_get_frags(&rxq->rspq.napi); | ||
1515 | if (unlikely(!skb)) { | ||
1516 | t4_pktgl_free(gl); | ||
1517 | rxq->stats.rx_drops++; | ||
1518 | return; | ||
1519 | } | ||
1520 | |||
1521 | copy_frags(skb_shinfo(skb), gl, RX_PKT_PAD); | ||
1522 | skb->len = gl->tot_len - RX_PKT_PAD; | ||
1523 | skb->data_len = skb->len; | ||
1524 | skb->truesize += skb->data_len; | ||
1525 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
1526 | skb_record_rx_queue(skb, rxq->rspq.idx); | ||
1527 | |||
1528 | if (unlikely(pkt->vlan_ex)) { | ||
1529 | struct port_info *pi = netdev_priv(rxq->rspq.netdev); | ||
1530 | struct vlan_group *grp = pi->vlan_grp; | ||
1531 | |||
1532 | rxq->stats.vlan_ex++; | ||
1533 | if (likely(grp)) { | ||
1534 | ret = vlan_gro_frags(&rxq->rspq.napi, grp, | ||
1535 | ntohs(pkt->vlan)); | ||
1536 | goto stats; | ||
1537 | } | ||
1538 | } | ||
1539 | ret = napi_gro_frags(&rxq->rspq.napi); | ||
1540 | stats: if (ret == GRO_HELD) | ||
1541 | rxq->stats.lro_pkts++; | ||
1542 | else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) | ||
1543 | rxq->stats.lro_merged++; | ||
1544 | rxq->stats.pkts++; | ||
1545 | rxq->stats.rx_cso++; | ||
1546 | } | ||
1547 | |||
1548 | /** | ||
1549 | * t4_ethrx_handler - process an ingress ethernet packet | ||
1550 | * @q: the response queue that received the packet | ||
1551 | * @rsp: the response queue descriptor holding the RX_PKT message | ||
1552 | * @si: the gather list of packet fragments | ||
1553 | * | ||
1554 | * Process an ingress ethernet packet and deliver it to the stack. | ||
1555 | */ | ||
1556 | int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, | ||
1557 | const struct pkt_gl *si) | ||
1558 | { | ||
1559 | bool csum_ok; | ||
1560 | struct sk_buff *skb; | ||
1561 | struct port_info *pi; | ||
1562 | const struct cpl_rx_pkt *pkt; | ||
1563 | struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); | ||
1564 | |||
1565 | if (unlikely(*(u8 *)rsp == CPL_TRACE_PKT)) | ||
1566 | return handle_trace_pkt(q->adap, si); | ||
1567 | |||
1568 | pkt = (void *)&rsp[1]; | ||
1569 | csum_ok = pkt->csum_calc && !pkt->err_vec; | ||
1570 | if ((pkt->l2info & htonl(RXF_TCP)) && | ||
1571 | (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { | ||
1572 | do_gro(rxq, si, pkt); | ||
1573 | return 0; | ||
1574 | } | ||
1575 | |||
1576 | skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); | ||
1577 | if (unlikely(!skb)) { | ||
1578 | t4_pktgl_free(si); | ||
1579 | rxq->stats.rx_drops++; | ||
1580 | return 0; | ||
1581 | } | ||
1582 | |||
1583 | __skb_pull(skb, RX_PKT_PAD); /* remove ethernet header padding */ | ||
1584 | skb->protocol = eth_type_trans(skb, q->netdev); | ||
1585 | skb_record_rx_queue(skb, q->idx); | ||
1586 | pi = netdev_priv(skb->dev); | ||
1587 | rxq->stats.pkts++; | ||
1588 | |||
1589 | if (csum_ok && (pi->rx_offload & RX_CSO) && | ||
1590 | (pkt->l2info & htonl(RXF_UDP | RXF_TCP))) { | ||
1591 | if (!pkt->ip_frag) | ||
1592 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
1593 | else { | ||
1594 | __sum16 c = (__force __sum16)pkt->csum; | ||
1595 | skb->csum = csum_unfold(c); | ||
1596 | skb->ip_summed = CHECKSUM_COMPLETE; | ||
1597 | } | ||
1598 | rxq->stats.rx_cso++; | ||
1599 | } else | ||
1600 | skb->ip_summed = CHECKSUM_NONE; | ||
1601 | |||
1602 | if (unlikely(pkt->vlan_ex)) { | ||
1603 | struct vlan_group *grp = pi->vlan_grp; | ||
1604 | |||
1605 | rxq->stats.vlan_ex++; | ||
1606 | if (likely(grp)) | ||
1607 | vlan_hwaccel_receive_skb(skb, grp, ntohs(pkt->vlan)); | ||
1608 | else | ||
1609 | dev_kfree_skb_any(skb); | ||
1610 | } else | ||
1611 | netif_receive_skb(skb); | ||
1612 | |||
1613 | return 0; | ||
1614 | } | ||
1615 | |||
1616 | /** | ||
1617 | * restore_rx_bufs - put back a packet's Rx buffers | ||
1618 | * @si: the packet gather list | ||
1619 | * @q: the SGE free list | ||
1620 | * @frags: number of FL buffers to restore | ||
1621 | * | ||
1622 | * Puts back on an FL the Rx buffers associated with @si. The buffers | ||
1623 | * have already been unmapped and are left unmapped, we mark them so to | ||
1624 | * prevent further unmapping attempts. | ||
1625 | * | ||
1626 | * This function undoes a series of @unmap_rx_buf calls when we find out | ||
1627 | * that the current packet can't be processed right away afterall and we | ||
1628 | * need to come back to it later. This is a very rare event and there's | ||
1629 | * no effort to make this particularly efficient. | ||
