aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorJean Delvare <khali@linux-fr.org>2005-06-24 15:14:16 -0400
committerGreg Kroah-Hartman <gregkh@suse.de>2005-07-11 17:10:36 -0400
commit9ab1ee2ab7d65979c0f14a60ee1f29f8988f5811 (patch)
tree48ad06b033dfe8a673e026e7a219608b15733199
parent541e6a02768404efb06bd1ea5f33d614732f41fc (diff)
[PATCH] I2C: New max6875 driver may corrupt EEPROMs
After a careful code analysis on the new max6875 driver (drivers/i2c/chips/max6875.c), I have come to the conclusion that this driver may cause EEPROM corruptions if used on random systems. The EEPROM part of the MAX6875 chip is accessed using rather uncommon I2C sequences. What is seen by the MAX6875 as reads can be seen by a standard EEPROM (24C02) as writes. If you check the detection method used by the driver, you'll find that the first SMBus command it will send on the bus is i2c_smbus_write_byte_data(client, 0x80, 0x40). For the MAX6875 it makes an internal pointer point to a specific offset of the EEPROM waiting for a subsequent read command, so it's not an actual data write operation, but for a standard EEPROM, this instead means writing value 0x40 to offset 0x80. Blame Philips and Intel for the obscure protocol. Since the MAX6875 and the standard, common 24C02 EEPROMs share two I2C addresses (0x50 and 0x52), loading the max6875 driver on a system with standard EEPROMs at either address will trigger a write on these EEPROMs, which will lead to their corruption if they happen not to be write protected. This kind of EEPROMs can be found on memory modules (SPD), ethernet adapters (MAC address), laptops (proprietary data) and displays (EDID/DDC). Most of these are hopefully write-protected, but not all of them. For this reason, I would recommend that the max6875 driver be neutralized, in a way that nobody can corrupt his/her EEPROMs by just loading the driver. This means either deleting the driver completely, or not listing any default address for it. I'd like this to be done before 2.6.13-rc1 is released. Additionally, the max6875 driver lacks the 24RF08 corruption preventer present in the eeprom driver, which means that loading this driver in a system with such a chip would corrupt it as well. Here is a proposed quick patch addressing the issue, although I wouldn't mind a complete removal if it makes everyone feel safer. I think Ben has plans to replace this driver by a much simplified one anyway. Signed-off-by: Jean Delvare <khali@linux-fr.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
-rw-r--r--drivers/i2c/chips/max6875.c6
1 files changed, 5 insertions, 1 deletions
diff --git a/drivers/i2c/chips/max6875.c b/drivers/i2c/chips/max6875.c
index fe6b150ec4c2..c4f14d9623c4 100644
--- a/drivers/i2c/chips/max6875.c
+++ b/drivers/i2c/chips/max6875.c
@@ -37,7 +37,8 @@
37#include <linux/i2c-sensor.h> 37#include <linux/i2c-sensor.h>
38 38
39/* Addresses to scan */ 39/* Addresses to scan */
40static unsigned short normal_i2c[] = {0x50, 0x52, I2C_CLIENT_END}; 40/* No address scanned by default, as this could corrupt standard EEPROMS. */
41static unsigned short normal_i2c[] = {I2C_CLIENT_END};
41static unsigned int normal_isa[] = {I2C_CLIENT_ISA_END}; 42static unsigned int normal_isa[] = {I2C_CLIENT_ISA_END};
42 43
43/* Insmod parameters */ 44/* Insmod parameters */
@@ -369,6 +370,9 @@ static int max6875_detect(struct i2c_adapter *adapter, int address, int kind)
369 new_client->driver = &max6875_driver; 370 new_client->driver = &max6875_driver;
370 new_client->flags = 0; 371 new_client->flags = 0;
371 372
373 /* Prevent 24RF08 corruption */
374 i2c_smbus_write_quick(new_client, 0);
375
372 /* Setup the user section */ 376 /* Setup the user section */
373 data->blocks[max6875_eeprom_user].type = max6875_eeprom_user; 377 data->blocks[max6875_eeprom_user].type = max6875_eeprom_user;
374 data->blocks[max6875_eeprom_user].slices = USER_EEPROM_SLICES; 378 data->blocks[max6875_eeprom_user].slices = USER_EEPROM_SLICES;