diff options
author | Felipe Cerqueira <felipec@mpi-sws.org> | 2013-02-12 13:21:11 -0500 |
---|---|---|
committer | Bjoern Brandenburg <bbb@mpi-sws.org> | 2013-08-07 03:47:07 -0400 |
commit | 3bd7e43d778163e9e1b696fdb5030b7717aba236 (patch) | |
tree | 007ea0c3b54bcd90f036b6a37f8ebfa82f9e66e6 | |
parent | a6e8c66b436815b7a7abdfb38808fb94cc70006b (diff) |
Add PD^2 scheduler plugin
-rw-r--r-- | litmus/Kconfig | 14 | ||||
-rw-r--r-- | litmus/Makefile | 1 | ||||
-rw-r--r-- | litmus/sched_pfair.c | 1079 |
3 files changed, 1094 insertions, 0 deletions
diff --git a/litmus/Kconfig b/litmus/Kconfig index c764857aec82..5d5d6eb29882 100644 --- a/litmus/Kconfig +++ b/litmus/Kconfig | |||
@@ -12,6 +12,20 @@ config PLUGIN_CEDF | |||
12 | On smaller platforms (e.g., ARM PB11MPCore), using C-EDF | 12 | On smaller platforms (e.g., ARM PB11MPCore), using C-EDF |
13 | makes little sense since there aren't any shared caches. | 13 | makes little sense since there aren't any shared caches. |
14 | 14 | ||
15 | config PLUGIN_PFAIR | ||
16 | bool "PFAIR" | ||
17 | depends on HIGH_RES_TIMERS && HZ_PERIODIC && HZ = "1000" | ||
18 | default y | ||
19 | help | ||
20 | Include the PFAIR plugin (i.e., the PD^2 scheduler) in the kernel. | ||
21 | The PFAIR plugin requires high resolution timers (for staggered | ||
22 | quanta) and also requires HZ_PERIODIC (i.e., periodic timer ticks | ||
23 | even if a processor is idle, as quanta could be missed otherwise). | ||
24 | Further, the PFAIR plugin uses the system tick and thus requires | ||
25 | HZ=1000 to achive reasonable granularity. | ||
26 | |||
27 | If unsure, say Yes. | ||
28 | |||
15 | config RELEASE_MASTER | 29 | config RELEASE_MASTER |
16 | bool "Release-master Support" | 30 | bool "Release-master Support" |
17 | depends on ARCH_HAS_SEND_PULL_TIMERS && SMP | 31 | depends on ARCH_HAS_SEND_PULL_TIMERS && SMP |
diff --git a/litmus/Makefile b/litmus/Makefile index bcb007d9b592..d26ca7076b62 100644 --- a/litmus/Makefile +++ b/litmus/Makefile | |||
@@ -23,6 +23,7 @@ obj-y = sched_plugin.o litmus.o \ | |||
23 | sched_pfp.o | 23 | sched_pfp.o |
24 | 24 | ||
25 | obj-$(CONFIG_PLUGIN_CEDF) += sched_cedf.o | 25 | obj-$(CONFIG_PLUGIN_CEDF) += sched_cedf.o |
26 | obj-$(CONFIG_PLUGIN_PFAIR) += sched_pfair.o | ||
26 | obj-$(CONFIG_SCHED_CPU_AFFINITY) += affinity.o | 27 | obj-$(CONFIG_SCHED_CPU_AFFINITY) += affinity.o |
27 | 28 | ||
28 | obj-$(CONFIG_FEATHER_TRACE) += ft_event.o ftdev.o | 29 | obj-$(CONFIG_FEATHER_TRACE) += ft_event.o ftdev.o |
diff --git a/litmus/sched_pfair.c b/litmus/sched_pfair.c new file mode 100644 index 000000000000..efe5e130da15 --- /dev/null +++ b/litmus/sched_pfair.c | |||
@@ -0,0 +1,1079 @@ | |||
1 | /* | ||
2 | * kernel/sched_pfair.c | ||
3 | * | ||
4 | * Implementation of the PD^2 pfair scheduling algorithm. This | ||
5 | * implementation realizes "early releasing," i.e., it is work-conserving. | ||
6 | * | ||
7 | */ | ||
8 | |||
9 | #include <asm/div64.h> | ||
10 | #include <linux/delay.h> | ||
11 | #include <linux/module.h> | ||
12 | #include <linux/spinlock.h> | ||
13 | #include <linux/percpu.h> | ||
14 | #include <linux/sched.h> | ||
15 | #include <linux/list.h> | ||
16 | #include <linux/slab.h> | ||
17 | |||
18 | #include <litmus/litmus.h> | ||
19 | #include <litmus/jobs.h> | ||
20 | #include <litmus/preempt.h> | ||
21 | #include <litmus/rt_domain.h> | ||
22 | #include <litmus/sched_plugin.h> | ||
23 | #include <litmus/sched_trace.h> | ||
24 | |||
25 | #include <litmus/bheap.h> | ||
26 | |||
27 | /* to configure the cluster size */ | ||
28 | #include <litmus/litmus_proc.h> | ||
29 | |||
30 | #include <litmus/clustered.h> | ||
31 | |||
32 | static enum cache_level pfair_cluster_level = GLOBAL_CLUSTER; | ||
33 | |||
34 | struct subtask { | ||
35 | /* measured in quanta relative to job release */ | ||
36 | quanta_t release; | ||
37 | quanta_t deadline; | ||
38 | quanta_t overlap; /* called "b bit" by PD^2 */ | ||
39 | quanta_t group_deadline; | ||
40 | }; | ||
41 | |||
42 | struct pfair_param { | ||
43 | quanta_t quanta; /* number of subtasks */ | ||
44 | quanta_t cur; /* index of current subtask */ | ||
45 | |||
46 | quanta_t release; /* in quanta */ | ||
47 | quanta_t period; /* in quanta */ | ||
48 | |||
49 | quanta_t last_quantum; /* when scheduled last */ | ||
50 | int last_cpu; /* where scheduled last */ | ||
51 | |||
52 | struct pfair_cluster* cluster; /* where this task is scheduled */ | ||
53 | |||
54 | struct subtask subtasks[0]; /* allocate together with pfair_param */ | ||
55 | }; | ||
56 | |||
57 | #define tsk_pfair(tsk) ((tsk)->rt_param.pfair) | ||
58 | |||
59 | struct pfair_state { | ||
60 | struct cluster_cpu topology; | ||
61 | |||
62 | volatile quanta_t cur_tick; /* updated by the CPU that is advancing | ||
63 | * the time */ | ||
64 | volatile quanta_t local_tick; /* What tick is the local CPU currently | ||
65 | * executing? Updated only by the local | ||
66 | * CPU. In QEMU, this may lag behind the | ||
67 | * current tick. In a real system, with | ||
68 | * proper timers and aligned quanta, | ||
69 | * that should only be the case for a | ||
