aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAdam Litke <agl@us.ibm.com>2007-10-16 04:26:18 -0400
committerLinus Torvalds <torvalds@woody.linux-foundation.org>2007-10-16 12:43:02 -0400
commit7893d1d505d59db9d4f35165c8b6d3c6dff40a32 (patch)
tree6bea3b41e111b1d1774980296a032012a3926e9c
parent6af2acb6619688046039234f716fd003e6ed2b3f (diff)
hugetlb: Try to grow hugetlb pool for MAP_PRIVATE mappings
Because we overcommit hugepages for MAP_PRIVATE mappings, it is possible that the hugetlb pool will be exhausted or completely reserved when a hugepage is needed to satisfy a page fault. Before killing the process in this situation, try to allocate a hugepage directly from the buddy allocator. The explicitly configured pool size becomes a low watermark. When dynamically grown, the allocated huge pages are accounted as a surplus over the watermark. As huge pages are freed on a node, surplus pages are released to the buddy allocator so that the pool will shrink back to the watermark. Surplus accounting also allows for friendlier explicit pool resizing. When shrinking a pool that is fully in-use, increase the surplus so pages will be returned to the buddy allocator as soon as they are freed. When growing a pool that has a surplus, consume the surplus first and then allocate new pages. Signed-off-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Dave McCracken <dave.mccracken@oracle.com> Cc: William Irwin <bill.irwin@oracle.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Ken Chen <kenchen@google.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-rw-r--r--mm/hugetlb.c139
1 files changed, 125 insertions, 14 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index ba029d640740..8768e5250323 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -23,10 +23,12 @@
23 23
24const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; 24const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages; 25static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26static unsigned long surplus_huge_pages;
26unsigned long max_huge_pages; 27unsigned long max_huge_pages;
27static struct list_head hugepage_freelists[MAX_NUMNODES]; 28static struct list_head hugepage_freelists[MAX_NUMNODES];
28static unsigned int nr_huge_pages_node[MAX_NUMNODES]; 29static unsigned int nr_huge_pages_node[MAX_NUMNODES];
29static unsigned int free_huge_pages_node[MAX_NUMNODES]; 30static unsigned int free_huge_pages_node[MAX_NUMNODES];
31static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
30static gfp_t htlb_alloc_mask = GFP_HIGHUSER; 32static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31unsigned long hugepages_treat_as_movable; 33unsigned long hugepages_treat_as_movable;
32 34
@@ -109,15 +111,57 @@ static void update_and_free_page(struct page *page)
109 111
110static void free_huge_page(struct page *page) 112static void free_huge_page(struct page *page)
111{ 113{
112 BUG_ON(page_count(page)); 114 int nid = page_to_nid(page);
113 115
116 BUG_ON(page_count(page));
114 INIT_LIST_HEAD(&page->lru); 117 INIT_LIST_HEAD(&page->lru);
115 118
116 spin_lock(&hugetlb_lock); 119 spin_lock(&hugetlb_lock);
117 enqueue_huge_page(page); 120 if (surplus_huge_pages_node[nid]) {
121 update_and_free_page(page);
122 surplus_huge_pages--;
123 surplus_huge_pages_node[nid]--;
124 } else {
125 enqueue_huge_page(page);
126 }
118 spin_unlock(&hugetlb_lock); 127 spin_unlock(&hugetlb_lock);
119} 128}
120 129
130/*
131 * Increment or decrement surplus_huge_pages. Keep node-specific counters
132 * balanced by operating on them in a round-robin fashion.
133 * Returns 1 if an adjustment was made.
134 */
135static int adjust_pool_surplus(int delta)
136{
137 static int prev_nid;
138 int nid = prev_nid;
139 int ret = 0;
140
141 VM_BUG_ON(delta != -1 && delta != 1);
142 do {
143 nid = next_node(nid, node_online_map);
144 if (nid == MAX_NUMNODES)
145 nid = first_node(node_online_map);
146
147 /* To shrink on this node, there must be a surplus page */
148 if (delta < 0 && !surplus_huge_pages_node[nid])
149 continue;
150 /* Surplus cannot exceed the total number of pages */
151 if (delta > 0 && surplus_huge_pages_node[nid] >=
152 nr_huge_pages_node[nid])
153 continue;
154
155 surplus_huge_pages += delta;
156 surplus_huge_pages_node[nid] += delta;
157 ret = 1;
158 break;
159 } while (nid != prev_nid);
160
161 prev_nid = nid;
162 return ret;
163}
164
121static int alloc_fresh_huge_page(void) 165static int alloc_fresh_huge_page(void)
122{ 166{
123 static int prev_nid; 167 static int prev_nid;
@@ -150,10 +194,30 @@ static int alloc_fresh_huge_page(void)
150 return 0; 194 return 0;
151} 195}
152 196
197static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
198 unsigned long address)
199{
200 struct page *page;
201
202 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
203 HUGETLB_PAGE_ORDER);
204 if (page) {
205 set_compound_page_dtor(page, free_huge_page);
206 spin_lock(&hugetlb_lock);
207 nr_huge_pages++;
208 nr_huge_pages_node[page_to_nid(page)]++;
209 surplus_huge_pages++;
210 surplus_huge_pages_node[page_to_nid(page)]++;
211 spin_unlock(&hugetlb_lock);
212 }
213
214 return page;
215}
216
153static struct page *alloc_huge_page(struct vm_area_struct *vma, 217static struct page *alloc_huge_page(struct vm_area_struct *vma,
154 unsigned long addr) 218 unsigned long addr)
155{ 219{
156 struct page *page; 220 struct page *page = NULL;
157 221
158 spin_lock(&hugetlb_lock); 222 spin_lock(&hugetlb_lock);
159 if (vma->vm_flags & VM_MAYSHARE) 223 if (vma->vm_flags & VM_MAYSHARE)
@@ -173,7 +237,16 @@ fail:
173 if (vma->vm_flags & VM_MAYSHARE) 237 if (vma->vm_flags & VM_MAYSHARE)
174 resv_huge_pages++; 238 resv_huge_pages++;
175 spin_unlock(&hugetlb_lock); 239 spin_unlock(&hugetlb_lock);
176 return NULL; 240
241 /*
242 * Private mappings do not use reserved huge pages so the allocation
243 * may have failed due to an undersized hugetlb pool. Try to grab a
244 * surplus huge page from the buddy allocator.
