diff options
author | Mel Gorman <mel@csn.ul.ie> | 2009-09-21 20:02:48 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2009-09-22 10:17:34 -0400 |
commit | bb72222086260695d71afe60fa105649c1ea9463 (patch) | |
tree | 10c86e8e03c4c55747d198446543972dbc1f3a89 | |
parent | c9d05cfc001fef3d6d37651e19ab9227a32b71f5 (diff) |
tracing, documentation: add a document describing how to do some performance analysis with tracepoints
The documentation for ftrace, events and tracepoints is pretty extensive.
Similarly, the perf PCL tools help files --help are there and the code
simple enough to figure out what much of the switches mean. However,
pulling the discrete bits and pieces together and translating that into
"how do I solve a problem" requires a fair amount of imagination.
This patch adds a simple document intended to get someone started on the
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Li Ming Chun <macli@brc.ubc.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-rw-r--r-- | Documentation/trace/tracepoint-analysis.txt | 327 |
1 files changed, 327 insertions, 0 deletions
diff --git a/Documentation/trace/tracepoint-analysis.txt b/Documentation/trace/tracepoint-analysis.txt new file mode 100644 index 000000000000..5eb4e487e667 --- /dev/null +++ b/Documentation/trace/tracepoint-analysis.txt | |||
@@ -0,0 +1,327 @@ | |||
1 | Notes on Analysing Behaviour Using Events and Tracepoints | ||
2 | |||
3 | Documentation written by Mel Gorman | ||
4 | PCL information heavily based on email from Ingo Molnar | ||
5 | |||
6 | 1. Introduction | ||
7 | =============== | ||
8 | |||
9 | Tracepoints (see Documentation/trace/tracepoints.txt) can be used without | ||
10 | creating custom kernel modules to register probe functions using the event | ||
11 | tracing infrastructure. | ||
12 | |||
13 | Simplistically, tracepoints will represent an important event that when can | ||
14 | be taken in conjunction with other tracepoints to build a "Big Picture" of | ||
15 | what is going on within the system. There are a large number of methods for | ||
16 | gathering and interpreting these events. Lacking any current Best Practises, | ||
17 | this document describes some of the methods that can be used. | ||
18 | |||
19 | This document assumes that debugfs is mounted on /sys/kernel/debug and that | ||
20 | the appropriate tracing options have been configured into the kernel. It is | ||
21 | assumed that the PCL tool tools/perf has been installed and is in your path. | ||
22 | |||
23 | 2. Listing Available Events | ||
24 | =========================== | ||
25 | |||
26 | 2.1 Standard Utilities | ||
27 | ---------------------- | ||
28 | |||
29 | All possible events are visible from /sys/kernel/debug/tracing/events. Simply | ||
30 | calling | ||
31 | |||
32 | $ find /sys/kernel/debug/tracing/events -type d | ||
33 | |||
34 | will give a fair indication of the number of events available. | ||
35 | |||
36 | 2.2 PCL | ||
37 | ------- | ||
38 | |||
39 | Discovery and enumeration of all counters and events, including tracepoints | ||
40 | are available with the perf tool. Getting a list of available events is a | ||
41 | simple case of | ||
42 | |||
43 | $ perf list 2>&1 | grep Tracepoint | ||
44 | ext4:ext4_free_inode [Tracepoint event] | ||
45 | ext4:ext4_request_inode [Tracepoint event] | ||
46 | ext4:ext4_allocate_inode [Tracepoint event] | ||
47 | ext4:ext4_write_begin [Tracepoint event] | ||
48 | ext4:ext4_ordered_write_end [Tracepoint event] | ||
49 | [ .... remaining output snipped .... ] | ||
50 | |||
51 | |||
52 | 2. Enabling Events | ||
53 | ================== | ||
54 | |||
55 | 2.1 System-Wide Event Enabling | ||
56 | ------------------------------ | ||
57 | |||
58 | See Documentation/trace/events.txt for a proper description on how events | ||
59 | can be enabled system-wide. A short example of enabling all events related | ||
