aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorMaciej W. Rozycki <macro@linux-mips.org>2007-07-18 03:49:11 -0400
committerLinus Torvalds <torvalds@woody.linux-foundation.org>2007-07-18 11:38:22 -0400
commit8b4a40809e5330c9da5d20107d693d92d73b31dc (patch)
tree14de7320d32a7e72dc2cddf4833405db0f49a7ba
parentb187f180cc942e50007aa039f8e3a620ee5f3171 (diff)
zs: move to the serial subsystem
This is a reimplementation of the zs driver for the serial subsystem. Any resemblance to the old driver is purely coincidential. ;-) I do hope I got the handling of modem lines right -- better do not tackle me about the issue unless you feel too good... Any users of the old driver: please note the numbers of the serial lines have now been swapped, i.e. ttyS0 <-> ttyS1 and ttyS2 <-> ttyS3. It has to do with the modem lines mentioned above; basically the port A in a given chip has to be initialised before the port B if you want to use the latter as the serial console (which is usually the case), as operations on modem lines of the serial line associated with the port B access both ports (see the comment at the top of the driver for the details of wiring used). Please update your scripts. This is also the reason each SCC now requests an IRQ once only (as seen in "/proc/interrupts") -- the handler takes care of both ports at once as the line associated with the port B has to take status update interrupts from both ports (and yet the line of the port A takes its own for itself too). The old driver never got it right... Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-rw-r--r--MAINTAINERS5
-rw-r--r--drivers/char/Kconfig33
-rw-r--r--drivers/char/decserial.c67
-rw-r--r--drivers/serial/Kconfig30
-rw-r--r--drivers/serial/Makefile1
-rw-r--r--drivers/serial/zs.c1287
-rw-r--r--drivers/serial/zs.h284
-rw-r--r--drivers/tc/Makefile1
-rw-r--r--drivers/tc/zs.c2203
-rw-r--r--drivers/tc/zs.h404
-rw-r--r--include/asm-mips/dec/serial.h36
-rw-r--r--include/linux/serial_core.h5
12 files changed, 1610 insertions, 2746 deletions
diff --git a/MAINTAINERS b/MAINTAINERS
index 368a7181fa14..a9615a567da6 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -4110,6 +4110,11 @@ W: http://www.polyware.nl/~middelin/En/hobbies.html
4110W: http://www.polyware.nl/~middelin/hobbies.html 4110W: http://www.polyware.nl/~middelin/hobbies.html
4111S: Maintained 4111S: Maintained
4112 4112
4113ZS DECSTATION Z85C30 SERIAL DRIVER
4114P: Maciej W. Rozycki
4115M: macro@linux-mips.org
4116S: Maintained
4117
4113THE REST 4118THE REST
4114P: Linus Torvalds 4119P: Linus Torvalds
4115S: Buried alive in reporters 4120S: Buried alive in reporters
diff --git a/drivers/char/Kconfig b/drivers/char/Kconfig
index d8d7125529c4..97bd71bc3aea 100644
--- a/drivers/char/Kconfig
+++ b/drivers/char/Kconfig
@@ -372,39 +372,6 @@ config ISTALLION
372 To compile this driver as a module, choose M here: the 372 To compile this driver as a module, choose M here: the
373 module will be called istallion. 373 module will be called istallion.
374 374
375config SERIAL_DEC
376 bool "DECstation serial support"
377 depends on MACH_DECSTATION
378 default y
379 help
380 This selects whether you want to be asked about drivers for
381 DECstation serial ports.
382
383 Note that the answer to this question won't directly affect the
384 kernel: saying N will just cause the configurator to skip all
385 the questions about DECstation serial ports.
386
387config SERIAL_DEC_CONSOLE
388 bool "Support for console on a DECstation serial port"
389 depends on SERIAL_DEC
390 default y
391 help
392 If you say Y here, it will be possible to use a serial port as the
393 system console (the system console is the device which receives all
394 kernel messages and warnings and which allows logins in single user
395 mode). Note that the firmware uses ttyS0 as the serial console on
396 the Maxine and ttyS2 on the others.
397
398 If unsure, say Y.
399
400config ZS
401 bool "Z85C30 Serial Support"
402 depends on SERIAL_DEC
403 default y
404 help
405 Documentation on the Zilog 85C350 serial communications controller
406 is downloadable at <http://www.zilog.com/pdfs/serial/z85c30.pdf>
407
408config A2232 375config A2232
409 tristate "Commodore A2232 serial support (EXPERIMENTAL)" 376 tristate "Commodore A2232 serial support (EXPERIMENTAL)"
410 depends on EXPERIMENTAL && ZORRO && BROKEN_ON_SMP 377 depends on EXPERIMENTAL && ZORRO && BROKEN_ON_SMP
diff --git a/drivers/char/decserial.c b/drivers/char/decserial.c
deleted file mode 100644
index 8ea2bea2b183..000000000000
--- a/drivers/char/decserial.c
+++ /dev/null
@@ -1,67 +0,0 @@
1/*
2 * sercons.c
3 * choose the right serial device at boot time
4 *
5 * triemer 6-SEP-1998
6 * sercons.c is designed to allow the three different kinds
7 * of serial devices under the decstation world to co-exist
8 * in the same kernel. The idea here is to abstract
9 * the pieces of the drivers that are common to this file
10 * so that they do not clash at compile time and runtime.
11 *
12 * HK 16-SEP-1998 v0.002
13 * removed the PROM console as this is not a real serial
14 * device. Added support for PROM console in drivers/char/tty_io.c
15 * instead. Although it may work to enable more than one
16 * console device I strongly recommend to use only one.
17 */
18
19#include <linux/init.h>
20#include <asm/dec/machtype.h>
21
22#ifdef CONFIG_ZS
23extern int zs_init(void);
24#endif
25
26#ifdef CONFIG_SERIAL_CONSOLE
27
28#ifdef CONFIG_ZS
29extern void zs_serial_console_init(void);
30#endif
31
32#endif
33
34/* rs_init - starts up the serial interface -
35 handle normal case of starting up the serial interface */
36
37#ifdef CONFIG_SERIAL
38
39int __init rs_init(void)
40{
41#ifdef CONFIG_ZS
42 if (IOASIC)
43 return zs_init();
44#endif
45 return -ENXIO;
46}
47
48__initcall(rs_init);
49
50#endif
51
52#ifdef CONFIG_SERIAL_CONSOLE
53
54/* serial_console_init handles the special case of starting
55 * up the console on the serial port
56 */
57static int __init decserial_console_init(void)
58{
59#ifdef CONFIG_ZS
60 if (IOASIC)
61 zs_serial_console_init();
62#endif
63 return 0;
64}
65console_initcall(decserial_console_init);
66
67#endif
diff --git a/drivers/serial/Kconfig b/drivers/serial/Kconfig
index 7fa413ddccf5..18f629706448 100644
--- a/drivers/serial/Kconfig
+++ b/drivers/serial/Kconfig
@@ -486,6 +486,36 @@ config SERIAL_DZ_CONSOLE
486 486
487 If unsure, say Y. 487 If unsure, say Y.
488 488
489config SERIAL_ZS
490 tristate "DECstation Z85C30 serial support"
491 depends on MACH_DECSTATION
492 select SERIAL_CORE
493 default y
494 ---help---
495 Support for the Zilog 85C350 serial communications controller used
496 for serial ports in newer DECstation systems. These include the
497 DECsystem 5900 and all models of the DECstation and DECsystem 5000
498 systems except from model 200.
499
500 If unsure, say Y. To compile this driver as a module, choose M here:
501 the module will be called zs.
502
503config SERIAL_ZS_CONSOLE
504 bool "Support for console on a DECstation Z85C30 serial port"
505 depends on SERIAL_ZS=y
506 select SERIAL_CORE_CONSOLE
507 default y
508 ---help---
509 If you say Y here, it will be possible to use a serial port as the
510 system console (the system console is the device which receives all
511 kernel messages and warnings and which allows logins in single user
512 mode).
513
514 Note that the firmware uses ttyS1 as the serial console on the
515 Maxine and ttyS3 on the others using this driver.
516
517 If unsure, say Y.
518
489config SERIAL_21285 519config SERIAL_21285
490 tristate "DC21285 serial port support" 520 tristate "DC21285 serial port support"
491 depends on ARM && FOOTBRIDGE 521 depends on ARM && FOOTBRIDGE
diff --git a/drivers/serial/Makefile b/drivers/serial/Makefile
index c48cdd61b736..af6377d480d7 100644
--- a/drivers/serial/Makefile
+++ b/drivers/serial/Makefile
@@ -43,6 +43,7 @@ obj-$(CONFIG_V850E_UART) += v850e_uart.o
43obj-$(CONFIG_SERIAL_PMACZILOG) += pmac_zilog.o 43obj-$(CONFIG_SERIAL_PMACZILOG) += pmac_zilog.o
44obj-$(CONFIG_SERIAL_LH7A40X) += serial_lh7a40x.o 44obj-$(CONFIG_SERIAL_LH7A40X) += serial_lh7a40x.o
45obj-$(CONFIG_SERIAL_DZ) += dz.o 45obj-$(CONFIG_SERIAL_DZ) += dz.o
46obj-$(CONFIG_SERIAL_ZS) += zs.o
46obj-$(CONFIG_SERIAL_SH_SCI) += sh-sci.o 47obj-$(CONFIG_SERIAL_SH_SCI) += sh-sci.o
47obj-$(CONFIG_SERIAL_SGI_L1_CONSOLE) += sn_console.o 48obj-$(CONFIG_SERIAL_SGI_L1_CONSOLE) += sn_console.o
48obj-$(CONFIG_SERIAL_CPM) += cpm_uart/ 49obj-$(CONFIG_SERIAL_CPM) += cpm_uart/
diff --git a/drivers/serial/zs.c b/drivers/serial/zs.c
new file mode 100644
index 000000000000..65f1294fd27b
--- /dev/null
+++ b/drivers/serial/zs.c
@@ -0,0 +1,1287 @@
1/*
2 * zs.c: Serial port driver for IOASIC DECstations.
3 *
4 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
5 * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
6 *
7 * DECstation changes
8 * Copyright (C) 1998-2000 Harald Koerfgen
9 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
10 *
11 * For the rest of the code the original Copyright applies:
12 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
13 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
14 *
15 *
16 * Note: for IOASIC systems the wiring is as follows:
17 *
18 * mouse/keyboard:
19 * DIN-7 MJ-4 signal SCC
20 * 2 1 TxD <- A.TxD
21 * 3 4 RxD -> A.RxD
22 *
23 * EIA-232/EIA-423:
24 * DB-25 MMJ-6 signal SCC
25 * 2 2 TxD <- B.TxD
26 * 3 5 RxD -> B.RxD
27 * 4 RTS <- ~A.RTS
28 * 5 CTS -> ~B.CTS
29 * 6 6 DSR -> ~A.SYNC
30 * 8 CD -> ~B.DCD
31 * 12 DSRS(DCE) -> ~A.CTS (*)
32 * 15 TxC -> B.TxC
33 * 17 RxC -> B.RxC
34 * 20 1 DTR <- ~A.DTR
35 * 22 RI -> ~A.DCD
36 * 23 DSRS(DTE) <- ~B.RTS
37 *
38 * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
39 * is shared with DSRS(DTE) at pin 23.
40 *
41 * As you can immediately notice the wiring of the RTS, DTR and DSR signals
42 * is a bit odd. This makes the handling of port B unnecessarily
43 * complicated and prevents the use of some automatic modes of operation.
44 */
45
46#if defined(CONFIG_SERIAL_ZS_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
47#define SUPPORT_SYSRQ
48#endif
49
50#include <linux/bug.h>
51#include <linux/console.h>
52#include <linux/delay.h>
53#include <linux/errno.h>
54#include <linux/init.h>
55#include <linux/interrupt.h>
56#include <linux/io.h>
57#include <linux/ioport.h>
58#include <linux/irqflags.h>
59#include <linux/kernel.h>
60#include <linux/major.h>
61#include <linux/serial.h>
62#include <linux/serial_core.h>
63#include <linux/spinlock.h>
64#include <linux/sysrq.h>
65#include <linux/tty.h>
66#include <linux/types.h>
67
68#include <asm/atomic.h>
69#include <asm/system.h>
70
71#include <asm/dec/interrupts.h>
72#include <asm/dec/ioasic_addrs.h>
73#include <asm/dec/system.h>
74
75#include "zs.h"
76
77
78MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
79MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
80MODULE_LICENSE("GPL");
81
82
83static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
84static char zs_version[] __initdata = "0.10";
85
86/*
87 * It would be nice to dynamically allocate everything that
88 * depends on ZS_NUM_SCCS, so we could support any number of
89 * Z85C30s, but for now...
90 */
91#define ZS_NUM_SCCS 2 /* Max # of ZS chips supported. */
92#define ZS_NUM_CHAN 2 /* 2 channels per chip. */
93#define ZS_CHAN_A 0 /* Index of the channel A. */
94#define ZS_CHAN_B 1 /* Index of the channel B. */
95#define ZS_CHAN_IO_SIZE 8 /* IOMEM space size. */
96#define ZS_CHAN_IO_STRIDE 4 /* Register alignment. */
97#define ZS_CHAN_IO_OFFSET 1 /* The SCC resides on the high byte
98 of the 16-bit IOBUS. */
99#define ZS_CLOCK 7372800 /* Z85C30 PCLK input clock rate. */
100
101#define to_zport(uport) container_of(uport, struct zs_port, port)
102
103struct zs_parms {
104 resource_size_t scc[ZS_NUM_SCCS];
105 int irq[ZS_NUM_SCCS];
106};
107
108static struct zs_scc zs_sccs[ZS_NUM_SCCS];
109
110static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
111 0, /* write 0 */
112 PAR_SPEC, /* write 1 */
113 0, /* write 2 */
114 0, /* write 3 */
115 X16CLK | SB1, /* write 4 */
116 0, /* write 5 */
117 0, 0, 0, /* write 6, 7, 8 */
118 MIE | DLC | NV, /* write 9 */
119 NRZ, /* write 10 */
120 TCBR | RCBR, /* write 11 */
121 0, 0, /* BRG time constant, write 12 + 13 */
122 BRSRC | BRENABL, /* write 14 */
123 0, /* write 15 */
124};
125
126/*
127 * Debugging.
128 */
129#undef ZS_DEBUG_REGS
130
131
132/*
133 * Reading and writing Z85C30 registers.
134 */
135static void recovery_delay(void)
136{
137 udelay(2);
138}
139
140static u8 read_zsreg(struct zs_port *zport, int reg)
141{
142 void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
143 u8 retval;
144
145 if (reg != 0) {
146 writeb(reg & 0xf, control);
147 fast_iob();
148 recovery_delay();
149 }
150 retval = readb(control);
151 recovery_delay();
152 return retval;
153}
154
155static void write_zsreg(struct zs_port *zport, int reg, u8 value)
156{
157 void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
158
159 if (reg != 0) {
160 writeb(reg & 0xf, control);
161 fast_iob(); recovery_delay();
162 }
163 writeb(value, control);
164 fast_iob();
165 recovery_delay();
166 return;
167}
168
169static u8 read_zsdata(struct zs_port *zport)
170{
171 void __iomem *data = zport->port.membase +
172 ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
173 u8 retval;
174
175 retval = readb(data);
176 recovery_delay();
177 return retval;
178}
179
180static void write_zsdata(struct zs_port *zport, u8 value)
181{
182 void __iomem *data = zport->port.membase +
183 ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
184
185 writeb(value, data);
186 fast_iob();
187 recovery_delay();
188 return;
189}
190
191#ifdef ZS_DEBUG_REGS
192void zs_dump(void)
193{
194 struct zs_port *zport;
195 int i, j;
196
197 for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
198 zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
199
200 if (!zport->scc)
201 continue;
202
203 for (j = 0; j < 16; j++)
204 printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
205 printk("\n");
206 for (j = 0; j < 16; j++)
207 printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
208 printk("\n\n");
209 }
210}
211#endif
212
213
214static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
215{
216 if (irq)
217 spin_lock_irq(lock);
218 else
219 spin_lock(lock);
220}
221
222static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
223{
224 if (irq)
225 spin_unlock_irq(lock);
226 else
227 spin_unlock(lock);
228}
229
230static int zs_receive_drain(struct zs_port *zport)
231{
232 int loops = 10000;
233
234 while ((read_zsreg(zport, R0) & Rx_CH_AV) && loops--)
235 read_zsdata(zport);
236 return loops;
237}
238
239static int zs_transmit_drain(struct zs_port *zport, int irq)
240{
241 struct zs_scc *scc = zport->scc;
242 int loops = 10000;
243
244 while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && loops--) {
245 zs_spin_unlock_cond_irq(&scc->zlock, irq);
246 udelay(2);
247 zs_spin_lock_cond_irq(&scc->zlock, irq);
248 }
249 return loops;
250}
251
252static int zs_line_drain(struct zs_port *zport, int irq)
253{
254 struct zs_scc *scc = zport->scc;
255 int loops = 10000;
256
257 while (!(read_zsreg(zport, R1) & ALL_SNT) && loops--) {
258 zs_spin_unlock_cond_irq(&scc->zlock, irq);
259 udelay(2);
260 zs_spin_lock_cond_irq(&scc->zlock, irq);
261 }
262 return loops;
263}
264
265
266static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
267{
268 /* Let the current transmission finish. */
269 zs_line_drain(zport, irq);
270 /* Load 'em up. */
271 write_zsreg(zport, R3, regs[3] & ~RxENABLE);
272 write_zsreg(zport, R5, regs[5] & ~TxENAB);
273 write_zsreg(zport, R4, regs[4]);
274 write_zsreg(zport, R9, regs[9]);
275 write_zsreg(zport, R1, regs[1]);
276 write_zsreg(zport, R2, regs[2]);
277 write_zsreg(zport, R10, regs[10]);
278 write_zsreg(zport, R14, regs[14] & ~BRENABL);
279 write_zsreg(zport, R11, regs[11]);
280 write_zsreg(zport, R12, regs[12]);
281 write_zsreg(zport, R13, regs[13]);
282 write_zsreg(zport, R14, regs[14]);
283 write_zsreg(zport, R15, regs[15]);
284 if (regs[3] & RxENABLE)
285 write_zsreg(zport, R3, regs[3]);
286 if (regs[5] & TxENAB)
287 write_zsreg(zport, R5, regs[5]);
288 return;
289}
290
291
292/*
293 * Status handling routines.
294 */
295
296/*
297 * zs_tx_empty() -- get the transmitter empty status
298 *
299 * Purpose: Let user call ioctl() to get info when the UART physically
300 * is emptied. On bus types like RS485, the transmitter must
301 * release the bus after transmitting. This must be done when
302 * the transmit shift register is empty, not be done when the
303 * transmit holding register is empty. This functionality
304 * allows an RS485 driver to be written in user space.