1630 | */ | ||
1631 | static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, | ||
1632 | int frags) | ||
1633 | { | ||
1634 | struct rx_sw_desc *d; | ||
1635 | |||
1636 | while (frags--) { | ||
1637 | if (q->cidx == 0) | ||
1638 | q->cidx = q->size - 1; | ||
1639 | else | ||
1640 | q->cidx--; | ||
1641 | d = &q->sdesc[q->cidx]; | ||
1642 | d->page = si->frags[frags].page; | ||
1643 | d->dma_addr |= RX_UNMAPPED_BUF; | ||
1644 | q->avail++; | ||
1645 | } | ||
1646 | } | ||
1647 | |||
1648 | /** | ||
1649 | * is_new_response - check if a response is newly written | ||
1650 | * @r: the response descriptor | ||
1651 | * @q: the response queue | ||
1652 | * | ||
1653 | * Returns true if a response descriptor contains a yet unprocessed | ||
1654 | * response. | ||
1655 | */ | ||
1656 | static inline bool is_new_response(const struct rsp_ctrl *r, | ||
1657 | const struct sge_rspq *q) | ||
1658 | { | ||
1659 | return RSPD_GEN(r->type_gen) == q->gen; | ||
1660 | } | ||
1661 | |||
1662 | /** | ||
1663 | * rspq_next - advance to the next entry in a response queue | ||
1664 | * @q: the queue | ||
1665 | * | ||
1666 | * Updates the state of a response queue to advance it to the next entry. | ||
1667 | */ | ||
1668 | static inline void rspq_next(struct sge_rspq *q) | ||
1669 | { | ||
1670 | q->cur_desc = (void *)q->cur_desc + q->iqe_len; | ||
1671 | if (unlikely(++q->cidx == q->size)) { | ||
1672 | q->cidx = 0; | ||
1673 | q->gen ^= 1; | ||
1674 | q->cur_desc = q->desc; | ||
1675 | } | ||
1676 | } | ||
1677 | |||
1678 | /** | ||
1679 | * process_responses - process responses from an SGE response queue | ||
1680 | * @q: the ingress queue to process | ||
1681 | * @budget: how many responses can be processed in this round | ||
1682 | * | ||
1683 | * Process responses from an SGE response queue up to the supplied budget. | ||
1684 | * Responses include received packets as well as control messages from FW | ||
1685 | * or HW. | ||
1686 | * | ||
1687 | * Additionally choose the interrupt holdoff time for the next interrupt | ||
1688 | * on this queue. If the system is under memory shortage use a fairly | ||
1689 | * long delay to help recovery. | ||
1690 | */ | ||
1691 | static int process_responses(struct sge_rspq *q, int budget) | ||
1692 | { | ||
1693 | int ret, rsp_type; | ||
1694 | int budget_left = budget; | ||
1695 | const struct rsp_ctrl *rc; | ||
1696 | struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); | ||
1697 | |||
1698 | while (likely(budget_left)) { | ||
1699 | rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); | ||
1700 | if (!is_new_response(rc, q)) | ||
1701 | break; | ||
1702 | |||
1703 | rmb(); | ||
1704 | rsp_type = RSPD_TYPE(rc->type_gen); | ||
1705 | if (likely(rsp_type == RSP_TYPE_FLBUF)) { | ||
1706 | skb_frag_t *fp; | ||
1707 | struct pkt_gl si; | ||
1708 | const struct rx_sw_desc *rsd; | ||
1709 | u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; | ||
1710 | |||
1711 | if (len & RSPD_NEWBUF) { | ||
1712 | if (likely(q->offset > 0)) { | ||
1713 | free_rx_bufs(q->adap, &rxq->fl, 1); | ||
1714 | q->offset = 0; | ||
1715 | } | ||
1716 | len &= RSPD_LEN; | ||
1717 | } | ||
1718 | si.tot_len = len; | ||
1719 | |||
1720 | /* gather packet fragments */ | ||
1721 | for (frags = 0, fp = si.frags; ; frags++, fp++) { | ||
1722 | rsd = &rxq->fl.sdesc[rxq->fl.cidx]; | ||
1723 | bufsz = get_buf_size(rsd); | ||
1724 | fp->page = rsd->page; | ||
1725 | fp->page_offset = q->offset; | ||
1726 | fp->size = min(bufsz, len); | ||
1727 | len -= fp->size; | ||
1728 | if (!len) | ||
1729 | break; | ||
1730 | unmap_rx_buf(q->adap, &rxq->fl); | ||
1731 | } | ||
1732 | |||
1733 | /* | ||
1734 | * Last buffer remains mapped so explicitly make it | ||
1735 | * coherent for CPU access. | ||
1736 | */ | ||
1737 | dma_sync_single_for_cpu(q->adap->pdev_dev, | ||
1738 | get_buf_addr(rsd), | ||
1739 | fp->size, DMA_FROM_DEVICE); | ||
1740 | |||
1741 | si.va = page_address(si.frags[0].page) + | ||
1742 | si.frags[0].page_offset; | ||
1743 | prefetch(si.va); | ||
1744 | |||
1745 | si.nfrags = frags + 1; | ||
1746 | ret = q->handler(q, q->cur_desc, &si); | ||
1747 | if (likely(ret == 0)) | ||
1748 | q->offset += ALIGN(fp->size, FL_ALIGN); | ||
1749 | else | ||
1750 | restore_rx_bufs(&si, &rxq->fl, frags); | ||
1751 | } else if (likely(rsp_type == RSP_TYPE_CPL)) { | ||
1752 | ret = q->handler(q, q->cur_desc, NULL); | ||
1753 | } else { | ||
1754 | ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); | ||