60 | to page allocation would look something like | ||
61 | |||
62 | $ for i in `find /sys/kernel/debug/tracing/events -name "enable" | grep mm_`; do echo 1 > $i; done | ||
63 | |||
64 | 2.2 System-Wide Event Enabling with SystemTap | ||
65 | --------------------------------------------- | ||
66 | |||
67 | In SystemTap, tracepoints are accessible using the kernel.trace() function | ||
68 | call. The following is an example that reports every 5 seconds what processes | ||
69 | were allocating the pages. | ||
70 | |||
71 | global page_allocs | ||
72 | |||
73 | probe kernel.trace("mm_page_alloc") { | ||
74 | page_allocs[execname()]++ | ||
75 | } | ||
76 | |||
77 | function print_count() { | ||
78 | printf ("%-25s %-s\n", "#Pages Allocated", "Process Name") | ||
79 | foreach (proc in page_allocs-) | ||
80 | printf("%-25d %s\n", page_allocs[proc], proc) | ||
81 | printf ("\n") | ||
82 | delete page_allocs | ||
83 | } | ||
84 | |||
85 | probe timer.s(5) { | ||
86 | print_count() | ||
87 | } | ||
88 | |||
89 | 2.3 System-Wide Event Enabling with PCL | ||
90 | --------------------------------------- | ||
91 | |||
92 | By specifying the -a switch and analysing sleep, the system-wide events | ||
93 | for a duration of time can be examined. | ||
94 | |||
95 | $ perf stat -a \ | ||
96 | -e kmem:mm_page_alloc -e kmem:mm_page_free_direct \ | ||
97 | -e kmem:mm_pagevec_free \ | ||
98 | sleep 10 | ||
99 | Performance counter stats for 'sleep 10': | ||
100 | |||
101 | 9630 kmem:mm_page_alloc | ||
102 | 2143 kmem:mm_page_free_direct | ||
103 | 7424 kmem:mm_pagevec_free | ||
104 | |||
105 | 10.002577764 seconds time elapsed | ||
106 | |||
107 | Similarly, one could execute a shell and exit it as desired to get a report | ||
108 | at that point. | ||
109 | |||
110 | 2.4 Local Event Enabling | ||
111 | ------------------------ | ||
112 | |||
113 | Documentation/trace/ftrace.txt describes how to enable events on a per-thread | ||
114 | basis using set_ftrace_pid. | ||
115 | |||
116 | 2.5 Local Event Enablement with PCL | ||
117 | ----------------------------------- | ||
118 | |||
119 | Events can be activate and tracked for the duration of a process on a local | ||
120 | basis using PCL such as follows. | ||
121 | |||
122 | $ perf stat -e kmem:mm_page_alloc -e kmem:mm_page_free_direct \ | ||
123 | -e kmem:mm_pagevec_free ./hackbench 10 | ||
124 | Time: 0.909 | ||
125 | |||
126 | Performance counter stats for './hackbench 10': | ||
127 | |||
128 | 17803 kmem:mm_page_alloc | ||
129 | 12398 kmem:mm_page_free_direct | ||
130 | 4827 kmem:mm_pagevec_free | ||
131 | |||
132 | 0.973913387 seconds time elapsed | ||
133 | |||
134 | 3. Event Filtering | ||
135 | ================== | ||
136 | |||
137 | Documentation/trace/ftrace.txt covers in-depth how to filter events in | ||
138 | ftrace. Obviously using grep and awk of trace_pipe is an option as well | ||
139 | as any script reading trace_pipe. | ||
140 | |||
141 | 4. Analysing Event Variances with PCL | ||
142 | ===================================== | ||
143 | |||
144 | Any workload can exhibit variances between runs and it can be important | ||
145 | to know what the standard deviation in. By and large, this is left to the | ||
146 | performance analyst to do it by hand. In the event that the discrete event | ||
147 | occurrences are useful to the performance analyst, then perf can be used. | ||
148 | |||
149 | $ perf stat --repeat 5 -e kmem:mm_page_alloc -e kmem:mm_page_free_direct | ||
150 | -e kmem:mm_pagevec_free ./hackbench 10 | ||
151 | Time: 0.890 | ||
152 | Time: 0.895 | ||
153 | Time: 0.915 | ||
154 | Time: 1.001 | ||
155 | Time: 0.899 | ||
156 | |||
157 | Performance counter stats for './hackbench 10' (5 runs): | ||
158 | |||
159 | 16630 kmem:mm_page_alloc ( +- 3.542% ) | ||
160 | 11486 kmem:mm_page_free_direct ( +- 4.771% ) | ||
161 | 4730 kmem:mm_pagevec_free ( +- 2.325% ) | ||
162 | |||
163 | 0.982653002 seconds time elapsed ( +- 1.448% ) | ||