70 | * very short time after the time | ||
71 | * advanced. With staggered quanta, it | ||
72 | * will lag for the duration of the | ||
73 | * offset. | ||
74 | */ | ||
75 | |||
76 | struct task_struct* linked; /* the task that should be executing */ | ||
77 | struct task_struct* local; /* the local copy of linked */ | ||
78 | struct task_struct* scheduled; /* what is actually scheduled */ | ||
79 | |||
80 | lt_t offset; /* stagger offset */ | ||
81 | unsigned int missed_updates; | ||
82 | unsigned int missed_quanta; | ||
83 | }; | ||
84 | |||
85 | struct pfair_cluster { | ||
86 | struct scheduling_cluster topology; | ||
87 | |||
88 | /* The "global" time in this cluster. */ | ||
89 | quanta_t pfair_time; /* the "official" PFAIR clock */ | ||
90 | |||
91 | /* The ready queue for this cluster. */ | ||
92 | rt_domain_t pfair; | ||
93 | |||
94 | /* The set of jobs that should have their release enacted at the next | ||
95 | * quantum boundary. | ||
96 | */ | ||
97 | struct bheap release_queue; | ||
98 | raw_spinlock_t release_lock; | ||
99 | }; | ||
100 | |||
101 | #define FLAGS_NEED_REQUEUE 0x1 | ||
102 | |||
103 | static inline struct pfair_cluster* cpu_cluster(struct pfair_state* state) | ||
104 | { | ||
105 | return container_of(state->topology.cluster, struct pfair_cluster, topology); | ||
106 | } | ||
107 | |||
108 | static inline int cpu_id(struct pfair_state* state) | ||
109 | { | ||
110 | return state->topology.id; | ||
111 | } | ||
112 | |||
113 | static inline struct pfair_state* from_cluster_list(struct list_head* pos) | ||
114 | { | ||
115 | return list_entry(pos, struct pfair_state, topology.cluster_list); | ||
116 | } | ||
117 | |||
118 | static inline struct pfair_cluster* from_domain(rt_domain_t* rt) | ||
119 | { | ||
120 | return container_of(rt, struct pfair_cluster, pfair); | ||
121 | } | ||
122 | |||
123 | static inline raw_spinlock_t* cluster_lock(struct pfair_cluster* cluster) | ||
124 | { | ||
125 | /* The ready_lock is used to serialize all scheduling events. */ | ||
126 | return &cluster->pfair.ready_lock; | ||
127 | } | ||
128 | |||
129 | static inline raw_spinlock_t* cpu_lock(struct pfair_state* state) | ||
130 | { | ||
131 | return cluster_lock(cpu_cluster(state)); | ||
132 | } | ||
133 | |||
134 | DEFINE_PER_CPU(struct pfair_state, pfair_state); | ||
135 | struct pfair_state* *pstate; /* short cut */ | ||
136 | |||
137 | static struct pfair_cluster* pfair_clusters; | ||
138 | static int num_pfair_clusters; | ||
139 | |||
140 | /* Enable for lots of trace info. | ||
141 | * #define PFAIR_DEBUG | ||
142 | */ | ||
143 | |||
144 | #ifdef PFAIR_DEBUG | ||
145 | #define PTRACE_TASK(t, f, args...) TRACE_TASK(t, f, ## args) | ||
146 | #define PTRACE(f, args...) TRACE(f, ## args) | ||
147 | #else | ||
148 | #define PTRACE_TASK(t, f, args...) | ||
149 | #define PTRACE(f, args...) | ||
150 | #endif | ||
151 | |||
152 | /* gcc will inline all of these accessor functions... */ | ||
153 | static struct subtask* cur_subtask(struct task_struct* t) | ||
154 | { | ||
155 | return tsk_pfair(t)->subtasks + tsk_pfair(t)->cur; | ||
156 | } | ||
157 | |||
158 | static quanta_t cur_deadline(struct task_struct* t) | ||
159 | { | ||
160 | return cur_subtask(t)->deadline + tsk_pfair(t)->release; | ||
161 | } | ||
162 | |||
163 | static quanta_t cur_release(struct task_struct* t) | ||
164 | { | ||
165 | /* This is early releasing: only the release of the first subtask | ||
166 | * counts. */ | ||
167 | return tsk_pfair(t)->release; | ||
168 | } | ||
169 | |||
170 | static quanta_t cur_overlap(struct task_struct* t) | ||
171 | { | ||
172 | return cur_subtask(t)->overlap; | ||
173 | } | ||
174 | |||
175 | static quanta_t cur_group_deadline(struct task_struct* t) | ||
176 | { | ||
177 | quanta_t gdl = cur_subtask(t)->group_deadline; | ||
178 | if (gdl) | ||
179 | return gdl + tsk_pfair(t)->release; | ||
180 | else | ||
181 | return gdl; | ||
182 | } | ||
183 | |||
184 | |||
185 | static int pfair_higher_prio(struct task_struct* first, | ||
186 | struct task_struct* second) | ||
187 | { | ||
188 | return /* first task must exist */ | ||
189 | first && ( | ||
190 | /* Does the second task exist and is it a real-time task? If | ||
191 | * not, the first task (which is a RT task) has higher | ||
192 | * priority. | ||
193 | */ | ||
194 | !second || !is_realtime(second) || | ||
195 | |||
196 | /* Is the (subtask) deadline of the first task earlier? | ||
197 | * Then it has higher priority. | ||
198 | */ | ||
199 | time_before(cur_deadline(first), cur_deadline(second)) || | ||
200 | |||
201 | /* Do we have a deadline tie? | ||
202 | * Then break by B-bit. | ||
203 | */ | ||
204 | (cur_deadline(first) == cur_deadline(second) && | ||
205 | (cur_overlap(first) > cur_overlap(second) || | ||
206 | |||
207 | /* Do we have a B-bit tie? | ||
208 | * Then break by group deadline. | ||
209 | */ | ||
210 | (cur_overlap(first) == cur_overlap(second) && | ||
211 | (time_after(cur_group_deadline(first), | ||
212 | cur_group_deadline(second)) || | ||
213 | |||
214 | /* Do we have a group deadline tie? | ||
215 | * Then break by PID, which are unique. | ||