1755 | } | ||
1756 | |||
1757 | if (unlikely(ret)) { | ||
1758 | /* couldn't process descriptor, back off for recovery */ | ||
1759 | q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX); | ||
1760 | break; | ||
1761 | } | ||
1762 | |||
1763 | rspq_next(q); | ||
1764 | budget_left--; | ||
1765 | } | ||
1766 | |||
1767 | if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16) | ||
1768 | __refill_fl(q->adap, &rxq->fl); | ||
1769 | return budget - budget_left; | ||
1770 | } | ||
1771 | |||
1772 | /** | ||
1773 | * napi_rx_handler - the NAPI handler for Rx processing | ||
1774 | * @napi: the napi instance | ||
1775 | * @budget: how many packets we can process in this round | ||
1776 | * | ||
1777 | * Handler for new data events when using NAPI. This does not need any | ||
1778 | * locking or protection from interrupts as data interrupts are off at | ||
1779 | * this point and other adapter interrupts do not interfere (the latter | ||
1780 | * in not a concern at all with MSI-X as non-data interrupts then have | ||
1781 | * a separate handler). | ||
1782 | */ | ||
1783 | static int napi_rx_handler(struct napi_struct *napi, int budget) | ||
1784 | { | ||
1785 | unsigned int params; | ||
1786 | struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); | ||
1787 | int work_done = process_responses(q, budget); | ||
1788 | |||
1789 | if (likely(work_done < budget)) { | ||
1790 | napi_complete(napi); | ||
1791 | params = q->next_intr_params; | ||
1792 | q->next_intr_params = q->intr_params; | ||
1793 | } else | ||
1794 | params = QINTR_TIMER_IDX(7); | ||
1795 | |||
1796 | t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS), CIDXINC(work_done) | | ||
1797 | INGRESSQID((u32)q->cntxt_id) | SEINTARM(params)); | ||
1798 | return work_done; | ||
1799 | } | ||
1800 | |||
1801 | /* | ||
1802 | * The MSI-X interrupt handler for an SGE response queue. | ||
1803 | */ | ||
1804 | irqreturn_t t4_sge_intr_msix(int irq, void *cookie) | ||
1805 | { | ||
1806 | struct sge_rspq *q = cookie; | ||
1807 | |||
1808 | napi_schedule(&q->napi); | ||
1809 | return IRQ_HANDLED; | ||
1810 | } | ||
1811 | |||
1812 | /* | ||
1813 | * Process the indirect interrupt entries in the interrupt queue and kick off | ||
1814 | * NAPI for each queue that has generated an entry. | ||
1815 | */ | ||
1816 | static unsigned int process_intrq(struct adapter *adap) | ||
1817 | { | ||
1818 | unsigned int credits; | ||
1819 | const struct rsp_ctrl *rc; | ||
1820 | struct sge_rspq *q = &adap->sge.intrq; | ||
1821 | |||
1822 | spin_lock(&adap->sge.intrq_lock); | ||
1823 | for (credits = 0; ; credits++) { | ||
1824 | rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); | ||
1825 | if (!is_new_response(rc, q)) | ||
1826 | break; | ||
1827 | |||
1828 | rmb(); | ||
1829 | if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) { | ||
1830 | unsigned int qid = ntohl(rc->pldbuflen_qid); | ||
1831 | |||
1832 | napi_schedule(&adap->sge.ingr_map[qid]->napi); | ||
1833 | } | ||
1834 | |||
1835 | rspq_next(q); | ||
1836 | } | ||
1837 | |||
1838 | t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), CIDXINC(credits) | | ||
1839 | INGRESSQID(q->cntxt_id) | SEINTARM(q->intr_params)); | ||
1840 | spin_unlock(&adap->sge.intrq_lock); | ||
1841 | return credits; | ||
1842 | } | ||
1843 | |||
1844 | /* | ||
1845 | * The MSI interrupt handler, which handles data events from SGE response queues | ||
1846 | * as well as error and other async events as they all use the same MSI vector. | ||
1847 | */ | ||
1848 | static irqreturn_t t4_intr_msi(int irq, void *cookie) | ||
1849 | { | ||
1850 | struct adapter *adap = cookie; | ||
1851 | |||
1852 | t4_slow_intr_handler(adap); | ||
1853 | process_intrq(adap); | ||
1854 | return IRQ_HANDLED; | ||
1855 | } | ||
1856 | |||
1857 | /* | ||
1858 | * Interrupt handler for legacy INTx interrupts. | ||
1859 | * Handles data events from SGE response queues as well as error and other | ||
1860 | * async events as they all use the same interrupt line. | ||
1861 | */ | ||
1862 | static irqreturn_t t4_intr_intx(int irq, void *cookie) | ||
1863 | { | ||
1864 | struct adapter *adap = cookie; | ||
1865 | |||
1866 | t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI), 0); | ||
1867 | if (t4_slow_intr_handler(adap) | process_intrq(adap)) | ||
1868 | return IRQ_HANDLED; | ||
1869 | return IRQ_NONE; /* probably shared interrupt */ | ||
1870 | } | ||
1871 | |||