164 | |||
165 | In the event that some higher-level event is required that depends on some | ||
166 | aggregation of discrete events, then a script would need to be developed. | ||
167 | |||
168 | Using --repeat, it is also possible to view how events are fluctuating over | ||
169 | time on a system wide basis using -a and sleep. | ||
170 | |||
171 | $ perf stat -e kmem:mm_page_alloc -e kmem:mm_page_free_direct \ | ||
172 | -e kmem:mm_pagevec_free \ | ||
173 | -a --repeat 10 \ | ||
174 | sleep 1 | ||
175 | Performance counter stats for 'sleep 1' (10 runs): | ||
176 | |||
177 | 1066 kmem:mm_page_alloc ( +- 26.148% ) | ||
178 | 182 kmem:mm_page_free_direct ( +- 5.464% ) | ||
179 | 890 kmem:mm_pagevec_free ( +- 30.079% ) | ||
180 | |||
181 | 1.002251757 seconds time elapsed ( +- 0.005% ) | ||
182 | |||
183 | 5. Higher-Level Analysis with Helper Scripts | ||
184 | ============================================ | ||
185 | |||
186 | When events are enabled the events that are triggering can be read from | ||
187 | /sys/kernel/debug/tracing/trace_pipe in human-readable format although binary | ||
188 | options exist as well. By post-processing the output, further information can | ||
189 | be gathered on-line as appropriate. Examples of post-processing might include | ||
190 | |||
191 | o Reading information from /proc for the PID that triggered the event | ||
192 | o Deriving a higher-level event from a series of lower-level events. | ||
193 | o Calculate latencies between two events | ||
194 | |||
195 | Documentation/trace/postprocess/trace-pagealloc-postprocess.pl is an example | ||
196 | script that can read trace_pipe from STDIN or a copy of a trace. When used | ||
197 | on-line, it can be interrupted once to generate a report without existing | ||
198 | and twice to exit. | ||
199 | |||
200 | Simplistically, the script just reads STDIN and counts up events but it | ||
201 | also can do more such as | ||
202 | |||
203 | o Derive high-level events from many low-level events. If a number of pages | ||
204 | are freed to the main allocator from the per-CPU lists, it recognises | ||
205 | that as one per-CPU drain even though there is no specific tracepoint | ||
206 | for that event | ||
207 | o It can aggregate based on PID or individual process number | ||
208 | o In the event memory is getting externally fragmented, it reports | ||
209 | on whether the fragmentation event was severe or moderate. | ||
210 | o When receiving an event about a PID, it can record who the parent was so | ||
211 | that if large numbers of events are coming from very short-lived | ||
212 | processes, the parent process responsible for creating all the helpers | ||
213 | can be identified | ||
214 | |||
215 | 6. Lower-Level Analysis with PCL | ||
216 | ================================ | ||
217 | |||
218 | There may also be a requirement to identify what functions with a program | ||
219 | were generating events within the kernel. To begin this sort of analysis, the | ||
220 | data must be recorded. At the time of writing, this required root | ||
221 | |||
222 | $ perf record -c 1 \ | ||
223 | -e kmem:mm_page_alloc -e kmem:mm_page_free_direct \ | ||
224 | -e kmem:mm_pagevec_free \ | ||
225 | ./hackbench 10 | ||
226 | Time: 0.894 | ||
227 | [ perf record: Captured and wrote 0.733 MB perf.data (~32010 samples) ] | ||
228 | |||
229 | Note the use of '-c 1' to set the event period to sample. The default sample | ||
230 | period is quite high to minimise overhead but the information collected can be | ||
231 | very coarse as a result. | ||
232 | |||
233 | This record outputted a file called perf.data which can be analysed using | ||
234 | perf report. | ||
235 | |||
236 | $ perf report | ||
237 | # Samples: 30922 | ||
238 | # | ||
239 | # Overhead Command Shared Object | ||
240 | # ........ ......... ................................ | ||