305 */
306static unsigned int zs_tx_empty(struct uart_port *uport)
307{
308 struct zs_port *zport = to_zport(uport);
309 struct zs_scc *scc = zport->scc;
310 unsigned long flags;
311 u8 status;
312
313 spin_lock_irqsave(&scc->zlock, flags);
314 status = read_zsreg(zport, R1);
315 spin_unlock_irqrestore(&scc->zlock, flags);
316
317 return status & ALL_SNT ? TIOCSER_TEMT : 0;
318}
319
320static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
321 struct zs_port *zport_b)
322{
323 u8 status_a, status_b;
324 unsigned int mctrl;
325
326 status_a = read_zsreg(zport_a, R0);
327 status_b = read_zsreg(zport_b, R0);
328
329 mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
330 ((status_b & DCD) ? TIOCM_CAR : 0) |
331 ((status_a & DCD) ? TIOCM_RNG : 0) |
332 ((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
333
334 return mctrl;
335}
336
337static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
338{
339 struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
340
341 return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
342}
343
344static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
345{
346 struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
347 unsigned int mmask, mctrl, delta;
348 u8 mask_a, mask_b;
349
350 if (zport == zport_a)
351 return 0;
352
353 mask_a = zport_a->regs[15];
354 mask_b = zport->regs[15];
355
356 mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
357 ((mask_b & DCDIE) ? TIOCM_CAR : 0) |
358 ((mask_a & DCDIE) ? TIOCM_RNG : 0) |
359 ((mask_a & SYNCIE) ? TIOCM_DSR : 0);
360
361 mctrl = zport->mctrl;
362 if (mmask) {
363 mctrl &= ~mmask;
364 mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
365 }
366
367 delta = mctrl ^ zport->mctrl;
368 if (delta)
369 zport->mctrl = mctrl;
370
371 return delta;
372}
373
374static unsigned int zs_get_mctrl(struct uart_port *uport)
375{
376 struct zs_port *zport = to_zport(uport);
377 struct zs_scc *scc = zport->scc;
378 unsigned int mctrl;
379
380 spin_lock(&scc->zlock);
381 mctrl = zs_raw_get_mctrl(zport);
382 spin_unlock(&scc->zlock);
383
384 return mctrl;
385}
386
387static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
388{
389 struct zs_port *zport = to_zport(uport);
390 struct zs_scc *scc = zport->scc;
391 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
392 u8 oldloop, newloop;
393
394 spin_lock(&scc->zlock);
395 if (zport != zport_a) {
396 if (mctrl & TIOCM_DTR)
397 zport_a->regs[5] |= DTR;
398 else
399 zport_a->regs[5] &= ~DTR;
400 if (mctrl & TIOCM_RTS)
401 zport_a->regs[5] |= RTS;
402 else
403 zport_a->regs[5] &= ~RTS;
404 write_zsreg(zport_a, R5, zport_a->regs[5]);
405 }
406
407 /* Rarely modified, so don't poke at hardware unless necessary. */
408 oldloop = zport->regs[14];
409 newloop = oldloop;
410 if (mctrl & TIOCM_LOOP)
411 newloop |= LOOPBAK;
412 else
413 newloop &= ~LOOPBAK;
414 if (newloop != oldloop) {
415 zport->regs[14] = newloop;
416 write_zsreg(zport, R14, zport->regs[14]);
417 }
418 spin_unlock(&scc->zlock);
419}
420
421static void zs_raw_stop_tx(struct zs_port *zport)
422{
423 write_zsreg(zport, R0, RES_Tx_P);
424 zport->tx_stopped = 1;
425}
426
427static void zs_stop_tx(struct uart_port *uport)
428{
429 struct zs_port *zport = to_zport(uport);
430 struct zs_scc *scc = zport->scc;
431
432 spin_lock(&scc->zlock);
433 zs_raw_stop_tx(zport);
434 spin_unlock(&scc->zlock);
435}
436
437static void zs_raw_transmit_chars(struct zs_port *);
438
439static void zs_start_tx(struct uart_port *uport)
440{
441 struct zs_port *zport = to_zport(uport);
442 struct zs_scc *scc = zport->scc;
443
444 spin_lock(&scc->zlock);
445 if (zport->tx_stopped) {
446 zs_transmit_drain(zport, 0);
447 zport->tx_stopped = 0;
448 zs_raw_transmit_chars(zport);
449 }
450 spin_unlock(&scc->zlock);
451}
452
453static void zs_stop_rx(struct uart_port *uport)
454{
455 struct zs_port *zport = to_zport(uport);
456 struct zs_scc *scc = zport->scc;
457 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
458
459 spin_lock(&scc->zlock);
460 zport->regs[15] &= ~BRKIE;
461 zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
462 zport->regs[1] |= RxINT_DISAB;
463
464 if (zport != zport_a) {
465 /* A-side DCD tracks RI and SYNC tracks DSR. */
466 zport_a->regs[15] &= ~(DCDIE | SYNCIE);
467 write_zsreg(zport_a, R15, zport_a->regs[15]);
468 if (!(zport_a->regs[15] & BRKIE)) {
469 zport_a->regs[1] &= ~EXT_INT_ENAB;
470 write_zsreg(zport_a, R1, zport_a->regs[1]);
471 }
472
473 /* This-side DCD tracks DCD and CTS tracks CTS. */
474 zport->regs[15] &= ~(DCDIE | CTSIE);
475 zport->regs[1] &= ~EXT_INT_ENAB;
476 } else {
477 /* DCD tracks RI and SYNC tracks DSR for the B side. */
478 if (!(zport->regs[15] & (DCDIE | SYNCIE)))
479 zport->regs[1] &= ~EXT_INT_ENAB;
480 }
481
482 write_zsreg(zport, R15, zport->regs[15]);
483 write_zsreg(zport, R1, zport->regs[1]);
484 spin_unlock(&scc->zlock);
485}
486
487static void zs_enable_ms(struct uart_port *uport)
488{
489 struct zs_port *zport = to_zport(uport);
490 struct zs_scc *scc = zport->scc;
491 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
492
493 if (zport == zport_a)
494 return;
495
496 spin_lock(&scc->zlock);
497
498 /* Clear Ext interrupts if not being handled already. */
499 if (!(zport_a->regs[1] & EXT_INT_ENAB))
500 write_zsreg(zport_a, R0, RES_EXT_INT);
501
502 /* A-side DCD tracks RI and SYNC tracks DSR. */
503 zport_a->regs[1] |= EXT_INT_ENAB;
504 zport_a->regs[15] |= DCDIE | SYNCIE;
505
506 /* This-side DCD tracks DCD and CTS tracks CTS. */
507 zport->regs[15] |= DCDIE | CTSIE;
508
509 zs_raw_xor_mctrl(zport);
510
511 write_zsreg(zport_a, R1, zport_a->regs[1]);
512 write_zsreg(zport_a, R15, zport_a->regs[15]);
513 write_zsreg(zport, R15, zport->regs[15]);
514 spin_unlock(&scc->zlock);
515}
516
517static void zs_break_ctl(struct uart_port *uport, int break_state)
518{
519 struct zs_port *zport = to_zport(uport);
520 struct zs_scc *scc = zport->scc;
521 unsigned long flags;
522
523 spin_lock_irqsave(&scc->zlock, flags);
524 if (break_state == -1)
525 zport->regs[5] |= SND_BRK;
526 else
527 zport->regs[5] &= ~SND_BRK;
528 write_zsreg(zport, R5, zport->regs[5]);
529 spin_unlock_irqrestore(&scc->zlock, flags);
530}
531
532
533/*
534 * Interrupt handling routines.
535 */
536#define Rx_BRK 0x0100 /* BREAK event software flag. */
537#define Rx_SYS 0x0200 /* SysRq event software flag. */
538
539static void zs_receive_chars(struct zs_port *zport)
540{
541 struct uart_port *uport = &zport->port;
542 struct zs_scc *scc = zport->scc;
543 struct uart_icount *icount;
544 unsigned int avail, status, ch, flag;
545 int count;
546
547 for (count = 16; count; count--) {
548 spin_lock(&scc->zlock);
549 avail = read_zsreg(zport, R0) & Rx_CH_AV;
550 spin_unlock(&scc->zlock);
551 if (!avail)
552 break;
553
554 spin_lock(&scc->zlock);
555 status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
556 ch = read_zsdata(zport);
557 spin_unlock(&scc->zlock);
558
559 flag = TTY_NORMAL;
560
561 icount = &uport->icount;
562 icount->rx++;
563
564 /* Handle the null char got when BREAK is removed. */
565 if (!ch)
566 status |= zport->tty_break;
567 if (unlikely(status &
568 (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
569 zport->tty_break = 0;
570
571 /* Reset the error indication. */
572 if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
573 spin_lock(&scc->zlock);
574 write_zsreg(zport, R0, ERR_RES);
575 spin_unlock(&scc->zlock);
576 }
577
578 if (status & (Rx_SYS | Rx_BRK)) {
579 icount->brk++;
580 /* SysRq discards the null char. */
581 if (status & Rx_SYS)
582 continue;
583 } else if (status & FRM_ERR)
584 icount->frame++;
585 else if (status & PAR_ERR)
586 icount->parity++;
587 if (status & Rx_OVR)
588 icount->overrun++;
589
590 status &= uport->read_status_mask;
591 if (status & Rx_BRK)
592 flag = TTY_BREAK;
593 else if (status & FRM_ERR)
594 flag = TTY_FRAME;
595 else if (status & PAR_ERR)
596 flag = TTY_PARITY;
597 }
598
599 if (uart_handle_sysrq_char(uport, ch))
600 continue;
601
602 uart_insert_char(uport, status, Rx_OVR, ch, flag);
603 }
604
605 tty_flip_buffer_push(uport->info->tty);
606}
607
608static void zs_raw_transmit_chars(struct zs_port *zport)
609{
610 struct circ_buf *xmit = &zport->port.info->xmit;
611
612 /* XON/XOFF chars. */
613 if (zport->port.x_char) {
614 write_zsdata(zport, zport->port.x_char);
615 zport->port.icount.tx++;
616 zport->port.x_char = 0;
617 return;
618 }
619
620 /* If nothing to do or stopped or hardware stopped. */
621 if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
622 zs_raw_stop_tx(zport);
623 return;
624 }
625
626 /* Send char. */
627 write_zsdata(zport, xmit->buf[xmit->tail]);
628 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
629 zport->port.icount.tx++;
630
631 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
632 uart_write_wakeup(&zport->port);
633
634 /* Are we are done? */
635 if (uart_circ_empty(xmit))
636 zs_raw_stop_tx(zport);
637}
638
639static void zs_transmit_chars(struct zs_port *zport)
640{
641 struct zs_scc *scc = zport->scc;
642
643 spin_lock(&scc->zlock);
644 zs_raw_transmit_chars(zport);
645 spin_unlock(&scc->zlock);
646}
647
648static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
649{
650 struct uart_port *uport = &zport->port;
651 struct zs_scc *scc = zport->scc;
652 unsigned int delta;
653 u8 status, brk;
654
655 spin_lock(&scc->zlock);
656
657 /* Get status from Read Register 0. */
658 status = read_zsreg(zport, R0);
659
660 if (zport->regs[15] & BRKIE) {
661 brk = status & BRK_ABRT;
662 if (brk && !zport->brk) {
663 spin_unlock(&scc->zlock);
664 if (uart_handle_break(uport))
665 zport->tty_break = Rx_SYS;
666 else
667 zport->tty_break = Rx_BRK;
668 spin_lock(&scc->zlock);
669 }
670 zport->brk = brk;
671 }
672
673 if (zport != zport_a) {
674 delta = zs_raw_xor_mctrl(zport);
675 spin_unlock(&scc->zlock);
676
677 if (delta & TIOCM_CTS)
678 uart_handle_cts_change(uport,
679 zport->mctrl & TIOCM_CTS);
680 if (delta & TIOCM_CAR)
681 uart_handle_dcd_change(uport,
682 zport->mctrl & TIOCM_CAR);
683 if (delta & TIOCM_RNG)
684 uport->icount.dsr++;
685 if (delta & TIOCM_DSR)
686 uport->icount.rng++;
687
688 if (delta)
689 wake_up_interruptible(&uport->info->delta_msr_wait);
690
691 spin_lock(&scc->zlock);
692 }
693
694 /* Clear the status condition... */
695 write_zsreg(zport, R0, RES_EXT_INT);
696
697 spin_unlock(&scc->zlock);
698}
699
700/*
701 * This is the Z85C30 driver's generic interrupt routine.
702 */
703static irqreturn_t zs_interrupt(int irq, void *dev_id)
704{
705 struct zs_scc *scc = dev_id;
706 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
707 struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
708 irqreturn_t status = IRQ_NONE;
709 u8 zs_intreg;
710 int count;
711
712 /*
713 * NOTE: The read register 3, which holds the irq status,
714 * does so for both channels on each chip. Although
715 * the status value itself must be read from the A
716 * channel and is only valid when read from channel A.
717 * Yes... broken hardware...
718 */
719 for (count = 16; count; count--) {
720 spin_lock(&scc->zlock);
721 zs_intreg = read_zsreg(zport_a, R3);
722 spin_unlock(&scc->zlock);
723 if (!zs_intreg)
724 break;
725
726 /*
727 * We do not like losing characters, so we prioritise
728 * interrupt sources a little bit differently than
729 * the SCC would, was it allowed to.
730 */
731 if (zs_intreg & CHBRxIP)
732 zs_receive_chars(zport_b);
733 if (zs_intreg & CHARxIP)
734 zs_receive_chars(zport_a);
735 if (zs_intreg & CHBEXT)
736 zs_status_handle(zport_b, zport_a);
737 if (zs_intreg & CHAEXT)
738 zs_status_handle(zport_a, zport_a);
739 if (zs_intreg & CHBTxIP)
740 zs_transmit_chars(zport_b);
741 if (zs_intreg & CHATxIP)
742 zs_transmit_chars(zport_a);
743
744 status = IRQ_HANDLED;
745 }
746
747 return status;
748}
749
750
751/*
752 * Finally, routines used to initialize the serial port.
753 */
754static int zs_startup(struct uart_port *uport)
755{
756 struct zs_port *zport = to_zport(uport);
757 struct zs_scc *scc = zport->scc;
758 unsigned long flags;
759 int irq_guard;
760 int ret;
761
762 irq_guard = atomic_add_return(1, &scc->irq_guard);
763 if (irq_guard == 1) {
764 ret = request_irq(zport->port.irq, zs_interrupt,
765 IRQF_SHARED, "scc", scc);
766 if (ret) {
767 atomic_add(-1, &scc->irq_guard);
768 printk(KERN_ERR "zs: can't get irq %d\n",
769 zport->port.irq);
770 return ret;
771 }
772 }
773
774 spin_lock_irqsave(&scc->zlock, flags);
775
776 /* Clear the receive FIFO. */
777 zs_receive_drain(zport);
778
779 /* Clear the interrupt registers. */
780 write_zsreg(zport, R0, ERR_RES);
781 write_zsreg(zport, R0, RES_Tx_P);
782 /* But Ext only if not being handled already. */
783 if (!(zport->regs[1] & EXT_INT_ENAB))
784 write_zsreg(zport, R0, RES_EXT_INT);
785
786 /* Finally, enable sequencing and interrupts. */
787 zport->regs[1] &= ~RxINT_MASK;
788 zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
789 zport->regs[3] |= RxENABLE;
790 zport->regs[5] |= TxENAB;
791 zport->regs[15] |= BRKIE;
792 write_zsreg(zport, R1, zport->regs[1]);
793 write_zsreg(zport, R3, zport->regs[3]);
794 write_zsreg(zport, R5, zport->regs[5]);
795 write_zsreg(zport, R15, zport->regs[15]);
796
797 /* Record the current state of RR0. */
798 zport->mctrl = zs_raw_get_mctrl(zport);
799 zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
800
801 zport->tx_stopped = 1;
802
803 spin_unlock_irqrestore(&scc->zlock, flags);
804
805 return 0;
806}
807
808static void zs_shutdown(struct uart_port *uport)
809{
810 struct zs_port *zport = to_zport(uport);
811 struct zs_scc *scc = zport->scc;
812 unsigned long flags;
813 int irq_guard;
814
815 spin_lock_irqsave(&scc->zlock, flags);
816
817 zport->regs[5] &= ~TxENAB;
818 zport->regs[3] &= ~RxENABLE;
819 write_zsreg(zport, R5, zport->regs[5]);
820 write_zsreg(zport, R3, zport->regs[3]);
821
822 spin_unlock_irqrestore(&scc->zlock, flags);
823
824 irq_guard = atomic_add_return(-1, &scc->irq_guard);
825 if (!irq_guard)
826 free_irq(zport->port.irq, scc);
827}
828
829
830static void zs_reset(struct zs_port *zport)
831{
832 struct zs_scc *scc = zport->scc;
833 int irq;
834 unsigned long flags;
835
836 spin_lock_irqsave(&scc->zlock, flags);
837 irq = !irqs_disabled_flags(flags);
838 if (!scc->initialised) {
839 /* Reset the pointer first, just in case... */
840 read_zsreg(zport, R0);
841 /* And let the current transmission finish. */
842 zs_line_drain(zport, irq);
843 write_zsreg(zport, R9, FHWRES);
844 udelay(10);
845 write_zsreg(zport, R9, 0);
846 scc->initialised = 1;
847 }
848 load_zsregs(zport, zport->regs, irq);
849 spin_unlock_irqrestore(&scc->zlock, flags);
850}
851
852static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
853 struct ktermios *old_termios)
854{
855 struct zs_port *zport = to_zport(uport);
856 struct zs_scc *scc = zport->scc;
857 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
858 int irq;
859 unsigned int baud, brg;
860 unsigned long flags;
861
862 spin_lock_irqsave(&scc->zlock, flags);
863 irq = !irqs_disabled_flags(flags);
864
865 /* Byte size. */
866 zport->regs[3] &= ~RxNBITS_MASK;
867 zport->regs[5] &= ~TxNBITS_MASK;
868 switch (termios->c_cflag & CSIZE) {
869 case CS5:
870 zport->regs[3] |= Rx5;
871 zport->regs[5] |= Tx5;
872 break;
873 case CS6:
874 zport->regs[3] |= Rx6;
875 zport->regs[5] |= Tx6;
876 break;
877 case CS7:
878 zport->regs[3] |= Rx7;
879 zport->regs[5] |= Tx7;
880 break;
881 case CS8:
882 default:
883 zport->regs[3] |= Rx8;
884 zport->regs[5] |= Tx8;
885 break;
886 }
887
888 /* Parity and stop bits. */
889 zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
890 if (termios->c_cflag & CSTOPB)
891 zport->regs[4] |= SB2;
892 else
893 zport->regs[4] |= SB1;
894 if (termios->c_cflag & PARENB)
895 zport->regs[4] |= PAR_ENA;
896 if (!(termios->c_cflag & PARODD))
897 zport->regs[4] |= PAR_EVEN;
898 switch (zport->clk_mode) {
899 case 64:
900 zport->regs[4] |= X64CLK;
901 break;
902 case 32:
903 zport->regs[4] |= X32CLK;
904 break;
905 case 16:
906 zport->regs[4] |= X16CLK;
907 break;
908 case 1:
909 zport->regs[4] |= X1CLK;
910 break;
911 default:
912 BUG();
913 }
914
915 baud = uart_get_baud_rate(uport, termios, old_termios, 0,
916 uport->uartclk / zport->clk_mode / 4);
917
918 brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
919 zport->regs[12] = brg & 0xff;
920 zport->regs[13] = (brg >> 8) & 0xff;
921
922 uart_update_timeout(uport, termios->c_cflag, baud);
923
924 uport->read_status_mask = Rx_OVR;
925 if (termios->c_iflag & INPCK)
926 uport->read_status_mask |= FRM_ERR | PAR_ERR;
927 if (termios->c_iflag & (BRKINT | PARMRK))
928 uport->read_status_mask |= Rx_BRK;
929
930 uport->ignore_status_mask = 0;
931 if (termios->c_iflag & IGNPAR)
932 uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
933 if (termios->c_iflag & IGNBRK) {
934 uport->ignore_status_mask |= Rx_BRK;
935 if (termios->c_iflag & IGNPAR)
936 uport->ignore_status_mask |= Rx_OVR;
937 }
938
939 if (termios->c_cflag & CREAD)
940 zport->regs[3] |= RxENABLE;
941 else
942 zport->regs[3] &= ~RxENABLE;
943
944 if (zport != zport_a) {
945 if (!(termios->c_cflag & CLOCAL)) {
946 zport->regs[15] |= DCDIE;
947 } else
948 zport->regs[15] &= ~DCDIE;
949 if (termios->c_cflag & CRTSCTS) {
950 zport->regs[15] |= CTSIE;
951 } else
952 zport->regs[15] &= ~CTSIE;
953 zs_raw_xor_mctrl(zport);
954 }
955
956 /* Load up the new values. */
957 load_zsregs(zport, zport->regs, irq);
958
959 spin_unlock_irqrestore(&scc->zlock, flags);
960}
961
962
963static const char *zs_type(struct uart_port *uport)
964{
965 return "Z85C30 SCC";
966}
967
968static void zs_release_port(struct uart_port *uport)
969{
970 iounmap(uport->membase);
971 uport->membase = 0;
972 release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
973}
974
975static int zs_map_port(struct uart_port *uport)
976{
977 if (!uport->membase)
978 uport->membase = ioremap_nocache(uport->mapbase,
979 ZS_CHAN_IO_SIZE);
980 if (!uport->membase) {
981 printk(KERN_ERR "zs: Cannot map MMIO\n");
982 return -ENOMEM;
983 }
984 return 0;
985}
986
987static int zs_request_port(struct uart_port *uport)
988{
989 int ret;
990
991 if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
992 printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
993 return -EBUSY;
994 }
995 ret = zs_map_port(uport);
996 if (ret) {
997 release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
998 return ret;
999 }
1000 return 0;
1001}
1002
1003static void zs_config_port(struct uart_port *uport, int flags)
1004{
1005 struct zs_port *zport = to_zport(uport);
1006
1007 if (flags & UART_CONFIG_TYPE) {
1008 if (zs_request_port(uport))
1009 return;
1010
1011 uport->type = PORT_ZS;
1012
1013 zs_reset(zport);
1014 }
1015}
1016
1017static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
1018{
1019 struct zs_port *zport = to_zport(uport);
1020 int ret = 0;
1021
1022 if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
1023 ret = -EINVAL;
1024 if (ser->irq != uport->irq)
1025 ret = -EINVAL;
1026 if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
1027 ret = -EINVAL;
1028 return ret;
1029}
1030
1031
1032static struct uart_ops zs_ops = {
1033 .tx_empty = zs_tx_empty,
1034 .set_mctrl = zs_set_mctrl,
1035 .get_mctrl = zs_get_mctrl,
1036 .stop_tx = zs_stop_tx,
1037 .start_tx = zs_start_tx,
1038 .stop_rx = zs_stop_rx,
1039 .enable_ms = zs_enable_ms,
1040 .break_ctl = zs_break_ctl,
1041 .startup = zs_startup,
1042 .shutdown = zs_shutdown,
1043 .set_termios = zs_set_termios,
1044 .type = zs_type,
1045 .release_port = zs_release_port,
1046 .request_port = zs_request_port,
1047 .config_port = zs_config_port,
1048 .verify_port = zs_verify_port,
1049};
1050
1051/*
1052 * Initialize Z85C30 port structures.