216 | */ | ||
217 | (cur_group_deadline(first) == | ||
218 | cur_group_deadline(second) && | ||
219 | first->pid < second->pid)))))); | ||
220 | } | ||
221 | |||
222 | int pfair_ready_order(struct bheap_node* a, struct bheap_node* b) | ||
223 | { | ||
224 | return pfair_higher_prio(bheap2task(a), bheap2task(b)); | ||
225 | } | ||
226 | |||
227 | static void pfair_release_jobs(rt_domain_t* rt, struct bheap* tasks) | ||
228 | { | ||
229 | struct pfair_cluster* cluster = from_domain(rt); | ||
230 | unsigned long flags; | ||
231 | |||
232 | raw_spin_lock_irqsave(&cluster->release_lock, flags); | ||
233 | |||
234 | bheap_union(pfair_ready_order, &cluster->release_queue, tasks); | ||
235 | |||
236 | raw_spin_unlock_irqrestore(&cluster->release_lock, flags); | ||
237 | } | ||
238 | |||
239 | static void prepare_release(struct task_struct* t, quanta_t at) | ||
240 | { | ||
241 | tsk_pfair(t)->release = at; | ||
242 | tsk_pfair(t)->cur = 0; | ||
243 | } | ||
244 | |||
245 | /* pull released tasks from the release queue */ | ||
246 | static void poll_releases(struct pfair_cluster* cluster) | ||
247 | { | ||
248 | raw_spin_lock(&cluster->release_lock); | ||
249 | __merge_ready(&cluster->pfair, &cluster->release_queue); | ||
250 | raw_spin_unlock(&cluster->release_lock); | ||
251 | } | ||
252 | |||
253 | static void check_preempt(struct task_struct* t) | ||
254 | { | ||
255 | int cpu = NO_CPU; | ||
256 | if (tsk_rt(t)->linked_on != tsk_rt(t)->scheduled_on && | ||
257 | is_present(t)) { | ||
258 | /* the task can be scheduled and | ||
259 | * is not scheduled where it ought to be scheduled | ||
260 | */ | ||
261 | cpu = tsk_rt(t)->linked_on != NO_CPU ? | ||
262 | tsk_rt(t)->linked_on : | ||
263 | tsk_rt(t)->scheduled_on; | ||
264 | PTRACE_TASK(t, "linked_on:%d, scheduled_on:%d\n", | ||
265 | tsk_rt(t)->linked_on, tsk_rt(t)->scheduled_on); | ||
266 | /* preempt */ | ||
267 | litmus_reschedule(cpu); | ||
268 | } | ||
269 | } | ||
270 | |||
271 | /* caller must hold pfair.ready_lock */ | ||
272 | static void drop_all_references(struct task_struct *t) | ||
273 | { | ||
274 | int cpu; | ||
275 | struct pfair_state* s; | ||
276 | struct pfair_cluster* cluster; | ||
277 | if (bheap_node_in_heap(tsk_rt(t)->heap_node)) { | ||
278 | /* It must be in the ready queue; drop references isn't called | ||
279 | * when the job is in a release queue. */ | ||
280 | cluster = tsk_pfair(t)->cluster; | ||
281 | bheap_delete(pfair_ready_order, &cluster->pfair.ready_queue, | ||
282 | tsk_rt(t)->heap_node); | ||
283 | } | ||
284 | for (cpu = 0; cpu < num_online_cpus(); cpu++) { | ||
285 | s = &per_cpu(pfair_state, cpu); | ||
286 | if (s->linked == t) | ||
287 | s->linked = NULL; | ||
288 | if (s->local == t) | ||
289 | s->local = NULL; | ||
290 | if (s->scheduled == t) | ||
291 | s->scheduled = NULL; | ||
292 | } | ||
293 | /* make sure we don't have a stale linked_on field */ | ||
294 | tsk_rt(t)->linked_on = NO_CPU; | ||
295 | } | ||
296 | |||
297 | static void pfair_prepare_next_period(struct task_struct* t) | ||
298 | { | ||
299 | struct pfair_param* p = tsk_pfair(t); | ||
300 | |||
301 | prepare_for_next_period(t); | ||
302 | tsk_rt(t)->completed = 0; | ||
303 | p->release += p->period; | ||
304 | } | ||
305 | |||
306 | /* returns 1 if the task needs to go the release queue */ | ||
307 | static int advance_subtask(quanta_t time, struct task_struct* t, int cpu) | ||
308 | { | ||
309 | struct pfair_param* p = tsk_pfair(t); | ||
310 | int to_relq; | ||
311 | p->cur = (p->cur + 1) % p->quanta; | ||
312 | if (!p->cur) { | ||
313 | if (is_present(t)) { | ||
314 | /* The job overran; we start a new budget allocation. */ | ||
315 | pfair_prepare_next_period(t); | ||
316 | } else { | ||
317 | /* remove task from system until it wakes */ | ||
318 | drop_all_references(t); | ||
319 | tsk_rt(t)->flags |= FLAGS_NEED_REQUEUE; | ||
320 | TRACE_TASK(t, "on %d advanced to subtask %lu (not present)\n", | ||
321 | cpu, p->cur); | ||
322 | return 0; | ||
323 | } | ||
324 | } | ||
325 | to_relq = time_after(cur_release(t), time); | ||
326 | TRACE_TASK(t, "on %d advanced to subtask %lu -> to_relq=%d (cur_release:%lu time:%lu)\n", | ||
327 | cpu, p->cur, to_relq, cur_release(t), time); | ||
328 | return to_relq; | ||
329 | } | ||
330 | |||
331 | static void advance_subtasks(struct pfair_cluster *cluster, quanta_t time) | ||
332 | { | ||
333 | struct task_struct* l; | ||
334 | struct pfair_param* p; | ||
335 | struct list_head* pos; | ||
336 | struct pfair_state* cpu; | ||
337 | |||
338 | list_for_each(pos, &cluster->topology.cpus) { | ||
339 | cpu = from_cluster_list(pos); | ||
340 | l = cpu->linked; | ||
341 | cpu->missed_updates += cpu->linked != cpu->local; | ||
342 | if (l) { | ||
343 | p = tsk_pfair(l); | ||
344 | p->last_quantum = time; | ||
345 | p->last_cpu = cpu_id(cpu); | ||
346 | if (advance_subtask(time, l, cpu_id(cpu))) { | ||
347 | //cpu->linked = NULL; | ||
348 | PTRACE_TASK(l, "should go to release queue. " | ||
349 | "scheduled_on=%d present=%d\n", | ||
350 | tsk_rt(l)->scheduled_on, | ||
351 | tsk_rt(l)->present); | ||
352 | } | ||
353 | } | ||
354 | } | ||
355 | } | ||