1872 | /** | ||
1873 | * t4_intr_handler - select the top-level interrupt handler | ||
1874 | * @adap: the adapter | ||
1875 | * | ||
1876 | * Selects the top-level interrupt handler based on the type of interrupts | ||
1877 | * (MSI-X, MSI, or INTx). | ||
1878 | */ | ||
1879 | irq_handler_t t4_intr_handler(struct adapter *adap) | ||
1880 | { | ||
1881 | if (adap->flags & USING_MSIX) | ||
1882 | return t4_sge_intr_msix; | ||
1883 | if (adap->flags & USING_MSI) | ||
1884 | return t4_intr_msi; | ||
1885 | return t4_intr_intx; | ||
1886 | } | ||
1887 | |||
1888 | static void sge_rx_timer_cb(unsigned long data) | ||
1889 | { | ||
1890 | unsigned long m; | ||
1891 | unsigned int i, cnt[2]; | ||
1892 | struct adapter *adap = (struct adapter *)data; | ||
1893 | struct sge *s = &adap->sge; | ||
1894 | |||
1895 | for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) | ||
1896 | for (m = s->starving_fl[i]; m; m &= m - 1) { | ||
1897 | struct sge_eth_rxq *rxq; | ||
1898 | unsigned int id = __ffs(m) + i * BITS_PER_LONG; | ||
1899 | struct sge_fl *fl = s->egr_map[id]; | ||
1900 | |||
1901 | clear_bit(id, s->starving_fl); | ||
1902 | smp_mb__after_clear_bit(); | ||
1903 | |||
1904 | if (fl_starving(fl)) { | ||
1905 | rxq = container_of(fl, struct sge_eth_rxq, fl); | ||
1906 | if (napi_reschedule(&rxq->rspq.napi)) | ||
1907 | fl->starving++; | ||
1908 | else | ||
1909 | set_bit(id, s->starving_fl); | ||
1910 | } | ||
1911 | } | ||
1912 | |||
1913 | t4_write_reg(adap, SGE_DEBUG_INDEX, 13); | ||
1914 | cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH); | ||
1915 | cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW); | ||
1916 | |||
1917 | for (i = 0; i < 2; i++) | ||
1918 | if (cnt[i] >= s->starve_thres) { | ||
1919 | if (s->idma_state[i] || cnt[i] == 0xffffffff) | ||
1920 | continue; | ||
1921 | s->idma_state[i] = 1; | ||
1922 | t4_write_reg(adap, SGE_DEBUG_INDEX, 11); | ||
1923 | m = t4_read_reg(adap, SGE_DEBUG_DATA_LOW) >> (i * 16); | ||
1924 | dev_warn(adap->pdev_dev, | ||
1925 | "SGE idma%u starvation detected for " | ||
1926 | "queue %lu\n", i, m & 0xffff); | ||
1927 | } else if (s->idma_state[i]) | ||
1928 | s->idma_state[i] = 0; | ||
1929 | |||
1930 | mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); | ||
1931 | } | ||
1932 | |||
1933 | static void sge_tx_timer_cb(unsigned long data) | ||
1934 | { | ||
1935 | unsigned long m; | ||
1936 | unsigned int i, budget; | ||
1937 | struct adapter *adap = (struct adapter *)data; | ||
1938 | struct sge *s = &adap->sge; | ||
1939 | |||
1940 | for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++) | ||
1941 | for (m = s->txq_maperr[i]; m; m &= m - 1) { | ||
1942 | unsigned long id = __ffs(m) + i * BITS_PER_LONG; | ||
1943 | struct sge_ofld_txq *txq = s->egr_map[id]; | ||
1944 | |||
1945 | clear_bit(id, s->txq_maperr); | ||
1946 | tasklet_schedule(&txq->qresume_tsk); | ||
1947 | } | ||
1948 | |||
1949 | budget = MAX_TIMER_TX_RECLAIM; | ||
1950 | i = s->ethtxq_rover; | ||
1951 | do { | ||
1952 | struct sge_eth_txq *q = &s->ethtxq[i]; | ||
1953 | |||
1954 | if (q->q.in_use && | ||
1955 | time_after_eq(jiffies, q->txq->trans_start + HZ / 100) && | ||
1956 | __netif_tx_trylock(q->txq)) { | ||
1957 | int avail = reclaimable(&q->q); | ||
1958 | |||
1959 | if (avail) { | ||
1960 | if (avail > budget) | ||
1961 | avail = budget; | ||
1962 | |||
1963 | free_tx_desc(adap, &q->q, avail, true); | ||
1964 | q->q.in_use -= avail; | ||
1965 | budget -= avail; | ||
1966 | } | ||
1967 | __netif_tx_unlock(q->txq); | ||
1968 | } | ||
1969 | |||
1970 | if (++i >= s->ethqsets) | ||
1971 | i = 0; | ||
1972 | } while (budget && i != s->ethtxq_rover); | ||
1973 | s->ethtxq_rover = i; | ||
1974 | mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); | ||
1975 | } | ||
1976 | |||
1977 | int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, | ||
1978 | struct net_device *dev, int intr_idx, | ||
1979 | struct sge_fl *fl, rspq_handler_t hnd) | ||
1980 | { | ||
1981 | int ret, flsz = 0; | ||
1982 | struct fw_iq_cmd c; | ||
1983 | struct port_info *pi = netdev_priv(dev); | ||
1984 | |||
1985 | /* Size needs to be multiple of 16, including status entry. */ | ||
1986 | iq->size = roundup(iq->size, 16); | ||
1987 | |||
1988 | iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, | ||
1989 | &iq->phys_addr, NULL, 0); | ||
1990 | if (!iq->desc) | ||
1991 | return -ENOMEM; | ||
1992 | |||
1993 | memset(&c, 0, sizeof(c)); | ||