1053 */
1054static int __init zs_probe_sccs(void)
1055{
1056 static int probed;
1057 struct zs_parms zs_parms;
1058 int chip, side, irq;
1059 int n_chips = 0;
1060 int i;
1061
1062 if (probed)
1063 return 0;
1064
1065 irq = dec_interrupt[DEC_IRQ_SCC0];
1066 if (irq >= 0) {
1067 zs_parms.scc[n_chips] = IOASIC_SCC0;
1068 zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
1069 n_chips++;
1070 }
1071 irq = dec_interrupt[DEC_IRQ_SCC1];
1072 if (irq >= 0) {
1073 zs_parms.scc[n_chips] = IOASIC_SCC1;
1074 zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
1075 n_chips++;
1076 }
1077 if (!n_chips)
1078 return -ENXIO;
1079
1080 probed = 1;
1081
1082 for (chip = 0; chip < n_chips; chip++) {
1083 spin_lock_init(&zs_sccs[chip].zlock);
1084 for (side = 0; side < ZS_NUM_CHAN; side++) {
1085 struct zs_port *zport = &zs_sccs[chip].zport[side];
1086 struct uart_port *uport = &zport->port;
1087
1088 zport->scc = &zs_sccs[chip];
1089 zport->clk_mode = 16;
1090
1091 uport->irq = zs_parms.irq[chip];
1092 uport->uartclk = ZS_CLOCK;
1093 uport->fifosize = 1;
1094 uport->iotype = UPIO_MEM;
1095 uport->flags = UPF_BOOT_AUTOCONF;
1096 uport->ops = &zs_ops;
1097 uport->line = chip * ZS_NUM_CHAN + side;
1098 uport->mapbase = dec_kn_slot_base +
1099 zs_parms.scc[chip] +
1100 (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
1101
1102 for (i = 0; i < ZS_NUM_REGS; i++)
1103 zport->regs[i] = zs_init_regs[i];
1104 }
1105 }
1106
1107 return 0;
1108}
1109
1110
1111#ifdef CONFIG_SERIAL_ZS_CONSOLE
1112static void zs_console_putchar(struct uart_port *uport, int ch)
1113{
1114 struct zs_port *zport = to_zport(uport);
1115 struct zs_scc *scc = zport->scc;
1116 int irq;
1117 unsigned long flags;
1118
1119 spin_lock_irqsave(&scc->zlock, flags);
1120 irq = !irqs_disabled_flags(flags);
1121 if (zs_transmit_drain(zport, irq))
1122 write_zsdata(zport, ch);
1123 spin_unlock_irqrestore(&scc->zlock, flags);
1124}
1125
1126/*
1127 * Print a string to the serial port trying not to disturb
1128 * any possible real use of the port...
1129 */
1130static void zs_console_write(struct console *co, const char *s,
1131 unsigned int count)
1132{
1133 int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1134 struct zs_port *zport = &zs_sccs[chip].zport[side];
1135 struct zs_scc *scc = zport->scc;
1136 unsigned long flags;
1137 u8 txint, txenb;
1138 int irq;
1139
1140 /* Disable transmit interrupts and enable the transmitter. */
1141 spin_lock_irqsave(&scc->zlock, flags);
1142 txint = zport->regs[1];
1143 txenb = zport->regs[5];
1144 if (txint & TxINT_ENAB) {
1145 zport->regs[1] = txint & ~TxINT_ENAB;
1146 write_zsreg(zport, R1, zport->regs[1]);
1147 }
1148 if (!(txenb & TxENAB)) {
1149 zport->regs[5] = txenb | TxENAB;
1150 write_zsreg(zport, R5, zport->regs[5]);
1151 }
1152 spin_unlock_irqrestore(&scc->zlock, flags);
1153
1154 uart_console_write(&zport->port, s, count, zs_console_putchar);
1155
1156 /* Restore transmit interrupts and the transmitter enable. */
1157 spin_lock_irqsave(&scc->zlock, flags);
1158 irq = !irqs_disabled_flags(flags);
1159 zs_line_drain(zport, irq);
1160 if (!(txenb & TxENAB)) {
1161 zport->regs[5] &= ~TxENAB;
1162 write_zsreg(zport, R5, zport->regs[5]);
1163 }
1164 if (txint & TxINT_ENAB) {
1165 zport->regs[1] |= TxINT_ENAB;
1166 write_zsreg(zport, R1, zport->regs[1]);
1167 }
1168 spin_unlock_irqrestore(&scc->zlock, flags);
1169}
1170
1171/*
1172 * Setup serial console baud/bits/parity. We do two things here:
1173 * - construct a cflag setting for the first uart_open()
1174 * - initialise the serial port
1175 * Return non-zero if we didn't find a serial port.
1176 */
1177static int __init zs_console_setup(struct console *co, char *options)
1178{
1179 int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1180 struct zs_port *zport = &zs_sccs[chip].zport[side];
1181 struct uart_port *uport = &zport->port;
1182 int baud = 9600;
1183 int bits = 8;
1184 int parity = 'n';
1185 int flow = 'n';
1186 int ret;
1187
1188 ret = zs_map_port(uport);
1189 if (ret)
1190 return ret;
1191
1192 zs_reset(zport);
1193
1194 if (options)
1195 uart_parse_options(options, &baud, &parity, &bits, &flow);
1196 return uart_set_options(uport, co, baud, parity, bits, flow);
1197}
1198
1199static struct uart_driver zs_reg;
1200static struct console zs_console = {
1201 .name = "ttyS",
1202 .write = zs_console_write,
1203 .device = uart_console_device,
1204 .setup = zs_console_setup,
1205 .flags = CON_PRINTBUFFER,
1206 .index = -1,
1207 .data = &zs_reg,
1208};
1209
1210/*
1211 * Register console.
1212 */
1213static int __init zs_serial_console_init(void)
1214{
1215 int ret;
1216
1217 ret = zs_probe_sccs();
1218 if (ret)
1219 return ret;
1220 register_console(&zs_console);
1221
1222 return 0;
1223}
1224
1225console_initcall(zs_serial_console_init);
1226
1227#define SERIAL_ZS_CONSOLE &zs_console
1228#else
1229#define SERIAL_ZS_CONSOLE NULL
1230#endif /* CONFIG_SERIAL_ZS_CONSOLE */
1231
1232static struct uart_driver zs_reg = {
1233 .owner = THIS_MODULE,
1234 .driver_name = "serial",
1235 .dev_name = "ttyS",
1236 .major = TTY_MAJOR,
1237 .minor = 64,
1238 .nr = ZS_NUM_SCCS * ZS_NUM_CHAN,
1239 .cons = SERIAL_ZS_CONSOLE,
1240};
1241
1242/* zs_init inits the driver. */
1243static int __init zs_init(void)
1244{
1245 int i, ret;
1246
1247 pr_info("%s%s\n", zs_name, zs_version);
1248
1249 /* Find out how many Z85C30 SCCs we have. */
1250 ret = zs_probe_sccs();
1251 if (ret)
1252 return ret;
1253
1254 ret = uart_register_driver(&zs_reg);
1255 if (ret)
1256 return ret;
1257
1258 for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
1259 struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1260 struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1261 struct uart_port *uport = &zport->port;
1262
1263 if (zport->scc)
1264 uart_add_one_port(&zs_reg, uport);
1265 }
1266
1267 return 0;
1268}
1269
1270static void __exit zs_exit(void)
1271{
1272 int i;
1273
1274 for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
1275 struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1276 struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1277 struct uart_port *uport = &zport->port;
1278
1279 if (zport->scc)
1280 uart_remove_one_port(&zs_reg, uport);
1281 }
1282
1283 uart_unregister_driver(&zs_reg);
1284}
1285
1286module_init(zs_init);
1287module_exit(zs_exit);
diff --git a/drivers/serial/zs.h b/drivers/serial/zs.h
new file mode 100644
index 000000000000..aa921b57d827
--- /dev/null
+++ b/drivers/serial/zs.h
@@ -0,0 +1,284 @@
1/*
2 * zs.h: Definitions for the DECstation Z85C30 serial driver.
3 *
4 * Adapted from drivers/sbus/char/sunserial.h by Paul Mackerras.
5 * Adapted from drivers/macintosh/macserial.h by Harald Koerfgen.
6 *
7 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
8 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
9 * Copyright (C) 2004, 2005, 2007 Maciej W. Rozycki
10 */
11#ifndef _SERIAL_ZS_H
12#define _SERIAL_ZS_H
13
14#ifdef __KERNEL__
15
16#define ZS_NUM_REGS 16
17
18/*
19 * This is our internal structure for each serial port's state.
20 */
21struct zs_port {
22 struct zs_scc *scc; /* Containing SCC. */
23 struct uart_port port; /* Underlying UART. */
24
25 int clk_mode; /* May be 1, 16, 32, or 64. */
26
27 unsigned int tty_break; /* Set on BREAK condition. */
28 int tx_stopped; /* Output is suspended. */
29
30 unsigned int mctrl; /* State of modem lines. */
31 u8 brk; /* BREAK state from RR0. */
32
33 u8 regs[ZS_NUM_REGS]; /* Channel write registers. */
34};
35
36/*
37 * Per-SCC state for locking and the interrupt handler.
38 */
39struct zs_scc {
40 struct zs_port zport[2];
41 spinlock_t zlock;
42 atomic_t irq_guard;
43 int initialised;
44};
45
46#endif /* __KERNEL__ */
47
48/*
49 * Conversion routines to/from brg time constants from/to bits per second.
50 */
51#define ZS_BRG_TO_BPS(brg, freq) ((freq) / 2 / ((brg) + 2))
52#define ZS_BPS_TO_BRG(bps, freq) ((((freq) + (bps)) / (2 * (bps))) - 2)
53
54/*
55 * The Zilog register set.
56 */
57
58/* Write Register 0 (Command) */
59#define R0 0 /* Register selects */
60#define R1 1
61#define R2 2
62#define R3 3
63#define R4 4
64#define R5 5
65#define R6 6
66#define R7 7
67#define R8 8
68#define R9 9
69#define R10 10
70#define R11 11
71#define R12 12
72#define R13 13
73#define R14 14
74#define R15 15
75
76#define NULLCODE 0 /* Null Code */
77#define POINT_HIGH 0x8 /* Select upper half of registers */
78#define RES_EXT_INT 0x10 /* Reset Ext. Status Interrupts */
79#define SEND_ABORT 0x18 /* HDLC Abort */
80#define RES_RxINT_FC 0x20 /* Reset RxINT on First Character */
81#define RES_Tx_P 0x28 /* Reset TxINT Pending */
82#define ERR_RES 0x30 /* Error Reset */
83#define RES_H_IUS 0x38 /* Reset highest IUS */
84
85#define RES_Rx_CRC 0x40 /* Reset Rx CRC Checker */
86#define RES_Tx_CRC 0x80 /* Reset Tx CRC Checker */
87#define RES_EOM_L 0xC0 /* Reset EOM latch */
88
89/* Write Register 1 (Tx/Rx/Ext Int Enable and WAIT/DMA Commands) */
90#define EXT_INT_ENAB 0x1 /* Ext Int Enable */
91#define TxINT_ENAB 0x2 /* Tx Int Enable */
92#define PAR_SPEC 0x4 /* Parity is special condition */
93
94#define RxINT_DISAB 0 /* Rx Int Disable */
95#define RxINT_FCERR 0x8 /* Rx Int on First Character Only or Error */
96#define RxINT_ALL 0x10 /* Int on all Rx Characters or error */
97#define RxINT_ERR 0x18 /* Int on error only */
98#define RxINT_MASK 0x18
99
100#define WT_RDY_RT 0x20 /* Wait/Ready on R/T */
101#define WT_FN_RDYFN 0x40 /* Wait/FN/Ready FN */
102#define WT_RDY_ENAB 0x80 /* Wait/Ready Enable */
103
104/* Write Register 2 (Interrupt Vector) */
105
106/* Write Register 3 (Receive Parameters and Control) */
107#define RxENABLE 0x1 /* Rx Enable */
108#define SYNC_L_INH 0x2 /* Sync Character Load Inhibit */
109#define ADD_SM 0x4 /* Address Search Mode (SDLC) */
110#define RxCRC_ENAB 0x8 /* Rx CRC Enable */
111#define ENT_HM 0x10 /* Enter Hunt Mode */
112#define AUTO_ENAB 0x20 /* Auto Enables */
113#define Rx5 0x0 /* Rx 5 Bits/Character */
114#define Rx7 0x40 /* Rx 7 Bits/Character */
115#define Rx6 0x80 /* Rx 6 Bits/Character */
116#define Rx8 0xc0 /* Rx 8 Bits/Character */
117#define RxNBITS_MASK 0xc0
118
119/* Write Register 4 (Transmit/Receive Miscellaneous Parameters and Modes) */
120#define PAR_ENA 0x1 /* Parity Enable */
121#define PAR_EVEN 0x2 /* Parity Even/Odd* */
122
123#define SYNC_ENAB 0 /* Sync Modes Enable */
124#define SB1 0x4 /* 1 stop bit/char */
125#define SB15 0x8 /* 1.5 stop bits/char */
126#define SB2 0xc /* 2 stop bits/char */
127#define SB_MASK 0xc
128
129#define MONSYNC 0 /* 8 Bit Sync character */
130#define BISYNC 0x10 /* 16 bit sync character */
131#define SDLC 0x20 /* SDLC Mode (01111110 Sync Flag) */
132#define EXTSYNC 0x30 /* External Sync Mode */
133
134#define X1CLK 0x0 /* x1 clock mode */
135#define X16CLK 0x40 /* x16 clock mode */
136#define X32CLK 0x80 /* x32 clock mode */
137#define X64CLK 0xc0 /* x64 clock mode */
138#define XCLK_MASK 0xc0
139
140/* Write Register 5 (Transmit Parameters and Controls) */
141#define TxCRC_ENAB 0x1 /* Tx CRC Enable */
142#define RTS 0x2 /* RTS */
143#define SDLC_CRC 0x4 /* SDLC/CRC-16 */
144#define TxENAB 0x8 /* Tx Enable */
145#define SND_BRK 0x10 /* Send Break */
146#define Tx5 0x0 /* Tx 5 bits (or less)/character */
147#define Tx7 0x20 /* Tx 7 bits/character */
148#define Tx6 0x40 /* Tx 6 bits/character */
149#define Tx8 0x60 /* Tx 8 bits/character */
150#define TxNBITS_MASK 0x60
151#define DTR 0x80 /* DTR */
152
153/* Write Register 6 (Sync bits 0-7/SDLC Address Field) */
154
155/* Write Register 7 (Sync bits 8-15/SDLC 01111110) */
156
157/* Write Register 8 (Transmit Buffer) */
158
159/* Write Register 9 (Master Interrupt Control) */
160#define VIS 1 /* Vector Includes Status */
161#define NV 2 /* No Vector */
162#define DLC 4 /* Disable Lower Chain */
163#define MIE 8 /* Master Interrupt Enable */
164#define STATHI 0x10 /* Status high */
165#define SOFTACK 0x20 /* Software Interrupt Acknowledge */
166#define NORESET 0 /* No reset on write to R9 */
167#define CHRB 0x40 /* Reset channel B */
168#define CHRA 0x80 /* Reset channel A */
169#define FHWRES 0xc0 /* Force hardware reset */
170
171/* Write Register 10 (Miscellaneous Transmitter/Receiver Control Bits) */
172#define BIT6 1 /* 6 bit/8bit sync */
173#define LOOPMODE 2 /* SDLC Loop mode */
174#define ABUNDER 4 /* Abort/flag on SDLC xmit underrun */
175#define MARKIDLE 8 /* Mark/flag on idle */
176#define GAOP 0x10 /* Go active on poll */
177#define NRZ 0 /* NRZ mode */
178#define NRZI 0x20 /* NRZI mode */
179#define FM1 0x40 /* FM1 (transition = 1) */
180#define FM0 0x60 /* FM0 (transition = 0) */
181#define CRCPS 0x80 /* CRC Preset I/O */
182
183/* Write Register 11 (Clock Mode Control) */
184#define TRxCXT 0 /* TRxC = Xtal output */
185#define TRxCTC 1 /* TRxC = Transmit clock */
186#define TRxCBR 2 /* TRxC = BR Generator Output */
187#define TRxCDP 3 /* TRxC = DPLL output */
188#define TRxCOI 4 /* TRxC O/I */
189#define TCRTxCP 0 /* Transmit clock = RTxC pin */
190#define TCTRxCP 8 /* Transmit clock = TRxC pin */
191#define TCBR 0x10 /* Transmit clock = BR Generator output */
192#define TCDPLL 0x18 /* Transmit clock = DPLL output */
193#define RCRTxCP 0 /* Receive clock = RTxC pin */
194#define RCTRxCP 0x20 /* Receive clock = TRxC pin */
195#define RCBR 0x40 /* Receive clock = BR Generator output */
196#define RCDPLL 0x60 /* Receive clock = DPLL output */
197#define RTxCX 0x80 /* RTxC Xtal/No Xtal */
198
199/* Write Register 12 (Lower Byte of Baud Rate Generator Time Constant) */
200
201/* Write Register 13 (Upper Byte of Baud Rate Generator Time Constant) */
202
203/* Write Register 14 (Miscellaneous Control Bits) */
204#define BRENABL 1 /* Baud rate generator enable */
205#define BRSRC 2 /* Baud rate generator source */
206#define DTRREQ 4 /* DTR/Request function */
207#define AUTOECHO 8 /* Auto Echo */
208#define LOOPBAK 0x10 /* Local loopback */
209#define SEARCH 0x20 /* Enter search mode */
210#define RMC 0x40 /* Reset missing clock */
211#define DISDPLL 0x60 /* Disable DPLL */
212#define SSBR 0x80 /* Set DPLL source = BR generator */
213#define SSRTxC 0xa0 /* Set DPLL source = RTxC */
214#define SFMM 0xc0 /* Set FM mode */
215#define SNRZI 0xe0 /* Set NRZI mode */
216
217/* Write Register 15 (External/Status Interrupt Control) */
218#define WR7P_EN 1 /* WR7 Prime SDLC Feature Enable */
219#define ZCIE 2 /* Zero count IE */
220#define DCDIE 8 /* DCD IE */
221#define SYNCIE 0x10 /* Sync/hunt IE */
222#define CTSIE 0x20 /* CTS IE */
223#define TxUIE 0x40 /* Tx Underrun/EOM IE */
224#define BRKIE 0x80 /* Break/Abort IE */
225
226
227/* Read Register 0 (Transmit/Receive Buffer Status and External Status) */
228#define Rx_CH_AV 0x1 /* Rx Character Available */
229#define ZCOUNT 0x2 /* Zero count */
230#define Tx_BUF_EMP 0x4 /* Tx Buffer empty */
231#define DCD 0x8 /* DCD */
232#define SYNC_HUNT 0x10 /* Sync/hunt */
233#define CTS 0x20 /* CTS */
234#define TxEOM 0x40 /* Tx underrun */
235#define BRK_ABRT 0x80 /* Break/Abort */
236
237/* Read Register 1 (Special Receive Condition Status) */
238#define ALL_SNT 0x1 /* All sent */
239/* Residue Data for 8 Rx bits/char programmed */
240#define RES3 0x8 /* 0/3 */
241#define RES4 0x4 /* 0/4 */
242#define RES5 0xc /* 0/5 */
243#define RES6 0x2 /* 0/6 */
244#define RES7 0xa /* 0/7 */
245#define RES8 0x6 /* 0/8 */
246#define RES18 0xe /* 1/8 */
247#define RES28 0x0 /* 2/8 */
248/* Special Rx Condition Interrupts */
249#define PAR_ERR 0x10 /* Parity Error */
250#define Rx_OVR 0x20 /* Rx Overrun Error */
251#define FRM_ERR 0x40 /* CRC/Framing Error */
252#define END_FR 0x80 /* End of Frame (SDLC) */
253
254/* Read Register 2 (Interrupt Vector (WR2) -- channel A). */
255
256/* Read Register 2 (Modified Interrupt Vector -- channel B). */
257
258/* Read Register 3 (Interrupt Pending Bits -- channel A only). */
259#define CHBEXT 0x1 /* Channel B Ext/Stat IP */
260#define CHBTxIP 0x2 /* Channel B Tx IP */
261#define CHBRxIP 0x4 /* Channel B Rx IP */
262#define CHAEXT 0x8 /* Channel A Ext/Stat IP */
263#define CHATxIP 0x10 /* Channel A Tx IP */
264#define CHARxIP 0x20 /* Channel A Rx IP */
265
266/* Read Register 6 (SDLC FIFO Status and Byte Count LSB) */
267
268/* Read Register 7 (SDLC FIFO Status and Byte Count MSB) */
269
270/* Read Register 8 (Receive Data) */
271
272/* Read Register 10 (Miscellaneous Status Bits) */
273#define ONLOOP 2 /* On loop */
274#define LOOPSEND 0x10 /* Loop sending */
275#define CLK2MIS 0x40 /* Two clocks missing */
276#define CLK1MIS 0x80 /* One clock missing */
277
278/* Read Register 12 (Lower Byte of Baud Rate Generator Constant (WR12)) */
279
280/* Read Register 13 (Upper Byte of Baud Rate Generator Constant (WR13) */
281
282/* Read Register 15 (External/Status Interrupt Control (WR15)) */
283
284#endif /* _SERIAL_ZS_H */
diff --git a/drivers/tc/Makefile b/drivers/tc/Makefile
index 967342692211..c899246bd362 100644
--- a/drivers/tc/Makefile
+++ b/drivers/tc/Makefile
@@ -5,7 +5,6 @@
5# Object file lists. 5# Object file lists.