356 | |||
357 | static int target_cpu(quanta_t time, struct task_struct* t, int default_cpu) | ||
358 | { | ||
359 | int cpu; | ||
360 | if (tsk_rt(t)->scheduled_on != NO_CPU) { | ||
361 | /* always observe scheduled_on linkage */ | ||
362 | default_cpu = tsk_rt(t)->scheduled_on; | ||
363 | } else if (tsk_pfair(t)->last_quantum == time - 1) { | ||
364 | /* back2back quanta */ | ||
365 | /* Only observe last_quantum if no scheduled_on is in the way. | ||
366 | * This should only kick in if a CPU missed quanta, and that | ||
367 | * *should* only happen in QEMU. | ||
368 | */ | ||
369 | cpu = tsk_pfair(t)->last_cpu; | ||
370 | if (!pstate[cpu]->linked || | ||
371 | tsk_rt(pstate[cpu]->linked)->scheduled_on != cpu) { | ||
372 | default_cpu = cpu; | ||
373 | } | ||
374 | } | ||
375 | return default_cpu; | ||
376 | } | ||
377 | |||
378 | /* returns one if linking was redirected */ | ||
379 | static int pfair_link(quanta_t time, int cpu, | ||
380 | struct task_struct* t) | ||
381 | { | ||
382 | int target = target_cpu(time, t, cpu); | ||
383 | struct task_struct* prev = pstate[cpu]->linked; | ||
384 | struct task_struct* other; | ||
385 | struct pfair_cluster* cluster = cpu_cluster(pstate[cpu]); | ||
386 | |||
387 | if (target != cpu) { | ||
388 | BUG_ON(pstate[target]->topology.cluster != pstate[cpu]->topology.cluster); | ||
389 | other = pstate[target]->linked; | ||
390 | pstate[target]->linked = t; | ||
391 | tsk_rt(t)->linked_on = target; | ||
392 | if (!other) | ||
393 | /* linked ok, but reschedule this CPU */ | ||
394 | return 1; | ||
395 | if (target < cpu) { | ||
396 | /* link other to cpu instead */ | ||
397 | tsk_rt(other)->linked_on = cpu; | ||
398 | pstate[cpu]->linked = other; | ||
399 | if (prev) { | ||
400 | /* prev got pushed back into the ready queue */ | ||
401 | tsk_rt(prev)->linked_on = NO_CPU; | ||
402 | __add_ready(&cluster->pfair, prev); | ||
403 | } | ||
404 | /* we are done with this cpu */ | ||
405 | return 0; | ||
406 | } else { | ||
407 | /* re-add other, it's original CPU was not considered yet */ | ||
408 | tsk_rt(other)->linked_on = NO_CPU; | ||
409 | __add_ready(&cluster->pfair, other); | ||
410 | /* reschedule this CPU */ | ||
411 | return 1; | ||
412 | } | ||
413 | } else { | ||
414 | pstate[cpu]->linked = t; | ||
415 | tsk_rt(t)->linked_on = cpu; | ||
416 | if (prev) { | ||
417 | /* prev got pushed back into the ready queue */ | ||
418 | tsk_rt(prev)->linked_on = NO_CPU; | ||
419 | __add_ready(&cluster->pfair, prev); | ||
420 | } | ||
421 | /* we are done with this CPU */ | ||
422 | return 0; | ||
423 | } | ||
424 | } | ||
425 | |||
426 | static void schedule_subtasks(struct pfair_cluster *cluster, quanta_t time) | ||
427 | { | ||
428 | int retry; | ||
429 | struct list_head *pos; | ||
430 | struct pfair_state *cpu_state; | ||
431 | |||
432 | list_for_each(pos, &cluster->topology.cpus) { | ||
433 | cpu_state = from_cluster_list(pos); | ||
434 | retry = 1; | ||
435 | #ifdef CONFIG_RELEASE_MASTER | ||
436 | /* skip release master */ | ||
437 | if (cluster->pfair.release_master == cpu_id(cpu_state)) | ||
438 | continue; | ||
439 | #endif | ||
440 | while (retry) { | ||
441 | if (pfair_higher_prio(__peek_ready(&cluster->pfair), | ||
442 | cpu_state->linked)) | ||
443 | retry = pfair_link(time, cpu_id(cpu_state), | ||
444 | __take_ready(&cluster->pfair)); | ||
445 | else | ||
446 | retry = 0; | ||
447 | } | ||
448 | } | ||
449 | } | ||
450 | |||
451 | static void schedule_next_quantum(struct pfair_cluster *cluster, quanta_t time) | ||
452 | { | ||
453 | struct pfair_state *cpu; | ||
454 | struct list_head* pos; | ||
455 | |||
456 | /* called with interrupts disabled */ | ||
457 | PTRACE("--- Q %lu at %llu PRE-SPIN\n", | ||
458 | time, litmus_clock()); | ||
459 | raw_spin_lock(cluster_lock(cluster)); | ||
460 | PTRACE("<<< Q %lu at %llu\n", | ||
461 | time, litmus_clock()); | ||
462 | |||
463 | sched_trace_quantum_boundary(); | ||
464 | |||
465 | advance_subtasks(cluster, time); | ||
466 | poll_releases(cluster); | ||
467 | schedule_subtasks(cluster, time); | ||
468 | |||
469 | list_for_each(pos, &cluster->topology.cpus) { | ||
470 | cpu = from_cluster_list(pos); | ||
471 | if (cpu->linked) | ||
472 | PTRACE_TASK(cpu->linked, | ||
473 | " linked on %d.\n", cpu_id(cpu)); | ||
474 | else | ||
475 | PTRACE("(null) linked on %d.\n", cpu_id(cpu)); | ||
476 | } | ||
477 | /* We are done. Advance time. */ | ||
478 | mb(); | ||
479 | list_for_each(pos, &cluster->topology.cpus) { | ||
480 | cpu = from_cluster_list(pos); | ||
481 | if (cpu->local_tick != cpu->cur_tick) { | ||
482 | TRACE("BAD Quantum not acked on %d " | ||
483 | "(l:%lu c:%lu p:%lu)\n", | ||
484 | cpu_id(cpu), | ||
485 | cpu->local_tick, | ||
486 | cpu->cur_tick, | ||
487 | cluster->pfair_time); | ||
488 | cpu->missed_quanta++; | ||
489 | } | ||
490 | cpu->cur_tick = time; | ||
491 | } | ||
492 | PTRACE(">>> Q %lu at %llu\n", | ||
493 | time, litmus_clock()); | ||
494 | raw_spin_unlock(cluster_lock(cluster)); | ||
495 | } | ||
496 | |||
497 | static noinline void wait_for_quantum(quanta_t q, struct pfair_state* state) | ||
498 | { | ||