241 | # | ||
242 | 87.27% hackbench [vdso] | ||
243 | 6.85% hackbench /lib/i686/cmov/libc-2.9.so | ||
244 | 2.62% hackbench /lib/ld-2.9.so | ||
245 | 1.52% perf [vdso] | ||
246 | 1.22% hackbench ./hackbench | ||
247 | 0.48% hackbench [kernel] | ||
248 | 0.02% perf /lib/i686/cmov/libc-2.9.so | ||
249 | 0.01% perf /usr/bin/perf | ||
250 | 0.01% perf /lib/ld-2.9.so | ||
251 | 0.00% hackbench /lib/i686/cmov/libpthread-2.9.so | ||
252 | # | ||
253 | # (For more details, try: perf report --sort comm,dso,symbol) | ||
254 | # | ||
255 | |||
256 | According to this, the vast majority of events occured triggered on events | ||
257 | within the VDSO. With simple binaries, this will often be the case so lets | ||
258 | take a slightly different example. In the course of writing this, it was | ||
259 | noticed that X was generating an insane amount of page allocations so lets look | ||
260 | at it | ||
261 | |||
262 | $ perf record -c 1 -f \ | ||
263 | -e kmem:mm_page_alloc -e kmem:mm_page_free_direct \ | ||
264 | -e kmem:mm_pagevec_free \ | ||
265 | -p `pidof X` | ||
266 | |||
267 | This was interrupted after a few seconds and | ||
268 | |||
269 | $ perf report | ||
270 | # Samples: 27666 | ||
271 | # | ||
272 | # Overhead Command Shared Object | ||
273 | # ........ ....... ....................................... | ||
274 | # | ||
275 | 51.95% Xorg [vdso] | ||
276 | 47.95% Xorg /opt/gfx-test/lib/libpixman-1.so.0.13.1 | ||
277 | 0.09% Xorg /lib/i686/cmov/libc-2.9.so | ||
278 | 0.01% Xorg [kernel] | ||
279 | # | ||
280 | # (For more details, try: perf report --sort comm,dso,symbol) | ||
281 | # | ||
282 | |||
283 | So, almost half of the events are occuring in a library. To get an idea which | ||
284 | symbol. | ||
285 | |||
286 | $ perf report --sort comm,dso,symbol | ||
287 | # Samples: 27666 | ||
288 | # | ||
289 | # Overhead Command Shared Object Symbol | ||
290 | # ........ ....... ....................................... ...... | ||
291 | # | ||
292 | 51.95% Xorg [vdso] [.] 0x000000ffffe424 | ||
293 | 47.93% Xorg /opt/gfx-test/lib/libpixman-1.so.0.13.1 [.] pixmanFillsse2 | ||
294 | 0.09% Xorg /lib/i686/cmov/libc-2.9.so [.] _int_malloc | ||
295 | 0.01% Xorg /opt/gfx-test/lib/libpixman-1.so.0.13.1 [.] pixman_region32_copy_f | ||
296 | 0.01% Xorg [kernel] [k] read_hpet | ||
297 | 0.01% Xorg /opt/gfx-test/lib/libpixman-1.so.0.13.1 [.] get_fast_path | ||
298 | 0.00% Xorg [kernel] [k] ftrace_trace_userstack | ||
299 | |||
300 | To see where within the function pixmanFillsse2 things are going wrong | ||
301 | |||
302 | $ perf annotate pixmanFillsse2 | ||
303 | [ ... ] | ||
304 | 0.00 : 34eeb: 0f 18 08 prefetcht0 (%eax) | ||
305 | : } | ||
306 | : | ||
307 | : extern __inline void __attribute__((__gnu_inline__, __always_inline__, _ | ||
308 | : _mm_store_si128 (__m128i *__P, __m128i __B) : { | ||
309 | : *__P = __B; | ||
310 | 12.40 : 34eee: 66 0f 7f 80 40 ff ff movdqa %xmm0,-0xc0(%eax) | ||
311 | 0.00 : 34ef5: ff | ||
312 | 12.40 : 34ef6: 66 0f 7f 80 50 ff ff movdqa %xmm0,-0xb0(%eax) | ||
313 | 0.00 : 34efd: ff | ||
314 | 12.39 : 34efe: 66 0f 7f 80 60 ff ff movdqa %xmm0,-0xa0(%eax) | ||
315 | 0.00 : 34f05: ff | ||
316 | 12.67 : 34f06: 66 0f 7f 80 70 ff ff movdqa %xmm0,-0x90(%eax) | ||
317 | 0.00 : 34f0d: ff | ||
318 | 12.58 : 34f0e: 66 0f 7f 40 80 movdqa %xmm0,-0x80(%eax) | ||
319 | 12.31 : 34f13: 66 0f 7f 40 90 movdqa %xmm0,-0x70(%eax) | ||
320 | 12.40 : 34f18: 66 0f 7f 40 a0 movdqa %xmm0,-0x60(%eax) | ||
321 | 12.31 : 34f1d: 66 0f 7f 40 b0 movdqa %xmm0,-0x50(%eax) | ||
322 | |||
323 | At a glance, it looks like the time is being spent copying pixmaps to | ||
324 | the card. Further investigation would be needed to determine why pixmaps | ||
325 | are being copied around so much but a starting point would be to take an | ||
326 | ancient build of libpixmap out of the library path where it was totally | ||
327 | forgotten about from months ago! | ||