6 6
7obj-$(CONFIG_TC) += tc.o tc-driver.o 7obj-$(CONFIG_TC) += tc.o tc-driver.o
8obj-$(CONFIG_ZS) += zs.o
9obj-$(CONFIG_VT) += lk201.o lk201-map.o lk201-remap.o 8obj-$(CONFIG_VT) += lk201.o lk201-map.o lk201-remap.o
10 9
11$(obj)/lk201-map.o: $(obj)/lk201-map.c 10$(obj)/lk201-map.o: $(obj)/lk201-map.c
diff --git a/drivers/tc/zs.c b/drivers/tc/zs.c
deleted file mode 100644
index ed979f13908a..000000000000
--- a/drivers/tc/zs.c
+++ /dev/null
@@ -1,2203 +0,0 @@
1/*
2 * decserial.c: Serial port driver for IOASIC DECstations.
3 *
4 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
5 * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
6 *
7 * DECstation changes
8 * Copyright (C) 1998-2000 Harald Koerfgen
9 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005 Maciej W. Rozycki
10 *
11 * For the rest of the code the original Copyright applies:
12 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
13 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
14 *
15 *
16 * Note: for IOASIC systems the wiring is as follows:
17 *
18 * mouse/keyboard:
19 * DIN-7 MJ-4 signal SCC
20 * 2 1 TxD <- A.TxD
21 * 3 4 RxD -> A.RxD
22 *
23 * EIA-232/EIA-423:
24 * DB-25 MMJ-6 signal SCC
25 * 2 2 TxD <- B.TxD
26 * 3 5 RxD -> B.RxD
27 * 4 RTS <- ~A.RTS
28 * 5 CTS -> ~B.CTS
29 * 6 6 DSR -> ~A.SYNC
30 * 8 CD -> ~B.DCD
31 * 12 DSRS(DCE) -> ~A.CTS (*)
32 * 15 TxC -> B.TxC
33 * 17 RxC -> B.RxC
34 * 20 1 DTR <- ~A.DTR
35 * 22 RI -> ~A.DCD
36 * 23 DSRS(DTE) <- ~B.RTS
37 *
38 * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
39 * is shared with DSRS(DTE) at pin 23.
40 */
41
42#include <linux/errno.h>
43#include <linux/signal.h>
44#include <linux/sched.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/tty.h>
48#include <linux/tty_flip.h>
49#include <linux/major.h>
50#include <linux/string.h>
51#include <linux/fcntl.h>
52#include <linux/mm.h>
53#include <linux/kernel.h>
54#include <linux/delay.h>
55#include <linux/init.h>
56#include <linux/ioport.h>
57#include <linux/spinlock.h>
58#ifdef CONFIG_SERIAL_DEC_CONSOLE
59#include <linux/console.h>
60#endif
61
62#include <asm/io.h>
63#include <asm/pgtable.h>
64#include <asm/irq.h>
65#include <asm/system.h>
66#include <asm/bootinfo.h>
67
68#include <asm/dec/interrupts.h>
69#include <asm/dec/ioasic_addrs.h>
70#include <asm/dec/machtype.h>
71#include <asm/dec/serial.h>
72#include <asm/dec/system.h>
73
74#ifdef CONFIG_KGDB
75#include <asm/kgdb.h>
76#endif
77#ifdef CONFIG_MAGIC_SYSRQ
78#include <linux/sysrq.h>
79#endif
80
81#include "zs.h"
82
83/*
84 * It would be nice to dynamically allocate everything that
85 * depends on NUM_SERIAL, so we could support any number of
86 * Z8530s, but for now...
87 */
88#define NUM_SERIAL 2 /* Max number of ZS chips supported */
89#define NUM_CHANNELS (NUM_SERIAL * 2) /* 2 channels per chip */
90#define CHANNEL_A_NR (zs_parms->channel_a_offset > zs_parms->channel_b_offset)
91 /* Number of channel A in the chip */
92#define ZS_CHAN_IO_SIZE 8
93#define ZS_CLOCK 7372800 /* Z8530 RTxC input clock rate */
94
95#define RECOVERY_DELAY udelay(2)
96
97struct zs_parms {
98 unsigned long scc0;
99 unsigned long scc1;
100 int channel_a_offset;
101 int channel_b_offset;
102 int irq0;
103 int irq1;
104 int clock;
105};
106
107static struct zs_parms *zs_parms;
108
109#ifdef CONFIG_MACH_DECSTATION
110static struct zs_parms ds_parms = {
111 scc0 : IOASIC_SCC0,
112 scc1 : IOASIC_SCC1,
113 channel_a_offset : 1,
114 channel_b_offset : 9,
115 irq0 : -1,
116 irq1 : -1,
117 clock : ZS_CLOCK
118};
119#endif
120
121#ifdef CONFIG_MACH_DECSTATION
122#define DS_BUS_PRESENT (IOASIC)
123#else
124#define DS_BUS_PRESENT 0
125#endif
126
127#define BUS_PRESENT (DS_BUS_PRESENT)
128
129DEFINE_SPINLOCK(zs_lock);
130
131struct dec_zschannel zs_channels[NUM_CHANNELS];
132struct dec_serial zs_soft[NUM_CHANNELS];
133int zs_channels_found;
134struct dec_serial *zs_chain; /* list of all channels */
135
136struct tty_struct zs_ttys[NUM_CHANNELS];
137
138#ifdef CONFIG_SERIAL_DEC_CONSOLE
139static struct console zs_console;
140#endif
141#if defined(CONFIG_SERIAL_DEC_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) && \
142 !defined(MODULE)
143static unsigned long break_pressed; /* break, really ... */
144#endif
145
146static unsigned char zs_init_regs[16] __initdata = {
147 0, /* write 0 */
148 0, /* write 1 */
149 0, /* write 2 */
150 0, /* write 3 */
151 (X16CLK), /* write 4 */
152 0, /* write 5 */
153 0, 0, 0, /* write 6, 7, 8 */
154 (MIE | DLC | NV), /* write 9 */
155 (NRZ), /* write 10 */
156 (TCBR | RCBR), /* write 11 */
157 0, 0, /* BRG time constant, write 12 + 13 */
158 (BRSRC | BRENABL), /* write 14 */
159 0 /* write 15 */
160};
161
162static struct tty_driver *serial_driver;
163
164/* serial subtype definitions */
165#define SERIAL_TYPE_NORMAL 1
166
167/* number of characters left in xmit buffer before we ask for more */
168#define WAKEUP_CHARS 256
169
170/*
171 * Debugging.
172 */
173#undef SERIAL_DEBUG_OPEN
174#undef SERIAL_DEBUG_FLOW
175#undef SERIAL_DEBUG_THROTTLE
176#undef SERIAL_PARANOIA_CHECK
177
178#undef ZS_DEBUG_REGS
179
180#ifdef SERIAL_DEBUG_THROTTLE
181#define _tty_name(tty,buf) tty_name(tty,buf)
182#endif
183
184#define RS_STROBE_TIME 10
185#define RS_ISR_PASS_LIMIT 256
186
187static void probe_sccs(void);
188static void change_speed(struct dec_serial *info);
189static void rs_wait_until_sent(struct tty_struct *tty, int timeout);
190
191static inline int serial_paranoia_check(struct dec_serial *info,
192 char *name, const char *routine)
193{
194#ifdef SERIAL_PARANOIA_CHECK
195 static const char *badmagic =
196 "Warning: bad magic number for serial struct %s in %s\n";
197 static const char *badinfo =
198 "Warning: null mac_serial for %s in %s\n";
199
200 if (!info) {
201 printk(badinfo, name, routine);
202 return 1;
203 }
204 if (info->magic != SERIAL_MAGIC) {
205 printk(badmagic, name, routine);
206 return 1;
207 }
208#endif
209 return 0;
210}
211
212/*
213 * This is used to figure out the divisor speeds and the timeouts
214 */
215static int baud_table[] = {
216 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
217 9600, 19200, 38400, 57600, 115200, 0 };
218
219/*
220 * Reading and writing Z8530 registers.
221 */
222static inline unsigned char read_zsreg(struct dec_zschannel *channel,
223 unsigned char reg)
224{
225 unsigned char retval;
226
227 if (reg != 0) {
228 *channel->control = reg & 0xf;
229 fast_iob(); RECOVERY_DELAY;
230 }
231 retval = *channel->control;
232 RECOVERY_DELAY;
233 return retval;
234}
235
236static inline void write_zsreg(struct dec_zschannel *channel,
237 unsigned char reg, unsigned char value)
238{
239 if (reg != 0) {
240 *channel->control = reg & 0xf;
241 fast_iob(); RECOVERY_DELAY;
242 }
243 *channel->control = value;
244 fast_iob(); RECOVERY_DELAY;
245 return;
246}
247
248static inline unsigned char read_zsdata(struct dec_zschannel *channel)
249{
250 unsigned char retval;
251
252 retval = *channel->data;
253 RECOVERY_DELAY;
254 return retval;
255}
256
257static inline void write_zsdata(struct dec_zschannel *channel,
258 unsigned char value)
259{
260 *channel->data = value;
261 fast_iob(); RECOVERY_DELAY;
262 return;
263}
264
265static inline void load_zsregs(struct dec_zschannel *channel,
266 unsigned char *regs)
267{
268/* ZS_CLEARERR(channel);
269 ZS_CLEARFIFO(channel); */
270 /* Load 'em up */
271 write_zsreg(channel, R3, regs[R3] & ~RxENABLE);
272 write_zsreg(channel, R5, regs[R5] & ~TxENAB);
273 write_zsreg(channel, R4, regs[R4]);
274 write_zsreg(channel, R9, regs[R9]);
275 write_zsreg(channel, R1, regs[R1]);
276 write_zsreg(channel, R2, regs[R2]);
277 write_zsreg(channel, R10, regs[R10]);
278 write_zsreg(channel, R11, regs[R11]);
279 write_zsreg(channel, R12, regs[R12]);
280 write_zsreg(channel, R13, regs[R13]);
281 write_zsreg(channel, R14, regs[R14]);
282 write_zsreg(channel, R15, regs[R15]);
283 write_zsreg(channel, R3, regs[R3]);
284 write_zsreg(channel, R5, regs[R5]);
285 return;
286}
287
288/* Sets or clears DTR/RTS on the requested line */
289static inline void zs_rtsdtr(struct dec_serial *info, int which, int set)
290{
291 unsigned long flags;
292
293 spin_lock_irqsave(&zs_lock, flags);
294 if (info->zs_channel != info->zs_chan_a) {
295 if (set) {
296 info->zs_chan_a->curregs[5] |= (which & (RTS | DTR));
297 } else {
298 info->zs_chan_a->curregs[5] &= ~(which & (RTS | DTR));
299 }
300 write_zsreg(info->zs_chan_a, 5, info->zs_chan_a->curregs[5]);
301 }
302 spin_unlock_irqrestore(&zs_lock, flags);
303}
304
305/* Utility routines for the Zilog */
306static inline int get_zsbaud(struct dec_serial *ss)
307{
308 struct dec_zschannel *channel = ss->zs_channel;
309 int brg;
310
311 /* The baud rate is split up between two 8-bit registers in
312 * what is termed 'BRG time constant' format in my docs for
313 * the chip, it is a function of the clk rate the chip is
314 * receiving which happens to be constant.
315 */
316 brg = (read_zsreg(channel, 13) << 8);
317 brg |= read_zsreg(channel, 12);
318 return BRG_TO_BPS(brg, (zs_parms->clock/(ss->clk_divisor)));
319}
320
321/* On receive, this clears errors and the receiver interrupts */
322static inline void rs_recv_clear(struct dec_zschannel *zsc)
323{
324 write_zsreg(zsc, 0, ERR_RES);
325 write_zsreg(zsc, 0, RES_H_IUS); /* XXX this is unnecessary */
326}
327
328/*
329 * ----------------------------------------------------------------------
330 *
331 * Here starts the interrupt handling routines. All of the following
332 * subroutines are declared as inline and are folded into
333 * rs_interrupt(). They were separated out for readability's sake.
334 *
335 * - Ted Ts'o (tytso@mit.edu), 7-Mar-93
336 * -----------------------------------------------------------------------
337 */
338
339/*
340 * This routine is used by the interrupt handler to schedule
341 * processing in the software interrupt portion of the driver.
342 */
343static void rs_sched_event(struct dec_serial *info, int event)
344{
345 info->event |= 1 << event;
346 tasklet_schedule(&info->tlet);
347}
348
349static void receive_chars(struct dec_serial *info)
350{
351 struct tty_struct *tty = info->tty;
352 unsigned char ch, stat, flag;
353
354 while ((read_zsreg(info->zs_channel, R0) & Rx_CH_AV) != 0) {
355
356 stat = read_zsreg(info->zs_channel, R1);
357 ch = read_zsdata(info->zs_channel);
358
359 if (!tty && (!info->hook || !info->hook->rx_char))
360 continue;
361
362 flag = TTY_NORMAL;
363 if (info->tty_break) {
364 info->tty_break = 0;
365 flag = TTY_BREAK;
366 if (info->flags & ZILOG_SAK)
367 do_SAK(tty);
368 /* Ignore the null char got when BREAK is removed. */
369 if (ch == 0)
370 continue;
371 } else {
372 if (stat & Rx_OVR) {
373 flag = TTY_OVERRUN;
374 } else if (stat & FRM_ERR) {
375 flag = TTY_FRAME;
376 } else if (stat & PAR_ERR) {
377 flag = TTY_PARITY;
378 }
379 if (flag != TTY_NORMAL)
380 /* reset the error indication */
381 write_zsreg(info->zs_channel, R0, ERR_RES);
382 }
383
384#if defined(CONFIG_SERIAL_DEC_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) && \
385 !defined(MODULE)
386 if (break_pressed && info->line == zs_console.index) {
387 /* Ignore the null char got when BREAK is removed. */
388 if (ch == 0)
389 continue;
390 if (time_before(jiffies, break_pressed + HZ * 5)) {
391 handle_sysrq(ch, NULL);
392 break_pressed = 0;
393 continue;
394 }
395 break_pressed = 0;
396 }
397#endif
398
399 if (info->hook && info->hook->rx_char) {
400 (*info->hook->rx_char)(ch, flag);
401 return;
402 }
403
404 tty_insert_flip_char(tty, ch, flag);
405 }
406 if (tty)
407 tty_flip_buffer_push(tty);
408}
409
410static void transmit_chars(struct dec_serial *info)
411{
412 if ((read_zsreg(info->zs_channel, R0) & Tx_BUF_EMP) == 0)
413 return;
414 info->tx_active = 0;
415
416 if (info->x_char) {
417 /* Send next char */
418 write_zsdata(info->zs_channel, info->x_char);
419 info->x_char = 0;
420 info->tx_active = 1;
421 return;
422 }
423
424 if ((info->xmit_cnt <= 0) || (info->tty && info->tty->stopped)
425 || info->tx_stopped) {
426 write_zsreg(info->zs_channel, R0, RES_Tx_P);
427 return;
428 }
429 /* Send char */
430 write_zsdata(info->zs_channel, info->xmit_buf[info->xmit_tail++]);
431 info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1);
432 info->xmit_cnt--;
433 info->tx_active = 1;
434
435 if (info->xmit_cnt < WAKEUP_CHARS)
436 rs_sched_event(info, RS_EVENT_WRITE_WAKEUP);
437}
438
439static void status_handle(struct dec_serial *info)
440{
441 unsigned char stat;
442
443 /* Get status from Read Register 0 */
444 stat = read_zsreg(info->zs_channel, R0);
445
446 if ((stat & BRK_ABRT) && !(info->read_reg_zero & BRK_ABRT)) {
447#if defined(CONFIG_SERIAL_DEC_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) && \
448 !defined(MODULE)
449 if (info->line == zs_console.index) {
450 if (!break_pressed)
451 break_pressed = jiffies;
452 } else
453#endif
454 info->tty_break = 1;
455 }
456
457 if (info->zs_channel != info->zs_chan_a) {
458
459 /* Check for DCD transitions */
460 if (info->tty && !C_CLOCAL(info->tty) &&
461 ((stat ^ info->read_reg_zero) & DCD) != 0 ) {
462 if (stat & DCD) {
463 wake_up_interruptible(&info->open_wait);
464 } else {
465 tty_hangup(info->tty);
466 }
467 }
468
469 /* Check for CTS transitions */
470 if (info->tty && C_CRTSCTS(info->tty)) {
471 if ((stat & CTS) != 0) {
472 if (info->tx_stopped) {
473 info->tx_stopped = 0;
474 if (!info->tx_active)
475 transmit_chars(info);
476 }
477 } else {
478 info->tx_stopped = 1;
479 }
480 }
481
482 }
483
484 /* Clear status condition... */
485 write_zsreg(info->zs_channel, R0, RES_EXT_INT);
486 info->read_reg_zero = stat;
487}
488
489/*
490 * This is the serial driver's generic interrupt routine
491 */
492static irqreturn_t rs_interrupt(int irq, void *dev_id)
493{
494 struct dec_serial *info = (struct dec_serial *) dev_id;
495 irqreturn_t status = IRQ_NONE;
496 unsigned char zs_intreg;
497 int shift;
498
499 /* NOTE: The read register 3, which holds the irq status,
500 * does so for both channels on each chip. Although
501 * the status value itself must be read from the A
502 * channel and is only valid when read from channel A.