245 */
246 if (!(vma->vm_flags & VM_MAYSHARE))
247 page = alloc_buddy_huge_page(vma, addr);
248
249 return page;
177} 250}
178 251
179static int __init hugetlb_init(void) 252static int __init hugetlb_init(void)
@@ -241,26 +314,62 @@ static inline void try_to_free_low(unsigned long count)
241} 314}
242#endif 315#endif
243 316
317#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
244static unsigned long set_max_huge_pages(unsigned long count) 318static unsigned long set_max_huge_pages(unsigned long count)
245{ 319{
246 while (count > nr_huge_pages) { 320 unsigned long min_count, ret;
247 if (!alloc_fresh_huge_page())
248 return nr_huge_pages;
249 }
250 if (count >= nr_huge_pages)
251 return nr_huge_pages;
252 321
322 /*
323 * Increase the pool size
324 * First take pages out of surplus state. Then make up the
325 * remaining difference by allocating fresh huge pages.
326 */
253 spin_lock(&hugetlb_lock); 327 spin_lock(&hugetlb_lock);
254 count = max(count, resv_huge_pages); 328 while (surplus_huge_pages && count > persistent_huge_pages) {
255 try_to_free_low(count); 329 if (!adjust_pool_surplus(-1))
256 while (count < nr_huge_pages) { 330 break;
331 }
332
333 while (count > persistent_huge_pages) {
334 int ret;
335 /*
336 * If this allocation races such that we no longer need the
337 * page, free_huge_page will handle it by freeing the page
338 * and reducing the surplus.
339 */
340 spin_unlock(&hugetlb_lock);
341 ret = alloc_fresh_huge_page();
342 spin_lock(&hugetlb_lock);
343 if (!ret)
344 goto out;
345
346 }
347 if (count >= persistent_huge_pages)
348 goto out;
349
350 /*
351 * Decrease the pool size
352 * First return free pages to the buddy allocator (being careful
353 * to keep enough around to satisfy reservations). Then place
354 * pages into surplus state as needed so the pool will shrink
355 * to the desired size as pages become free.
356 */
357 min_count = max(count, resv_huge_pages);
358 try_to_free_low(min_count);
359 while (min_count < persistent_huge_pages) {
257 struct page *page = dequeue_huge_page(NULL, 0); 360 struct page *page = dequeue_huge_page(NULL, 0);
258 if (!page) 361 if (!page)
259 break; 362 break;
260 update_and_free_page(page); 363 update_and_free_page(page);
261 } 364 }
365 while (count < persistent_huge_pages) {
366 if (!adjust_pool_surplus(1))
367 break;
368 }
369out:
370 ret = persistent_huge_pages;
262 spin_unlock(&hugetlb_lock); 371 spin_unlock(&hugetlb_lock);
263 return nr_huge_pages; 372 return ret;
264} 373}
265 374
266int hugetlb_sysctl_handler(struct ctl_table *table, int write, 375int hugetlb_sysctl_handler(struct ctl_table *table, int write,
@@ -292,10 +401,12 @@ int hugetlb_report_meminfo(char *buf)
292 "HugePages_Total: %5lu\n" 401 "HugePages_Total: %5lu\n"
293 "HugePages_Free: %5lu\n" 402 "HugePages_Free: %5lu\n"
294 "HugePages_Rsvd: %5lu\n" 403 "HugePages_Rsvd: %5lu\n"
404 "HugePages_Surp: %5lu\n"
295 "Hugepagesize: %5lu kB\n", 405 "Hugepagesize: %5lu kB\n",
296 nr_huge_pages, 406 nr_huge_pages,
297 free_huge_pages, 407 free_huge_pages,
298 resv_huge_pages, 408 resv_huge_pages,
409 surplus_huge_pages,
299 HPAGE_SIZE/1024); 410 HPAGE_SIZE/1024);
300} 411}
301 412