499 | quanta_t loc; | ||
500 | |||
501 | goto first; /* skip mb() on first iteration */ | ||
502 | do { | ||
503 | cpu_relax(); | ||
504 | mb(); | ||
505 | first: loc = state->cur_tick; | ||
506 | /* FIXME: what if loc > cur? */ | ||
507 | } while (time_before(loc, q)); | ||
508 | PTRACE("observed cur_tick:%lu >= q:%lu\n", | ||
509 | loc, q); | ||
510 | } | ||
511 | |||
512 | static quanta_t current_quantum(struct pfair_state* state) | ||
513 | { | ||
514 | lt_t t = litmus_clock() - state->offset; | ||
515 | return time2quanta(t, FLOOR); | ||
516 | } | ||
517 | |||
518 | static void catchup_quanta(quanta_t from, quanta_t target, | ||
519 | struct pfair_state* state) | ||
520 | { | ||
521 | quanta_t cur = from, time; | ||
522 | TRACE("+++< BAD catching up quanta from %lu to %lu\n", | ||
523 | from, target); | ||
524 | while (time_before(cur, target)) { | ||
525 | wait_for_quantum(cur, state); | ||
526 | cur++; | ||
527 | time = cmpxchg(&cpu_cluster(state)->pfair_time, | ||
528 | cur - 1, /* expected */ | ||
529 | cur /* next */ | ||
530 | ); | ||
531 | if (time == cur - 1) | ||
532 | schedule_next_quantum(cpu_cluster(state), cur); | ||
533 | } | ||
534 | TRACE("+++> catching up done\n"); | ||
535 | } | ||
536 | |||
537 | /* pfair_tick - this function is called for every local timer | ||
538 | * interrupt. | ||
539 | */ | ||
540 | static void pfair_tick(struct task_struct* t) | ||
541 | { | ||
542 | struct pfair_state* state = &__get_cpu_var(pfair_state); | ||
543 | quanta_t time, cur; | ||
544 | int retry = 10; | ||
545 | |||
546 | do { | ||
547 | cur = current_quantum(state); | ||
548 | PTRACE("q %lu at %llu\n", cur, litmus_clock()); | ||
549 | |||
550 | /* Attempt to advance time. First CPU to get here | ||
551 | * will prepare the next quantum. | ||
552 | */ | ||
553 | time = cmpxchg(&cpu_cluster(state)->pfair_time, | ||
554 | cur - 1, /* expected */ | ||
555 | cur /* next */ | ||
556 | ); | ||
557 | if (time == cur - 1) { | ||
558 | /* exchange succeeded */ | ||
559 | wait_for_quantum(cur - 1, state); | ||
560 | schedule_next_quantum(cpu_cluster(state), cur); | ||
561 | retry = 0; | ||
562 | } else if (time_before(time, cur - 1)) { | ||
563 | /* the whole system missed a tick !? */ | ||
564 | catchup_quanta(time, cur, state); | ||
565 | retry--; | ||
566 | } else if (time_after(time, cur)) { | ||
567 | /* our timer lagging behind!? */ | ||
568 | TRACE("BAD pfair_time:%lu > cur:%lu\n", time, cur); | ||
569 | retry--; | ||
570 | } else { | ||
571 | /* Some other CPU already started scheduling | ||
572 | * this quantum. Let it do its job and then update. | ||
573 | */ | ||
574 | retry = 0; | ||
575 | } | ||
576 | } while (retry); | ||
577 | |||
578 | /* Spin locally until time advances. */ | ||
579 | wait_for_quantum(cur, state); | ||
580 | |||
581 | /* copy assignment */ | ||
582 | /* FIXME: what if we race with a future update? Corrupted state? */ | ||
583 | state->local = state->linked; | ||
584 | /* signal that we are done */ | ||
585 | mb(); | ||
586 | state->local_tick = state->cur_tick; | ||
587 | |||
588 | if (state->local != current | ||
589 | && (is_realtime(current) || is_present(state->local))) | ||
590 | litmus_reschedule_local(); | ||
591 | } | ||
592 | |||
593 | static int safe_to_schedule(struct task_struct* t, int cpu) | ||
594 | { | ||
595 | int where = tsk_rt(t)->scheduled_on; | ||
596 | if (where != NO_CPU && where != cpu) { | ||
597 | TRACE_TASK(t, "BAD: can't be scheduled on %d, " | ||
598 | "scheduled already on %d.\n", cpu, where); | ||
599 | return 0; | ||
600 | } else | ||
601 | return is_present(t) && !is_completed(t); | ||
602 | } | ||
603 | |||
604 | static struct task_struct* pfair_schedule(struct task_struct * prev) | ||
605 | { | ||
606 | struct pfair_state* state = &__get_cpu_var(pfair_state); | ||
607 | struct pfair_cluster* cluster = cpu_cluster(state); | ||
608 | int blocks, completion, out_of_time; | ||
609 | struct task_struct* next = NULL; | ||
610 | |||
611 | #ifdef CONFIG_RELEASE_MASTER | ||
612 | /* Bail out early if we are the release master. | ||
613 | * The release master never schedules any real-time tasks. | ||
614 | */ | ||
615 | if (unlikely(cluster->pfair.release_master == cpu_id(state))) { | ||
616 | sched_state_task_picked(); | ||
617 | return NULL; | ||
618 | } | ||
619 | #endif | ||
620 | |||
621 | raw_spin_lock(cpu_lock(state)); | ||
622 | |||
623 | blocks = is_realtime(prev) && !is_running(prev); | ||
624 | completion = is_realtime(prev) && is_completed(prev); | ||
625 | out_of_time = is_realtime(prev) && time_after(cur_release(prev), | ||
626 | state->local_tick); | ||
627 | |||
628 | if (is_realtime(prev)) | ||
629 | PTRACE_TASK(prev, "blocks:%d completion:%d out_of_time:%d\n", | ||
630 | blocks, completion, out_of_time); | ||
631 | |||
632 | if (completion) { | ||
633 | sched_trace_task_completion(prev, 0); | ||
634 | pfair_prepare_next_period(prev); | ||
635 | prepare_release(prev, cur_release(prev)); | ||
636 | } | ||
637 | |||
638 | if (!blocks && (completion || out_of_time)) { | ||
639 | drop_all_references(prev); | ||
640 | sched_trace_task_release(prev); | ||