503 * Yes... broken hardware...
504 */
505#define CHAN_IRQMASK (CHBRxIP | CHBTxIP | CHBEXT)
506
507 if (info->zs_chan_a == info->zs_channel)
508 shift = 3; /* Channel A */
509 else
510 shift = 0; /* Channel B */
511
512 for (;;) {
513 zs_intreg = read_zsreg(info->zs_chan_a, R3) >> shift;
514 if ((zs_intreg & CHAN_IRQMASK) == 0)
515 break;
516
517 status = IRQ_HANDLED;
518
519 if (zs_intreg & CHBRxIP) {
520 receive_chars(info);
521 }
522 if (zs_intreg & CHBTxIP) {
523 transmit_chars(info);
524 }
525 if (zs_intreg & CHBEXT) {
526 status_handle(info);
527 }
528 }
529
530 /* Why do we need this ? */
531 write_zsreg(info->zs_channel, 0, RES_H_IUS);
532
533 return status;
534}
535
536#ifdef ZS_DEBUG_REGS
537void zs_dump (void) {
538 int i, j;
539 for (i = 0; i < zs_channels_found; i++) {
540 struct dec_zschannel *ch = &zs_channels[i];
541 if ((long)ch->control == UNI_IO_BASE+UNI_SCC1A_CTRL) {
542 for (j = 0; j < 15; j++) {
543 printk("W%d = 0x%x\t",
544 j, (int)ch->curregs[j]);
545 }
546 for (j = 0; j < 15; j++) {
547 printk("R%d = 0x%x\t",
548 j, (int)read_zsreg(ch,j));
549 }
550 printk("\n\n");
551 }
552 }
553}
554#endif
555
556/*
557 * -------------------------------------------------------------------
558 * Here ends the serial interrupt routines.
559 * -------------------------------------------------------------------
560 */
561
562/*
563 * ------------------------------------------------------------
564 * rs_stop() and rs_start()
565 *
566 * This routines are called before setting or resetting tty->stopped.
567 * ------------------------------------------------------------
568 */
569static void rs_stop(struct tty_struct *tty)
570{
571 struct dec_serial *info = (struct dec_serial *)tty->driver_data;
572 unsigned long flags;
573
574 if (serial_paranoia_check(info, tty->name, "rs_stop"))
575 return;
576
577#if 1
578 spin_lock_irqsave(&zs_lock, flags);
579 if (info->zs_channel->curregs[5] & TxENAB) {
580 info->zs_channel->curregs[5] &= ~TxENAB;
581 write_zsreg(info->zs_channel, 5, info->zs_channel->curregs[5]);
582 }
583 spin_unlock_irqrestore(&zs_lock, flags);
584#endif
585}
586
587static void rs_start(struct tty_struct *tty)
588{
589 struct dec_serial *info = (struct dec_serial *)tty->driver_data;
590 unsigned long flags;
591
592 if (serial_paranoia_check(info, tty->name, "rs_start"))
593 return;
594
595 spin_lock_irqsave(&zs_lock, flags);
596#if 1
597 if (info->xmit_cnt && info->xmit_buf && !(info->zs_channel->curregs[5] & TxENAB)) {
598 info->zs_channel->curregs[5] |= TxENAB;
599 write_zsreg(info->zs_channel, 5, info->zs_channel->curregs[5]);
600 }
601#else
602 if (info->xmit_cnt && info->xmit_buf && !info->tx_active) {
603 transmit_chars(info);
604 }
605#endif
606 spin_unlock_irqrestore(&zs_lock, flags);
607}
608
609/*
610 * This routine is used to handle the "bottom half" processing for the
611 * serial driver, known also the "software interrupt" processing.
612 * This processing is done at the kernel interrupt level, after the
613 * rs_interrupt() has returned, BUT WITH INTERRUPTS TURNED ON. This
614 * is where time-consuming activities which can not be done in the
615 * interrupt driver proper are done; the interrupt driver schedules
616 * them using rs_sched_event(), and they get done here.
617 */
618
619static void do_softint(unsigned long private_)
620{
621 struct dec_serial *info = (struct dec_serial *) private_;
622 struct tty_struct *tty;
623
624 tty = info->tty;
625 if (!tty)
626 return;
627
628 if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event))
629 tty_wakeup(tty);
630}
631
632static int zs_startup(struct dec_serial * info)
633{
634 unsigned long flags;
635
636 if (info->flags & ZILOG_INITIALIZED)
637 return 0;
638
639 if (!info->xmit_buf) {
640 info->xmit_buf = (unsigned char *) get_zeroed_page(GFP_KERNEL);
641 if (!info->xmit_buf)
642 return -ENOMEM;
643 }
644
645 spin_lock_irqsave(&zs_lock, flags);
646
647#ifdef SERIAL_DEBUG_OPEN
648 printk("starting up ttyS%d (irq %d)...", info->line, info->irq);
649#endif
650
651 /*
652 * Clear the receive FIFO.
653 */
654 ZS_CLEARFIFO(info->zs_channel);
655 info->xmit_fifo_size = 1;
656
657 /*
658 * Clear the interrupt registers.
659 */
660 write_zsreg(info->zs_channel, R0, ERR_RES);
661 write_zsreg(info->zs_channel, R0, RES_H_IUS);
662
663 /*
664 * Set the speed of the serial port
665 */
666 change_speed(info);
667
668 /*
669 * Turn on RTS and DTR.
670 */
671 zs_rtsdtr(info, RTS | DTR, 1);
672
673 /*
674 * Finally, enable sequencing and interrupts
675 */
676 info->zs_channel->curregs[R1] &= ~RxINT_MASK;
677 info->zs_channel->curregs[R1] |= (RxINT_ALL | TxINT_ENAB |
678 EXT_INT_ENAB);
679 info->zs_channel->curregs[R3] |= RxENABLE;
680 info->zs_channel->curregs[R5] |= TxENAB;
681 info->zs_channel->curregs[R15] |= (DCDIE | CTSIE | TxUIE | BRKIE);
682 write_zsreg(info->zs_channel, R1, info->zs_channel->curregs[R1]);
683 write_zsreg(info->zs_channel, R3, info->zs_channel->curregs[R3]);
684 write_zsreg(info->zs_channel, R5, info->zs_channel->curregs[R5]);
685 write_zsreg(info->zs_channel, R15, info->zs_channel->curregs[R15]);
686
687 /*
688 * And clear the interrupt registers again for luck.
689 */
690 write_zsreg(info->zs_channel, R0, ERR_RES);
691 write_zsreg(info->zs_channel, R0, RES_H_IUS);
692
693 /* Save the current value of RR0 */
694 info->read_reg_zero = read_zsreg(info->zs_channel, R0);
695
696 if (info->tty)
697 clear_bit(TTY_IO_ERROR, &info->tty->flags);
698 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
699
700 info->flags |= ZILOG_INITIALIZED;
701 spin_unlock_irqrestore(&zs_lock, flags);
702 return 0;
703}
704
705/*
706 * This routine will shutdown a serial port; interrupts are disabled, and
707 * DTR is dropped if the hangup on close termio flag is on.
708 */
709static void shutdown(struct dec_serial * info)
710{
711 unsigned long flags;
712
713 if (!(info->flags & ZILOG_INITIALIZED))
714 return;
715
716#ifdef SERIAL_DEBUG_OPEN
717 printk("Shutting down serial port %d (irq %d)....", info->line,
718 info->irq);
719#endif
720
721 spin_lock_irqsave(&zs_lock, flags);
722
723 if (info->xmit_buf) {
724 free_page((unsigned long) info->xmit_buf);
725 info->xmit_buf = 0;
726 }
727
728 info->zs_channel->curregs[1] = 0;
729 write_zsreg(info->zs_channel, 1, info->zs_channel->curregs[1]); /* no interrupts */
730
731 info->zs_channel->curregs[3] &= ~RxENABLE;
732 write_zsreg(info->zs_channel, 3, info->zs_channel->curregs[3]);
733
734 info->zs_channel->curregs[5] &= ~TxENAB;
735 write_zsreg(info->zs_channel, 5, info->zs_channel->curregs[5]);
736 if (!info->tty || C_HUPCL(info->tty)) {
737 zs_rtsdtr(info, RTS | DTR, 0);
738 }
739
740 if (info->tty)
741 set_bit(TTY_IO_ERROR, &info->tty->flags);
742
743 info->flags &= ~ZILOG_INITIALIZED;
744 spin_unlock_irqrestore(&zs_lock, flags);
745}
746
747/*
748 * This routine is called to set the UART divisor registers to match
749 * the specified baud rate for a serial port.
750 */
751static void change_speed(struct dec_serial *info)
752{
753 unsigned cflag;
754 int i;
755 int brg, bits;
756 unsigned long flags;
757
758 if (!info->hook) {
759 if (!info->tty || !info->tty->termios)
760 return;
761 cflag = info->tty->termios->c_cflag;
762 if (!info->port)
763 return;
764 } else {
765 cflag = info->hook->cflags;
766 }
767
768 i = cflag & CBAUD;
769 if (i & CBAUDEX) {
770 i &= ~CBAUDEX;
771 if (i < 1 || i > 2) {
772 if (!info->hook)
773 info->tty->termios->c_cflag &= ~CBAUDEX;
774 else
775 info->hook->cflags &= ~CBAUDEX;
776 } else
777 i += 15;
778 }
779
780 spin_lock_irqsave(&zs_lock, flags);
781 info->zs_baud = baud_table[i];
782 if (info->zs_baud) {
783 brg = BPS_TO_BRG(info->zs_baud, zs_parms->clock/info->clk_divisor);
784 info->zs_channel->curregs[12] = (brg & 255);
785 info->zs_channel->curregs[13] = ((brg >> 8) & 255);
786 zs_rtsdtr(info, DTR, 1);
787 } else {
788 zs_rtsdtr(info, RTS | DTR, 0);
789 return;
790 }
791
792 /* byte size and parity */
793 info->zs_channel->curregs[3] &= ~RxNBITS_MASK;
794 info->zs_channel->curregs[5] &= ~TxNBITS_MASK;
795 switch (cflag & CSIZE) {
796 case CS5:
797 bits = 7;
798 info->zs_channel->curregs[3] |= Rx5;
799 info->zs_channel->curregs[5] |= Tx5;
800 break;
801 case CS6:
802 bits = 8;
803 info->zs_channel->curregs[3] |= Rx6;
804 info->zs_channel->curregs[5] |= Tx6;
805 break;
806 case CS7:
807 bits = 9;
808 info->zs_channel->curregs[3] |= Rx7;
809 info->zs_channel->curregs[5] |= Tx7;
810 break;
811 case CS8:
812 default: /* defaults to 8 bits */
813 bits = 10;
814 info->zs_channel->curregs[3] |= Rx8;
815 info->zs_channel->curregs[5] |= Tx8;
816 break;
817 }
818
819 info->timeout = ((info->xmit_fifo_size*HZ*bits) / info->zs_baud);
820 info->timeout += HZ/50; /* Add .02 seconds of slop */
821
822 info->zs_channel->curregs[4] &= ~(SB_MASK | PAR_ENA | PAR_EVEN);
823 if (cflag & CSTOPB) {
824 info->zs_channel->curregs[4] |= SB2;
825 } else {
826 info->zs_channel->curregs[4] |= SB1;
827 }
828 if (cflag & PARENB) {
829 info->zs_channel->curregs[4] |= PAR_ENA;
830 }
831 if (!(cflag & PARODD)) {
832 info->zs_channel->curregs[4] |= PAR_EVEN;
833 }
834
835 if (!(cflag & CLOCAL)) {
836 if (!(info->zs_channel->curregs[15] & DCDIE))
837 info->read_reg_zero = read_zsreg(info->zs_channel, 0);
838 info->zs_channel->curregs[15] |= DCDIE;
839 } else
840 info->zs_channel->curregs[15] &= ~DCDIE;
841 if (cflag & CRTSCTS) {
842 info->zs_channel->curregs[15] |= CTSIE;
843 if ((read_zsreg(info->zs_channel, 0) & CTS) == 0)
844 info->tx_stopped = 1;
845 } else {
846 info->zs_channel->curregs[15] &= ~CTSIE;
847 info->tx_stopped = 0;
848 }
849
850 /* Load up the new values */
851 load_zsregs(info->zs_channel, info->zs_channel->curregs);
852
853 spin_unlock_irqrestore(&zs_lock, flags);
854}
855
856static void rs_flush_chars(struct tty_struct *tty)
857{
858 struct dec_serial *info = (struct dec_serial *)tty->driver_data;
859 unsigned long flags;
860
861 if (serial_paranoia_check(info, tty->name, "rs_flush_chars"))
862 return;
863
864 if (info->xmit_cnt <= 0 || tty->stopped || info->tx_stopped ||
865 !info->xmit_buf)
866 return;
867
868 /* Enable transmitter */
869 spin_lock_irqsave(&zs_lock, flags);
870 transmit_chars(info);
871 spin_unlock_irqrestore(&zs_lock, flags);
872}
873
874static int rs_write(struct tty_struct * tty,
875 const unsigned char *buf, int count)
876{
877 int c, total = 0;
878 struct dec_serial *info = (struct dec_serial *)tty->driver_data;
879 unsigned long flags;
880
881 if (serial_paranoia_check(info, tty->name, "rs_write"))
882 return 0;
883
884 if (!tty || !info->xmit_buf)
885 return 0;
886
887 while (1) {
888 spin_lock_irqsave(&zs_lock, flags);
889 c = min(count, min(SERIAL_XMIT_SIZE - info->xmit_cnt - 1,
890 SERIAL_XMIT_SIZE - info->xmit_head));
891 if (c <= 0)
892 break;
893
894 memcpy(info->xmit_buf + info->xmit_head, buf, c);
895 info->xmit_head = (info->xmit_head + c) & (SERIAL_XMIT_SIZE-1);
896 info->xmit_cnt += c;
897 spin_unlock_irqrestore(&zs_lock, flags);
898 buf += c;
899 count -= c;
900 total += c;
901 }
902
903 if (info->xmit_cnt && !tty->stopped && !info->tx_stopped
904 && !info->tx_active)
905 transmit_chars(info);
906 spin_unlock_irqrestore(&zs_lock, flags);
907 return total;
908}
909
910static int rs_write_room(struct tty_struct *tty)
911{
912 struct dec_serial *info = (struct dec_serial *)tty->driver_data;
913 int ret;
914
915 if (serial_paranoia_check(info, tty->name, "rs_write_room"))
916 return 0;
917 ret = SERIAL_XMIT_SIZE - info->xmit_cnt - 1;
918 if (ret < 0)
919 ret = 0;
920 return ret;
921}
922
923static int rs_chars_in_buffer(struct tty_struct *tty)
924{
925 struct dec_serial *info = (struct dec_serial *)tty->driver_data;
926
927 if (serial_paranoia_check(info, tty->name, "rs_chars_in_buffer"))
928 return 0;
929 return info->xmit_cnt;
930}
931
932static void rs_flush_buffer(struct tty_struct *tty)
933{
934 struct dec_serial *info = (struct dec_serial *)tty->driver_data;
935
936 if (serial_paranoia_check(info, tty->name, "rs_flush_buffer"))
937 return;
938 spin_lock_irq(&zs_lock);
939 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
940 spin_unlock_irq(&zs_lock);
941 tty_wakeup(tty);
942}
943
944/*
945 * ------------------------------------------------------------
946 * rs_throttle()
947 *
948 * This routine is called by the upper-layer tty layer to signal that
949 * incoming characters should be throttled.
950 * ------------------------------------------------------------
951 */
952static void rs_throttle(struct tty_struct * tty)
953{
954 struct dec_serial *info = (struct dec_serial *)tty->driver_data;
955 unsigned long flags;
956
957#ifdef SERIAL_DEBUG_THROTTLE
958 char buf[64];
959
960 printk("throttle %s: %d....\n", _tty_name(tty, buf),
961 tty->ldisc.chars_in_buffer(tty));
962#endif
963
964 if (serial_paranoia_check(info, tty->name, "rs_throttle"))
965 return;
966
967 if (I_IXOFF(tty)) {
968 spin_lock_irqsave(&zs_lock, flags);
969 info->x_char = STOP_CHAR(tty);
970 if (!info->tx_active)
971 transmit_chars(info);
972 spin_unlock_irqrestore(&zs_lock, flags);
973 }
974
975 if (C_CRTSCTS(tty)) {
976 zs_rtsdtr(info, RTS, 0);
977 }
978}
979
980static void rs_unthrottle(struct tty_struct * tty)
981{
982 struct dec_serial *info = (struct dec_serial *)tty->driver_data;
983 unsigned long flags;
984
985#ifdef SERIAL_DEBUG_THROTTLE
986 char buf[64];
987
988 printk("unthrottle %s: %d....\n", _tty_name(tty, buf),
989 tty->ldisc.chars_in_buffer(tty));
990#endif
991
992 if (serial_paranoia_check(info, tty->name, "rs_unthrottle"))
993 return;
994
995 if (I_IXOFF(tty)) {
996 spin_lock_irqsave(&zs_lock, flags);
997 if (info->x_char)
998 info->x_char = 0;
999 else {
1000 info->x_char = START_CHAR(tty);
1001 if (!info->tx_active)
1002 transmit_chars(info);
1003 }
1004 spin_unlock_irqrestore(&zs_lock, flags);
1005 }
1006
1007 if (C_CRTSCTS(tty)) {
1008 zs_rtsdtr(info, RTS, 1);
1009 }
1010}
1011
1012/*
1013 * ------------------------------------------------------------
1014 * rs_ioctl() and friends
1015 * ------------------------------------------------------------
1016 */
1017
1018static int get_serial_info(struct dec_serial * info,
1019 struct serial_struct * retinfo)
1020{
1021 struct serial_struct tmp;
1022
1023 if (!retinfo)
1024 return -EFAULT;
1025 memset(&tmp, 0, sizeof(tmp));
1026 tmp.type = info->type;
1027 tmp.line = info->line;
1028 tmp.port = info->port;
1029 tmp.irq = info->irq;
1030 tmp.flags = info->flags;
1031 tmp.baud_base = info->baud_base;
1032 tmp.close_delay = info->close_delay;
1033 tmp.closing_wait = info->closing_wait;
1034 tmp.custom_divisor = info->custom_divisor;
1035 return copy_to_user(retinfo,&tmp,sizeof(*retinfo)) ? -EFAULT : 0;
1036}
1037
1038static int set_serial_info(struct dec_serial * info,
1039 struct serial_struct * new_info)
1040{
1041 struct serial_struct new_serial;
1042 struct dec_serial old_info;
1043 int retval = 0;
1044
1045 if (!new_info)
1046 return -EFAULT;
1047 copy_from_user(&new_serial,new_info,sizeof(new_serial));
1048 old_info = *info;
1049
1050 if (!capable(CAP_SYS_ADMIN)) {
1051 if ((new_serial.baud_base != info->baud_base) ||
1052 (new_serial.type != info->type) ||
1053 (new_serial.close_delay != info->close_delay) ||
1054 ((new_serial.flags & ~ZILOG_USR_MASK) !=
1055 (info->flags & ~ZILOG_USR_MASK)))
1056 return -EPERM;
1057 info->flags = ((info->flags & ~ZILOG_USR_MASK) |
1058 (new_serial.flags & ZILOG_USR_MASK));
1059 info->custom_divisor = new_serial.custom_divisor;
1060 goto check_and_exit;
1061 }
1062
1063 if (info->count > 1)
1064 return -EBUSY;
1065
1066 /*
1067 * OK, past this point, all the error checking has been done.