1994 | c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST | | ||
1995 | FW_CMD_WRITE | FW_CMD_EXEC | | ||
1996 | FW_IQ_CMD_PFN(0) | FW_IQ_CMD_VFN(0)); | ||
1997 | c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC | FW_IQ_CMD_IQSTART(1) | | ||
1998 | FW_LEN16(c)); | ||
1999 | c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | | ||
2000 | FW_IQ_CMD_IQASYNCH(fwevtq) | FW_IQ_CMD_VIID(pi->viid) | | ||
2001 | FW_IQ_CMD_IQANDST(intr_idx < 0) | FW_IQ_CMD_IQANUD(1) | | ||
2002 | FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx : | ||
2003 | -intr_idx - 1)); | ||
2004 | c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH(pi->tx_chan) | | ||
2005 | FW_IQ_CMD_IQGTSMODE | | ||
2006 | FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) | | ||
2007 | FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4)); | ||
2008 | c.iqsize = htons(iq->size); | ||
2009 | c.iqaddr = cpu_to_be64(iq->phys_addr); | ||
2010 | |||
2011 | if (fl) { | ||
2012 | fl->size = roundup(fl->size, 8); | ||
2013 | fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), | ||
2014 | sizeof(struct rx_sw_desc), &fl->addr, | ||
2015 | &fl->sdesc, STAT_LEN); | ||
2016 | if (!fl->desc) | ||
2017 | goto fl_nomem; | ||
2018 | |||
2019 | flsz = fl->size / 8 + STAT_LEN / sizeof(struct tx_desc); | ||
2020 | c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN | | ||
2021 | FW_IQ_CMD_FL0PADEN); | ||
2022 | c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN(2) | | ||
2023 | FW_IQ_CMD_FL0FBMAX(3)); | ||
2024 | c.fl0size = htons(flsz); | ||
2025 | c.fl0addr = cpu_to_be64(fl->addr); | ||
2026 | } | ||
2027 | |||
2028 | ret = t4_wr_mbox(adap, 0, &c, sizeof(c), &c); | ||
2029 | if (ret) | ||
2030 | goto err; | ||
2031 | |||
2032 | netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); | ||
2033 | iq->cur_desc = iq->desc; | ||
2034 | iq->cidx = 0; | ||
2035 | iq->gen = 1; | ||
2036 | iq->next_intr_params = iq->intr_params; | ||
2037 | iq->cntxt_id = ntohs(c.iqid); | ||
2038 | iq->abs_id = ntohs(c.physiqid); | ||
2039 | iq->size--; /* subtract status entry */ | ||
2040 | iq->adap = adap; | ||
2041 | iq->netdev = dev; | ||
2042 | iq->handler = hnd; | ||
2043 | |||
2044 | /* set offset to -1 to distinguish ingress queues without FL */ | ||
2045 | iq->offset = fl ? 0 : -1; | ||
2046 | |||
2047 | adap->sge.ingr_map[iq->cntxt_id] = iq; | ||
2048 | |||
2049 | if (fl) { | ||
2050 | fl->cntxt_id = htons(c.fl0id); | ||
2051 | fl->avail = fl->pend_cred = 0; | ||
2052 | fl->pidx = fl->cidx = 0; | ||
2053 | fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; | ||
2054 | adap->sge.egr_map[fl->cntxt_id] = fl; | ||
2055 | refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); | ||
2056 | } | ||
2057 | return 0; | ||
2058 | |||
2059 | fl_nomem: | ||
2060 | ret = -ENOMEM; | ||
2061 | err: | ||
2062 | if (iq->desc) { | ||
2063 | dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, | ||
2064 | iq->desc, iq->phys_addr); | ||
2065 | iq->desc = NULL; | ||
2066 | } | ||
2067 | if (fl && fl->desc) { | ||
2068 | kfree(fl->sdesc); | ||
2069 | fl->sdesc = NULL; | ||
2070 | dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), | ||
2071 | fl->desc, fl->addr); | ||
2072 | fl->desc = NULL; | ||
2073 | } | ||
2074 | return ret; | ||
2075 | } | ||
2076 | |||
2077 | static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) | ||
2078 | { | ||
2079 | q->in_use = 0; | ||
2080 | q->cidx = q->pidx = 0; | ||
2081 | q->stops = q->restarts = 0; | ||
2082 | q->stat = (void *)&q->desc[q->size]; | ||
2083 | q->cntxt_id = id; | ||
2084 | adap->sge.egr_map[id] = q; | ||
2085 | } | ||
2086 | |||
2087 | int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, | ||
2088 | struct net_device *dev, struct netdev_queue *netdevq, | ||
2089 | unsigned int iqid) | ||
2090 | { | ||
2091 | int ret, nentries; | ||
2092 | struct fw_eq_eth_cmd c; | ||
2093 | struct port_info *pi = netdev_priv(dev); | ||
2094 | |||
2095 | /* Add status entries */ | ||
2096 | nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc); | ||
2097 | |||
2098 | txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, | ||
2099 | sizeof(struct tx_desc), sizeof(struct tx_sw_desc), | ||
2100 | &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN); | ||
2101 | if (!txq->q.desc) | ||
2102 | return -ENOMEM; | ||
2103 | |||
2104 | memset(&c, 0, sizeof(c)); | ||
2105 | c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST | | ||
2106 | FW_CMD_WRITE | FW_CMD_EXEC | | ||