641 | add_release(&cluster->pfair, prev); | ||
642 | } | ||
643 | |||
644 | if (state->local && safe_to_schedule(state->local, cpu_id(state))) | ||
645 | next = state->local; | ||
646 | |||
647 | if (prev != next) { | ||
648 | tsk_rt(prev)->scheduled_on = NO_CPU; | ||
649 | if (next) | ||
650 | tsk_rt(next)->scheduled_on = cpu_id(state); | ||
651 | } | ||
652 | sched_state_task_picked(); | ||
653 | raw_spin_unlock(cpu_lock(state)); | ||
654 | |||
655 | if (next) | ||
656 | TRACE_TASK(next, "scheduled rel=%lu at %lu (%llu)\n", | ||
657 | tsk_pfair(next)->release, cpu_cluster(state)->pfair_time, litmus_clock()); | ||
658 | else if (is_realtime(prev)) | ||
659 | TRACE("Becomes idle at %lu (%llu)\n", cpu_cluster(state)->pfair_time, litmus_clock()); | ||
660 | |||
661 | return next; | ||
662 | } | ||
663 | |||
664 | static void pfair_task_new(struct task_struct * t, int on_rq, int is_scheduled) | ||
665 | { | ||
666 | unsigned long flags; | ||
667 | struct pfair_cluster* cluster; | ||
668 | |||
669 | TRACE("pfair: task new %d state:%d\n", t->pid, t->state); | ||
670 | |||
671 | cluster = tsk_pfair(t)->cluster; | ||
672 | |||
673 | raw_spin_lock_irqsave(cluster_lock(cluster), flags); | ||
674 | |||
675 | prepare_release(t, cluster->pfair_time + 1); | ||
676 | |||
677 | t->rt_param.scheduled_on = NO_CPU; | ||
678 | t->rt_param.linked_on = NO_CPU; | ||
679 | |||
680 | if (is_scheduled) { | ||
681 | #ifdef CONFIG_RELEASE_MASTER | ||
682 | if (task_cpu(t) != cluster->pfair.release_master) | ||
683 | #endif | ||
684 | t->rt_param.scheduled_on = task_cpu(t); | ||
685 | } | ||
686 | |||
687 | if (is_running(t)) { | ||
688 | tsk_rt(t)->present = 1; | ||
689 | __add_ready(&cluster->pfair, t); | ||
690 | } else { | ||
691 | tsk_rt(t)->present = 0; | ||
692 | tsk_rt(t)->flags |= FLAGS_NEED_REQUEUE; | ||
693 | } | ||
694 | |||
695 | check_preempt(t); | ||
696 | |||
697 | raw_spin_unlock_irqrestore(cluster_lock(cluster), flags); | ||
698 | } | ||
699 | |||
700 | static void pfair_task_wake_up(struct task_struct *t) | ||
701 | { | ||
702 | unsigned long flags; | ||
703 | lt_t now; | ||
704 | struct pfair_cluster* cluster; | ||
705 | |||
706 | cluster = tsk_pfair(t)->cluster; | ||
707 | |||
708 | TRACE_TASK(t, "wakes at %llu, release=%lu, pfair_time:%lu\n", | ||
709 | litmus_clock(), cur_release(t), cluster->pfair_time); | ||
710 | |||
711 | raw_spin_lock_irqsave(cluster_lock(cluster), flags); | ||
712 | |||
713 | /* If a task blocks and wakes before its next job release, | ||
714 | * then it may resume if it is currently linked somewhere | ||
715 | * (as if it never blocked at all). Otherwise, we have a | ||
716 | * new sporadic job release. | ||
717 | */ | ||
718 | now = litmus_clock(); | ||
719 | if (is_tardy(t, now)) { | ||
720 | TRACE_TASK(t, "sporadic release!\n"); | ||
721 | release_at(t, now); | ||
722 | prepare_release(t, time2quanta(now, CEIL)); | ||
723 | sched_trace_task_release(t); | ||
724 | } | ||
725 | |||
726 | /* only add to ready queue if the task isn't still linked somewhere */ | ||
727 | if (tsk_rt(t)->flags & FLAGS_NEED_REQUEUE) { | ||
728 | tsk_rt(t)->flags &= ~FLAGS_NEED_REQUEUE; | ||
729 | TRACE_TASK(t, "requeueing required\n"); | ||
730 | tsk_rt(t)->completed = 0; | ||
731 | __add_ready(&cluster->pfair, t); | ||
732 | } | ||
733 | |||
734 | check_preempt(t); | ||
735 | |||
736 | raw_spin_unlock_irqrestore(cluster_lock(cluster), flags); | ||
737 | TRACE_TASK(t, "wake up done at %llu\n", litmus_clock()); | ||
738 | } | ||
739 | |||
740 | static void pfair_task_block(struct task_struct *t) | ||
741 | { | ||
742 | BUG_ON(!is_realtime(t)); | ||
743 | TRACE_TASK(t, "blocks at %llu, state:%d\n", | ||
744 | litmus_clock(), t->state); | ||
745 | } | ||
746 | |||
747 | static void pfair_task_exit(struct task_struct * t) | ||
748 | { | ||
749 | unsigned long flags; | ||
750 | struct pfair_cluster *cluster; | ||
751 | |||
752 | BUG_ON(!is_realtime(t)); | ||
753 | |||
754 | cluster = tsk_pfair(t)->cluster; | ||
755 | |||
756 | /* Remote task from release or ready queue, and ensure | ||
757 | * that it is not the scheduled task for ANY CPU. We | ||
758 | * do this blanket check because occassionally when | ||
759 | * tasks exit while blocked, the task_cpu of the task | ||
760 | * might not be the same as the CPU that the PFAIR scheduler | ||
761 | * has chosen for it. | ||
762 | */ | ||
763 | raw_spin_lock_irqsave(cluster_lock(cluster), flags); | ||
764 | |||
765 | TRACE_TASK(t, "RIP, state:%d\n", t->state); | ||
766 | drop_all_references(t); | ||
767 | |||
768 | raw_spin_unlock_irqrestore(cluster_lock(cluster), flags); | ||
769 | |||
770 | kfree(t->rt_param.pfair); | ||
771 | t->rt_param.pfair = NULL; | ||
772 | } | ||
773 | |||
774 | |||
775 | static void pfair_release_at(struct task_struct* task, lt_t start) | ||
776 | { | ||
777 | unsigned long flags; | ||
778 | quanta_t release; | ||
779 | |||
780 | struct pfair_cluster *cluster; | ||
781 | |||
782 | cluster = tsk_pfair(task)->cluster; | ||
783 | |||
784 | BUG_ON(!is_realtime(task)); | ||
785 | |||
786 | raw_spin_lock_irqsave(cluster_lock(cluster), flags); | ||
787 | |||