1068 * At this point, we start making changes.....
1069 */
1070
1071 info->baud_base = new_serial.baud_base;
1072 info->flags = ((info->flags & ~ZILOG_FLAGS) |
1073 (new_serial.flags & ZILOG_FLAGS));
1074 info->type = new_serial.type;
1075 info->close_delay = new_serial.close_delay;
1076 info->closing_wait = new_serial.closing_wait;
1077
1078check_and_exit:
1079 retval = zs_startup(info);
1080 return retval;
1081}
1082
1083/*
1084 * get_lsr_info - get line status register info
1085 *
1086 * Purpose: Let user call ioctl() to get info when the UART physically
1087 * is emptied. On bus types like RS485, the transmitter must
1088 * release the bus after transmitting. This must be done when
1089 * the transmit shift register is empty, not be done when the
1090 * transmit holding register is empty. This functionality
1091 * allows an RS485 driver to be written in user space.
1092 */
1093static int get_lsr_info(struct dec_serial * info, unsigned int *value)
1094{
1095 unsigned char status;
1096
1097 spin_lock(&zs_lock);
1098 status = read_zsreg(info->zs_channel, 0);
1099 spin_unlock_irq(&zs_lock);
1100 put_user(status,value);
1101 return 0;
1102}
1103
1104static int rs_tiocmget(struct tty_struct *tty, struct file *file)
1105{
1106 struct dec_serial * info = (struct dec_serial *)tty->driver_data;
1107 unsigned char control, status_a, status_b;
1108 unsigned int result;
1109
1110 if (info->hook)
1111 return -ENODEV;
1112
1113 if (serial_paranoia_check(info, tty->name, __FUNCTION__))
1114 return -ENODEV;
1115
1116 if (tty->flags & (1 << TTY_IO_ERROR))
1117 return -EIO;
1118
1119 if (info->zs_channel == info->zs_chan_a)
1120 result = 0;
1121 else {
1122 spin_lock(&zs_lock);
1123 control = info->zs_chan_a->curregs[5];
1124 status_a = read_zsreg(info->zs_chan_a, 0);
1125 status_b = read_zsreg(info->zs_channel, 0);
1126 spin_unlock_irq(&zs_lock);
1127 result = ((control & RTS) ? TIOCM_RTS: 0)
1128 | ((control & DTR) ? TIOCM_DTR: 0)
1129 | ((status_b & DCD) ? TIOCM_CAR: 0)
1130 | ((status_a & DCD) ? TIOCM_RNG: 0)
1131 | ((status_a & SYNC_HUNT) ? TIOCM_DSR: 0)
1132 | ((status_b & CTS) ? TIOCM_CTS: 0);
1133 }
1134 return result;
1135}
1136
1137static int rs_tiocmset(struct tty_struct *tty, struct file *file,
1138 unsigned int set, unsigned int clear)
1139{
1140 struct dec_serial * info = (struct dec_serial *)tty->driver_data;
1141
1142 if (info->hook)
1143 return -ENODEV;
1144
1145 if (serial_paranoia_check(info, tty->name, __FUNCTION__))
1146 return -ENODEV;
1147
1148 if (tty->flags & (1 << TTY_IO_ERROR))
1149 return -EIO;
1150
1151 if (info->zs_channel == info->zs_chan_a)
1152 return 0;
1153
1154 spin_lock(&zs_lock);
1155 if (set & TIOCM_RTS)
1156 info->zs_chan_a->curregs[5] |= RTS;
1157 if (set & TIOCM_DTR)
1158 info->zs_chan_a->curregs[5] |= DTR;
1159 if (clear & TIOCM_RTS)
1160 info->zs_chan_a->curregs[5] &= ~RTS;
1161 if (clear & TIOCM_DTR)
1162 info->zs_chan_a->curregs[5] &= ~DTR;
1163 write_zsreg(info->zs_chan_a, 5, info->zs_chan_a->curregs[5]);
1164 spin_unlock_irq(&zs_lock);
1165 return 0;
1166}
1167
1168/*
1169 * rs_break - turn transmit break condition on/off
1170 */
1171static void rs_break(struct tty_struct *tty, int break_state)
1172{
1173 struct dec_serial *info = (struct dec_serial *) tty->driver_data;
1174 unsigned long flags;
1175
1176 if (serial_paranoia_check(info, tty->name, "rs_break"))
1177 return;
1178 if (!info->port)
1179 return;
1180
1181 spin_lock_irqsave(&zs_lock, flags);
1182 if (break_state == -1)
1183 info->zs_channel->curregs[5] |= SND_BRK;
1184 else
1185 info->zs_channel->curregs[5] &= ~SND_BRK;
1186 write_zsreg(info->zs_channel, 5, info->zs_channel->curregs[5]);
1187 spin_unlock_irqrestore(&zs_lock, flags);
1188}
1189
1190static int rs_ioctl(struct tty_struct *tty, struct file * file,
1191 unsigned int cmd, unsigned long arg)
1192{
1193 struct dec_serial * info = (struct dec_serial *)tty->driver_data;
1194
1195 if (info->hook)
1196 return -ENODEV;
1197
1198 if (serial_paranoia_check(info, tty->name, "rs_ioctl"))
1199 return -ENODEV;
1200
1201 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1202 (cmd != TIOCSERCONFIG) && (cmd != TIOCSERGWILD) &&
1203 (cmd != TIOCSERSWILD) && (cmd != TIOCSERGSTRUCT)) {
1204 if (tty->flags & (1 << TTY_IO_ERROR))
1205 return -EIO;
1206 }
1207
1208 switch (cmd) {
1209 case TIOCGSERIAL:
1210 if (!access_ok(VERIFY_WRITE, (void *)arg,
1211 sizeof(struct serial_struct)))
1212 return -EFAULT;
1213 return get_serial_info(info, (struct serial_struct *)arg);
1214
1215 case TIOCSSERIAL:
1216 return set_serial_info(info, (struct serial_struct *)arg);
1217
1218 case TIOCSERGETLSR: /* Get line status register */
1219 if (!access_ok(VERIFY_WRITE, (void *)arg,
1220 sizeof(unsigned int)))
1221 return -EFAULT;
1222 return get_lsr_info(info, (unsigned int *)arg);
1223
1224 case TIOCSERGSTRUCT:
1225 if (!access_ok(VERIFY_WRITE, (void *)arg,
1226 sizeof(struct dec_serial)))
1227 return -EFAULT;
1228 copy_from_user((struct dec_serial *)arg, info,
1229 sizeof(struct dec_serial));
1230 return 0;
1231
1232 default:
1233 return -ENOIOCTLCMD;
1234 }
1235 return 0;
1236}
1237
1238static void rs_set_termios(struct tty_struct *tty, struct ktermios *old_termios)
1239{
1240 struct dec_serial *info = (struct dec_serial *)tty->driver_data;
1241 int was_stopped;
1242
1243 if (tty->termios->c_cflag == old_termios->c_cflag)
1244 return;
1245 was_stopped = info->tx_stopped;
1246
1247 change_speed(info);
1248
1249 if (was_stopped && !info->tx_stopped)
1250 rs_start(tty);
1251}
1252
1253/*
1254 * ------------------------------------------------------------
1255 * rs_close()
1256 *
1257 * This routine is called when the serial port gets closed.
1258 * Wait for the last remaining data to be sent.
1259 * ------------------------------------------------------------
1260 */
1261static void rs_close(struct tty_struct *tty, struct file * filp)
1262{
1263 struct dec_serial * info = (struct dec_serial *)tty->driver_data;
1264 unsigned long flags;
1265
1266 if (!info || serial_paranoia_check(info, tty->name, "rs_close"))
1267 return;
1268
1269 spin_lock_irqsave(&zs_lock, flags);
1270
1271 if (tty_hung_up_p(filp)) {
1272 spin_unlock_irqrestore(&zs_lock, flags);
1273 return;
1274 }
1275
1276#ifdef SERIAL_DEBUG_OPEN
1277 printk("rs_close ttyS%d, count = %d\n", info->line, info->count);
1278#endif
1279 if ((tty->count == 1) && (info->count != 1)) {
1280 /*
1281 * Uh, oh. tty->count is 1, which means that the tty
1282 * structure will be freed. Info->count should always
1283 * be one in these conditions. If it's greater than
1284 * one, we've got real problems, since it means the
1285 * serial port won't be shutdown.
1286 */
1287 printk("rs_close: bad serial port count; tty->count is 1, "
1288 "info->count is %d\n", info->count);
1289 info->count = 1;
1290 }
1291 if (--info->count < 0) {
1292 printk("rs_close: bad serial port count for ttyS%d: %d\n",
1293 info->line, info->count);
1294 info->count = 0;
1295 }
1296 if (info->count) {
1297 spin_unlock_irqrestore(&zs_lock, flags);
1298 return;
1299 }
1300 info->flags |= ZILOG_CLOSING;
1301 /*
1302 * Now we wait for the transmit buffer to clear; and we notify
1303 * the line discipline to only process XON/XOFF characters.
1304 */
1305 tty->closing = 1;
1306 if (info->closing_wait != ZILOG_CLOSING_WAIT_NONE)
1307 tty_wait_until_sent(tty, info->closing_wait);
1308 /*
1309 * At this point we stop accepting input. To do this, we
1310 * disable the receiver and receive interrupts.
1311 */
1312 info->zs_channel->curregs[3] &= ~RxENABLE;
1313 write_zsreg(info->zs_channel, 3, info->zs_channel->curregs[3]);
1314 info->zs_channel->curregs[1] = 0; /* disable any rx ints */
1315 write_zsreg(info->zs_channel, 1, info->zs_channel->curregs[1]);
1316 ZS_CLEARFIFO(info->zs_channel);
1317 if (info->flags & ZILOG_INITIALIZED) {
1318 /*
1319 * Before we drop DTR, make sure the SCC transmitter
1320 * has completely drained.
1321 */
1322 rs_wait_until_sent(tty, info->timeout);
1323 }
1324
1325 shutdown(info);
1326 if (tty->driver->flush_buffer)
1327 tty->driver->flush_buffer(tty);
1328 tty_ldisc_flush(tty);
1329 tty->closing = 0;
1330 info->event = 0;
1331 info->tty = 0;
1332 if (info->blocked_open) {
1333 if (info->close_delay) {
1334 msleep_interruptible(jiffies_to_msecs(info->close_delay));
1335 }
1336 wake_up_interruptible(&info->open_wait);
1337 }
1338 info->flags &= ~(ZILOG_NORMAL_ACTIVE|ZILOG_CLOSING);
1339 wake_up_interruptible(&info->close_wait);
1340 spin_unlock_irqrestore(&zs_lock, flags);
1341}
1342
1343/*
1344 * rs_wait_until_sent() --- wait until the transmitter is empty
1345 */
1346static void rs_wait_until_sent(struct tty_struct *tty, int timeout)
1347{
1348 struct dec_serial *info = (struct dec_serial *) tty->driver_data;
1349 unsigned long orig_jiffies;
1350 int char_time;
1351
1352 if (serial_paranoia_check(info, tty->name, "rs_wait_until_sent"))
1353 return;
1354
1355 orig_jiffies = jiffies;
1356 /*
1357 * Set the check interval to be 1/5 of the estimated time to
1358 * send a single character, and make it at least 1. The check
1359 * interval should also be less than the timeout.
1360 */
1361 char_time = (info->timeout - HZ/50) / info->xmit_fifo_size;
1362 char_time = char_time / 5;
1363 if (char_time == 0)
1364 char_time = 1;
1365 if (timeout)
1366 char_time = min(char_time, timeout);
1367 while ((read_zsreg(info->zs_channel, 1) & Tx_BUF_EMP) == 0) {
1368 msleep_interruptible(jiffies_to_msecs(char_time));
1369 if (signal_pending(current))
1370 break;
1371 if (timeout && time_after(jiffies, orig_jiffies + timeout))
1372 break;
1373 }
1374 current->state = TASK_RUNNING;
1375}
1376
1377/*
1378 * rs_hangup() --- called by tty_hangup() when a hangup is signaled.
1379 */
1380static void rs_hangup(struct tty_struct *tty)
1381{
1382 struct dec_serial * info = (struct dec_serial *)tty->driver_data;
1383
1384 if (serial_paranoia_check(info, tty->name, "rs_hangup"))
1385 return;
1386
1387 rs_flush_buffer(tty);
1388 shutdown(info);
1389 info->event = 0;
1390 info->count = 0;
1391 info->flags &= ~ZILOG_NORMAL_ACTIVE;
1392 info->tty = 0;
1393 wake_up_interruptible(&info->open_wait);
1394}
1395
1396/*
1397 * ------------------------------------------------------------
1398 * rs_open() and friends
1399 * ------------------------------------------------------------
1400 */
1401static int block_til_ready(struct tty_struct *tty, struct file * filp,
1402 struct dec_serial *info)
1403{
1404 DECLARE_WAITQUEUE(wait, current);
1405 int retval;
1406 int do_clocal = 0;
1407
1408 /*
1409 * If the device is in the middle of being closed, then block
1410 * until it's done, and then try again.
1411 */
1412 if (info->flags & ZILOG_CLOSING) {
1413 interruptible_sleep_on(&info->close_wait);
1414#ifdef SERIAL_DO_RESTART
1415 return ((info->flags & ZILOG_HUP_NOTIFY) ?
1416 -EAGAIN : -ERESTARTSYS);
1417#else
1418 return -EAGAIN;
1419#endif
1420 }
1421
1422 /*
1423 * If non-blocking mode is set, or the port is not enabled,
1424 * then make the check up front and then exit.
1425 */
1426 if ((filp->f_flags & O_NONBLOCK) ||
1427 (tty->flags & (1 << TTY_IO_ERROR))) {
1428 info->flags |= ZILOG_NORMAL_ACTIVE;
1429 return 0;
1430 }
1431
1432 if (tty->termios->c_cflag & CLOCAL)
1433 do_clocal = 1;
1434
1435 /*
1436 * Block waiting for the carrier detect and the line to become
1437 * free (i.e., not in use by the callout). While we are in
1438 * this loop, info->count is dropped by one, so that
1439 * rs_close() knows when to free things. We restore it upon
1440 * exit, either normal or abnormal.
1441 */
1442 retval = 0;
1443 add_wait_queue(&info->open_wait, &wait);
1444#ifdef SERIAL_DEBUG_OPEN
1445 printk("block_til_ready before block: ttyS%d, count = %d\n",
1446 info->line, info->count);
1447#endif
1448 spin_lock(&zs_lock);
1449 if (!tty_hung_up_p(filp))
1450 info->count--;
1451 spin_unlock_irq(&zs_lock);
1452 info->blocked_open++;
1453 while (1) {
1454 spin_lock(&zs_lock);
1455 if (tty->termios->c_cflag & CBAUD)
1456 zs_rtsdtr(info, RTS | DTR, 1);
1457 spin_unlock_irq(&zs_lock);
1458 set_current_state(TASK_INTERRUPTIBLE);
1459 if (tty_hung_up_p(filp) ||
1460 !(info->flags & ZILOG_INITIALIZED)) {
1461#ifdef SERIAL_DO_RESTART
1462 if (info->flags & ZILOG_HUP_NOTIFY)
1463 retval = -EAGAIN;
1464 else
1465 retval = -ERESTARTSYS;
1466#else
1467 retval = -EAGAIN;
1468#endif
1469 break;
1470 }
1471 if (!(info->flags & ZILOG_CLOSING) &&
1472 (do_clocal || (read_zsreg(info->zs_channel, 0) & DCD)))
1473 break;
1474 if (signal_pending(current)) {
1475 retval = -ERESTARTSYS;
1476 break;
1477 }
1478#ifdef SERIAL_DEBUG_OPEN
1479 printk("block_til_ready blocking: ttyS%d, count = %d\n",
1480 info->line, info->count);
1481#endif
1482 schedule();
1483 }
1484 current->state = TASK_RUNNING;
1485 remove_wait_queue(&info->open_wait, &wait);
1486 if (!tty_hung_up_p(filp))
1487 info->count++;
1488 info->blocked_open--;
1489#ifdef SERIAL_DEBUG_OPEN
1490 printk("block_til_ready after blocking: ttyS%d, count = %d\n",
1491 info->line, info->count);
1492#endif
1493 if (retval)
1494 return retval;
1495 info->flags |= ZILOG_NORMAL_ACTIVE;
1496 return 0;
1497}
1498
1499/*
1500 * This routine is called whenever a serial port is opened. It
1501 * enables interrupts for a serial port, linking in its ZILOG structure into
1502 * the IRQ chain. It also performs the serial-specific
1503 * initialization for the tty structure.
1504 */
1505static int rs_open(struct tty_struct *tty, struct file * filp)
1506{
1507 struct dec_serial *info;
1508 int retval, line;
1509
1510 line = tty->index;
1511 if ((line < 0) || (line >= zs_channels_found))
1512 return -ENODEV;
1513 info = zs_soft + line;
1514
1515 if (info->hook)
1516 return -ENODEV;
1517
1518 if (serial_paranoia_check(info, tty->name, "rs_open"))
1519 return -ENODEV;
1520#ifdef SERIAL_DEBUG_OPEN
1521 printk("rs_open %s, count = %d\n", tty->name, info->count);
1522#endif
1523
1524 info->count++;
1525 tty->driver_data = info;
1526 info->tty = tty;
1527
1528 /*
1529 * If the port is the middle of closing, bail out now
1530 */
1531 if (tty_hung_up_p(filp) ||
1532 (info->flags & ZILOG_CLOSING)) {
1533 if (info->flags & ZILOG_CLOSING)
1534 interruptible_sleep_on(&info->close_wait);
1535#ifdef SERIAL_DO_RESTART
1536 return ((info->flags & ZILOG_HUP_NOTIFY) ?
1537 -EAGAIN : -ERESTARTSYS);
1538#else
1539 return -EAGAIN;
1540#endif
1541 }
1542
1543 /*
1544 * Start up serial port
1545 */
1546 retval = zs_startup(info);
1547 if (retval)
1548 return retval;
1549
1550 retval = block_til_ready(tty, filp, info);
1551 if (retval) {
1552#ifdef SERIAL_DEBUG_OPEN
1553 printk("rs_open returning after block_til_ready with %d\n",
1554 retval);
1555#endif
1556 return retval;
1557 }
1558
1559#ifdef CONFIG_SERIAL_DEC_CONSOLE
1560 if (zs_console.cflag && zs_console.index == line) {
1561 tty->termios->c_cflag = zs_console.cflag;
1562 zs_console.cflag = 0;
1563 change_speed(info);
1564 }
1565#endif
1566
1567#ifdef SERIAL_DEBUG_OPEN
1568 printk("rs_open %s successful...", tty->name);
1569#endif
1570/* tty->low_latency = 1; */
1571 return 0;
1572}
1573
1574/* Finally, routines used to initialize the serial driver. */
1575
1576static void __init show_serial_version(void)
1577{
1578 printk("DECstation Z8530 serial driver version 0.09\n");
1579}
1580
1581/* Initialize Z8530s zs_channels
1582 */
1583
1584static void __init probe_sccs(void)
1585{
1586 struct dec_serial **pp;
1587 int i, n, n_chips = 0, n_channels, chip, channel;
1588 unsigned long flags;
1589
1590 /*
1591 * did we get here by accident?