2107 | FW_EQ_ETH_CMD_PFN(0) | FW_EQ_ETH_CMD_VFN(0)); | ||
2108 | c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC | | ||
2109 | FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); | ||
2110 | c.viid_pkd = htonl(FW_EQ_ETH_CMD_VIID(pi->viid)); | ||
2111 | c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) | | ||
2112 | FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) | | ||
2113 | FW_EQ_ETH_CMD_IQID(iqid)); | ||
2114 | c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN(2) | | ||
2115 | FW_EQ_ETH_CMD_FBMAX(3) | | ||
2116 | FW_EQ_ETH_CMD_CIDXFTHRESH(5) | | ||
2117 | FW_EQ_ETH_CMD_EQSIZE(nentries)); | ||
2118 | c.eqaddr = cpu_to_be64(txq->q.phys_addr); | ||
2119 | |||
2120 | ret = t4_wr_mbox(adap, 0, &c, sizeof(c), &c); | ||
2121 | if (ret) { | ||
2122 | kfree(txq->q.sdesc); | ||
2123 | txq->q.sdesc = NULL; | ||
2124 | dma_free_coherent(adap->pdev_dev, | ||
2125 | nentries * sizeof(struct tx_desc), | ||
2126 | txq->q.desc, txq->q.phys_addr); | ||
2127 | txq->q.desc = NULL; | ||
2128 | return ret; | ||
2129 | } | ||
2130 | |||
2131 | init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_GET(ntohl(c.eqid_pkd))); | ||
2132 | txq->txq = netdevq; | ||
2133 | txq->tso = txq->tx_cso = txq->vlan_ins = 0; | ||
2134 | txq->mapping_err = 0; | ||
2135 | return 0; | ||
2136 | } | ||
2137 | |||
2138 | int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, | ||
2139 | struct net_device *dev, unsigned int iqid, | ||
2140 | unsigned int cmplqid) | ||
2141 | { | ||
2142 | int ret, nentries; | ||
2143 | struct fw_eq_ctrl_cmd c; | ||
2144 | struct port_info *pi = netdev_priv(dev); | ||
2145 | |||
2146 | /* Add status entries */ | ||
2147 | nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc); | ||
2148 | |||
2149 | txq->q.desc = alloc_ring(adap->pdev_dev, nentries, | ||
2150 | sizeof(struct tx_desc), 0, &txq->q.phys_addr, | ||
2151 | NULL, 0); | ||
2152 | if (!txq->q.desc) | ||
2153 | return -ENOMEM; | ||
2154 | |||
2155 | c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST | | ||
2156 | FW_CMD_WRITE | FW_CMD_EXEC | | ||
2157 | FW_EQ_CTRL_CMD_PFN(0) | FW_EQ_CTRL_CMD_VFN(0)); | ||
2158 | c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC | | ||
2159 | FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); | ||
2160 | c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid)); | ||
2161 | c.physeqid_pkd = htonl(0); | ||
2162 | c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) | | ||
2163 | FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) | | ||
2164 | FW_EQ_CTRL_CMD_IQID(iqid)); | ||
2165 | c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN(2) | | ||
2166 | FW_EQ_CTRL_CMD_FBMAX(3) | | ||
2167 | FW_EQ_CTRL_CMD_CIDXFTHRESH(5) | | ||
2168 | FW_EQ_CTRL_CMD_EQSIZE(nentries)); | ||
2169 | c.eqaddr = cpu_to_be64(txq->q.phys_addr); | ||
2170 | |||
2171 | ret = t4_wr_mbox(adap, 0, &c, sizeof(c), &c); | ||
2172 | if (ret) { | ||
2173 | dma_free_coherent(adap->pdev_dev, | ||
2174 | nentries * sizeof(struct tx_desc), | ||
2175 | txq->q.desc, txq->q.phys_addr); | ||
2176 | txq->q.desc = NULL; | ||
2177 | return ret; | ||
2178 | } | ||
2179 | |||
2180 | init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c.cmpliqid_eqid))); | ||
2181 | txq->adap = adap; | ||
2182 | skb_queue_head_init(&txq->sendq); | ||
2183 | tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); | ||
2184 | txq->full = 0; | ||
2185 | return 0; | ||
2186 | } | ||
2187 | |||
2188 | int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq, | ||
2189 | struct net_device *dev, unsigned int iqid) | ||
2190 | { | ||
2191 | int ret, nentries; | ||
2192 | struct fw_eq_ofld_cmd c; | ||
2193 | struct port_info *pi = netdev_priv(dev); | ||
2194 | |||
2195 | /* Add status entries */ | ||
2196 | nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc); | ||
2197 | |||
2198 | txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, | ||
2199 | sizeof(struct tx_desc), sizeof(struct tx_sw_desc), | ||
2200 | &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN); | ||
2201 | if (!txq->q.desc) | ||
2202 | return -ENOMEM; | ||
2203 | |||
2204 | memset(&c, 0, sizeof(c)); | ||
2205 | c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST | | ||
2206 | FW_CMD_WRITE | FW_CMD_EXEC | | ||
2207 | FW_EQ_OFLD_CMD_PFN(0) | FW_EQ_OFLD_CMD_VFN(0)); | ||
2208 | c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC | | ||
2209 | FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); | ||