788 | release_at(task, start); | ||
789 | release = time2quanta(start, CEIL); | ||
790 | prepare_release(task, release); | ||
791 | |||
792 | TRACE_TASK(task, "sys release at %lu\n", release); | ||
793 | |||
794 | raw_spin_unlock_irqrestore(cluster_lock(cluster), flags); | ||
795 | } | ||
796 | |||
797 | static void init_subtask(struct subtask* sub, unsigned long i, | ||
798 | lt_t quanta, lt_t period) | ||
799 | { | ||
800 | /* since i is zero-based, the formulas are shifted by one */ | ||
801 | lt_t tmp; | ||
802 | |||
803 | /* release */ | ||
804 | tmp = period * i; | ||
805 | do_div(tmp, quanta); /* floor */ | ||
806 | sub->release = (quanta_t) tmp; | ||
807 | |||
808 | /* deadline */ | ||
809 | tmp = period * (i + 1); | ||
810 | if (do_div(tmp, quanta)) /* ceil */ | ||
811 | tmp++; | ||
812 | sub->deadline = (quanta_t) tmp; | ||
813 | |||
814 | /* next release */ | ||
815 | tmp = period * (i + 1); | ||
816 | do_div(tmp, quanta); /* floor */ | ||
817 | sub->overlap = sub->deadline - (quanta_t) tmp; | ||
818 | |||
819 | /* Group deadline. | ||
820 | * Based on the formula given in Uma's thesis. | ||
821 | */ | ||
822 | if (2 * quanta >= period) { | ||
823 | /* heavy */ | ||
824 | tmp = (sub->deadline - (i + 1)) * period; | ||
825 | if (period > quanta && | ||
826 | do_div(tmp, (period - quanta))) /* ceil */ | ||
827 | tmp++; | ||
828 | sub->group_deadline = (quanta_t) tmp; | ||
829 | } else | ||
830 | sub->group_deadline = 0; | ||
831 | } | ||
832 | |||
833 | static void dump_subtasks(struct task_struct* t) | ||
834 | { | ||
835 | unsigned long i; | ||
836 | for (i = 0; i < t->rt_param.pfair->quanta; i++) | ||
837 | TRACE_TASK(t, "SUBTASK %lu: rel=%lu dl=%lu bbit:%lu gdl:%lu\n", | ||
838 | i + 1, | ||
839 | t->rt_param.pfair->subtasks[i].release, | ||
840 | t->rt_param.pfair->subtasks[i].deadline, | ||
841 | t->rt_param.pfair->subtasks[i].overlap, | ||
842 | t->rt_param.pfair->subtasks[i].group_deadline); | ||
843 | } | ||
844 | |||
845 | static long pfair_admit_task(struct task_struct* t) | ||
846 | { | ||
847 | lt_t quanta; | ||
848 | lt_t period; | ||
849 | s64 quantum_length = ktime_to_ns(tick_period); | ||
850 | struct pfair_param* param; | ||
851 | unsigned long i; | ||
852 | |||
853 | /* first check that the task is in the right cluster */ | ||
854 | if (cpu_cluster(pstate[tsk_rt(t)->task_params.cpu]) != | ||
855 | cpu_cluster(pstate[task_cpu(t)])) | ||
856 | return -EINVAL; | ||
857 | |||
858 | if (get_rt_period(t) != get_rt_relative_deadline(t)) { | ||
859 | printk(KERN_INFO "%s: Admission rejected. " | ||
860 | "Only implicit deadlines are currently supported.\n", | ||
861 | litmus->plugin_name); | ||
862 | return -EINVAL; | ||
863 | } | ||
864 | |||
865 | /* Pfair is a tick-based method, so the time | ||
866 | * of interest is jiffies. Calculate tick-based | ||
867 | * times for everything. | ||
868 | * (Ceiling of exec cost, floor of period.) | ||
869 | */ | ||
870 | |||
871 | quanta = get_exec_cost(t); | ||
872 | period = get_rt_period(t); | ||
873 | |||
874 | quanta = time2quanta(get_exec_cost(t), CEIL); | ||
875 | |||
876 | if (do_div(period, quantum_length)) | ||
877 | printk(KERN_WARNING | ||
878 | "The period of %s/%d is not a multiple of %llu.\n", | ||
879 | t->comm, t->pid, (unsigned long long) quantum_length); | ||
880 | |||
881 | if (quanta == period) { | ||
882 | /* special case: task has weight 1.0 */ | ||
883 | printk(KERN_INFO | ||
884 | "Admitting weight 1.0 task. (%s/%d, %llu, %llu).\n", | ||
885 | t->comm, t->pid, quanta, period); | ||
886 | quanta = 1; | ||
887 | period = 1; | ||
888 | } | ||
889 | |||
890 | param = kmalloc(sizeof(*param) + | ||
891 | quanta * sizeof(struct subtask), GFP_ATOMIC); | ||
892 | |||
893 | if (!param) | ||
894 | return -ENOMEM; | ||
895 | |||
896 | param->quanta = quanta; | ||
897 | param->cur = 0; | ||
898 | param->release = 0; | ||
899 | param->period = period; | ||
900 | |||
901 | param->cluster = cpu_cluster(pstate[tsk_rt(t)->task_params.cpu]); | ||
902 | |||
903 | for (i = 0; i < quanta; i++) | ||
904 | init_subtask(param->subtasks + i, i, quanta, period); | ||
905 | |||
906 | if (t->rt_param.pfair) | ||
907 | /* get rid of stale allocation */ | ||
908 | kfree(t->rt_param.pfair); | ||
909 | |||
910 | t->rt_param.pfair = param; | ||
911 | |||
912 | /* spew out some debug info */ | ||
913 | dump_subtasks(t); | ||
914 | |||
915 | return 0; | ||
916 | } | ||
917 | |||
918 | static void pfair_init_cluster(struct pfair_cluster* cluster) | ||
919 | { | ||
920 | rt_domain_init(&cluster->pfair, pfair_ready_order, NULL, pfair_release_jobs); | ||
921 | bheap_init(&cluster->release_queue); | ||
922 | raw_spin_lock_init(&cluster->release_lock); | ||
923 | INIT_LIST_HEAD(&cluster->topology.cpus); | ||
924 | } | ||
925 | |||
926 | static void cleanup_clusters(void) | ||
927 | { | ||
928 | int i; | ||
929 | |||
930 | if (num_pfair_clusters) | ||
931 | kfree(pfair_clusters); | ||
932 | pfair_clusters = NULL; | ||
933 | num_pfair_clusters = 0; | ||
934 | |||
935 | /* avoid stale pointers */ | ||
936 | for (i = 0; i < num_online_cpus(); i++) { | ||
937 | pstate[i]->topology.cluster = NULL; | ||