1592 */
1593 if(!BUS_PRESENT) {
1594 printk("Not on JUNKIO machine, skipping probe_sccs\n");
1595 return;
1596 }
1597
1598 switch(mips_machtype) {
1599#ifdef CONFIG_MACH_DECSTATION
1600 case MACH_DS5000_2X0:
1601 case MACH_DS5900:
1602 n_chips = 2;
1603 zs_parms = &ds_parms;
1604 zs_parms->irq0 = dec_interrupt[DEC_IRQ_SCC0];
1605 zs_parms->irq1 = dec_interrupt[DEC_IRQ_SCC1];
1606 break;
1607 case MACH_DS5000_1XX:
1608 n_chips = 2;
1609 zs_parms = &ds_parms;
1610 zs_parms->irq0 = dec_interrupt[DEC_IRQ_SCC0];
1611 zs_parms->irq1 = dec_interrupt[DEC_IRQ_SCC1];
1612 break;
1613 case MACH_DS5000_XX:
1614 n_chips = 1;
1615 zs_parms = &ds_parms;
1616 zs_parms->irq0 = dec_interrupt[DEC_IRQ_SCC0];
1617 break;
1618#endif
1619 default:
1620 panic("zs: unsupported bus");
1621 }
1622 if (!zs_parms)
1623 panic("zs: uninitialized parms");
1624
1625 pp = &zs_chain;
1626
1627 n_channels = 0;
1628
1629 for (chip = 0; chip < n_chips; chip++) {
1630 for (channel = 0; channel <= 1; channel++) {
1631 /*
1632 * The sccs reside on the high byte of the 16 bit IOBUS
1633 */
1634 zs_channels[n_channels].control =
1635 (volatile void *)CKSEG1ADDR(dec_kn_slot_base +
1636 (0 == chip ? zs_parms->scc0 : zs_parms->scc1) +
1637 (0 == channel ? zs_parms->channel_a_offset :
1638 zs_parms->channel_b_offset));
1639 zs_channels[n_channels].data =
1640 zs_channels[n_channels].control + 4;
1641
1642#ifndef CONFIG_SERIAL_DEC_CONSOLE
1643 /*
1644 * We're called early and memory managment isn't up, yet.
1645 * Thus request_region would fail.
1646 */
1647 if (!request_region((unsigned long)
1648 zs_channels[n_channels].control,
1649 ZS_CHAN_IO_SIZE, "SCC"))
1650 panic("SCC I/O region is not free");
1651#endif
1652 zs_soft[n_channels].zs_channel = &zs_channels[n_channels];
1653 /* HACK alert! */
1654 if (!(chip & 1))
1655 zs_soft[n_channels].irq = zs_parms->irq0;
1656 else
1657 zs_soft[n_channels].irq = zs_parms->irq1;
1658
1659 /*
1660 * Identification of channel A. Location of channel A
1661 * inside chip depends on mapping of internal address
1662 * the chip decodes channels by.
1663 * CHANNEL_A_NR returns either 0 (in case of
1664 * DECstations) or 1 (in case of Baget).
1665 */
1666 if (CHANNEL_A_NR == channel)
1667 zs_soft[n_channels].zs_chan_a =
1668 &zs_channels[n_channels+1-2*CHANNEL_A_NR];
1669 else
1670 zs_soft[n_channels].zs_chan_a =
1671 &zs_channels[n_channels];
1672
1673 *pp = &zs_soft[n_channels];
1674 pp = &zs_soft[n_channels].zs_next;
1675 n_channels++;
1676 }
1677 }
1678
1679 *pp = 0;
1680 zs_channels_found = n_channels;
1681
1682 for (n = 0; n < zs_channels_found; n++) {
1683 for (i = 0; i < 16; i++) {
1684 zs_soft[n].zs_channel->curregs[i] = zs_init_regs[i];
1685 }
1686 }
1687
1688 spin_lock_irqsave(&zs_lock, flags);
1689 for (n = 0; n < zs_channels_found; n++) {
1690 if (n % 2 == 0) {
1691 write_zsreg(zs_soft[n].zs_chan_a, R9, FHWRES);
1692 udelay(10);
1693 write_zsreg(zs_soft[n].zs_chan_a, R9, 0);
1694 }
1695 load_zsregs(zs_soft[n].zs_channel,
1696 zs_soft[n].zs_channel->curregs);
1697 }
1698 spin_unlock_irqrestore(&zs_lock, flags);
1699}
1700
1701static const struct tty_operations serial_ops = {
1702 .open = rs_open,
1703 .close = rs_close,
1704 .write = rs_write,
1705 .flush_chars = rs_flush_chars,
1706 .write_room = rs_write_room,
1707 .chars_in_buffer = rs_chars_in_buffer,
1708 .flush_buffer = rs_flush_buffer,
1709 .ioctl = rs_ioctl,
1710 .throttle = rs_throttle,
1711 .unthrottle = rs_unthrottle,
1712 .set_termios = rs_set_termios,
1713 .stop = rs_stop,
1714 .start = rs_start,
1715 .hangup = rs_hangup,
1716 .break_ctl = rs_break,
1717 .wait_until_sent = rs_wait_until_sent,
1718 .tiocmget = rs_tiocmget,
1719 .tiocmset = rs_tiocmset,
1720};
1721
1722/* zs_init inits the driver */
1723int __init zs_init(void)
1724{
1725 int channel, i;
1726 struct dec_serial *info;
1727
1728 if(!BUS_PRESENT)
1729 return -ENODEV;
1730
1731 /* Find out how many Z8530 SCCs we have */
1732 if (zs_chain == 0)
1733 probe_sccs();
1734 serial_driver = alloc_tty_driver(zs_channels_found);
1735 if (!serial_driver)
1736 return -ENOMEM;
1737
1738 show_serial_version();
1739
1740 /* Initialize the tty_driver structure */
1741 /* Not all of this is exactly right for us. */
1742
1743 serial_driver->owner = THIS_MODULE;
1744 serial_driver->name = "ttyS";
1745 serial_driver->major = TTY_MAJOR;
1746 serial_driver->minor_start = 64;
1747 serial_driver->type = TTY_DRIVER_TYPE_SERIAL;
1748 serial_driver->subtype = SERIAL_TYPE_NORMAL;
1749 serial_driver->init_termios = tty_std_termios;
1750 serial_driver->init_termios.c_cflag =
1751 B9600 | CS8 | CREAD | HUPCL | CLOCAL;
1752 serial_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1753 tty_set_operations(serial_driver, &serial_ops);
1754
1755 if (tty_register_driver(serial_driver))
1756 panic("Couldn't register serial driver");
1757
1758 for (info = zs_chain, i = 0; info; info = info->zs_next, i++) {
1759
1760 /* Needed before interrupts are enabled. */
1761 info->tty = 0;
1762 info->x_char = 0;
1763
1764 if (info->hook && info->hook->init_info) {
1765 (*info->hook->init_info)(info);
1766 continue;
1767 }
1768
1769 info->magic = SERIAL_MAGIC;
1770 info->port = (int) info->zs_channel->control;
1771 info->line = i;
1772 info->custom_divisor = 16;
1773 info->close_delay = 50;
1774 info->closing_wait = 3000;
1775 info->event = 0;
1776 info->count = 0;
1777 info->blocked_open = 0;
1778 tasklet_init(&info->tlet, do_softint, (unsigned long)info);
1779 init_waitqueue_head(&info->open_wait);
1780 init_waitqueue_head(&info->close_wait);
1781 printk("ttyS%02d at 0x%08x (irq = %d) is a Z85C30 SCC\n",
1782 info->line, info->port, info->irq);
1783 tty_register_device(serial_driver, info->line, NULL);
1784
1785 }
1786
1787 for (channel = 0; channel < zs_channels_found; ++channel) {
1788 zs_soft[channel].clk_divisor = 16;
1789 zs_soft[channel].zs_baud = get_zsbaud(&zs_soft[channel]);
1790
1791 if (request_irq(zs_soft[channel].irq, rs_interrupt, IRQF_SHARED,
1792 "scc", &zs_soft[channel]))
1793 printk(KERN_ERR "decserial: can't get irq %d\n",
1794 zs_soft[channel].irq);
1795
1796 if (zs_soft[channel].hook) {
1797 zs_startup(&zs_soft[channel]);
1798 if (zs_soft[channel].hook->init_channel)
1799 (*zs_soft[channel].hook->init_channel)
1800 (&zs_soft[channel]);
1801 }
1802 }
1803
1804 return 0;
1805}
1806
1807/*
1808 * polling I/O routines
1809 */
1810static int zs_poll_tx_char(void *handle, unsigned char ch)
1811{
1812 struct dec_serial *info = handle;
1813 struct dec_zschannel *chan = info->zs_channel;
1814 int ret;
1815
1816 if(chan) {
1817 int loops = 10000;
1818
1819 while (loops && !(read_zsreg(chan, 0) & Tx_BUF_EMP))
1820 loops--;
1821
1822 if (loops) {
1823 write_zsdata(chan, ch);
1824 ret = 0;
1825 } else
1826 ret = -EAGAIN;
1827
1828 return ret;
1829 } else
1830 return -ENODEV;
1831}
1832
1833static int zs_poll_rx_char(void *handle)
1834{
1835 struct dec_serial *info = handle;
1836 struct dec_zschannel *chan = info->zs_channel;
1837 int ret;
1838
1839 if(chan) {
1840 int loops = 10000;
1841
1842 while (loops && !(read_zsreg(chan, 0) & Rx_CH_AV))
1843 loops--;
1844
1845 if (loops)
1846 ret = read_zsdata(chan);
1847 else
1848 ret = -EAGAIN;
1849
1850 return ret;
1851 } else
1852 return -ENODEV;
1853}
1854
1855int register_zs_hook(unsigned int channel, struct dec_serial_hook *hook)
1856{
1857 struct dec_serial *info = &zs_soft[channel];
1858
1859 if (info->hook) {
1860 printk("%s: line %d has already a hook registered\n",
1861 __FUNCTION__, channel);
1862
1863 return 0;
1864 } else {
1865 hook->poll_rx_char = zs_poll_rx_char;
1866 hook->poll_tx_char = zs_poll_tx_char;
1867 info->hook = hook;
1868
1869 return 1;
1870 }
1871}
1872
1873int unregister_zs_hook(unsigned int channel)
1874{
1875 struct dec_serial *info = &zs_soft[channel];
1876
1877 if (info->hook) {
1878 info->hook = NULL;
1879 return 1;
1880 } else {
1881 printk("%s: trying to unregister hook on line %d,"
1882 " but none is registered\n", __FUNCTION__, channel);
1883 return 0;
1884 }
1885}
1886
1887/*
1888 * ------------------------------------------------------------
1889 * Serial console driver
1890 * ------------------------------------------------------------
1891 */
1892#ifdef CONFIG_SERIAL_DEC_CONSOLE
1893
1894
1895/*
1896 * Print a string to the serial port trying not to disturb
1897 * any possible real use of the port...
1898 */
1899static void serial_console_write(struct console *co, const char *s,
1900 unsigned count)
1901{
1902 struct dec_serial *info;
1903 int i;
1904
1905 info = zs_soft + co->index;
1906
1907 for (i = 0; i < count; i++, s++) {
1908 if(*s == '\n')
1909 zs_poll_tx_char(info, '\r');
1910 zs_poll_tx_char(info, *s);
1911 }
1912}
1913
1914static struct tty_driver *serial_console_device(struct console *c, int *index)
1915{
1916 *index = c->index;
1917 return serial_driver;
1918}
1919
1920/*
1921 * Setup initial baud/bits/parity. We do two things here:
1922 * - construct a cflag setting for the first rs_open()
1923 * - initialize the serial port
1924 * Return non-zero if we didn't find a serial port.
1925 */
1926static int __init serial_console_setup(struct console *co, char *options)
1927{
1928 struct dec_serial *info;
1929 int baud = 9600;
1930 int bits = 8;
1931 int parity = 'n';
1932 int cflag = CREAD | HUPCL | CLOCAL;
1933 int clk_divisor = 16;
1934 int brg;
1935 char *s;
1936 unsigned long flags;
1937
1938 if(!BUS_PRESENT)
1939 return -ENODEV;
1940
1941 info = zs_soft + co->index;
1942
1943 if (zs_chain == 0)
1944 probe_sccs();
1945
1946 info->is_cons = 1;
1947
1948 if (options) {
1949 baud = simple_strtoul(options, NULL, 10);
1950 s = options;
1951 while(*s >= '0' && *s <= '9')
1952 s++;
1953 if (*s)
1954 parity = *s++;
1955 if (*s)
1956 bits = *s - '0';
1957 }
1958
1959 /*
1960 * Now construct a cflag setting.
1961 */
1962 switch(baud) {
1963 case 1200:
1964 cflag |= B1200;
1965 break;
1966 case 2400:
1967 cflag |= B2400;
1968 break;
1969 case 4800:
1970 cflag |= B4800;
1971 break;
1972 case 19200:
1973 cflag |= B19200;
1974 break;
1975 case 38400:
1976 cflag |= B38400;
1977 break;
1978 case 57600:
1979 cflag |= B57600;
1980 break;
1981 case 115200:
1982 cflag |= B115200;
1983 break;
1984 case 9600:
1985 default:
1986 cflag |= B9600;
1987 /*
1988 * Set this to a sane value to prevent a divide error.
1989 */
1990 baud = 9600;
1991 break;
1992 }
1993 switch(bits) {
1994 case 7:
1995 cflag |= CS7;
1996 break;
1997 default:
1998 case 8:
1999 cflag |= CS8;
2000 break;
2001 }
2002 switch(parity) {
2003 case 'o': case 'O':
2004 cflag |= PARODD;
2005 break;
2006 case 'e': case 'E':
2007 cflag |= PARENB;
2008 break;
2009 }
2010 co->cflag = cflag;
2011
2012 spin_lock_irqsave(&zs_lock, flags);
2013
2014 /*
2015 * Set up the baud rate generator.
2016 */
2017 brg = BPS_TO_BRG(baud, zs_parms->clock / clk_divisor);
2018 info->zs_channel->curregs[R12] = (brg & 255);
2019 info->zs_channel->curregs[R13] = ((brg >> 8) & 255);
2020
2021 /*
2022 * Set byte size and parity.
2023 */
2024 if (bits == 7) {
2025 info->zs_channel->curregs[R3] |= Rx7;
2026 info->zs_channel->curregs[R5] |= Tx7;
2027 } else {
2028 info->zs_channel->curregs[R3] |= Rx8;
2029 info->zs_channel->curregs[R5] |= Tx8;
2030 }
2031 if (cflag & PARENB) {
2032 info->zs_channel->curregs[R4] |= PAR_ENA;
2033 }
2034 if (!(cflag & PARODD)) {
2035 info->zs_channel->curregs[R4] |= PAR_EVEN;
2036 }
2037 info->zs_channel->curregs[R4] |= SB1;
2038
2039 /*
2040 * Turn on RTS and DTR.
2041 */
2042 zs_rtsdtr(info, RTS | DTR, 1);
2043
2044 /*
2045 * Finally, enable sequencing.
2046 */
2047 info->zs_channel->curregs[R3] |= RxENABLE;
2048 info->zs_channel->curregs[R5] |= TxENAB;
2049
2050 /*
2051 * Clear the interrupt registers.
2052 */
2053 write_zsreg(info->zs_channel, R0, ERR_RES);
2054 write_zsreg(info->zs_channel, R0, RES_H_IUS);
2055
2056 /*
2057 * Load up the new values.
2058 */
2059 load_zsregs(info->zs_channel, info->zs_channel->curregs);
2060
2061 /* Save the current value of RR0 */
2062 info->read_reg_zero = read_zsreg(info->zs_channel, R0);
2063
2064 zs_soft[co->index].clk_divisor = clk_divisor;
2065 zs_soft[co->index].zs_baud = get_zsbaud(&zs_soft[co->index]);
2066
2067 spin_unlock_irqrestore(&zs_lock, flags);
2068
2069 return 0;
2070}
2071
2072static struct console zs_console = {
2073 .name = "ttyS",
2074 .write = serial_console_write,
2075 .device = serial_console_device,
2076 .setup = serial_console_setup,
2077 .flags = CON_PRINTBUFFER,
2078 .index = -1,
2079};
2080
2081/*
2082 * Register console.
2083 */
2084void __init zs_serial_console_init(void)
2085{
2086 register_console(&zs_console);
2087}
2088#endif /* ifdef CONFIG_SERIAL_DEC_CONSOLE */
2089
2090#ifdef CONFIG_KGDB
2091struct dec_zschannel *zs_kgdbchan;
2092static unsigned char scc_inittab[] = {
2093 9, 0x80, /* reset A side (CHRA) */
2094 13, 0, /* set baud rate divisor */
2095 12, 1,
2096 14, 1, /* baud rate gen enable, src=rtxc (BRENABL) */
2097 11, 0x50, /* clocks = br gen (RCBR | TCBR) */
2098 5, 0x6a, /* tx 8 bits, assert RTS (Tx8 | TxENAB | RTS) */
2099 4, 0x44, /* x16 clock, 1 stop (SB1 | X16CLK)*/
2100 3, 0xc1, /* rx enable, 8 bits (RxENABLE | Rx8)*/
2101};
2102
2103/* These are for receiving and sending characters under the kgdb
2104 * source level kernel debugger.
2105 */
2106void putDebugChar(char kgdb_char)
2107{
2108 struct dec_zschannel *chan = zs_kgdbchan;
2109 while ((read_zsreg(chan, 0) & Tx_BUF_EMP) == 0)
2110 RECOVERY_DELAY;
2111 write_zsdata(chan, kgdb_char);
2112}
2113char getDebugChar(void)
2114{
2115 struct dec_zschannel *chan = zs_kgdbchan;
2116 while((read_zsreg(chan, 0) & Rx_CH_AV) == 0)
2117 eieio(); /*barrier();*/
2118 return read_zsdata(chan);
2119}
2120void kgdb_interruptible(int yes)
2121{
2122 struct dec_zschannel *chan = zs_kgdbchan;
2123 int one, nine;
2124 nine = read_zsreg(chan, 9);
2125 if (yes == 1) {
2126 one = EXT_INT_ENAB|RxINT_ALL;
2127 nine |= MIE;
2128 printk("turning serial ints on\n");
2129 } else {
2130 one = RxINT_DISAB;
2131 nine &= ~MIE;
2132 printk("turning serial ints off\n");
2133 }
2134 write_zsreg(chan, 1, one);
2135 write_zsreg(chan, 9, nine);
2136}
2137
2138static int kgdbhook_init_channel(void *handle)
2139{
2140 return 0;
2141}
2142
2143static void kgdbhook_init_info(void *handle)
2144{
2145}
2146
2147static void kgdbhook_rx_char(void *handle, unsigned char ch, unsigned char fl)
2148{
2149 struct dec_serial *info = handle;
2150
2151 if (fl != TTY_NORMAL)
2152 return;
2153 if (ch == 0x03 || ch == '$')
2154 breakpoint();
2155}
2156
2157/* This sets up the serial port we're using, and turns on
2158 * interrupts for that channel, so kgdb is usable once we're done.
2159 */
2160static inline void kgdb_chaninit(struct dec_zschannel *ms, int intson, int bps)
2161{
2162 int brg;
2163 int i, x;
2164 volatile char *sccc = ms->control;
2165 brg = BPS_TO_BRG(bps, zs_parms->clock/16);
2166 printk("setting bps on kgdb line to %d [brg=%x]\n", bps, brg);
2167 for (i = 20000; i != 0; --i) {
2168 x = *sccc; eieio();
2169 }
2170 for (i = 0; i < sizeof(scc_inittab); ++i) {
2171 write_zsreg(ms, scc_inittab[i], scc_inittab[i+1]);
2172 i++;
2173 }
2174}
2175/* This is called at boot time to prime the kgdb serial debugging
2176 * serial line. The 'tty_num' argument is 0 for /dev/ttya and 1
2177 * for /dev/ttyb which is determined in setup_arch() from the
2178 * boot command line flags.
2179 */
2180struct dec_serial_hook zs_kgdbhook = {
2181 .init_channel = kgdbhook_init_channel,
2182 .init_info = kgdbhook_init_info,
2183 .rx_char = kgdbhook_rx_char,
2184 .cflags = B38400 | CS8 | CLOCAL,
2185};
2186
2187void __init zs_kgdb_hook(int tty_num)
2188{
2189 /* Find out how many Z8530 SCCs we have */
2190 if (zs_chain == 0)
2191 probe_sccs();
2192 zs_soft[tty_num].zs_channel = &zs_channels[tty_num];
2193 zs_kgdbchan = zs_soft[tty_num].zs_channel;
2194 zs_soft[tty_num].change_needed = 0;
2195 zs_soft[tty_num].clk_divisor = 16;
2196 zs_soft[tty_num].zs_baud = 38400;
2197 zs_soft[tty_num].hook = &zs_kgdbhook; /* This runs kgdb */
2198 /* Turn on transmitter/receiver at 8-bits/char */
2199 kgdb_chaninit(zs_soft[tty_num].zs_channel, 1, 38400);
2200 printk("KGDB: on channel %d initialized\n", tty_num);
2201 set_debug_traps(); /* init stub */
2202}
2203#endif /* ifdef CONFIG_KGDB */
diff --git a/drivers/tc/zs.h b/drivers/tc/zs.h
deleted file mode 100644
index 13512200ceba..000000000000
--- a/drivers/tc/zs.h
+++ /dev/null
@@ -1,404 +0,0 @@
1/*
2 * drivers/tc/zs.h: Definitions for the DECstation Z85C30 serial driver.