2210 | c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) | | ||
2211 | FW_EQ_OFLD_CMD_PCIECHN(pi->tx_chan) | | ||
2212 | FW_EQ_OFLD_CMD_IQID(iqid)); | ||
2213 | c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN(2) | | ||
2214 | FW_EQ_OFLD_CMD_FBMAX(3) | | ||
2215 | FW_EQ_OFLD_CMD_CIDXFTHRESH(5) | | ||
2216 | FW_EQ_OFLD_CMD_EQSIZE(nentries)); | ||
2217 | c.eqaddr = cpu_to_be64(txq->q.phys_addr); | ||
2218 | |||
2219 | ret = t4_wr_mbox(adap, 0, &c, sizeof(c), &c); | ||
2220 | if (ret) { | ||
2221 | kfree(txq->q.sdesc); | ||
2222 | txq->q.sdesc = NULL; | ||
2223 | dma_free_coherent(adap->pdev_dev, | ||
2224 | nentries * sizeof(struct tx_desc), | ||
2225 | txq->q.desc, txq->q.phys_addr); | ||
2226 | txq->q.desc = NULL; | ||
2227 | return ret; | ||
2228 | } | ||
2229 | |||
2230 | init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c.eqid_pkd))); | ||
2231 | txq->adap = adap; | ||
2232 | skb_queue_head_init(&txq->sendq); | ||
2233 | tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); | ||
2234 | txq->full = 0; | ||
2235 | txq->mapping_err = 0; | ||
2236 | return 0; | ||
2237 | } | ||
2238 | |||
2239 | static void free_txq(struct adapter *adap, struct sge_txq *q) | ||
2240 | { | ||
2241 | dma_free_coherent(adap->pdev_dev, | ||
2242 | q->size * sizeof(struct tx_desc) + STAT_LEN, | ||
2243 | q->desc, q->phys_addr); | ||
2244 | q->cntxt_id = 0; | ||
2245 | q->sdesc = NULL; | ||
2246 | q->desc = NULL; | ||
2247 | } | ||
2248 | |||
2249 | static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, | ||
2250 | struct sge_fl *fl) | ||
2251 | { | ||
2252 | unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; | ||
2253 | |||
2254 | adap->sge.ingr_map[rq->cntxt_id] = NULL; | ||
2255 | t4_iq_free(adap, 0, 0, 0, FW_IQ_TYPE_FL_INT_CAP, rq->cntxt_id, fl_id, | ||
2256 | 0xffff); | ||
2257 | dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, | ||
2258 | rq->desc, rq->phys_addr); | ||
2259 | netif_napi_del(&rq->napi); | ||
2260 | rq->netdev = NULL; | ||
2261 | rq->cntxt_id = rq->abs_id = 0; | ||
2262 | rq->desc = NULL; | ||
2263 | |||
2264 | if (fl) { | ||
2265 | free_rx_bufs(adap, fl, fl->avail); | ||
2266 | dma_free_coherent(adap->pdev_dev, fl->size * 8 + STAT_LEN, | ||
2267 | fl->desc, fl->addr); | ||
2268 | kfree(fl->sdesc); | ||
2269 | fl->sdesc = NULL; | ||
2270 | fl->cntxt_id = 0; | ||
2271 | fl->desc = NULL; | ||
2272 | } | ||
2273 | } | ||
2274 | |||
2275 | /** | ||
2276 | * t4_free_sge_resources - free SGE resources | ||
2277 | * @adap: the adapter | ||
2278 | * | ||
2279 | * Frees resources used by the SGE queue sets. | ||
2280 | */ | ||
2281 | void t4_free_sge_resources(struct adapter *adap) | ||
2282 | { | ||
2283 | int i; | ||
2284 | struct sge_eth_rxq *eq = adap->sge.ethrxq; | ||
2285 | struct sge_eth_txq *etq = adap->sge.ethtxq; | ||
2286 | struct sge_ofld_rxq *oq = adap->sge.ofldrxq; | ||
2287 | |||
2288 | /* clean up Ethernet Tx/Rx queues */ | ||
2289 | for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) { | ||
2290 | if (eq->rspq.desc) | ||
2291 | free_rspq_fl(adap, &eq->rspq, &eq->fl); | ||
2292 | if (etq->q.desc) { | ||
2293 | t4_eth_eq_free(adap, 0, 0, 0, etq->q.cntxt_id); | ||
2294 | free_tx_desc(adap, &etq->q, etq->q.in_use, true); | ||
2295 | kfree(etq->q.sdesc); | ||
2296 | free_txq(adap, &etq->q); | ||
2297 | } | ||
2298 | } | ||
2299 | |||
2300 | /* clean up RDMA and iSCSI Rx queues */ | ||
2301 | for (i = 0; i < adap->sge.ofldqsets; i++, oq++) { | ||
2302 | if (oq->rspq.desc) | ||
2303 | free_rspq_fl(adap, &oq->rspq, &oq->fl); | ||
2304 | } | ||
2305 | for (i = 0, oq = adap->sge.rdmarxq; i < adap->sge.rdmaqs; i++, oq++) { | ||
2306 | if (oq->rspq.desc) | ||
2307 | free_rspq_fl(adap, &oq->rspq, &oq->fl); | ||
2308 | } | ||
2309 | |||
2310 | /* clean up offload Tx queues */ | ||
2311 | for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) { | ||
2312 | struct sge_ofld_txq *q = &adap->sge.ofldtxq[i]; | ||
2313 | |||
2314 | if (q->q.desc) { | ||
2315 | tasklet_kill(&q->qresume_tsk); | ||
2316 | t4_ofld_eq_free(adap, 0, 0, 0, q->q.cntxt_id); | ||
2317 | free_tx_desc(adap, &q->q, q->q.in_use, false); | ||
2318 | kfree(q->q.sdesc); | ||
2319 | __skb_queue_purge(&q->sendq); | ||
2320 | free_txq(adap, &q->q); | ||
2321 | } | ||
2322 | } | ||
2323 | |||
2324 | /* clean up control Tx queues */ | ||
2325 | for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { | ||
2326 | struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; | ||