938 | printk("P%d missed %u updates and %u quanta.\n", cpu_id(pstate[i]), | ||
939 | pstate[i]->missed_updates, pstate[i]->missed_quanta); | ||
940 | } | ||
941 | } | ||
942 | |||
943 | static long pfair_activate_plugin(void) | ||
944 | { | ||
945 | int err, i; | ||
946 | struct pfair_state* state; | ||
947 | struct pfair_cluster* cluster ; | ||
948 | quanta_t now; | ||
949 | int cluster_size; | ||
950 | struct cluster_cpu* cpus[NR_CPUS]; | ||
951 | struct scheduling_cluster* clust[NR_CPUS]; | ||
952 | |||
953 | cluster_size = get_cluster_size(pfair_cluster_level); | ||
954 | |||
955 | if (cluster_size <= 0 || num_online_cpus() % cluster_size != 0) | ||
956 | return -EINVAL; | ||
957 | |||
958 | num_pfair_clusters = num_online_cpus() / cluster_size; | ||
959 | |||
960 | pfair_clusters = kzalloc(num_pfair_clusters * sizeof(struct pfair_cluster), GFP_ATOMIC); | ||
961 | if (!pfair_clusters) { | ||
962 | num_pfair_clusters = 0; | ||
963 | printk(KERN_ERR "Could not allocate Pfair clusters!\n"); | ||
964 | return -ENOMEM; | ||
965 | } | ||
966 | |||
967 | state = &__get_cpu_var(pfair_state); | ||
968 | now = current_quantum(state); | ||
969 | TRACE("Activating PFAIR at q=%lu\n", now); | ||
970 | |||
971 | for (i = 0; i < num_pfair_clusters; i++) { | ||
972 | cluster = &pfair_clusters[i]; | ||
973 | pfair_init_cluster(cluster); | ||
974 | cluster->pfair_time = now; | ||
975 | clust[i] = &cluster->topology; | ||
976 | #ifdef CONFIG_RELEASE_MASTER | ||
977 | cluster->pfair.release_master = atomic_read(&release_master_cpu); | ||
978 | #endif | ||
979 | } | ||
980 | |||
981 | for (i = 0; i < num_online_cpus(); i++) { | ||
982 | state = &per_cpu(pfair_state, i); | ||
983 | state->cur_tick = now; | ||
984 | state->local_tick = now; | ||
985 | state->missed_quanta = 0; | ||
986 | state->missed_updates = 0; | ||
987 | state->offset = cpu_stagger_offset(i); | ||
988 | printk(KERN_ERR "cpus[%d] set; %d\n", i, num_online_cpus()); | ||
989 | cpus[i] = &state->topology; | ||
990 | } | ||
991 | |||
992 | err = assign_cpus_to_clusters(pfair_cluster_level, clust, num_pfair_clusters, | ||
993 | cpus, num_online_cpus()); | ||
994 | |||
995 | if (err < 0) | ||
996 | cleanup_clusters(); | ||
997 | |||
998 | return err; | ||
999 | } | ||
1000 | |||
1001 | static long pfair_deactivate_plugin(void) | ||
1002 | { | ||
1003 | cleanup_clusters(); | ||
1004 | return 0; | ||
1005 | } | ||
1006 | |||
1007 | /* Plugin object */ | ||
1008 | static struct sched_plugin pfair_plugin __cacheline_aligned_in_smp = { | ||
1009 | .plugin_name = "PFAIR", | ||
1010 | .tick = pfair_tick, | ||
1011 | .task_new = pfair_task_new, | ||
1012 | .task_exit = pfair_task_exit, | ||
1013 | .schedule = pfair_schedule, | ||
1014 | .task_wake_up = pfair_task_wake_up, | ||
1015 | .task_block = pfair_task_block, | ||
1016 | .admit_task = pfair_admit_task, | ||
1017 | .release_at = pfair_release_at, | ||
1018 | .complete_job = complete_job, | ||
1019 | .activate_plugin = pfair_activate_plugin, | ||
1020 | .deactivate_plugin = pfair_deactivate_plugin, | ||
1021 | }; | ||
1022 | |||
1023 | |||
1024 | static struct proc_dir_entry *cluster_file = NULL, *pfair_dir = NULL; | ||
1025 | |||
1026 | static int __init init_pfair(void) | ||
1027 | { | ||
1028 | int cpu, err, fs; | ||
1029 | struct pfair_state *state; | ||
1030 | |||
1031 | /* | ||
1032 | * initialize short_cut for per-cpu pfair state; | ||
1033 | * there may be a problem here if someone removes a cpu | ||
1034 | * while we are doing this initialization... and if cpus | ||
1035 | * are added / removed later... but we don't support CPU hotplug atm anyway. | ||
1036 | */ | ||
1037 | pstate = kmalloc(sizeof(struct pfair_state*) * num_online_cpus(), GFP_KERNEL); | ||
1038 | |||
1039 | /* initialize CPU state */ | ||
1040 | for (cpu = 0; cpu < num_online_cpus(); cpu++) { | ||
1041 | state = &per_cpu(pfair_state, cpu); | ||
1042 | state->topology.id = cpu; | ||
1043 | state->cur_tick = 0; | ||
1044 | state->local_tick = 0; | ||
1045 | state->linked = NULL; | ||
1046 | state->local = NULL; | ||
1047 | state->scheduled = NULL; | ||
1048 | state->missed_quanta = 0; | ||
1049 | state->offset = cpu_stagger_offset(cpu); | ||
1050 | pstate[cpu] = state; | ||
1051 | } | ||
1052 | |||
1053 | pfair_clusters = NULL; | ||
1054 | num_pfair_clusters = 0; | ||
1055 | |||
1056 | err = register_sched_plugin(&pfair_plugin); | ||
1057 | if (!err) { | ||
1058 | fs = make_plugin_proc_dir(&pfair_plugin, &pfair_dir); | ||
1059 | if (!fs) | ||
1060 | cluster_file = create_cluster_file(pfair_dir, &pfair_cluster_level); | ||
1061 | else | ||
1062 | printk(KERN_ERR "Could not allocate PFAIR procfs dir.\n"); | ||
1063 | } | ||
1064 | |||
1065 | return err; | ||
1066 | } | ||
1067 | |||
1068 | static void __exit clean_pfair(void) | ||
1069 | { | ||
1070 | kfree(pstate); | ||
1071 | |||
1072 | if (cluster_file) | ||
1073 | remove_proc_entry("cluster", pfair_dir); | ||
1074 | if (pfair_dir) | ||
1075 | remove_plugin_proc_dir(&pfair_plugin); | ||
1076 | } | ||
1077 | |||
1078 | module_init(init_pfair); | ||
1079 | module_exit(clean_pfair); | ||