3 *
4 * Adapted from drivers/sbus/char/sunserial.h by Paul Mackerras.
5 * Adapted from drivers/macintosh/macserial.h by Harald Koerfgen.
6 *
7 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
8 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
9 * Copyright (C) 2004, 2005 Maciej W. Rozycki
10 */
11#ifndef _DECSERIAL_H
12#define _DECSERIAL_H
13
14#include <asm/dec/serial.h>
15
16#define NUM_ZSREGS 16
17
18struct serial_struct {
19 int type;
20 int line;
21 int port;
22 int irq;
23 int flags;
24 int xmit_fifo_size;
25 int custom_divisor;
26 int baud_base;
27 unsigned short close_delay;
28 char reserved_char[2];
29 int hub6;
30 unsigned short closing_wait; /* time to wait before closing */
31 unsigned short closing_wait2; /* no longer used... */
32 int reserved[4];
33};
34
35/*
36 * For the close wait times, 0 means wait forever for serial port to
37 * flush its output. 65535 means don't wait at all.
38 */
39#define ZILOG_CLOSING_WAIT_INF 0
40#define ZILOG_CLOSING_WAIT_NONE 65535
41
42/*
43 * Definitions for ZILOG_struct (and serial_struct) flags field
44 */
45#define ZILOG_HUP_NOTIFY 0x0001 /* Notify getty on hangups and closes
46 on the callout port */
47#define ZILOG_FOURPORT 0x0002 /* Set OU1, OUT2 per AST Fourport settings */
48#define ZILOG_SAK 0x0004 /* Secure Attention Key (Orange book) */
49#define ZILOG_SPLIT_TERMIOS 0x0008 /* Separate termios for dialin/callout */
50
51#define ZILOG_SPD_MASK 0x0030
52#define ZILOG_SPD_HI 0x0010 /* Use 56000 instead of 38400 bps */
53
54#define ZILOG_SPD_VHI 0x0020 /* Use 115200 instead of 38400 bps */
55#define ZILOG_SPD_CUST 0x0030 /* Use user-specified divisor */
56
57#define ZILOG_SKIP_TEST 0x0040 /* Skip UART test during autoconfiguration */
58#define ZILOG_AUTO_IRQ 0x0080 /* Do automatic IRQ during autoconfiguration */
59#define ZILOG_SESSION_LOCKOUT 0x0100 /* Lock out cua opens based on session */
60#define ZILOG_PGRP_LOCKOUT 0x0200 /* Lock out cua opens based on pgrp */
61#define ZILOG_CALLOUT_NOHUP 0x0400 /* Don't do hangups for cua device */
62
63#define ZILOG_FLAGS 0x0FFF /* Possible legal ZILOG flags */
64#define ZILOG_USR_MASK 0x0430 /* Legal flags that non-privileged
65 * users can set or reset */
66
67/* Internal flags used only by kernel/chr_drv/serial.c */
68#define ZILOG_INITIALIZED 0x80000000 /* Serial port was initialized */
69#define ZILOG_CALLOUT_ACTIVE 0x40000000 /* Call out device is active */
70#define ZILOG_NORMAL_ACTIVE 0x20000000 /* Normal device is active */
71#define ZILOG_BOOT_AUTOCONF 0x10000000 /* Autoconfigure port on bootup */
72#define ZILOG_CLOSING 0x08000000 /* Serial port is closing */
73#define ZILOG_CTS_FLOW 0x04000000 /* Do CTS flow control */
74#define ZILOG_CHECK_CD 0x02000000 /* i.e., CLOCAL */
75
76/* Software state per channel */
77
78#ifdef __KERNEL__
79/*
80 * This is our internal structure for each serial port's state.
81 *
82 * Many fields are paralleled by the structure used by the serial_struct
83 * structure.
84 *
85 * For definitions of the flags field, see tty.h
86 */
87
88struct dec_zschannel {
89 volatile unsigned char *control;
90 volatile unsigned char *data;
91
92 /* Current write register values */
93 unsigned char curregs[NUM_ZSREGS];
94};
95
96struct dec_serial {
97 struct dec_serial *zs_next; /* For IRQ servicing chain. */
98 struct dec_zschannel *zs_channel; /* Channel registers. */
99 struct dec_zschannel *zs_chan_a; /* A side registers. */
100 unsigned char read_reg_zero;
101
102 struct dec_serial_hook *hook; /* Hook on this channel. */
103 int tty_break; /* Set on BREAK condition. */
104 int is_cons; /* Is this our console. */
105 int tx_active; /* Char is being xmitted. */
106 int tx_stopped; /* Output is suspended. */
107
108 /*
109 * We need to know the current clock divisor
110 * to read the bps rate the chip has currently loaded.
111 */
112 int clk_divisor; /* May be 1, 16, 32, or 64. */
113 int zs_baud;
114
115 char change_needed;
116
117 int magic;
118 int baud_base;
119 int port;
120 int irq;
121 int flags; /* Defined in tty.h. */
122 int type; /* UART type. */
123 struct tty_struct *tty;
124 int read_status_mask;
125 int ignore_status_mask;
126 int timeout;
127 int xmit_fifo_size;
128 int custom_divisor;
129 int x_char; /* XON/XOFF character. */
130 int close_delay;
131 unsigned short closing_wait;
132 unsigned short closing_wait2;
133 unsigned long event;
134 unsigned long last_active;
135 int line;
136 int count; /* # of fds on device. */
137 int blocked_open; /* # of blocked opens. */
138 unsigned char *xmit_buf;
139 int xmit_head;
140 int xmit_tail;
141 int xmit_cnt;
142 struct tasklet_struct tlet;
143 wait_queue_head_t open_wait;
144 wait_queue_head_t close_wait;
145};
146
147
148#define SERIAL_MAGIC 0x5301
149
150/*
151 * The size of the serial xmit buffer is 1 page, or 4096 bytes
152 */
153#define SERIAL_XMIT_SIZE 4096
154
155/*
156 * Events are used to schedule things to happen at timer-interrupt
157 * time, instead of at rs interrupt time.
158 */
159#define RS_EVENT_WRITE_WAKEUP 0
160
161#endif /* __KERNEL__ */
162
163/* Conversion routines to/from brg time constants from/to bits
164 * per second.
165 */
166#define BRG_TO_BPS(brg, freq) ((freq) / 2 / ((brg) + 2))
167#define BPS_TO_BRG(bps, freq) ((((freq) + (bps)) / (2 * (bps))) - 2)
168
169/* The Zilog register set */
170
171#define FLAG 0x7e
172
173/* Write Register 0 */
174#define R0 0 /* Register selects */
175#define R1 1
176#define R2 2
177#define R3 3
178#define R4 4
179#define R5 5
180#define R6 6
181#define R7 7
182#define R8 8
183#define R9 9
184#define R10 10
185#define R11 11
186#define R12 12
187#define R13 13
188#define R14 14
189#define R15 15
190
191#define NULLCODE 0 /* Null Code */
192#define POINT_HIGH 0x8 /* Select upper half of registers */
193#define RES_EXT_INT 0x10 /* Reset Ext. Status Interrupts */
194#define SEND_ABORT 0x18 /* HDLC Abort */
195#define RES_RxINT_FC 0x20 /* Reset RxINT on First Character */
196#define RES_Tx_P 0x28 /* Reset TxINT Pending */
197#define ERR_RES 0x30 /* Error Reset */
198#define RES_H_IUS 0x38 /* Reset highest IUS */
199
200#define RES_Rx_CRC 0x40 /* Reset Rx CRC Checker */
201#define RES_Tx_CRC 0x80 /* Reset Tx CRC Checker */
202#define RES_EOM_L 0xC0 /* Reset EOM latch */
203
204/* Write Register 1 */
205
206#define EXT_INT_ENAB 0x1 /* Ext Int Enable */
207#define TxINT_ENAB 0x2 /* Tx Int Enable */
208#define PAR_SPEC 0x4 /* Parity is special condition */
209
210#define RxINT_DISAB 0 /* Rx Int Disable */
211#define RxINT_FCERR 0x8 /* Rx Int on First Character Only or Error */
212#define RxINT_ALL 0x10 /* Int on all Rx Characters or error */
213#define RxINT_ERR 0x18 /* Int on error only */
214#define RxINT_MASK 0x18
215
216#define WT_RDY_RT 0x20 /* Wait/Ready on R/T */
217#define WT_FN_RDYFN 0x40 /* Wait/FN/Ready FN */
218#define WT_RDY_ENAB 0x80 /* Wait/Ready Enable */
219
220/* Write Register #2 (Interrupt Vector) */
221
222/* Write Register 3 */
223
224#define RxENABLE 0x1 /* Rx Enable */
225#define SYNC_L_INH 0x2 /* Sync Character Load Inhibit */
226#define ADD_SM 0x4 /* Address Search Mode (SDLC) */
227#define RxCRC_ENAB 0x8 /* Rx CRC Enable */
228#define ENT_HM 0x10 /* Enter Hunt Mode */
229#define AUTO_ENAB 0x20 /* Auto Enables */
230#define Rx5 0x0 /* Rx 5 Bits/Character */
231#define Rx7 0x40 /* Rx 7 Bits/Character */
232#define Rx6 0x80 /* Rx 6 Bits/Character */
233#define Rx8 0xc0 /* Rx 8 Bits/Character */
234#define RxNBITS_MASK 0xc0
235
236/* Write Register 4 */
237
238#define PAR_ENA 0x1 /* Parity Enable */
239#define PAR_EVEN 0x2 /* Parity Even/Odd* */
240
241#define SYNC_ENAB 0 /* Sync Modes Enable */
242#define SB1 0x4 /* 1 stop bit/char */
243#define SB15 0x8 /* 1.5 stop bits/char */
244#define SB2 0xc /* 2 stop bits/char */
245#define SB_MASK 0xc
246
247#define MONSYNC 0 /* 8 Bit Sync character */
248#define BISYNC 0x10 /* 16 bit sync character */
249#define SDLC 0x20 /* SDLC Mode (01111110 Sync Flag) */
250#define EXTSYNC 0x30 /* External Sync Mode */
251
252#define X1CLK 0x0 /* x1 clock mode */
253#define X16CLK 0x40 /* x16 clock mode */
254#define X32CLK 0x80 /* x32 clock mode */
255#define X64CLK 0xC0 /* x64 clock mode */
256#define XCLK_MASK 0xC0
257
258/* Write Register 5 */
259
260#define TxCRC_ENAB 0x1 /* Tx CRC Enable */
261#define RTS 0x2 /* RTS */
262#define SDLC_CRC 0x4 /* SDLC/CRC-16 */
263#define TxENAB 0x8 /* Tx Enable */
264#define SND_BRK 0x10 /* Send Break */
265#define Tx5 0x0 /* Tx 5 bits (or less)/character */
266#define Tx7 0x20 /* Tx 7 bits/character */
267#define Tx6 0x40 /* Tx 6 bits/character */
268#define Tx8 0x60 /* Tx 8 bits/character */
269#define TxNBITS_MASK 0x60
270#define DTR 0x80 /* DTR */
271
272/* Write Register 6 (Sync bits 0-7/SDLC Address Field) */
273
274/* Write Register 7 (Sync bits 8-15/SDLC 01111110) */
275
276/* Write Register 8 (transmit buffer) */
277
278/* Write Register 9 (Master interrupt control) */
279#define VIS 1 /* Vector Includes Status */
280#define NV 2 /* No Vector */
281#define DLC 4 /* Disable Lower Chain */
282#define MIE 8 /* Master Interrupt Enable */
283#define STATHI 0x10 /* Status high */
284#define SOFTACK 0x20 /* Software Interrupt Acknowledge */
285#define NORESET 0 /* No reset on write to R9 */
286#define CHRB 0x40 /* Reset channel B */
287#define CHRA 0x80 /* Reset channel A */
288#define FHWRES 0xc0 /* Force hardware reset */
289
290/* Write Register 10 (misc control bits) */
291#define BIT6 1 /* 6 bit/8bit sync */
292#define LOOPMODE 2 /* SDLC Loop mode */
293#define ABUNDER 4 /* Abort/flag on SDLC xmit underrun */
294#define MARKIDLE 8 /* Mark/flag on idle */
295#define GAOP 0x10 /* Go active on poll */
296#define NRZ 0 /* NRZ mode */
297#define NRZI 0x20 /* NRZI mode */
298#define FM1 0x40 /* FM1 (transition = 1) */
299#define FM0 0x60 /* FM0 (transition = 0) */
300#define CRCPS 0x80 /* CRC Preset I/O */
301
302/* Write Register 11 (Clock Mode control) */
303#define TRxCXT 0 /* TRxC = Xtal output */
304#define TRxCTC 1 /* TRxC = Transmit clock */
305#define TRxCBR 2 /* TRxC = BR Generator Output */
306#define TRxCDP 3 /* TRxC = DPLL output */
307#define TRxCOI 4 /* TRxC O/I */
308#define TCRTxCP 0 /* Transmit clock = RTxC pin */
309#define TCTRxCP 8 /* Transmit clock = TRxC pin */
310#define TCBR 0x10 /* Transmit clock = BR Generator output */
311#define TCDPLL 0x18 /* Transmit clock = DPLL output */
312#define RCRTxCP 0 /* Receive clock = RTxC pin */
313#define RCTRxCP 0x20 /* Receive clock = TRxC pin */
314#define RCBR 0x40 /* Receive clock = BR Generator output */
315#define RCDPLL 0x60 /* Receive clock = DPLL output */
316#define RTxCX 0x80 /* RTxC Xtal/No Xtal */
317
318/* Write Register 12 (lower byte of baud rate generator time constant) */
319
320/* Write Register 13 (upper byte of baud rate generator time constant) */
321
322/* Write Register 14 (Misc control bits) */
323#define BRENABL 1 /* Baud rate generator enable */
324#define BRSRC 2 /* Baud rate generator source */
325#define DTRREQ 4 /* DTR/Request function */
326#define AUTOECHO 8 /* Auto Echo */
327#define LOOPBAK 0x10 /* Local loopback */
328#define SEARCH 0x20 /* Enter search mode */
329#define RMC 0x40 /* Reset missing clock */
330#define DISDPLL 0x60 /* Disable DPLL */
331#define SSBR 0x80 /* Set DPLL source = BR generator */
332#define SSRTxC 0xa0 /* Set DPLL source = RTxC */
333#define SFMM 0xc0 /* Set FM mode */
334#define SNRZI 0xe0 /* Set NRZI mode */
335
336/* Write Register 15 (external/status interrupt control) */
337#define ZCIE 2 /* Zero count IE */
338#define DCDIE 8 /* DCD IE */
339#define SYNCIE 0x10 /* Sync/hunt IE */
340#define CTSIE 0x20 /* CTS IE */
341#define TxUIE 0x40 /* Tx Underrun/EOM IE */
342#define BRKIE 0x80 /* Break/Abort IE */
343
344
345/* Read Register 0 */
346#define Rx_CH_AV 0x1 /* Rx Character Available */
347#define ZCOUNT 0x2 /* Zero count */
348#define Tx_BUF_EMP 0x4 /* Tx Buffer empty */
349#define DCD 0x8 /* DCD */
350#define SYNC_HUNT 0x10 /* Sync/hunt */
351#define CTS 0x20 /* CTS */
352#define TxEOM 0x40 /* Tx underrun */
353#define BRK_ABRT 0x80 /* Break/Abort */
354
355/* Read Register 1 */
356#define ALL_SNT 0x1 /* All sent */
357/* Residue Data for 8 Rx bits/char programmed */
358#define RES3 0x8 /* 0/3 */
359#define RES4 0x4 /* 0/4 */
360#define RES5 0xc /* 0/5 */
361#define RES6 0x2 /* 0/6 */
362#define RES7 0xa /* 0/7 */
363#define RES8 0x6 /* 0/8 */
364#define RES18 0xe /* 1/8 */
365#define RES28 0x0 /* 2/8 */
366/* Special Rx Condition Interrupts */
367#define PAR_ERR 0x10 /* Parity error */
368#define Rx_OVR 0x20 /* Rx Overrun Error */
369#define FRM_ERR 0x40 /* CRC/Framing Error */
370#define END_FR 0x80 /* End of Frame (SDLC) */
371
372/* Read Register 2 (channel b only) - Interrupt vector */
373
374/* Read Register 3 (interrupt pending register) ch a only */
375#define CHBEXT 0x1 /* Channel B Ext/Stat IP */
376#define CHBTxIP 0x2 /* Channel B Tx IP */
377#define CHBRxIP 0x4 /* Channel B Rx IP */
378#define CHAEXT 0x8 /* Channel A Ext/Stat IP */
379#define CHATxIP 0x10 /* Channel A Tx IP */
380#define CHARxIP 0x20 /* Channel A Rx IP */
381
382/* Read Register 8 (receive data register) */
383
384/* Read Register 10 (misc status bits) */
385#define ONLOOP 2 /* On loop */
386#define LOOPSEND 0x10 /* Loop sending */
387#define CLK2MIS 0x40 /* Two clocks missing */
388#define CLK1MIS 0x80 /* One clock missing */
389
390/* Read Register 12 (lower byte of baud rate generator constant) */
391
392/* Read Register 13 (upper byte of baud rate generator constant) */
393
394/* Read Register 15 (value of WR 15) */
395
396/* Misc macros */
397#define ZS_CLEARERR(channel) (write_zsreg(channel, 0, ERR_RES))
398#define ZS_CLEARFIFO(channel) do { volatile unsigned char garbage; \
399 garbage = read_zsdata(channel); \
400 garbage = read_zsdata(channel); \
401 garbage = read_zsdata(channel); \
402 } while(0)
403
404#endif /* !(_DECSERIAL_H) */
diff --git a/include/asm-mips/dec/serial.h b/include/asm-mips/dec/serial.h
deleted file mode 100644
index acad75890a05..000000000000
--- a/include/asm-mips/dec/serial.h
+++ /dev/null
@@ -1,36 +0,0 @@
1/*
2 * include/asm-mips/dec/serial.h
3 *
4 * Definitions common to all DECstation serial devices.
5 *
6 * Copyright (C) 2004 Maciej W. Rozycki
7 *
8 * Based on bits extracted from drivers/tc/zs.h for which
9 * the following copyrights apply:
10 *
11 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
12 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
13 * Copyright (C) Harald Koerfgen
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20#ifndef __ASM_MIPS_DEC_SERIAL_H
21#define __ASM_MIPS_DEC_SERIAL_H
22
23struct dec_serial_hook {
24 int (*init_channel)(void *handle);
25 void (*init_info)(void *handle);
26 void (*rx_char)(unsigned char ch, unsigned char fl);
27 int (*poll_rx_char)(void *handle);
28 int (*poll_tx_char)(void *handle, unsigned char ch);
29 unsigned int cflags;
30};
31
32extern int register_dec_serial_hook(unsigned int channel,
33 struct dec_serial_hook *hook);
34extern int unregister_dec_serial_hook(unsigned int channel);
35
36#endif /* __ASM_MIPS_DEC_SERIAL_H */
diff --git a/include/linux/serial_core.h b/include/linux/serial_core.h
index 9c721cd2c9d6..773d8d8828ad 100644
--- a/include/linux/serial_core.h
+++ b/include/linux/serial_core.h
@@ -62,8 +62,9 @@
62/* NEC v850. */ 62/* NEC v850. */
63#define PORT_V850E_UART 40 63#define PORT_V850E_UART 40
64 64
65/* DZ */ 65/* DEC */
66#define PORT_DZ 47 66#define PORT_DZ 46
67#define PORT_ZS 47
67 68
68/* Parisc type numbers. */ 69/* Parisc type numbers. */
69#define PORT_MUX 48 70#define PORT_MUX 48