2327 | |||
2328 | if (cq->q.desc) { | ||
2329 | tasklet_kill(&cq->qresume_tsk); | ||
2330 | t4_ctrl_eq_free(adap, 0, 0, 0, cq->q.cntxt_id); | ||
2331 | __skb_queue_purge(&cq->sendq); | ||
2332 | free_txq(adap, &cq->q); | ||
2333 | } | ||
2334 | } | ||
2335 | |||
2336 | if (adap->sge.fw_evtq.desc) | ||
2337 | free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); | ||
2338 | |||
2339 | if (adap->sge.intrq.desc) | ||
2340 | free_rspq_fl(adap, &adap->sge.intrq, NULL); | ||
2341 | |||
2342 | /* clear the reverse egress queue map */ | ||
2343 | memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map)); | ||
2344 | } | ||
2345 | |||
2346 | void t4_sge_start(struct adapter *adap) | ||
2347 | { | ||
2348 | adap->sge.ethtxq_rover = 0; | ||
2349 | mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); | ||
2350 | mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); | ||
2351 | } | ||
2352 | |||
2353 | /** | ||
2354 | * t4_sge_stop - disable SGE operation | ||
2355 | * @adap: the adapter | ||
2356 | * | ||
2357 | * Stop tasklets and timers associated with the DMA engine. Note that | ||
2358 | * this is effective only if measures have been taken to disable any HW | ||
2359 | * events that may restart them. | ||
2360 | */ | ||
2361 | void t4_sge_stop(struct adapter *adap) | ||
2362 | { | ||
2363 | int i; | ||
2364 | struct sge *s = &adap->sge; | ||
2365 | |||
2366 | if (in_interrupt()) /* actions below require waiting */ | ||
2367 | return; | ||
2368 | |||
2369 | if (s->rx_timer.function) | ||
2370 | del_timer_sync(&s->rx_timer); | ||
2371 | if (s->tx_timer.function) | ||
2372 | del_timer_sync(&s->tx_timer); | ||
2373 | |||
2374 | for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) { | ||
2375 | struct sge_ofld_txq *q = &s->ofldtxq[i]; | ||
2376 | |||
2377 | if (q->q.desc) | ||
2378 | tasklet_kill(&q->qresume_tsk); | ||
2379 | } | ||
2380 | for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { | ||
2381 | struct sge_ctrl_txq *cq = &s->ctrlq[i]; | ||
2382 | |||
2383 | if (cq->q.desc) | ||
2384 | tasklet_kill(&cq->qresume_tsk); | ||
2385 | } | ||
2386 | } | ||
2387 | |||
2388 | /** | ||
2389 | * t4_sge_init - initialize SGE | ||
2390 | * @adap: the adapter | ||
2391 | * | ||
2392 | * Performs SGE initialization needed every time after a chip reset. | ||
2393 | * We do not initialize any of the queues here, instead the driver | ||
2394 | * top-level must request them individually. | ||
2395 | */ | ||
2396 | void t4_sge_init(struct adapter *adap) | ||
2397 | { | ||
2398 | struct sge *s = &adap->sge; | ||
2399 | unsigned int fl_align_log = ilog2(FL_ALIGN); | ||
2400 | |||
2401 | t4_set_reg_field(adap, SGE_CONTROL, PKTSHIFT_MASK | | ||
2402 | INGPADBOUNDARY_MASK | EGRSTATUSPAGESIZE, | ||
2403 | INGPADBOUNDARY(fl_align_log - 5) | PKTSHIFT(2) | | ||
2404 | RXPKTCPLMODE | | ||
2405 | (STAT_LEN == 128 ? EGRSTATUSPAGESIZE : 0)); | ||
2406 | t4_set_reg_field(adap, SGE_HOST_PAGE_SIZE, HOSTPAGESIZEPF0_MASK, | ||
2407 | HOSTPAGESIZEPF0(PAGE_SHIFT - 10)); | ||
2408 | t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, PAGE_SIZE); | ||
2409 | #if FL_PG_ORDER > 0 | ||
2410 | t4_write_reg(adap, SGE_FL_BUFFER_SIZE1, PAGE_SIZE << FL_PG_ORDER); | ||
2411 | #endif | ||
2412 | t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD, | ||
2413 | THRESHOLD_0(s->counter_val[0]) | | ||
2414 | THRESHOLD_1(s->counter_val[1]) | | ||
2415 | THRESHOLD_2(s->counter_val[2]) | | ||
2416 | THRESHOLD_3(s->counter_val[3])); | ||
2417 | t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1, | ||
2418 | TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) | | ||
2419 | TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1]))); | ||
2420 | t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3, | ||
2421 | TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[2])) | | ||
2422 | TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[3]))); | ||
2423 | t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5, | ||
2424 | TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[4])) | | ||
2425 | TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[5]))); | ||
2426 | setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap); | ||
2427 | setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap); | ||
2428 | s->starve_thres = core_ticks_per_usec(adap) * 1000000; /* 1 s */ | ||
2429 | s->idma_state[0] = s->idma_state[1] = 0; | ||
2430 | spin_lock_init(&s->intrq_lock); | ||
2431 | } | ||